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Later, some authors extensively analysed viscoelastic membranes in
ation cases. Wineman [5]
and Feng [6] used semi-analytical time-discretization schemes to solve the time-dependent in
ation
of an initially plane circular non-linear viscoelastic membrane. In these papers, rubber-like mate-
rials are assumed to obey non-linear integral viscoelastic constitutive equations such as K-BKZ
and Christensen’s models. Shrivastava and Tang [7] developed a three-dimensional �nite element
method for such problems: owing to the material large strain time-dependent behaviour, described
by the Christensen’s model, and geometric non-linearities, the assembled non-linear equations of
equilibrium are solved by the way of an iterative method.
More recently, there has also been considerable interest in the dynamic in
ation, which takes into

account membranes inertia. Such investigations are reviewed in details by Jenkins and Leonard [8],
and Jenkins [9]. These papers show that dynamic approaches are very few in the membrane in
ation
�eld. But it is evident that such works present advantages: fast processes such as thermoforming
or blow-moulding of plastics can be better simulated and numerical solution procedures are more
e�cient.
In this context, the present paper reports a numerical investigation on the dynamic in
ation of

rubber-like membranes in 3D shapes. Membranes are deformed by internal pressure under large
strains and the corresponding governing equations are solved using a �nite element procedure.
Materials are assumed to be isotropic and incompressible, and we use two types of constitutive
equations: hyperelastic and non-linear viscoelastic. The dynamic formulation is derived: the imple-
mentation of the �nite element method and the temporal integration procedure are reported. The
problem is solved using three-nodes triangular �nite elements and the central-di�erence explicit
time-integration scheme. The numerical implementation of the constitutive equations is highlighted
and the special case of integral non-linear viscoelastic Christensen’s model is carried out in detail.
Moreover, we develop an original method for the determination of the pressure evolution based on
a simple thermodynamic state equation of the in
ating gas. Finally, di�erent examples demonstrate
the accuracy of numerical solutions by comparison with both analytical and experimental results.

2. RUBBER-LIKE MATERIALS

2.1. Preliminaries

The general constitutive equation of an isotropic, homogeneous, incompressible simple material is
a tensor function of the strain history [10]:

S(t)=−pC−1(t) + S
�6t

{C(�)} (1)

in which C(t) is the right Cauchy–Green deformation tensor at time t; p is an indetermi-
nate hydrostatic pressure due to the incompressibility assumption, S(t) stands for the second
Piola–Kirchho� stress tensor and S is the response functional.
Noting F(t) the deformation gradient and J (t) the Jacobian of the transformation (determinant

of F(t)), the stress tensor S(t) is related to the true stress tensor �(t) by

S(t)= J (t)F−1(t)b(t)F−T(t) (2)

In our case, the material incompressibility implies

J (t)= det(F(t))= 1 ∀t (3)



In the two next sections, we present two classical types of behaviour used to describe rubber-
like materials such as natural rubber, elastomeric materials or high-temperature thermoplastics:
hyperelastic and non-linear viscoelastic constitutive relations.

2.2. Hyperelastic model

First, it is helpful to consider that rubber-like materials stresses only depend on the current
deformations:

S=−pC−1 +S{C} (4)

The time t can be omitted because of the elastic behaviour.
We also assume that the material is characterized by the existence of a strain-energy function,

W . Such constitutive equations are called hyperelastic. The general stress–strain relationship is
written as

S=−pC−1 + 2
@W
@C

(5)

Taking into account isotropic hypothesis, the strain energy can be expressed as a function of the
strain invariants I1; I2 and I3. Noting that I3 = J =1 (incompressibility), W takes the following
form:

W =W*(I1; I2) (6)

where

I1 = tr(C) and I2 = 1
2 [I

2
1 − tr(C2)] (7)

Here, we consider the special Mooney’s form of the strain energy function. This model is one
of the earlier and most employed hyperelastic models because of its mathematical simplicity and
relatively good accuracy for reasonably large strains (6150 per cent) [11]. The form of the strain
energy function is

W = c1(I1 − 3) + c2(I2 − 3) (8)

where c1 and c2 are the two material parameters. Note that the particular case with c2 = 0
corresponds to the neo-Hookean model [12].

2.3. Non-linear viscoelastic model

We previously assumed that rubber-like materials are hyperelastic. In fact, the behaviour of such
polymers is slightly viscoelastic [13]. Stresses at time t does not only depend on the present
strain state but also on the strain history. It is commonly said that the material has a memory.
Consequently, the general constitutive relation of non-linear incompressible viscoelastic materials
is given by Equation (1).
Concerning the non-linear viscoelasticy, the choice of models which give realistic description

of the material behaviour are mathematically simple enough for numerical implementation is far
from conclusion. In this paper, we consider the Christensen’s theory [14], which is the simplest
non-linear theory for the viscoelastic behaviour of elastomers. The author presented his theory as



‘the viscoelastic counterpart of the kinetic theory of rubber elasticity’ because, for a su�ciently
slow process, the material is assumed to be neo-Hookean.
The stress–strain relationship is obtained using a �rst-order Green–Rivlin expansion of the

response functional (S in Equation (1)). The second Piola–Kirchho� stress tensor is given by

S(t)=−pC−1(t) + g0I +
1
2

∫ t

0
g1(t − �)@C(�)@�

d� (9)

where g0 is an elastic constant and g1(�) a relaxation function which satis�es

lim
�→∞ g1(�)= 0 (10)

3. FINITE ELEMENT PROCEDURE

In this section, we develop a �nite element formulation for dynamic in
ation of non-linear mem-
brane problems. By de�nition, a membrane o�ers no moment or transverse shear resistance. The
mid-surface of the sheet is a two-dimensional continuum and the thickness is assumed to be a
function of the position of the mid-surface. In the present formulation, no di�erence is made
between tension and compression (wrinkling phenomena are not taken into account). In reality,
a membrane is unable to a�ord compressive stresses, therefore our analysis is valid only until
compressive stresses take place, i.e. mid-plane principal stresses must always be positive.
In this general context, we present our spatial �nite element procedure and the temporal integra-

tion scheme. Then, implementation procedures for the previous chosen constitutive equations are
highlighted and the treatment of the viscoelasticity is extensively investigated. Last, the relationship
between membrane deformation and blowing pressure is studied.

3.1. Formulation and temporal scheme

The most general form of the principle of virtual work in the Lagrangian description is given by∫
B0

�u(t)�0 �u(t) dV0 =
∫
@B0

�u(t)T0(t) dS0 −
∫
B0

�E(t) :S(t) dV0 ∀�u(t) (11)

where B0 and @B0 are, respectively, the volume and the boundary surface of the undeformed
membrane, �0 is the constant mass density, �u(t) is the acceleration vector, T0(t) is the external
surface force with reference to the undeformed state, E(t) is the Green–Lagrange strain tensor, S(t)
is the second Piola–Kirchho� stress tensor and �nally, �u(t) is a compatible virtual displacement
vector.

3.1.1. Spatial discretization. First, the previous equation is discretized in space by the �nite
element method. In order to perform this semi-discretization, we consider the equilibrium of the
membrane at time t including the acceleration dependent inertia force (here, there is no damping
force). Then, the problem reduces to a system of ordinary di�erential equations:

M̃ �U(t)=Fext(t)− Fint(t) (12)

in which M̃ is the mass matrix constant in time, �U(t) is the nodal acceleration vector (U(t) stands
for the vector of nodal displacements) and, Fext(t) and Fint(t) are, respectively, the external and



the internal nodal forces. In this equation, the term on the left-hand side stands for inertia forces
and �ts to the term on the left-hand side of Equation (11), and the terms on the right-hand side
correspond to the same position terms in Equation (11) and depend on the strain state, i.e. on the
nodal displacement vector U(t).
Note that external forces are limited to the action of blowing pressure P(t) on the deformed

membrane surface. Thus, the Eulerian pressure force, T(t), acting on an in�nitesimal deformed
membrane surface dS, depends on the deformed geometry and is

T(t)=P(t) dS(t) n(t) (13)

where n(t) is a normal vector to the deformed membrane. It implies that external forces vector
Fext(t) must be computed in the deformed con�guration by replacing the previous Lagrangian
external virtual work,

∫
@B0
�u(t)T0(t) dS0, in (11) by its Eulerian counterpart

∫
@B �u(t)T(t) dS,

where @B stands for the surface of the deformed body.
In membrane context, we typically use 3-nodes triangular elements which only deform in their

plane, remain 
at and triangular with straight edges [7]. Computations are made by assemblage
of elementary contributions. As shown later, each element contribution is calculated by exact
integration in a local co-ordinates system. Therefore, no spatial numerical integration procedure
(as Gauss points integration) is needed.

3.1.2. Time-integration scheme. As mentioned earlier, the spatial discretization provides a system
of ordinary di�erential equations in time. In order to solve this system, we use the explicit second-
order central di�erence method [15]. The nodal velocity and acceleration vectors are given by

U̇(t)=
U(t +�t)−U(t −�t)

2�t
(14)

and

�U(t)=
U(t +�t)− 2U(t) +U(t −�t)

�t2
(15)

Note that this scheme is conditionally stable.
Using the previous temporal discretization equations, problem (12) becomes

M̃
�t2

U(t +�t)=Fext(t)− Fint(t) + M̃
�t2

[2U(t)−U(t −�t)] (16)

Consequently, the nodal displacement vector at time t +�t can be explicitly computed using its
previous values at times t and t − �t. Usually, initial displacements and velocities are assumed
equal to zero.
The e�ectiveness of this temporal scheme is improved by the use of a diagonal mass matrix

obtained by the special lumping technique [16]. The total mass of a �nite element is de�ned by
the summation of its mass matrix terms. This total mass is proportionally splitted into the diagonal
terms of a new elementary mass matrix. Last, elementary matrices are assembled in M̃′, the new
diagonal mass matrix of the membrane. In that case, each term of the nodal displacement vector
at time t +�t, Ui(t +�t), can be obtained by

Ui(t +�t)=
�t2

M ′
ii
[Fexti (t)− F inti (t)] + 2Ui(t)− Ui(t −�t) (17)



Figure 1. Deformation of a �nite element in its local co-ordinates system (Rl):
(ABC) undeformed element, (abc) deformed element.

where subscript ·i stands for the ith component of a vector and M ′
ii is the corresponding diagonal

mass term. We can clearly see that numerical operations needed to solve the dynamic problem
(12) are reduced very signi�cantly by the use of this method.

3.2. Numerical implementation of constitutive relations

3.2.1. Preliminaries. We have seen that dynamic equations at time t are used to compute the
displacement vector at time t+�t. In order to compute the internal force vector at time t, Fint(t),
we have to determine the Lagrangian deformation and stress tensors of each element, respectively,
C(t) and S(t) in Equation (11). The right Cauchy–Green deformation tensor is obtained using
the nodal displacement vector U(t) and the initial position of element nodes, and the second
Piola–Kirchho� stress tensor is next obtained by taking into account the constitutive relation of
the material.
Then, we study each element deformation by placing the undeformed triangular element in the

local co-ordinates system of the deformed element so that the two sets of local axes and their
origins coincide. The origin of the local co-ordinate system is the �rst node of the deformed
triangular element, its two �rst axes correspond to the element plane and the third one is normal
to this plane. This situation is shown in Figure 1.
Considering the plane stress state due to membrane hypothesis, the deformation and stress

matrices, C̃(t) and S̃(t), respectively, have the following forms:

C̃(t)=



C11(t) C12(t) 0

C12(t) C22(t) 0

0 0 C33(t)


 (18)

and

S̃(t)=



S11(t) S12(t) 0

S12(t) S22(t) 0

0 0 0


 (19)

Upon use of the incompressibility constraint, the term C33(t) in Equation (18) can be directly
computed from the other components of the deformation tensor:

C33(t)=
1

C11(t)C22(t)− C12(t)2 (20)



C33(t) is the square of the principal stretch ratio in the thickness direction, said �3(t), de�ned by

�3(t)=
√
C33(t)=

h(t)
h0

(21)

where h(t) and h0 are membrane thicknesses (uniform in each element), respectively, in the de-
formed and undeformed con�gurations. The two other principal stretch ratios, �1(t) and �2(t) (we
assume that �1(t)¿ �2(t)), and the respective angles of inclination of the principal directions,
�1(t) and �2(t), are calculated by diagonalizing C̃(t):

�21(t)=
1
2

[
C11(t) + C22(t) +

√
[C11(t)− C22(t)]2 + 4C12(t)2

]
(22)

tan �1(t)=
C12(t)

�21(t)− C22(t)
(23)

and

�22(t)=
1
2

[
C11(t) + C22(t)−

√
[C11(t)− C22(t)]2 + 4C12(t)2

]
(24)

tan �2(t)=
C12(t)

�22(t)− C22(t)
(25)

We next examine the numerical implementation of the constitutive relations described previously.

3.2.2. Hyperelastic case. Assuming the elastic behaviour of the membrane, the time t is omitted
in this paragraph and we next examine the numerical implementation of the Mooney’s model.
Using Equations (5) and (8), the stress–strain relationship is given by

S=−pC−1 + 2[(c1 + c2I1)I − c2C ] (26)

in which the hydrostatic pressure is determined by the use of S33= 0:

p=2(c1 + c1I1 − c2�23)�23 (27)

where �3 is given by Equations (20) and (21).

3.2.3. Viscoelastic case. Since now the current stresses depend on deformation history, we must
store all physical values from initial time to current time t to compute the integral in Equation (9).
Then, the required computing time becomes longer and longer. In order to save both computing
time and data storage, we use the recurrence formula developed by Feng [17]. With this recurrence
formula, the value of the hereditary integral at current time step t depends only on di�erent
variables values at the previous time step t−�t. Assuming that the relaxation function in Equation
(9) is written in terms of the exponential law:

g1(t)= g1e−t=tR (28)



in which g1 is a constant and tR is the relaxation time, this formula is given by

S(t) =−pC−1(t) + g0I +
1
2
e−�t=tR

∫ t−�t

0
g1(t −�t − �)@C(�)@�

d�

+ g1e−�t=2tR [C(t)− C(t −�t)] (29)

where the hereditary integral from 0 to t −�t is a function of the previous time step t −�t.
Another di�culty of such models implementation is that the kinematical variables (elementary

local axes for example) change during the time step. As we cannot evaluate this change, we
have to approximate it. Therefore, we assume that the principal directions of the deformation
tensor remain constant during the time step �t between discrete times t − �t and t, and that
these directions are equal to the principal directions at current time t. Because of large rotations
involved in the present problem, this stress update procedure must be used with very small load
steps. Here, because of the time-integration procedure, the time steps must be less than the critical
time step to ensure convergence. This critical time-step size is a function of elements size and
of the constitutive equation. It is ever very small [15]. Thus, the corresponding load steps are
su�ciently small to adopt the stress update method. Rachik et al. [18] use a similar procedure for
the implementation of a di�erential viscoelastic constitutive law in the context of blow-moulding
and thermoforming processes simulation. The previous recurrence formula (29) remains valid only
for the principal directions

Si(t) = −p 1
�2i (t)

+ g0 +
1
2
e−�t=tRJi(t −�t) + g1e−�t=2tR[�2i (t)− �2i (t −�t)]; i=1; 3 (30)

where S3(t)= 0 and where Ji(t −�t) are the convolution integrals

Ji(t −�t)=
∫ t−�t

0
g1(t −�t)@�

2
i (�)
@�

d� i=1; 3 (31)

and the hydrostatic pressure p is given by

p= �23(t)
{
g0 +

1
2
e−�t=tRJ3(t −�t) + g1e−�t=2tR [�23(t)− �23(t −�t)]

}
(32)

in which �3(t) is deduced from Equations (20) and (21).
For each �nite element of the mesh, we must store �ve principal values relative to the previous

time t−�t: two principal components of C, �21 and �22 (�23 is computed using the incompressibility
property), and the three principal viscous hereditary integrals, Ji(t −�t) for i=1; 3.
Now, the numerical implementation of Christensen’s model can be summarized as follows:

1. as U(t) is known from the previous deformed state, C(t) is computed in element local axes,
2. by diagonalizing C(t), we obtain its plane principal stretch ratios �1(t), �2(t) and the corre-
sponding principal directions, �1(t) and �2(t),

3. using incompressibility and plane stress state assumptions, data stored at t−�t and Equations
(30), (31) and (32), principal stresses, S1(t) and S2(t), are computed,

4. this allows us to determine the stress tensor S(t) in the local axes by a simple change of
basis.



Figure 2. Notations for the pressure evolution calculus: (a) initially non-plane membrane;
(b) initially plane membrane.

3.3. Pressure evolution calculus

As mentioned earlier, the external forces are only due to the in
ating pressure acting on the
deformed membrane. In most of the cases, numerical attempts to simulate membrane in
ations
assume that the pressure–time history is an external loading data (i.e. is independent of the mem-
brane deformation state).
In most practical applications, only gas 
ow rate can be mastered. Thus, the pressure inside

the volume limited by the membrane highly depends on the geometry of the membrane: as the
membrane in
ates, the pressure changes following the thermodynamical law of the in
ating gas.
Therefore, it is more realistic to impose a gas 
ow rate function and to compute the corresponding
pressure evolution.
In this paper, we assume that the gas used to in
ate the membrane obey the Perfect Gas Law.

Denoting P0, V0 and m0 the initial pressure around the membrane, the volume delimited by the
undeformed membrane and the initial gas mass contained inside this membrane, and mmol the
gas molecular mass, R the perfect gas universal constant, T gas the gas temperature assumed to be
constant during in
ation and Vinit an arbitrary reservoir volume equal to zero in the case of an
initial non-plane membrane (V0 6=0) and non-zero (arbitrary or experimentally de�ned) in the case
of a plane membrane (V0 = 0), the initial thermodynamic state of the gas is written as

P0(V0 + Vinit) =
m0
mgas

RT gas (33)

This equation can be used to determine the gas mass initially contained in the membrane (i.e. m0).
Figure 2 shows the previous notations for the two di�erent cases.
At time t, the current internal pressure P(t) is given by

P(t)
[
V init + V (t)

]
=
m0 + m(t)
mmol

RT gas (34)

where V (t) is the volume limited by the deformed membrane, m(t) is the extra gas mass added
between initial time and t. Thus, the pressure di�erence P(t) − P0, denoted by P∗(t), takes the
following form:

P∗(t)= m(t)RT
gas + P0[V (t)− V0]
Vin t + V (t)

(35)

In this equation, the gas 
ow rate m(t) is imposed.



The numerical implementation of the pressure evolution calculus is very simple. Initially, we
assume that the external equilibrium pressure P0 and the reservoir volume Vinit are well known
and that V0 can be computed from the undeformed con�guration. At the current time t, the internal
volume delimited by the deformed membrane V (t) is computed using displacements. Equation (35)
allows us to directly obtain the uniform loading pressure P∗(t) acting on the �nite elements mesh.
This pressure value is used to solve the problem at time t, i.e. to compute the next displacement
vector U(t +�t).

4. NUMERICAL EXAMPLES

In order to illustrate the capability of our work, three di�erent examples are treated and results
are compared with analytical or experimental results.

4.1. Instability of spherical membranes under a pressure step

The relationship between the in
ating pressure and the geometry of in
ated rubber-like membranes
was extensively analysed in the past, experimentally [19] and theoretically [20]. The instability
phenomena associated with these in
ations were examined by Khayat et al. [21] in the case of
the static in
ation of non-linear elastic cylinders.
More recently, Verron et al. [22] showed the existence of instabilities during the dynamic in
a-

tion of membranes. They extensively investigated the special case of spherical Mooney membranes
under constant pressure steps.
We study this case using our numerical procedure. Both hyperelastic and non-linear viscoelastic

membrane in
ations are next examined. The corresponding �nite element results obtained on a
complete spherical mesh (without any symmetry condition) of 2000 �nite elements are compared
with semi-analytical results of the one-dimensional reduced problem (obtained by assuming the
spherical symmetry hypothesis) solved by a �fth- or sixth-order Runge–Kutta method (subroutine
IVPRK from IMSL library [23]). In these examples, the membrane is supposed to be in
ated by
a constant pressure step. Numerically, the corresponding pressure function is an exponential one:

P∗(t)=P∗∞(1− e−100t) (36)

Therefore, the prescribed pressure step value P∗∞ is reached very early and in the following
examples the dependence of P∗ on t is omitted. The time step is set to 10−6 s due to elements
size. Therefore, the loading steps remain very small during computations and the use of the stress
update procedure is justi�ed.

4.1.1. Mooney’s membrane. The resolution of the corresponding semi-analytical problem is de-
tailed in Reference [22]. Consider a spherical hyperelastic membrane. The initial radius, thickness
and mass density are noted R0, h0 and �0, respectively. The material is assumed to obey the
Mooney’s model and the constitutive parameters are c1 and c2. Moreover, we de�ne the classical
non-dimensional Mooney’s constant � by

�=
c2
c1

(37)



  

Denoting the time t and the loading pressure step P∗, we de�ne the corresponding reduced time, 

�, and pressure step, p∗, b y

�= t
2
R0

√
c1
h0

(38)

and

p∗=P∗ R0
4c1h0

(39)

The non-dimensional governing equation of the membrane in
ation is a second-order di�erential
equation:

��=p∗�2+
(
1
�5

− �
)
(1 + ��2) (40)

where � is the circumferential principal extension de�ned as the ratio of the deformed radius to
the undeformed radius. We only consider the case of the membrane initially in equilibrium, i.e.
subjected to the following initial conditions:

�(�=0)=1 and �̇(�=0)=0 (41)

Depending on the values of material parameter � and the pressure step p∗, three di�erent
in
ation modes can take place:

• the membrane may oscillate around equilibrium points,
• it may tend to in
ate inde�nitely,
• it may tend to reach an unstable equilibrium point, then it neither oscillates nor in
ates any
further.

The comparison between one-dimensional Runge–Kutta results and �nite element results for each
previous case are now examined. Figure 3 shows the results for three di�erent values of �.
Figure 3(a) is relative to the case where �=0 and exhibits two di�erent dynamic behaviours.
The numerical results closely reproduce both oscillatory behaviour (p∗=0:5) and unstable grow-
ing stage (p∗=0:6). Now, consider the case where �=0:1. The corresponding dynamic behaviours
are shown in Figure 3(b). For this value of the material parameter, there is an unstable equilib-
rium point, i.e. a saddle point, which corresponds to p∗ ≈ 0:687. Far from this point, numerical
results are highly similar to the analytical results (p∗=0:8): the loss of linearity of oscillations
is well reproduced. But for values of p∗ near this saddle point (p∗=0:687 and 0.7), the �nite
element results can only approach qualitatively the real behaviour: the temporal evolution of the
deformed radius obtained by the �nite element method di�ers from the analytical solution. In such
cases, the membrane tends to stabilize at the saddle point and thus, the period of oscillations tends
asymptotically to in�nity. That is the reason why the numerical results are highly sensitive to the
pressure step value. For �=0:25, the membrane oscillates whatever the value of the pressure step
and the 3D calculations closely simulate the behaviour (see Figure 3(c) for p∗=0:7 and 1.2).
Moreover, for the three previous values of �, we analytically obtain the curves of oscillations

period versus pressure step and, for some values of the pressure step, 3D simulations are made.
The corresponding analytical curves and numerical points are shown in Figure 4. In this �gure,
the two vertical lines correspond to the limit pressure values for �=0 and 0.1. In the former case,



Figure 3. Dynamic in
ation of a Mooney spherical membrane, (—) one-dimensional Runge–Kutta,
(◦) �nite elements: (a) �=0, (b) �=0:1, (c) �=0:25.

the membrane cannot withstand pressure greater than p∗=0:556, and in the latter p∗=0:687
corresponds to the saddle point and the membrane can a�ord greater in
ating pressure values.
These results show that our �nite element procedure is able to simulate the dynamic behaviour

of in
ated membranes even in the vicinity of the saddle points (near the vertical line in the �gure)
and to reproduce the physical unstable phenomena, which take place during the dynamic in
ation
of hyperelastic membranes.

4.1.2. Christensen’s membrane. In this section, we study the dynamic in
ation of a non-linear
viscoelastic spherical membrane, which obey Christensen’s model. The one-dimensional analytical
equation of this problem is obtained by the same manner as in the previous hyperelastic case [24].



Figure 4. In
uence of the pressure step on the period of motion for three values of �: (—) one-dimensional
Runge–Kutta, (�) �nite elements.

The initial spherical bubble radius, thickness and mass density are noted R0, h0 and �0, respec-
tively. Assuming that the constitutive parameters are g0, g1 and tR as de�ned in Section 3.2.3, we
consider again reduced time and pressure de�ned by

�= t

√
2
R0

√
g0
�0

(42)

and

p∗=P∗ R0
2g0h0

(43)

Moreover, we consider a reduced relaxation time �R and a reduced relaxation function �(�):

�R = tR

√
2
R0

√
g0
�0

(44)

and

�(�)=
g1
g0
e−�=�R (45)

Assuming the spherical symmetry condition, the one-dimensional governing di�erential equation
of the viscoelastic problem is written in terms of the principal circumferential extension, said �:

��(�) =p∗�2(�) +
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1
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2

∫ �

0
�(�− u)d�

2(u)
du

du

+
1
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0
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−4(u)
du

du (46)



Figure 5. Dynamic in
ation of a Christensen spherical membrane: (—) one-dimensional Runge–Kutta,
(◦) �nite elements: (a) p∗=0:5; (b) p∗=1:0.

The convolution integrals are computed using the Feng’s recurrence formula (31) and this di�er-
ential equation is solved by a �fth- or sixth-order Runge–Kutta method.
Taking into account the complexity of a parametric study, we choose to �x two parameter

values:

�=0:2 and �R =1 (47)

Then, two di�erent behaviours are highlighted depending on the value of the pressure step:

• for su�ciently small values of p∗, the membrane oscillates and oscillations tend to decrease
with time in amplitude,

• for greater values of p∗, the membrane exhibits an unstable behaviour for which its radius
grows to in�nity with small oscillations.

We next examine the comparison between one-dimensional analytical and �nite element results.
The two previous cases are illustrated in Figure 5: Figures 5(a) and 5(b) show, respectively,
a stable oscillatory motion (p∗=0:5) and an unstable continuously growing motion (p∗=1).
In this �gure, the continuous curves correspond to the semi-analytical results and the circles
represent numerical calculations.
For these two cases, the numerical simulations are in good agreement with analytical results.

However, we note that both amplitude and period of motion in the oscillatory case and only
amplitude in the unstable case, are underestimated. These small di�erences between numerical and
analytical results are due to the approximations made for the implementation of the viscoelastic
constitutive relation in the program (see Section 3.2.3).



Figure 6. Dynamic in
ation of a Mooney spherical membrane by a constant gas 
ow rate for (a) �=0 and
(b) �=0:25: (—) one-dimensional Runge–Kutta, (◦) �nite elements, (-·-) static solution.

4.2. In
ation of a Mooney spherical membrane by a constant gas 
ow rate

The simulation of the in
ation of a hyperelastic spherical membrane by a constant gas 
ow rate
is carried out in this example. The geometry of the initial membrane and the de�nition of the
reduced parameters are the same as in the �rst simulations. The time step size is also 10−6 s.
The corresponding one-dimensional governing equation is given by [24]

��=p0

[
1
�
(1 + q�)

]
+
(
1
�5

− �
)
(1 + ��2) (48)

where p0 is the initial reduced equilibrium pressure inside the bubble and q a reduced constant
gas 
ow rate.
In this problem, initial pressure and gas 
ow rate are both equal to 1 and numerical simu-

lations are performed for two Mooney’s reduced parameter �. The pressure is computed using
the method developed in Section 3.3. The results provide the pressure inside the bubble versus
the circumferential extension. Comparisons between analytical and numerical results are shown in
Figures 6(a) and 6(b), respectively, for �=0 and 0.25.
Firstly, we note that numerical solutions closely �t to analytical results in the two cases. Sec-

ondly, the dynamic curves oscillate around the corresponding static curves (dotted–dash lines in
Figures 6) obtained by setting ��=0 in Equation (48). The dynamic numerical curve relative to
the case where �=0 (Figure 6(a)) oscillates around the static curve which exhibits a maximum
pressure point beyond which the membrane grows as the pressure decreases (called snap-through
behaviour). Classically, it is di�cult to capture equilibrium beyond the maximum pressure value
and special numerical algorithms have to be developed [25; 26]. In this case, we show that if we
consider the thermodynamical behaviour of the gas, we are able to directly obtain the real motion
and pressure evolution of the membrane without any convergence problem.



Table I. Initial geometrical data for elliptical
membranes.

Membrane 1 Membrane 2

a 70.7mm 50 mm
b 141.4mm 200mm
e 2 4

h0 0.23 mm 0.23mm

4.3. In
ation of elliptical membranes

To test the ability of our �nite element model in 3D problems, the dynamic in
ation of the initially
plane elliptical neo-Hookean membranes has been analysed. This problem is based on the work
of Charrier et al. [27] which performed experiments and quasi-static calculations on such latex
rubber membranes.
We consider two membranes de�ned by the lengths of their semi-minor axis, a, semi-major axis,

b, and by a reduced aspect ratio, e= b=a. The undeformed thickness is assumed to be uniform and is
denoted by h0. These geometrical data are presented in Table I for the two membranes. The material
is a natural latex rubber, which is described by a neo-Hookean model with c1 = 141:5 kPa. The
mass density is 1200 kg=m3. The constant gas 
ow rate and the time-step size are, respectively, set
to 15×104 mm3=s and 6:6×10−5 s. In order to compare our results with Charrier’s experiments,
we de�ne the adimensional pressure inside the bubble, �P, and the adimensional apex height,
za, by

�P=
Pa
2c1h0

(49)

and

za=
za
a

(50)

where P is the pressure inside the bubble and za is the apex height of the in
ated membrane.
The symmetric quadrants of the two membranes are, respectively, meshed with 331 nodes and

584 elements for the e=2 membrane, and 343 nodes and 591 elements for the e=4 membrane.
They are submitted to a constant gas 
ow rate, then the pressure inside the bubble is calculated
by the program. Figures 7 and 8 show four in
ation stages for the e=2 and 4 membranes,
respectively. It is to note that in the latter case, the membrane undergoes an instability shown in
Figure 8(d). This instability is called a bulge and is observed in experiments [27]. It might be due
to the presence of compressive stresses in the membrane.
Curves of Figure 9 presents the pressure evolution versus the membrane apex height for the two

membranes. The pressure reaches a maximum value after which it decreases as the in
ation goes
on. The numerical curves match experimental points reasonably with a more important di�erence
for the e=4 membrane, due to the occurrence of the bulge.
Moreover, we compare our numerical results with the measurements of the principal stretch

ratios at the apex. Figure 10 presents these curves for e=2 (curve (a)) and 4 (curve (b)). In this
�gure, we can see that our predictions of principal stretch ratios are better in the case e=4, i.e. the
bulging case. Taking into account the previous comparisons on the pressure evolution, we should





Figure 9. Reduced in
ation pressure inside the bubble versus reduced apex height of elliptical membranes
de�ned by: (a) e=2 and (b) e=4: (—) �nite elements, (◦) experiments [27].

Figure 10. Apex principal stretch ratios versus reduced apex height of elliptical membranes de�ned by: (a)
e=2 and (b) e=4: (—) �nite elements for �1, (◦) experiments for �1 [27], (· · ·) �nite elements for �2 and

(•) experiments for �2 [27].

viscoelastic. Then, the hyperelastic Mooney’s model and the integral viscoelastic Christensen’s
model have been described and implemented. The numerical implementation of the viscoelastic
behaviour is made by the use of the recurrence formula of Feng [17] to calculate the convolution
integrals with minimum data storage. A membrane formulation is adopted, thus the incompress-
ibility constraint is imposed in a trivial manner. The explicit �nite di�erence scheme for time
integration was used. Moreover, in order to be more realistic, we consider an external loading by
a gas 
ow rate rather than by a pressure–time history: as the pressure is highly dependent on the
deformation state geometry (volume inside the bubble), the real external independent loading is
the gas 
ow rate and the pressure has to be recalculated inside the membrane, taking into account
the deformed geometry.
Finally, di�erent comparisons between numerical results, and analytical and experimental data

show that our formulation has the capability to reproduce non-linear dynamic large strains of



in
ated membrane and to predict instability phenomena as unstable growing behaviour or bulge
occurrence.
The present study leaves some issues of fundamental importance. The formulation does not

handle wrinkle phenomenon which arises as the membrane is compressed. In order to predict the
post-bulging behaviour, it will be necessary to take into account this phenomenon in the future.
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