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1. Introduction

Helical structures are used in many engineering applications. Typical examples are helical springs, widely used in automotive
and aeronautic industry, and steel multi wire cables, largely encountered in civil engineering. These structures are usually
subjected to large loads.

For the design of helical springs, several studies have been conducted to understand the dynamic behaviour and calculate the first
vibration modes. First without considering the effect of applied loads, the computation of vibration modes of helical beams with
circular cross section has been performed based on analytical but approximate solutions [1], the finite element methods [2] or the
assumed mode method [3] for instance. Another approach is the transfer matrix method, employed in [4,5]. An efficient numerical
method for predicting thenatural frequencies of helical springshas beendeveloped in [6]. Thedynamic stiffnessmethodhas beenused
byPearson andWittrick [7] tofindan exact solution for vibration of helical springswith the Euler Bernoullimodel. Lee and Thompson
[8] used the same method, but with the Timoshenko beammodel.

However, the first vibration modes of helical springs correspond to low frequency motions, which are strongly affected by the
presence of applied axial loads. The vibration analyses of springs have hence been extended to account for load effects on the
natural frequencies thanks to the finite elementmethod [9], the dynamic stiffnessmatrix [8] or the transfermatrixmethod, used in
[10,11]. However, as noticed in [12,17], Pearson's equations [10] do not reduce to equations for simpler rods when load terms are
included. All these studies show the importance of considering axial loads, compressive in the analyses, for the computation of
natural frequencies.

As far as elastic wave propagation is concerned, the literature on helical waveguides is rather scarce. An analytical beam
model [13] as well as more general numerical approaches [14,15] has been recently proposed. In [16], a semi analytical finite
element method has also been proposed for the analysis of guided wave propagation inside multi wire helical waveguides,
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typically encountered in civil engineering. However, these studies neglect the presence of applied loads, whose effect remains
unexplored on guided waves.

The aim of this paper is to investigate the effect of axial loads on the propagation of guided modes in helical waveguides. For
simplicity, multi wire waveguides are not considered and the model is based on the equations of motion of Timoshenko loaded
helical beams. Such a model is not valid at high frequencies, when high order modes become propagating, but constitutes a first
step and can serve as a reference solution before the development of fully three dimensional models, as done in [14 16] without
loads. A space Fourier transform along the helical axis is performed, yielding a wave propagation eigensystem whose zero
determinant corresponds to the dispersion relationship. The equations are made dimensionless for beams of circular cross
sections. The problem is then governed by four parameters, which are the helix angle, the dimensionless radius (helix index), the
dimensionless axial load (axial strain) and the Poisson coefficient.

The applied loads act on the dynamics through two effects: the deformation of the geometry and the stress generated inside the
structure. Both effects are included in the present analysis. The deformed helix parameters are calculated using a non linear
model.

A parametric study is conducted in order to highlight the effect of axial loads, compressive or tensile, on waves for various helix
angles and radii. Three frequency ranges are distinguished. A branch identification of dispersion curves is given for a better physical
understanding of the different modes existing in helical waveguides. The effects of stress and deformation are also compared.

2. Model

2.1. Equations of motion for dynamics

One considers a helical beamwith a circular cross section of radius r. The helix centreline is defined by its pitch angleα0 and radius
R0 in the unloaded state. In the loaded state, the spring is subjected to a static axial force P and the pitch angle and radius becomeα and
R respectively (see Fig. 1). The curvature κ and torsion τ are given by κ=cos2 α/R and τ=sin α cos α /R. The Serret Frenet basis
en; eb; etð Þ associated with the helix is shown in Fig. 1, where en, eb and et respectively denote the normal, binormal and tangent unit
vectors. In this coordinate system, the static force is written as [0, P cosα, P sin α] and the static moment as [0,−P R sin α, P R cos α].
P is taken positive when tensile.

In the framework of Timoshenko beam theory, the general equations governing the small perturbations of a helical beam
subjected to a static axial load P are given by the following set of 12 equations which relate the forces and moments to the
displacements and rotations [11,12,17]:
dun

ds
= τub−κut + ϕb +

Qn

GAn
; ð1Þ

dub

ds
= −τun−ϕn +

Qb

GAb
; ð2Þ

dut

ds
= κun +

Qt

EAt
; ð3Þ

dϕn

ds
= τϕb−κϕt +

Mn

EIn
; ð4Þ
Fig. 1. Helical spring under axial load.

2



and

where
is the r
second
At repr
materi
dϕb

ds
= −τϕn +

Mb

EIb
; ð5Þ

dϕt

ds
= κϕn +

Mt

GIt
; ð6Þ

dQn

ds
= −ρAtω

2un−P sinα
dϕb

ds
+

1
GAn

dQn

ds
+ τϕn−τ

Qb

GAb

� �

+ Pcosα
dϕt

ds
−κϕn + κ

Qb

GAb

� �
+ τQb−κQ t ;

ð7Þ

dQb

ds
= −ρAtω

2ub + P sinα
dϕn

ds
− 1

GAb

dQb

ds
−τϕb−τ

Qn

GAn
+ κϕt

� �
−τQn; ð8Þ

dQt

ds
= −ρAtω

2ut−P cosα
dϕn

ds
− 1

GAb

dQb

ds
−τϕb−τ

Qn

GAn
+ κϕt

� �
+ κQn; ð9Þ

dMn

ds
= −ρInω

2ϕn + Qb−PRcosα
dϕb

ds
+

1
GAn

dQn

ds
+ τϕn−τ

Qb

GAb

� �

−PR sinα
dϕt

ds
−κϕn + κ

Qb

GAb

� �
+ τMb−κMt ;

ð10Þ

dMb

ds
= −ρIbω

2ϕb−Qn + PRcosα
dϕn

ds
− 1

GAb

dQb

ds
−τϕb−τ

Qn

GAn
+ κϕt

� �
−τMn; ð11Þ

dMt

ds
= −ρItω

2ϕt + PRsinα
dϕn

ds
− 1

GAb

dQb

ds
−τϕb−τ

Qn

GAn
+ κϕt

� �
+ κMn: ð12Þ

ω is the frequency, s is the curvilinear coordinate along the helix, [un,ub,ut] denotes thedynamic displacementvector. [ϕn,ϕb,ϕt]
otationvector. [Qn,Qb,Qt] and [Mn,Mb,Mt] are respectively thedynamic internal force andmomentvectors. In, Ib and Itdefine the
moments of area of the section about the Serret Frenet directions. For a circular cross section, In= Ib= It /2=πr4/4. An, Ab and
esent cross sections defined by: An=Ab=γAt=γπr2, where γ=6(1+ν)/(7+6ν) is the Timoshenko shear coefficient. The
al characteristics are the material density ρ, the Young's modulus E, the shear modulus G=E/2(1+ν) and the Poisson
ient ν.
coeffic

Without axial load (P=0), the above equations become identical to the equations presented by Wittrick [1]. As stated by this
author, it is assumed that the condition κ2It /Atbb1 is satisfied, or equivalently (κr)2bb1, whichmeans that the beam radius rmust
be rather small compared to the helix radius of curvature 1/κ. Such a condition is usually fulfilled for springs. Also, it generally
applies to helical wires constituting civil engineering cables because of their large pitch angle (often close to π /2).

2.2. Wave propagation eigensystem

In order to reduce the number of parameters, the variables of Eqs. (1) (12) are made dimensionless. r is chosen as the
characteristic length and r /cs as the characteristic timewhere cs is the shear bulk velocity defined by cs2=G /ρ. Stars will be used to
denote dimensionless variables. The dimensional and dimensionless variables are related by:
s� =
s
r
;u�

j =
uj

r
;ϕ�

j = ϕj;Q
�
j =

Qj

πρr2c2s
;M�

j =
Mj

πρr3c2s
; j = n; b; t: ð13Þ
First, Eqs. (7) (12) are used to replace the forces and moments in Eqs. (1) (6). This enables to obtain a system of six linear
equations, written in terms of the displacements and rotations. Then, the equations are made dimensionless thanks to Eq. (13). A
Fourier transform along the s axis allows to replace ∂ /∂s* with iK, where K=kr denotes the dimensionless wavenumber along the
s axis. Finally, one gets the following 6×6 matrix system:
A1−Ω2
A2−iKB + K2

C
� �

U = 0: ð14Þ
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with t

where
Ω=ωr /cs is the dimensionless frequency and the eigenvectors U = u�
n u�

b u�
t ϕ�

n ϕ�
b ϕ�

t

� �T contains displacement
where
and rotation components in the Serret Frenet basis. The matrices A1, A2, B and C are given by:
A2 = diag 1;1;1;1 = 4;1= 4;1= 2ð Þ; ð15Þ

C =

γ + σs 0 0 0 0 0
0 γ + σs 0 0 0 0
0 −σc 2 1 + νð Þ 0 0 0

σδc 0 0 1 + νð Þ= 2 0 0
0 σδc 0 0 1 + νð Þ= 2 0
0 σδs 0 0 0 1= 2

2
6666664

3
7777775
; ð16Þ

A1 = A11 A12½ �; ð17Þ
B = B1 B2½ �; ð18Þ

he following submatrices:

A11 =

c2 γs2 + 2 1 + νð Þc2 + σs
� �

= δ2 0 0

0 s2c2 γ + σsð Þ = δ2 −sc3 γ + σsð Þ= δ2
0 −sc3 γ + σsð Þ= δ2 c4 γ + σsð Þ= δ2

γsc= δ 0 0
0 sc γ + σsc2

� �
= δ −c2 γ + σsc2

� �
= δ

0 σs3c2 = δ −σs2c3 = δ

2
6666666664

3
7777777775
; ð19Þ

A12 =

γsc= δ 0 0
0 γsc= δ σsc2 = δ
0 −γc2 = δ −σc3 = δ

γ + c2 1 + νs2
� �

= 2δ2 0 0

0 γ + 1 + νð Þs2c2 = 2δ2 − 1 + νð Þsc3 = 2δ2 + σc3

0 − 1 + νð Þsc3 = 2δ2 c2 1 + νð Þc2 = 2δ2 + σs
� �

2
6666666664

3
7777777775
; ð20Þ

B1 =

0 −c 2γs + σ 1 + s2
� �� �

= δ c2 γ + 2 1 + νð Þ + σsð Þ= δ
2sc γ + σsð Þ= δ 0 0

−c2 γ + 2 1 + νð Þ + 2σsð Þ= δ 0 0
0 − γ + σsc2

� �
σc3

γ + 2σsc2 0 0
2σs2c 0 0

2
6666666664

3
7777777775
; ð21Þ

B2 =

0 −γ −σc
γ 0 0
0 0 0
0 − 1 + νð Þsc= δ 2 + νð Þc2 = 2δ + σδs

1 + νð Þsc= δ 0 0
− 2 + νð Þc2 = 2δ 0 0

2
6666664

3
7777775
; ð22Þ

the parameters s, c, δ and σ are given by:

s = sin α; c = cos α; δ =
R
r
;σ =

P
πρr2c2s

: ð23Þ
The solution of Eq. (14) yields the propagation modes. Eqs. (14) (22) show that wave propagation in axially loaded helical
beams is governed by α (the helix angle), δ (dimensionless helix radius or helix index), σ (dimensionless axial load) and ν
(Poisson coefficient). Hence, dispersion curves (K, Ω) only depend on these 4 dimensionless parameters.

For a givenΩ, the eigenproblem (14) is quadratic in K. This problem can be recast into a generalised linear eigensystemwritten
for [UTKUT]T in order to be solved by standard numerical solvers (see Tisseur et al. [18] for instance). One gets 12 wavenumbers.
Purely real and imaginary wavenumbers corresponding respectively to propagating and evanescent modes, appear in pairs of
opposite signs. Fully complex wavenumbers corresponding to inhomogeneous modes, appear in quadruples of complex
conjugates and opposite signs. If interest is restricted to propagating modes only, one can set K (as a real wavenumber) and
determine Ω. The eigenproblem (14) is then linear for finding Ω2 and 6 positive eigenfrequencies are found for each real
4
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Fig. 2.Unloaded helical waveguide with δ0=10 and α0=15∘. (a), (c), (d): dispersion curves (grey lines: non-propagatingmodes, black lines: propagatingmodes).
(b): modeshapes of modes 1 and 2 at ωr /cs=1 (grey lines: undeformed, black lines: deformed helix centreline).
wavenumber K. As a side remark, note that the eigenvalue problem (14) degenerates to that presented in the Appendix of Ref. [14]
in the unloaded case (σ=0).

2.3. Deformed helical geometry

The eigenvalue problem (14) is written in terms of α and δ, which are the helix pitch angle and index in the loaded state. Both
are unknown and should be calculated provided the load, the initial angle α0 and index δ0 in the unloaded state. One considers a
helical waveguide subjected to a given axial strain, denoted �. One has �=(l sin α− l0 sin α0)/ l0 sin α0, where l0 and l are the
curvilinear length of one helix step along the s axis in the unloaded state and loaded state respectively. We follow the same
approach as the one proposed in Chapter 20 of [19], which proposes a non linear solution for large deflection under simplifying
assumptions limited to sufficiently large index δ0 (typically, δ0≥5) and small pitch angle (which will be supposed for the results of
this paper).1 Shearing strains are neglected. The stretching of the helix centreline is neglected so that l≃ l0 [19,20]. Therefore, �≃sin
α /sin α0−1 and the angle α is simply obtained from:
1 Not
and larg
α = arcsin 1 + �ð Þsinα0ð Þ: ð24Þ

ollowing [19], the bending and torsional moments are respectively balanced by the change in curvature and torsion times
Then f
the corresponding rigidities:
P R sin α = −EIbΔκ; ð25Þ
e that such a solution is well suited for springs but would not be applicable for helical wires constituting civil engineering cables (usually of small index
e angle).
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From
P R cosα = GItΔτ ð26Þ

Δκ=cos2 α /R−cos2 α0/R0 and Δτ=sin α cos α /R−sin α0 cos α0/R0.
where
Eliminating P from these two equations, one obtains the following dimensionless expressions for δ, written in terms of α:
δ =
1 + νð Þcos2 α + sin2 α

1 + νð Þcos2 α0 + sin α0 cos α0tan α
δ0: ð27Þ

Eq. (25), the dimensionless load σ is finally given by:

σ =
1 + νð Þ
2δ sin α

cos2 α0

δ0
− cos2 α

δ

!
: ð28Þ
In this paper, note that the parametric study given in the next section is conducted in terms of � instead of σ.
As a side remark, the geometric parameters of the unloaded and loaded helical beam must satisfy the geometric conditions

π δ0 sin α0N1 and π δ sin αN1, respectively (meaning that adjacent turns do not overlap each other).

3. Results

In this section, the unloaded case is first considered in order to clearly identify branch modes inside a typical spring. Three
frequency ranges can be distinguished. Focusing on propagating modes, the effect of load on the wave propagation is studied in
each frequency range. The effect of the dimensionless radius δ0 and angle α0 on the wave propagation in a loaded helical spring is
finally examined. Numerical results are obtained with a Poisson coefficient ν of 0.3.

3.1. Branch identification

In this section, results are given for a helical beamwith dimensionless radius δ0 of 10 and angle α0 of 15∘. Fig. 2(a),(c),(d) shows
the dispersion curves (ωr /cs versus kr) of the unloaded helical beam for three frequency ranges: [0;2], [0;0.25] and [0;0.005].
Fig. 3. Dispersion curves of the unloaded (grey lines) and loaded �=0.4 (black lines) helical beams for δ0=10, α0=15∘.
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These three ranges correspond to three frequency regimes, typical for helical beams, as already identified in [13]. The eigensystem
(14) is solved by fixing the dimensionless frequency in order to obtain propagating as well as non propagating modes, making
easier the branch identification. At each frequency, there are six wavenumbers having a positive real part.

In order to determine their physical behaviour, a representation of modeshapes 1 and 2 is sketched in Fig. 2(b) forωr /cs=1. It
comes that both modes 1 and 2 have a flexural wave behaviour. Mode 1 mainly oscillates in the binormal direction while the
motion of mode 2 is mainly in the normal direction. The modes 3 and 4 have not been sketched in the figure because their
behaviour could be hardly identified with such a representation, which can only show displacement components normal to the
beam neutral axis. Instead, the behaviour of these modes has been identified by inspecting the dominant component of
eigenvectors. The dominant component of modes 3 and 4 was found to be ϕt

* and ut* respectively, indicating that mode 3 has a
torsional behaviour while mode 4 is of compressional type. Similarly to the cylinder dispersion curves, modes 5 and 6 have a
flexural wave behaviour of higher order (of no interest in this paper).
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Fig. 4. Dispersion curves of unloaded (grey lines) and loaded �=0.4 (black lines) helical beams in the low-frequency range for: (a) δ0=10,α0=5∘,
(b) δ0=15,α=5∘, (c) δ0=10,α0=10∘, (d) δ0=15,α0=10∘, (e) δ0=10,α0=15∘, and (f) δ0=15,α0=15∘.
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For a dimensionless frequency exceeding 1.88, all the six modes are propagating (see Fig. 2a). Under 1.88, modes 5 and 6
become inhomogeneous (complex wavenumbers). As shown in Fig. 2(c) and (d), the compressional mode (mode 4) is cut off for
frequencies between 0.002 and 0.15 (Im(kr)N0), while the torsional mode (mode 3) is cut off between 0.002 and 0.106. Note that
between 0.002 and 0.08, the wavenumbers of modes 3 and 4 are grouped together. Then below 0.002, modes 3 and 4 divide into
two propagating modes, for which it becomes difficult to distinguish compressional from torsional behaviour. This difficulty was
also mentioned in [13,14]. It can be noticed that one of these two modes has a curve of negative slope, indicating a backward
propagation (positive wavenumber with negative group velocity Vg=∂ω /∂k).

Now, a tensile deformation �=0.4 is applied. One focuses on propagating modes only (we set kr and look for ωr /cs). Fig. 3
shows the dispersion curves of propagating modes in the unloaded and loaded cases for the first two frequency ranges. The effect
of loading is negligible for high frequencies (above 0.25). For medium frequencies (below 0.25), there is small differences (few
percents) between the unloaded and loaded curves. These differences are localised near the cut off frequencies of the torsional
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Fig. 5. Dispersion curves of unloaded (grey lines) and loaded �= 0.4 (black lines) helical beams in the low-frequency range for: (a) δ0=10,α0=5∘,
(b) δ0=15,α=5∘, (c) δ0=10,α0=10∘, (d) δ0=15,α0=10∘, (e) δ0=10,α0=15∘, and (f) δ0=15,α0=15∘.
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and compressional modes (modes 3 and 4 respectively), both increasing under tensile loads. Note that these cut off frequencies
shift higher as the helix angle increases and would decrease under compressive loads (results not shown for conciseness). Despite
the significant value of the axial deformation on the helical beam, the effect of loading becomes significant only in the low
frequency range, as shown in the next subsection.

3.2. Effect of loading in the low frequency range

A parametric study is conducted in order to analyse the effect of loading for low frequencies (below 0.005). Fig. 4 shows the
superposition of dispersion curves of unstretched (�=0) and stretched helical beams (�=0.4). The effect of loading has been
studied for six different helical beams, having dimensionless radii δ0 of 10, 15 and angles α0 of 5∘, 10∘, 15∘. The tensile load has an
effect on the four propagating modes. For clarity, Fig. 4(e) shows the mode labels as previously identified. The load effect is found
to be the most important for mode 2 (flexural mode oscillating in the normal direction), its dispersion curve shifting to higher
frequencies. The other flexural mode (mode 1) is less sensitive to the load, with a shift to lower frequencies (except near the rigid
body point, corresponding to a zero frequency). As far as the longitudinal and torsional modes are concerned (modes 3 and 4),
their frequency slightly increase under tensile load. As can be observed in Fig. 4, the applied load has a greater effect as the helix
angle increases.

Fig. 5 shows the same results as Fig. 4 for the compressive case �=−0.4. One observes the same trend as before but in the
opposite direction. For instance, modes 2, 3 and 4 shift to lower frequencies. When the load is compressive, there exists an interval
of wavenumbers corresponding to long waves for which Re(ω)=0. In this interval, the corresponding frequencies are not strictly
zero but have a small imaginary part. This indicates that compressed helical beams are incapable of transmitting these waves. Note
that the same phenomenonwas found in compressed arches [21]. For helical beams, this interval is greater as the helix angle or the
load increase and as the index decreases.

In practice, it can be of interest to evaluate how significant are the stress levels inside the beam. Quantitatively, the maximum
shearing stress at the surface of the beam can be approximated as 2P R /πr3 (see Chapters 19 and 20 of Ref. [19]). From Eq. (23), this
stress is equal to 2δσE /2(1+nu), where δ and σ are obtained from Eqs. (27) and (28). Let us choose E=2.0e11 Pa (typical value
for steel). Then in Figs. 4 and 5, applying |�|=0.4 would yield a maximum shearing stress varying between 180 MPa
kr
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Fig. 6. Dispersion curves of the deformed helical beam including the effect of stress (black) and without (grey) for �=0.4, δ0=10 and: (a) α0=15∘, (b) α0=25∘.
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(corresponding to the case δ0=15, α0=5∘) and 830 MPa (for δ0=10, α0=15∘). Note that the stress inside the beam must not
exceed the elastic limit (which depends on the material considered), otherwise the theory used in this paper would be no longer
applicable.

3.3. Note on the effect of stress versus deformation

The theory presented in Section 2 shows that the axial load acts upon the dynamic equilibrium equations through two
combined effects: the deformation of the geometry (from (δ0,α0) to (δ,α)) and the generation of stress (σ≠0). In Section 3.2, both
effects were taken into account. In the present section, we are interested in evaluating the influence of stress compared to the
deformation. As an example, Fig. 6 compares the loaded dispersion curves of Fig. 4 (e) with the curves obtained by neglecting
stress, i.e. arbitrarily setting σ to zero (the deformation of the geometry is still taken into account).

The stress σ has an effect that cannot be neglected. Comparing Fig. 6 (a) with Fig. 4 (e), this effect is opposed to, but lower than,
the effect caused by the geometry deformation.With the same applied deformation and dimensionless radius, the effect of stress is
more important with the increase of the helix angle. This phenomenon can be observed by comparing Fig. 6 (a) to (b).

It can be concluded that both effects of stress and geometry deformation should be considered to study the effect of load on the
propagation of elastic waves in helical beams.

4. Conclusions

Elastic wave propagation in a helical beam subjected to a compressive or tensile axial load has been analysed. The deformation
of the geometry under the applied axial load has been taken into account in the calculation of wave propagation. The effect of load
on wave propagation has been highlighted for high, medium and low frequency ranges. A branch identification of dispersion
curves has been performed for both propagating and non propagating modes. The effect of loading is significant on the four
propagatingmodes in a low frequency range. The dispersion curve of the flexural mode oscillating in the normal direction shifts to
higher frequencies under tensile loads and vice versa for compressive loads. The loading effect is less important for the three other
propagatingmodes. The applied load has a greater effect as the helix increases. Both the effects of stress and geometry deformation
are found to be non negligible and should be considered in the analysis of elastic wave propagation in axially loaded helical beams.
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