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Effects of a bent structure on the linear viscoelastic
response of diluted carbon nanotube suspensions

C. Cruz · L. Illoul · F. Chinesta · G. Régnier

Abstract Commonly isolated carbon nanotubes in sus-
pension have been modelled as a perfectly straight
structure. Nevertheless, single-wall carbon nanotubes
(SWNTs) contain naturally side-wall defects and, in
consequence, natural bent configurations. Hence, a
semi-flexile filament model with a natural bent con-
figuration was proposed to represent physically the
SWNT structure. This continuous model was discre-
tized as a non-freely jointed multi-bead–rod system
with a natural bent configuration. Using a Brownian
dynamics algorithm the dynamical mechanical contri-
bution to the linear viscoelastic response of naturally
bent SWNTs in dilute suspension was simulated. The
dynamics of such system shows the apparition of new
relaxation processes at intermediate frequencies char-
acterized mainly by the activation of a mild elastic-
ity. Storage modulus evolution at those intermediate
frequencies strongly depends on the flexibility of the
system, given by the rigidity constant of the bending
potential and the number of constitutive rods.
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Introduction

Today, without any doubt nanotechnology is a hot
topic. Belonging to this nano-world, carbon nanotubes
are being intensively studied because their potential ap-
plications are extremely varied and the expected prop-
erties really impressive. A carbon nanotube (CNT) is
a cylindrical structure constituted essentially by rolled-
up graphite sheets with diameters going from 0.4 nm to
several nanometres and lengths up to some millimetres
(Pan et al. 1998). This particular structure confers to
CNTs an extraordinary compromise between mechani-
cal, thermal and electrical properties.

Particularly, single-walled carbon nanotubes
(SWNTs) are considered as a perfect constituent ma-
terial for obtaining very strong and ultra light electro-
mechanical components based on nano-filaments
(Chico et al. 1996; McEuen 2000), carbon fibres (Vigolo
et al. 2000), and transparent films (Wu et al. 2004).
Additionally, SWNTs have a great biomedical potential
as an effective gene and drug delivery system through
cell membranes (Shim et al. 2002; Kam et al. 2004).

Pristine SWNTs exhibit very strong tube-tube van
der Waals forces that produce their natural agglom-
eration in bundles. In consequence, solubilisation of
SWNTs as individual entities is difficult and remains
the main obstacle to develop their industrial applica-
tions (Ajayan 1999). To solve this problem, chemical
modification of the tube side wall by covalent bonding
has been the most extended attempt to enhance the
dispersion of SWNTs (Bahr and Tour 2001).
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A large range of the applications of SWNTs requires
a transformation processing in liquid phase. For such
reason, surface-treated SWNTs are usually suspended
into a Newtonian fluid or a viscoelastic matrix (melted
polymer). Control and optimization of those trans-
forming processes, based on the flow of such suspen-
sions, need a deep comprehension of their rheology
(Kharchenko et al. 2004).

Davis et al. (2004) reported the dispersion of SWNTs
in superacids (102% sulphuric acid), where the side-
wall SWNT protonation is the driving mechanism that
counteracts the tube-tube van der Waals forces and
promotes the dispersion of individual SWNTs. They
found that at dilute regime (concentration <120 ppm
vol) SWNTs act as simple Brownian rods and the sus-
pension exhibits an expected shear thinning behaviour.

In 2006, Rahatekar et al. studied the rheology
of multi-wall carbon nanotubes (MWNTs) within an
epoxy resin. They verified a two decades enhance-
ment of the low shear viscosity when incorporating
carbon nanotubes into the epoxy. When suspension
was progressively sheared the suspension evidenced
a rheo-thinning behaviour, a phenomenon mainly ex-
plained by the reduction of aggregates and not by
the nanotube alignment. On the contrary, Fan and
Advani (2005, 2007) revealed by transmission electron
microscopy that MWNTs are aligned in the flow direc-
tion when their suspensions were sheared. They found
also that the extent of such alignment is function of
the shear rate. A more recent work showed that the
shear-thinning behaviour of CNT suspensions can be
explained considering both the aggregation and the
alignment effects (Ma et al. 2008a).

In 2005, Xu et al. studied the morphology and
rheology of carbon nanofiber suspensions. Carbon
nanofibers (diameter of about 100–200 nm) are bigger
than CNTs, but their structural similarities let to com-
pare their dynamical behaviour. Xu et al. used several
standard elastic and rigid dumbbell models to predict
the rheological behaviour of aqueous carbon nanofiber
suspensions. They conjectured that the elasticity in such
suspensions comes mainly from the recoverable bend-
ing of the carbon nanofibers.

Recently, Ma et al. (2008b) presented a study about
the extensional rheology of surface-treated SWNTs di-
luted within an epoxy matrix. They validated a filament
thinning experiment to determine the extensional vis-
cosity of CNT suspensions. It was observed that the
filament relaxation process for the surface-treated
SWNT samples (low concentration, ≤0.3% wt.) follows
the typical Newtonian filament relaxation behaviour
where filament diameter decreases linearly with time.

On the contrary, the extensional viscosity of the treated
SWNT suspensions did not show the classical relation-
ship between the zero-shear viscosity and the exten-
sional viscosity for Newtonian liquids, giving evidence
of an enhanced extensional viscosity, probably due to
the high degree of alignment of treated SWNTs in the
flow direction. This behaviour was modelled by a sim-
ple Fokker-Planck equation-based orientation model.

Given the high aspect ratio and tensile rigidity of car-
bon nanotubes the classical mesoscopic–macroscopic
approaches for fibre suspensions (Hinch and Leal 1972;
Petrie 1999; Sepehr et al. 2004; Rajabian et al. 2005)
can be employed to describe the rheological behaviour
of CNT suspensions. However, diffusion coefficients
usually depend on empirical relationships (Folgar
and Tucker 1984; Larson 1999) and lack of physical
meaning.

Ma et al. (2009) reported a generalized Fokker-
Planck-based model to predict the rheology of surface-
treated SWNTs suspended within an epoxy matrix in
the dilute to semi-dilute concentration regime. The
classical shear-thinning behaviour when the suspension
is subjected to a steady shear flow was explained in
terms of the competition between two phenomena:
SWNT orientation in the flow direction and SWNT
random misalignment due to Brownian motion (ther-
mal interaction with the solvent). The shear-thinning
data were properly fitted by a Fokker-Plank orien-
tation model tuning the rotary diffusion coefficient.
On the other hand, when the surface-treated SWNT
suspension was submitted to a small amplitude oscilla-
tory deformation a non-negligible elastic response was
identified in the tested frequencies. Figure 1 shows
the viscoelastic contribution of functionalized SWNTs
to the dynamic response of a 0.2 wt.% SWNT–epoxy
resin suspension. A constant-slope evolution for the
storage and loss modulus is observed in the tested
frequency interval. This kind of rheological behaviour
was found characteristic of the SWNT suspensions from
the dilute to the semi-dilute concentration regime. Ma
et al. (2009) fitted those linear viscoelastic data with
the Fokker-Planck-based orientation model, but us-
ing an empirical relationship for the rotary diffusion
coefficient that depends on the applied frequency. Even
though there had been several hypotheses to explain
this behaviour as, for example, existence of a weak
CNT network (Hough et al. 2004) and electrostatic in-
teraction between surface-treated SWNTs, the physical
origins of this mild elasticity in the linear viscoelasticity
spectra are not clear yet.

SWNTs can contain naturally topological defects
(Lijima et al. 1992). Several studies have showed the
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Fig. 1 Viscoelastic contribution of treated SWNTs to the dy-
namic response of a 0.2 wt.% SWNT-epoxy resin suspension.
SWNT contribution to the storage and loss modulus are calcu-
lated as G′

CNT = G′
suspension − G′

epoxy and G′′
CNT = G′′

suspension −
ωηepoxy, respectively. Epoxy resin is supposed to be Newtonian
(G′

epoxy ∼ 0 and ηepoxy = 10 Pa s). Courtesy of Dr. Anson Ma
(Rice University)

existence of those defects by using Fresnel projec-
tion microscopy (Binh et al. 2000), scanning tunnelling
microscopy (STM; Ouyang et al. 2001) and voltage-
contrast scanning electron microscopy (VC-SEM;
Vijayaraghavan et al. 2010). Most common topological
defects in SWNTs are due to the existence of a non-
hexagonal carbon ring (e.g. pentagon–heptagon defect)
in middle of the classical honeycomb-like lattice struc-
ture of a CNT. Molecular dynamics (MD) is largely
employed to identify the structural consequences of this
kind of defects. For example, it has been demonstrated
that a bent structure is thermodynamically more stable
than a straight one once a localized topological defect
appears in the SWNT growth (Xue et al. 2009). Ad-
ditionally, it has been shown that a single pentagon–
heptagon pair can bend the SWNT tubular structure
forming a localized junction (Ajayan et al. 1998) with
angles varying from 0◦ to 34◦ (Han et al. 1998; Wako
et al. 2008) depending on the distance between the pen-
tagon and heptagon pair defect (Lambin and Meunier
1999).

So, in order to contribute elucidating the physical
phenomena behind the mild elasticity exhibited by the
dynamics of individual SWNTs this paper investigates
the influence of the naturally bent SWNT structure

on the linear viscoelastic response of their dilute sus-
pensions. To do so, we proposed an equivalent me-
chanical model that represents an individual SWNT as
a semi-flexible filament (or a non-freely multi-bead–
rod model in a discretized version) with a natural bent
configuration and we evaluated by Brownian dynamics
the linear viscoelastic response of this physical model
into a diluted suspension.

Modelling

Persistent length (Lp) considerations are necessary
when modelling high aspect ratio systems that exhibit
a very important resistance to tangential extension or
compression (Morse 1998; Shankar et al. 2002). In ab-
sence of external forces (e.g. a flow field), persistent
length is a characteristic length that relates the bending
rigidity of the system to the thermal energy around it.
In practice, this parameter determines a length scale
over which the high aspect ratio system presents sig-
nificant curvature due to thermal interactions with the
surroundings. In consequence, a system of total length
L where L/Lp << 1 can be considered as a simple rigid
rod and a system where L/Lp >> 1 can be considered
as a flexible filament. Traditionally, individual SWNTs
have been modelled as Brownian rigid rods (Davis et al.
2004; Duggal and Pasquali 2006; Mendes et al. 2008; Ma
et al. 2009).

Nevertheless, there are experimental results that
lead to think that treated SWNTs can be consid-
ered as other than rigid-rod systems. Using a near-
infrared fluorescence technique, thermal SWNT-shape
fluctuations has been observed into a diluted SWNT
aqueous suspension (Tsyboulski et al. 2005). Addition-
ally, Fakhri et al. (2009) demonstrated that the ob-
served bending dynamics corresponds accurately with a
semi-flexible filament model (L ∼ Lp), where Lp scales
with the d3 (d, diameter of SWNT).

If we are considering now the action of an external
flow field and the natural existence of a bent structure
in SWNTs due to the presence of side-wall defects,
the persistent length concept requires a more precise
definition. In any case, those new considerations can
only reduce the length scale of observable bending
relative to the thermal classical persistent length and,
hence, in this paper a semi-flexible filament is supposed
to be a good equivalent micromechanical model de-
scribing the dynamics of an individual SWNT submitted
to a homogeneous flow field.

In this context, we insist on considering that a
SWNT contains naturally side-wall defects producing a
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deviation from the perfectly straight structure; i.e. the
pristine SWNT has a slightly curved structure. This
assumption is supported on two main facts:

• Even if there is a large discussion about the in-
fluence of sample preparation on the observed
structure of CNTs, there are numerous images
taken by SEM, STM, atomic force microscopy
(AFM) and transmission electron microscopy that
reveal clearly a natural bent structure in some CNT
samples (Shaffer et al. 1998; Clauss 1999; Ouyang
et al. 2001; Kinloch et al. 2002; Loos et al. 2005;
Lamprecht et al. 2009; Vijayaraghavan et al. 2010).
For example, in Fig. 2 an image taken by AFM of
surface-treated SWNTs protruding from a photo-
cured acrylic surface is presented; the bent struc-
ture of the SWNTs is easily appreciable.

• The natural existence of topological defects that
plays an important role in the mechanical and
thermo-electrical properties of CNTs (Ruoff et al.
2003). A clear relationship between those CNT
structural instabilities (pentagon/heptagon defect,
for example) and the intrinsic curvature of CNT
structures has been established (Clinard et al. 1994;
Dimitrakopulos et al. 1997; Ajayan et al. 1998; Han
et al. 1998; Clauss 1999; Lambin and Meunier 1999;
Huang and Choi 2008; Wako et al. 2008; Xue et al.
2009).

So, in order to test the dynamic mechanical response
of this physical model, we decided to use an inertialess
Langevin dynamics approach, also known as Brownian

Fig. 2 AFM image of treated SWNTs protruding from a photo-
cured acrylic surface (image area corresponds to a 5-μm-side
square). Courtesy of Dr. Anson Ma (Rice University), Dr.
Loren Picco (Bristol University) and Pr. Mervyn Miles (Bristol
University)

dynamics. The semi-flexible filament was discretized in
a non-freely jointed multi-bead–rod model as observed
in Fig. 3. This multi-bead–rod model is composed of
n beads with positions ri, connected by n − 1 rods of
length a, where a approaches theoretically the persis-
tence length under flow conditions of the system. The
SWNT physical length is given by the total length of the
multi-bead–rod model (n − 1) a. Beads are considered
the centres of hydrodynamic resistance, as usual for
all the mechanical models in polymer kinetic theory
(Bird et al. 1987), and also mark the existence of a
bent topological defect. On the other hand, rods are
supposed infinitely rigid. We consider the existence of
an internal bending potential that mimics the SWNT
bending flexibility. Bending potential is given by the
action of a hypothetical torsion spring between each
pair of rods.

Concerning particularly the simulation of a dynamic
mechanical test on a diluted suspension of SWNTs,
several hypotheses are established:

• Dynamic mechanical solicitation occurs at constant
temperature.

• Individual SWNTs are embedded in a Newtonian
matrix of viscosity ηs.

• Suspension is supposed to be diluted, in conse-
quence, no physical interaction between SWNTs is
considered.

• Applied flow field is considered homogeneous, i.e.
the rate-of-strain tensor is supposed constant within
the suspension (Bird et al. 1987).

• No external forces (electrostatic, magnetic or grav-
itational) play a role in the dynamics of the sus-
pension. Possible electrostatic interaction between
surface-treatment groups is neglected because it

Fig. 3 Non-freely jointed multi-bead–rod model composed of n
beads and n − 1 rods of length a. Bending potential between rods
in the multi-bead–rod model is mimicked with a hypothetical
torsion spring
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has been shown that those repulsion forces do not
produce an increment of the storage modulus at
high frequencies (Ma et al. 2008c).

Kinematic formulation

Keeping in mind all previous hypotheses, the kinematic
description of the multi-bead–rod system is given by the
next n stochastic equations (n force balances for each
bead):

0 = Fd
i + Fb

i + Fφ

i −
∑

j

nijλj

for i = 1 . . . n and j = 1 . . . n − 1 (1)

where Fd
i is the hydrodynamic drag force acting on bead

i, Fb
i is the Brownian force acting on bead i, Fφ

i is the
internal bending potential force acting on bead i and
λj is a constraint force associated to the rod connecting
bead j to j + 1. Operator nij is defined as follows:

nij = u j
(
δi, j+1 − δi, j

)
(2)

in which u j = (r j+1 − r j)/a is a unit vector collinear to
the rod connecting beads j and j + 1. In order to com-
plete correctly the kinematic description of the multi-
bead–rod chain in a Cartesian coordinates system is
necessary to impose a set of n − 1 constraints over the
bead velocities:

ṙi · ui − ṙi+1 · ui = 0 for i = 1 . . . n − 1 (3)

where ṙi is the instantaneous velocity of bead i. In
summary, using the n equations in (1) plus the n − 1
equations in (3) a linear system of equations describ-
ing the motion of the multi-bead–rod system can be
obtained, where the unknown variables are n instanta-
neous bead velocities ṙi plus n − 1 constraint forces λ j.
In what follows a formal mathematical description for
each term in Eq. 1 is developed and some important
conditions are emphasized given the time-integration
algorithm implemented in this work:

• Hydrodynamic drag force Fd
i

This force describes the resistance experienced by the
bead as it moves through the fluid. One of the sim-
plest ways to express this force is given by the Stoke’s
law. This law considers that the hydrodynamic drag
force is proportional to the difference between the
fluid velocity and the averaged bead velocity. A more
general expression takes into account a hydrodynamic
interaction term that comes from the interactions inside

the same system as it is moving. Mathematically, this
force writes:

Fd
i = ζ

([κ · ri] − ṙi − ṙ∗
i

)
(4)

where ζ is a second-order friction tensor, κ is the
gradient of the homogeneous velocity field acting in all
the fluid and ṙ∗

i is a correction velocity that accounts
for the variation in the local homogeneous flow field
due to the motion of the other beads in the same
system. In this work, an isotropic second-order friction
tensor is supposed, reducing this parameter to a scalar
friction coefficient ζ (i.e. ζ = ζ I), and hydrodynamic
interaction is neglected (ṙ∗

i = 0) due to the small strain
imposed and the mild bending rigidity of SWNTs. Pre-
vious suppositions are also necessary when implement-
ing a simple one-step integration scheme (Öttinger
1996), as is the case of the current work.

• Brownian force Fb
i

The Brownian forces account for the thermal effects
of the solvent molecules over the SWNTs. Taking into
account that the time scale of this thermal activity is
quite small compared with the time scale of SWNT mo-
tion, Brownian forces are mathematically computed as
a stochastic process. In unconstrained systems, the set
of Brownian forces must to follow a normal distribution
satisfying the next conditions:

〈
Fb

i (t)
〉 = 0 (5)

〈
Fb

i (t) ⊗ Fb
i (t + �t)

〉 ≈ 2ζkBT
�t

I (6)

where kB is the Boltzmann constant, T is the absolute
temperature and �t is the time step of the simulation.
In Brownian dynamics, the Brownian force generation
is a critical aspect, especially when the system contains
constraints. A proof of this subtlety is the intense dis-
cussion about the simulations of coarse-grained models
in the singular limit between rigid links and very stiff
springs (Fixman 1978, 1986; Hinch 1994; Öttinger 1994,
1996; Grassia et al. 1995; Grassia and Hinch 1996).
In the present modelling rods are considered intrin-
sically inextensible and they do not intend to mimic
the effect of a very stiff spring. In order to satisfy the
fluctuation dissipation theorem for systems containing
physical constraints a geometrical projection is done
over the unconstrained Brownian forces obtained using
Eqs. 5 and 6. Brownian forces must to satisfy the next
condition:

0 =
∑

i

Fb
i · nij for j = 1 . . . n − 1 (7)
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A complete description of the algorithm used to sat-
isfy Eq. 7 is given elsewhere (Montesi et al. 2005).
Projection of Brownian forces is absolutely necessary
when an anisotropic friction tensor is considered or sec-
ond or higher order integration schemes are employed.

• Internal bending potential force Fφ

i

Based on the viscoelasticity theory of concentrated
solutions of semi-flexible polymers (Morse 1998),
Pasquali and Morse (2002) defined a discrete bending
potential for a multi-bead–rod model perfectly straight
in equilibrium:

φ = − Kb

a

n−1∑

i=2

ui · ui−1 (8)

where φ is the bending potential and Kb is a bending
rigidity constant. Using Eq. 8, a natural definition of the
bending force for each bead can be obtained:

Fφ

k = − ∂φ

∂rk
= Kb

a

n−1∑

i=2

∂(ui · ui−1)

∂rk
(9)

Appendix A shows that the total bending force on
bead k only depends on the local chain configuration
and that this force can be interpreted as the sum of
independent contributions coming from all the two-rod
sub-sections containing bead k.

Considering now the main hypothesis mentioned
in this paper, to take into account the naturally bent
configuration of the multi-bead–rod model at equilib-
rium, the bending potential must to be redefined in the
next way:

φ = − Kb

a

n−1∑

i=2

Ziui · ui−1 = − Kb

a

n−1∑

i=2

u′
i · ui−1 (10)

where Zi is a linear operator that rotates vector ui of θ
eq
i

(interior angle between ui and ui−1 at the equilibrium
configuration) and u′

i is the rotated vector Ziui. In an
analogous way, the bending force expression in (9)
takes the next form:

Fφ

k = − ∂φ

∂rk
= Kb

a

n−1∑

i=2

∂
(
u′

i · ui−1
)

∂rk
(11)

Considering that the total bending force in Eq. 11
can also be interpreted as the sum of independent
contributions coming from all the two-rod sub-sections
containing bead k, as shown in Appendix A, the next
algorithm is proposed to compute the total bending
forces in coherence with the bent configuration:

1. Decomposition of the multi-bead–rod (n beads)
system into n − 2 sub-section systems of two con-

Fig. 4 Multi-bead–rod system of n beads (in black) decomposed
in n − 2 sub-sections p of two consecutive rods (in gray)

secutive rods as shown in Fig. 4 (note that sub-
section p is composed by beads p, p + 1 and p + 2).

2. Calculation of the non-zero contributions to the
bending forces over all beads composing each sub-
section p as follows:

• Bending force on bead p of sub-section p as:

Fφ
p,p = − Kb

a2

(
I − up ⊗ up

) · u′
p+1 (12)

• Bending force on bead p + 2 of sub-section
p as:

Fφ

p+2,p = Z−1
p+1 ·

[
Kb

a2

(
I − u′

p+1 ⊗ u′
p+1

)
· up

]

(13)

Bending force on bead p + 2 of sub-section
p has been rotated back (operator Z−1

p+1) in
order to correct the direction of the force, in
coherence with the actual bent configuration.

• As the bending potential in each sub-section
is locally independent of the adjacent sub-
sections, it must to satisfy mechanical equilib-
rium and hence bending force on bead p + 1 of
sub-section p writes:

Fφ

p+1,p = −Fφ
p,p − Fφ

p+2,p (14)

3. Finally, the total bending force on bead k is calcu-
lated as follows:

Fφ

k =
n−2∑

p=1

Fφ

k,p (15)

Once the instantaneous velocity ṙi of the system is
known (by solving the system constituted by the 2n − 1
equations defined in (1) and (3)), the system position
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is updated using a one-step algorithm that conserves
the rod lengths throughout the time step. For example,
the numerical time integration for a bead–rod chain
confined in the plan xy is obtained as follows:

1. Calculation of angular velocities ωi = [0 0 ωi] of
rods by resolving adequately the over-defined
system:

ṙi+1 − ṙi = ωi ⊗ aui−1 for i = 1 . . . n − 1 (16)

2. Update of the position of bead 1 by:

rt+�t
1 = ṙt

1 · �t (17)

3. Update of the director vectors of rods by:

θ t+�t
i = θ t

i + ωi · �t for i = 1 . . . n − 1 (18)

4. Update of the rest of bead positions by resolving
consecutively from i = 2 to n:

rt+�t
i = rt+�t

i−1 + aut+�t
i−1 (19)

Previous one-step algorithm is coherent with the ex-
plicit corrector–predictor scheme (Liu 1989; Somasi
et al. 2002) because it ensures that the rotational ve-
locity of each rod at the end of the time step is perpen-
dicular to its orientation (Doyle et al. 1997).

Stress tensor calculus

The total shear stress tensor τ in a suspension is sup-
posed to be the sum of the contribution coming from
the solvent τ s and another one coming from the sus-
pended entities τ p (Bird et al. 1987):

τ = τ s + τp (20)

As defined in classical Newtonian fluid mechanics, τ s in
Eq. 20 can be also written as follows:

τ s = ηsγ̇ (21)

where ηs is the solvent viscosity and γ̇ is the ho-
mogeneous rate-of-strain tensor. To model the shear
dynamic response, we are particularly interested on
the shear stress contribution coming from the SWNTs
(represented as non-freely multi-bead–rod chains) τ p.
In order to quantify this contribution in the context of
Brownian dynamics we used the Kramers–Kirkwood
expression for the shear stress tensor:

τp = c
∑

v

〈
Rv ⊗ Fd

v

〉
(22)

where c is the number of SWNTs per volume and Rv =
rv − rc is the relative location of bead v to the centre of
mass of the multi-bead–rod chain rc.

In order to correctly account for the Brownian stress
contribution during a time step the shear stress tensor
contribution coming from the SWNTs τ p is calculated
using the next algorithm:

1. Calculation of the hydrodynamic drag forces Fd
i ,

the geometrical projected Brownian forces Fb
i and

the internal bending potential forces Fφ

i at time t as
described in the kinematic description section.

2. Update of the system position at time t + �t.
3. Using the same geometrically projected Brownian

forces obtained at time t, recalculation of the sys-
tem velocity and hydrodynamic drag forces Fd,+�t

i
at the updated configuration t + �t.

4. Determination of the current shear stress tensor at
time t by computing:

τ t
p = c

∑

v

〈
R+�t

v ⊗ Fd,+�t
v

〉
(23)

Computational details

Previous algorithm was programmed on C++, compiled
in Linux 64-bits and run on a cluster 6 x Quad-Core
AMD Opteron™ 2376 (2300 MHz) processors.

Validation

In order to validate the Brownian dynamics algo-
rithm we decided to simulate the dynamic response
of the freely jointed three-bead model, also known as
the trumbbell, trimer or (three-bead)–(two-rod) sys-
tem. The dynamic response of bead–rod models for
macromolecular solutions has been studied before by
Hassager (1974). His results are in coherence with the
Fokker-Plank equation for a bead–rod chain in kinetic
theory (Kramers 1944; Bird et al. 1987), actually de-
viated from that one for bead–spring chains (Gottlieb
and Bird 1976). Using asymptotic expansions, Hassager
found a numerical solution for the trimer model,
i.e. a system composed of three beads with friction
coefficient ζ connected by two freely jointed rigid mass-
less rods of length a. To simulate the trimer system
using our Brownian dynamics algorithm we used a bi-
dimensional modelling and we neglected the internal
bending potential by establishing the bending rigidity
constant Kb equal to 0. To compare the Hassager’s re-
sults with our Brownian dynamics simulation, complex
modulus is represented in a proper reduced frequency
scale.

In Fig. 5 the Hassager’s numerical solution is com-
pared with results of the previously described Brownian
dynamics simulation for the case of a trimer system.

7



Fig. 5 The dynamic modulus of a freely jointed (three-bead)–
(two-rod) system in a proper reduced frequency scale: compar-
ison between the Hassager’s numerical solution and the current
Brownian dynamics (BD) simulation. τ1 is the main Hassager’s
relaxation time and λrod is the rotational diffusion time of an
equivalent multi-bead rigid-rod system of equal length. BD pa-
rameters: n = 2, c = 1, a = 1, ζ = 1, kBT = 0.1 and Kb = 0

Hassager’s complex modulus is presented in a reduced
frequency scale ωτ1 where τ1 is the main relaxation time
given by the numerical solution (Hassager 1974):

τ1 = ζa2

5.4376kBT
(24)

On the other hand, our Brownian dynamics simulation
for the trimer system is plotted in a reduced frequency
scale ωλrod, where λrod is the rotational diffusion time of
a (three-bead)–(one-rod) system of equal length (Bird
et al. 1987):

λrod = ζa2

3kBT
(25)

The Brownian dynamics algorithm yielded a complex
modulus in good agreement with the Hassager’s numer-
ical solution for the trimer system. As bi-dimensional
modelling validated the Hassager’s results, it was not
necessary to implement the three-dimensional mod-
elling, which would be more expensive in computa-
tional time. Figure 6 presents the performance of the
Brownian dynamics code in function of the population
considered. The performance of the Brownian dynam-
ics code is measured in terms of the mean of relative
errors for 17 storage modulus values homogeneously
distributed in an interval of reduced frequencies going

Fig. 6 Mean relative error of the storage modulus (for a
trimer system) and total computational time in function of
the Brownian dynamics population. Mean relative errors are
calculated as the average of 17 points distributed homoge-
nously in a reduced frequency range going from 10−2 to

102. Relative error is calculated as follows:
∣∣∣
(

log G′
simul.(ωR)−

log G′
Hassager(ωR)

)/
log

(
G′

Hassager(ωR)
)∣∣∣

from 10−2 to 102. Loss modulus signal is practically
not sensitive to the Brownian dynamics population;
mean relative error for the loss modulus signal is 2.9%.
A population of 104 systems is selected for all the
Brownian dynamics simulations because a good com-
promise between computational time and rheological
prediction performance is guaranteed.

Results and discussion

The Brownian dynamics algorithm described in the
modelling section was used to predict the dynamic
response of a non-freely jointed multi-bead–rod system
with a natural bent configuration, a physical model in-
tended to emulate the mechanical response under flow
conditions of a SWNT that contains bendable junctions.

In the first stage, we decided to analyze the simplest
case, i.e. the (three-bead)–(two-rod) system. The freely
jointed version of this model (i.e. with Kb = 0) is pre-
sented in Fig. 7. In a general way, two different regions
are clearly differentiated in the dynamic response of
a freely jointed (three-bead)–(two-rod) system: a low
frequency regime exhibiting a typical Maxwell termi-
nal behaviour, where the thermal activity (or Brown-
ian forces) drives the kinematic of the system; and a
high frequency regime, where the domination of flow

8



Fig. 7 Predicted complex modulus responses of different (three-
bead)–(two-rod) systems: freely jointed, non-freely jointed with
natural straight configuration (Kb = 0.1 and Kb = 10) and non-
freely-jointed with natural bent configuration (Kb = 10 and
�θmax = 30◦). BD parameters: n = 2, c = 1, a = 1, ζ = 1, kBT =
0.1. λrod is the rotational diffusion time of an equivalent multi-
bead rigid-rod system of equal length

forces over the diffusivity terms produces a plateau for
the storage modulus and a limiting constant viscosity
(G′′(ω)/ω) − ηs larger than zero. The existence of a
non-zero limiting viscosity is physically more coherent
than the classical Rouse-Zimm responses, where the
model contribution to the dynamic viscosity disappears
at high frequencies.

If we consider now the action of the bending po-
tential, i.e. a non-freely jointed (three-bead)–(two-rod)
system, a large range of dynamic responses is de-
ployed in function of the equilibrium configuration and
the bending rigidity constant. To explain this fact, in
Fig. 7 the dynamic responses of a freely jointed system,
two non-freely jointed systems with natural straight
configuration and a non-freely jointed system with a
naturally bent configuration are compared. Rod mis-
alignment (i.e. the natural bent SWNT configuration)
is generated following the next formula:

θ0
i = θ0

i−1 − �θmax + U(0, 1) · 2�θmax (26)

where θ0
i is the equilibrium director vector of rod i,

�θmax is the maximal misalignment between two con-
secutive rods and U (0, 1) is a continuous uniform
random distribution function defined between 0 and 1.
In a general way, when the bending rigidity constant
Kb is equal or greater than the thermal coefficient kBT,

the loss modulus is enhanced over the entire frequency
range and the storage modulus is increased in the low
frequency regime. Otherwise, if the bending rigidity
constant is much lower than the thermal coefficient
(Kb << kBT), a dynamic response similar to that one
of a freely jointed system is obtained, showing just one
dominant relaxation time associated with the thermal-
to-flow-induced motion transition.

Additionally, in Fig. 7 the apparition of new relax-
ation processes when the bending rigidity constant is
considerably greater than the thermal coefficient (i.e.
Kb >> kBT) is observed. For instance, the activation
of a mild elasticity at intermediate frequencies is clearly
noticed in the dynamic response of the non-freely
jointed (three-bead)–(two-rod) system with bending
rigidity constant Kb = 10. When comparing the straight
configuration with the bent one, even though the loss
modulus responses are similar, an interesting difference
in the storage modulus is appreciated. In fact, on the
one hand the activation of the mild elasticity for the
system with a natural bent configuration is observed at
a lower characteristic frequency than the system with
a straight configuration; on the other hand a more
steeped mild elasticity is noticed for the bent system
in comparison with the straight one. In front of this

Fig. 8 Predicted complex modulus responses of a non-freely
jointed (three-bead)–(two-rod) system with a natural bent
configuration (maximal misalignment angle �θmax = 30◦) for
different values of the bending rigidity constant Kb. Freely
jointed system (Kb = 0) is presented as reference. BD parame-
ters: n = 2, c = 1, a = 1, ζ = 1, kBT = 0.1. λrod is the rotational
diffusion time of an equivalent multi-bead rigid-rod system of
equal length
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qualitative feature the appropriateness of considering a
natural bent configuration in SWNTs is a priori justified
when analyzing its dynamic response under flow.

In Fig. 8 the Brownian dynamics predictions of
the complex modulus for a non-freely jointed
(three-bead)–(two-rod) system with a natural bent
configuration for different values of the bending
rigidity constant are presented. In Fig. 8 the typical
thermal-to-flow-induced relaxation process occurring
around the rotational diffusion time λrod (as in the
equivalent straight systems) is easily identifiable.
Additionally, an interesting second relaxation process
(as showed before) activating a mild elasticity at
intermediate frequencies is again appreciated for the
natural bent systems. Brownian dynamics simulations
have showed that the characteristic frequency of this
relaxation process and the magnitude of the storage
modulus enhancement are function of the bending
rigidity constant. The activation frequency of this mild
elasticity is increased as the bending rigidity constant
is increased as well. This feature is physically coherent
taking into account that a higher energy input (i.e.
solicitation frequency) is required to activate the first
bending mode of a stiffer system. On the other hand, it
is also noticed that the storage modulus enhancement

Fig. 9 Predicted storage modulus of a non-freely jointed multi-
bead–rod system with a natural bent configuration (maximal
misalignment angle �θmax = 30◦) for different number of rods
n. BD parameters are: c = 1, a = 1, ζ = 1, Kb = 1, kBT = 0.1.
Storage modulus is scaled with the value of storage modulus at
the unit reduced frequency. λrod is the rotational diffusion time of
an equivalent multi-bead rigid-rod system of equal length. Verti-
cal pointed line represents the transition between the thermal-
induced to the flow-induced regime

Fig. 10 Predicted loss modulus of a non-freely jointed multi-
bead–rod system with a natural bent configuration (maximal
misalignment angle �θmax = 30◦) for different number of rods
n. BD parameters: c = 1, a = 1, ζ = 1, Kb = 1, kBT = 0.1. Loss
modulus is scaled with the value of storage modulus at the unit
reduced frequency. λrod is the rotational diffusion time of an
equivalent multi-bead rigid-rod system of equal length. Verti-
cal pointed line represents the transition between the thermal-
induced to the flow-induced regime

and the frequency range associated to this new
relaxation process also rise as the bending rigidity
increases. This qualitative feature can be physically
explained considering that the energy stocking capacity
of a bending mode is directly proportional to the
bending rigidity constant.

The reduced storage modulus predictions of a non-
freely jointed multi-bead–rod system with a natural
bent configuration for different number of rods (n =
3, n = 5 and n = 10) are showed in Fig. 9. As in a
Kramers chain, in the present modelling the number
of rods reflects the flexibility of the bead–rod sys-
tem, but in addition it captures the density of bent
defects in the SWNT structure. In other words, this
parameter is directly related to the SWNT persistent
length under flow conditions that, at the same time,
we suggest strongly depends on the presence of bent
defects in the SWNT structure. For information, an ex-
ample of the equilibrium internal angles �θ0

i− j = θ0
i −

θ0
j between consecutive rods used for the simulations

in Figs. 9 and 10 is presented in Table 1. Differences
in the dynamic response are only appreciable in the
flow-induced regime, i.e. at frequencies greater than
the characteristic relaxation frequency of an equivalent
multi-bead rigid-rod system. In other words, different

10



Table 1 Internal angles between consecutives rods
(
�θ0

i− j = θ0
i − θ0

j

)
of the multi-bead–rod systems with natural bent configurations

presented in Figs. 9 and 10

�θ0
2-1 �θ0

3-2 �θ0
4-3 �θ0

5-4 �θ0
6-5 �θ0

7-6 �θ0
8-7 �θ0

9-8 �θ0
10-9

3 rods 18.9 24.3 – – – – – – –
5 rods −22.4 24.8 7.9 −24.1 – – – – –
10 rods −13.3 2.8 27.4 27.9 −20.5 28.2 27.4 −0.9 18.0

relaxation processes at intermediate frequencies are
activated in function of the number of rods, leading
invariably to different curves of the storage modulus.
An enhancement of the elastic response when increas-
ing the number of rods is observed and different slopes
for the storage modulus in function of frequency are
obtained (from 0.5 for n = 3 to 1.2 for n = 10 at reduced
frequencies between 101 and 102). This mild elasticity
can be explained by the coupled contribution of the
tension forces required to maintain the inextensibility
condition (as in the Kramers chain) and the forces
coming from the torques activated by the bending of
the system.

On the other hand, in Fig. 10 the reduced loss mod-
ulus responses for the same systems deployed on Fig. 9
are presented. In the low frequency regime the typi-
cal thermal motion response is observed for the three
systems, i.e. a loss modulus evolving proportional with
frequency. As in the storage modulus case, differences
between the loss modulus responses for the three multi-
bead–rod systems (n = 3, n = 5 and n = 10) are only
appreciable in the high frequency range. Differences
are quite less important than those found for the stor-
age modulus because just light variations in the slopes
were encountered (from 0.7 for n = 3 to 0.8 for n = 10
at reduced frequencies between 101 and 102).

In order to properly compare the experiments on
Fig. 1 with our simulations we decided to represent
the experimental data in a reduced scale. To do so,
an estimation of the equivalent rotational diffusion
time for the actual surface-treated SWNT is needed.
The rotational diffusion time for a multi-bead rigid-rod
defined by Bird et al. (1987) writes as follows:

λrod = ζ L2n(n + 1)

72(n − 1)kBT
(27)

where the isotropic bead friction coefficient ζ is a sim-
ple discretization of the bulk friction coefficient ζbulk =
nζ . The bulk friction coefficient for a rigid rod system
of length L and diameter d can be calculated following
the next equation (Mendes et al. 2008):

ζbulk = 2πηsL
log[L/d] (28)

Rheological tests presented in Fig. 1 were effectuated
at 25◦C using a suspension of HiPco SWNT (Nanocom-
posites, Houston, TX, USA) within an epoxy resin with
a Newtonian viscosity of 10 Pa s. Length of HiPco
SWNTs largely depends on factors such as whether
the tubes have been functionalized and how long they
have been sonicated for. From the literature, we found
that HiPco SWNTs have average lengths ranging from
400 to 700 nm and diameters between 0.8 and 1.3 nm
(Parra-Vasquez et al. 2007; Mendes et al. 2008; Fakhri
et al. 2009). Using mean values for the physical dimen-
sions of HiPco SWNTs and employing Eqs. 27 and 28,
we found equivalent rotational diffusion times for the
SWNT going from 5.5 s for n = 10 to 9.0 s for n = 3.

In Fig. 11 the scaled experimental data are com-
pared with the dynamical response of a naturally bent
non-freely jointed multi-bead–rod system of five rods.
It appears from Fig. 11 that the mild elasticity mea-
sured experimentally is a phenomenon occurring in
the intermediate frequency range and that the simula-
tion results produce coherent magnitudes. Observe, for

Fig. 11 Comparison in a proper reduced scale of the experimen-
tal SWNT dynamic response in diluted suspension (Fig. 1) with
the BD predicted complex modulus of a naturally bent non-freely
jointed multi-bead–rod system of five rods (Figs. 9 and 10)
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example, that the predicted ratio between G′ and G′′
at intermediate frequencies is similar to that one en-
countered in experimental dynamical tests of SWNT
diluted suspensions. A more precise model fitting will
require identifying the relaxation time spectra of an
individual SWNT and the dynamic response of the
diluted suspension in a higher frequency range. We
emphasize that the principal objective of this paper is to
demonstrate that a natural bent SWNT structure (due
to presence of synthesis defects) can play an important
role in the dynamical response of a SWNT diluted
suspension and constitutes, in consequence, a physical
parameter to take into account when modelling the
mechanical behaviour of SWNTs.

The physical model proposed in this paper could be
applied for simulating non-linear regimes, but probably
we should consider intra- and inter-tube interactions,
that can be introduced via the hydrodynamic interac-
tion hypothesis (as done in polymer kinetic theory)
coupled with an adapted Brownian dynamics strategy.
The analysis of this extended model constitutes a work
in progress. The results reported in this paper consider
small amplitude oscillatory flows where the maximum
deformation was chosen within the interval in which the
results were independent on the maximum deformation
applied, in order to ensure the validity of the linearity
hypothesis.

Conclusions

Isolated treated SWNTs have been modelled as semi-
flexible filaments with a naturally bent configuration
considering the probable existence of side-wall de-
fects on carbon nanotubes. Continuous semi-flexible
filament model was discretized as a non-freely
jointed multi-bead–rod system with a non-straight
configuration at equilibrium in order to implement
a Brownian dynamics simulation. In this context, a
mechanically coherent re-definition of the discretized
version of the bending potential for a natural straight
semi-flexible filament is required in order to tackle the
cases of non-straight configurations.

New relaxation processes in the dynamic mechani-
cal response of a naturally bent system are observed
from the simulation results. Those processes are char-
acterised by the activation of a mild elasticity at in-
termediate frequencies (revealed as an enhancement
of the storage modulus). Moreover, non-negligible
differences are found with respect to the dynamic re-
sponse of a naturally straight system. It is observed that
the enhancement of the storage modulus and the range
of frequencies associated with those new relaxation

processes depend directly on the bending rigidity con-
stant or, in other words, on the local structural stiffness
of the SWNT junctions. Additionally, the dynamic
response of such model is function of the persistent
length under flow conditions (i.e. number of rods in the
discretized version). An augmentation of the storage
modulus slope in the intermediate frequency range is
observed when increasing the number of rods.

This work will be useful to give richer explanations to
the physical origins of the impressive stiffening effects
coming from carbon nanotubes on the rheological be-
haviour of their diluted, semi-diluted and even con-
centrated suspensions. Future work should be pointed
towards the identification of physical parameters and
the consideration of more complex bending potentials
and poly-dispersed length distributions.
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Appendix A

Total bending force in a multi-bead–rod system writes:

Fφ

k = − ∂φ

∂rk
= Kb

a

n−1∑

i=2

∂ (ui · ui−1)

∂rk
(29)

Expanding Eq. 29 we have:

Fφ

k = Kb

a

⎛

⎜⎜⎝

∂(u2 · u1)

∂rk
+...+ ∂(uk−1 · uk−2)

∂rk
+ ∂(uk · uk−1)

∂rk

+∂(uk+1 · uk)

∂rk
+...+ ∂(un−1 · un−2)

∂rk

⎞

⎟⎟⎠

(30)

Fφ

k = Kb

a

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∂u2

∂rk
u1+ ∂u1

∂rk
u2...+ ∂uk−1

∂rk
uk−2

+∂uk−2

∂rk
uk−1+ ∂uk

∂rk
uk−1+ ∂uk−1

∂rk
uk+ ∂uk+1

∂rk
uk

+∂uk

∂rk
uk+1+...+ ∂un−1

∂rk
un−2+ ∂un−2

∂rk
un−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(31)
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Equation 31 can be evaluated using the identity:

∂

∂rk
ui = 1

a

(
δk,i+1 − δk,i

)
(I − ui ⊗ ui) (32)

Observing identity (32) is clear that the derivative ∂
∂rk

ui

takes a non-zero value only when i is k − 1 or k. Hence,
considering a bead k in the middle of an infinite chain,
Eq. 31 becomes:

Fφ

k = Kb

a

(
∂uk−1

∂rk
uk−2

)
+ Kb

a

(
∂uk

∂rk
uk−1 + ∂uk−1

∂rk
uk

)

+ Kb

a

(
∂uk

∂rk
uk+1

)
(33)

Total bending force on bead k, as given in the previous
equation, can be interpreted as the sum of three inde-
pendent contributions. In order to explain the origin of
those contributions consider a multi-bead–rod system
containing n beads decomposed into n − 2 indepen-
dent sub-sections of two consecutive rods as showed
in Fig. 4. Taking each of those sub-sections as an inde-
pendent system, the expressions for the bending forces
associated to each sub-section are given by Eq. 29.
For example, sub-section p (composed by beads p,
p + 1 and p + 2) has the associated bending forces Fφ

p,p,
Fφ

p+1,p and Fφ

p+2,p, where first sub-index refers to the
bead and second sub-index refers to the sub-section.
Mathematically, those bending forces write:

Fφ
p,p = Kb

a

∂
(
up+1 · up

)

∂rp
= Kb

a
∂up

∂rp
up+1 (34)

Fφ

p+1,p = Kb

a

∂
(
up+1 · up

)

∂rp+1
= Kb

a
∂up+1

∂rp+1
up

+ Kb

a
∂up

∂rp+1
up+1 (35)

Fφ

p+2,p = Kb

a

∂
(
up+1 · up

)

∂rp+2
= Kb

a
∂up+1

∂rp+2
up (36)

Applying identity (32) to the three previous equations
we have:

Fφ
p,p = − Kb

a2

(
I − up ⊗ up

)
up+1 (37)

Fφ

p+1,p = − Kb

a2

(
I − up+1 ⊗ up+1

)
up

+ Kb

a2

(
I − up ⊗ up

)
up+1 (38)

Fφ

p+2,p = Kb

a2

(
I − up+1 ⊗ up+1

)
up (39)

From the previous equations it results clear that bend-
ing forces are in mechanical equilibrium. For this
reason:

Fφ

p+1,p = −Fφ
p,p − Fφ

p+2,p (40)

Now, using the previous results about the decomposi-
tion of a multi-bead–rod system is easy to explain the
origin of different contributions in Eq. 33 as follows:

Fφ

k = Fφ

k,k−2 + Fφ

k,k−1 + Fφ

k,k (41)

In other words, total bending force on bead k can be
interpreted as the sum of all the independent bending
forces coming from sub-sections containing bead k.
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