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The dynamic inflation of hyperelastic spherical membranes of a Mooney—Rivlin material is
analyzed in this study. Various inflation regimes are identified through ranges of the material
parameters and driving pressure. In particular, the conditions for oscillatory inflation around the
static fixed point are examined. It is found that, for a given material, the frequency of oscillation
exhibits a maximum at some pressure level, which tends to increase for materials closer to
neo-Hookean behavior.

l. INTRODUCTION

While the stability of statically inflated nonlinear materials is well understood, that
taking place during dynamic inflation is relatively unexplored. The existence of instabili-
ties in statically inflated hyperelastic membranes is well known, and such instabilities
were observed experimentally by Hart-Smith (1966) and Alexander (1971). The general
equations for static inflation of a thin spherical shell were reviewed by Beatty (1987), and
the stability of the static solution was extensively analyzed recently by Shang (1991)
using bifurcation theory.

More recently, there has also been considerable interest in the dynamic inflation,
taking into account the inertia of the membrane. Such investigations are reviewed in
detail by Jenkins and Leonard (1991) and Jenkins (1996). The theoretical analysis of



Akkas (1978) shows the existence of instabilities during the dynamic inflation of spheri-
cal membranes. His theory, however, assumes that the membrane thickness remains
constant during inflation.

In this paper, we first review the governing equations for the motion of a spherical
membrane for a material obeying the Mooney—Rivlin constitutive equation, subjected to
an arbitrary and time-dependent driving pressure. A summary of the various regimes in
static inflation is then given. The dynamic inflation is extensively investigated to generate
both the linear stability picture and the nonlinear behavior. The influence of various
control parameters, namely, the material constant(s) and driving pressure are examined
for the initially unconstrained spherical membrane. We are particularly interested in
examining the conditions for the onset of sustained oscillatory behavior.

Il. EQUATION OF MOTION

In this section, the derivation of the governing equation of the motion of a spherical
membrane under internal pressure is briefly reviewed for completeness. Although the
equations for static inflation are well known [Beatty (1987)], their dynamic counterparts
are not as extensively used. The classical Mooney strain energy function is used to
described the rubber-like material.

Consider a spherical membrane of elastic, isotropic, and incompressible material of
density py. The membrane deformation is described in spherical coordinates (R,®,®P) in
the undeformed state, and (r,0,¢) in the deformed state. Let (Ry,Hq) and (rg,hg)
denote the membrane midsurface radius and thickness in the undeformed state and in the
deformed state, respectively.

Let oy and 099 = 044 be the diagonal components of the Cauchy stress tensors in
the radial and circumferential directions, respectively. Because of the spherical symme-
try, all variables depend only on the current radial coordinate r and time t. In this case,
the governing equation of interest is the conservation of momentum equation in the radial
direction:

doy 2 |
= —++- — .
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Let Ny = hy/H denote the principal stretch ratio in the thickness direction, and
N> = A3 = N = ry/Rg be the principal stretch ratios in the circumferential directions.
In this case, the incompressibility assumption implies that A A? = 1. Let AP denote the
imposed pressure difference. Integration of Eq. (1) through the thickness, and use of the
membrane approximation and the expressions for the stretch ratios lead to the following
reduced form [Eringen and Suhubi (1974)]:

. 2H, 1
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The expression for the stress difference oy — oy will be determined through the con-
stitutive relation between stress and strain (principal stretch ratio).

In the present work, the material studied is assumed to obey the Mooney—Rivlin
constitutive equation [Mooney (1940); Treloar (1975)]. The corresponding expression for
Orr— Ogg 18 given in terms of the principal circumferential stretch ratio N and the mate-
rial constants C and « as [Green and Adkins (1960)]
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The differential equation (2) becomes
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To simplify the discussion on the influence of the different parameters in Eq. (4), we
define the reduced time and pressure by
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Equation (4) takes the following nondimensional form:
- 2 (1 2
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in which A is a function of the reduced time variable 7. Now a dot denotes differentiation
with respect to 7.

lll. DYNAMIC BEHAVIOR

The dynamic inflation is now examined by solving Eq. (7) for a constant inflation
pressure step. However, it is helpful to consider first the static inflation of a spherical
membrane, which will be referred to later when dynamic inflation is analyzed.

A. Static inflation

In Eq. (7), the acceleration term is set to zero, and the inflation pressure step becomes
an explicit function of the material parameter « and the principal circumferential stretch
ratio \:

(1+aN?). (8)
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AP = (x* I\

The curves Ap vs \ are presented in Fig. 1 for three different values of a: 0., 0.1, and

0.25. The three curves are typically representative of three possible behaviors [Beatty
(1987)].

The curve @ = 0 represents the behavior of a neo-Hookean membrane. The maximum
pressure the membrane can withstand in static inflation is called the critical static pres-
sure or limit pressure, and is denoted Apg. For 0 < Ap < Apg, Eq. (8) has two
distinct real roots, one on the ascending portion of the curve (for N < )\g , Where )\g
corresponds to Apg) and another on the descending portion (A > )\g). For
Ap > A pg , there is no real solution for Eq. (8): the membrane cannot withstand such an

inflating pressure. For Ap = Apg , there is a double root, and for Ap = 0, there are two
real distinct roots at 0 and +. The curve @ = 0.1 is representative of the situation in

which the inflation curve always presents two stable and one unstable parts. This is the
lim lim

case in which 0 < a < ag , with ag == 0.214. Here, the curve Ap vs X\ consists of
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FIG. 1. Static inflation: normalized pressure step vs circumferential stretch ratio for different values of « shown
on each curve.

three branches. The curve has two local extrema, one maximum for Ap = A pg (this is

not a critical value, because the membrane can withstand greater pressures) at N\ = 7\?
and one minimum for Ap = Apg1ir1 at A = )\rSnin. From Fig. 1, it can be seen that for
0<Ap < Apgnin, Eq. (8) has only one real root in the first stable branch. For
A p?in <Ap < Apg, Eq. (8) has three real roots, one in the first stable branch, one in the
unstable branch, and one in the second stable branch. For greater pressures
(Ap > A pg), Eq. (8) presents only one real root in the second stable branch. It is to be
noted that for Ap = A pgﬁn and Ap = Apgj there are only two real roots. In Fig. 1, the
curve a = (.25 stands for all the cases where a > agm. All the curves are monotoni-
cally increasing and the function (8) is a bijection: for every inflating pressure step Ap,

there is only one real root.

B. Dynamic inflation

Equation (7) is rewritten as a set of two differential equations of the first order:
A=V,

1

V= Ap\P+ =\ (1+an?). (9)

The initial conditions are:

)\(T = O) = )\inita

10
V(T: O) = Vinit» ( )
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FIG. 2. Codimension-two bifurcation: normalized pressure step vs a for different values of the circumferential
stretch ratio A.

where A j,it and Vi, Will be given when specific examples are covered. With these initial
conditions, problem (9) and (10) is well posed and has a unique solution. Of course,
given the nonlinearities present, the problem can admit a multiple-valued solution. How-
ever, the problem is deterministic, and only one solution corresponds to a set of initial
conditions. The equations are solved by using a sixth-order Runge—Kutta method (sub-
routine IVPRK from the IMSL library).

The dynamical system (9) is codimension 2 since two parameters are required for a
bifurcation to occur. In this case, the two parameters are Ap and a. The coexistence of
fixed points is illustrated in Fig. (2), which shows constant A curves in the (Ap, @) plane.
It is clear from Fig. 2 that a given stretch ratio may be maintained by an infinite number
of combinations of the two parameters (each A curve intersects an infinite number of
other curves). More importantly, Fig. 2 shows that two different values of the stretch ratio
can correspond to the same value of Ap and a.

Since Ap is independent of time, v can be obtained as an explicit function of N\ by
taking the ratio of the two equations system (9) and integrating from (\;uj,Vinit) to
(N,v). We thus obtain the equation of energy conservation for the inflation of the spheri-
cal membrane [Dym (1974)]:
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In Eq. (11), the left-hand side is the change in kinetic energy, the first term on the
right-hand side is the work done by the inflating pressure, and the last terms represent the
elastic strain energy stored by the membrane. This equation allows us to directly obtain
the phase curves v vs A. We next examine the linear stability of the static (steady-state)
solution.

1. Linear stability analysis

Assuming that a and Ap are fixed, the equilibrium states are the points that satisfy

A=0and v =0 in system (9). These points are the couples (Ag,Ve) of the phase
curves where \ satisfies Eq. (8) and v = 0. The number of such points depends on the
values of @ and Ap and was investigated in detail in Sec. IIT A.

In order to determine the stability of each equilibrium state, we must study the behav-
ior of system (9) about this state. The Jacobian matrix [J] of system (9) at the equilibrium
point (Ag,0) is given by

0 1
D =xwv=0= aQ ol (12)
in which
5 3 )
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Let w; and w, be the two eigenvalues of the problem, which dictate the approximate
form of A and v in the neighborhood of (Ag,0). The two roots w; and w, depend on the
sign of ():

(i) If >0, the two roots are real and of opposite signs, w; = —\/5 and
wy = \/6
(i) If Q <0, the two roots are purely imaginary, w; = —iy—{ and

wy = Im

(iii) If Q = 0, zero is the double root, w; = wy = 0.

Let us now examine the dependence of () (more importantly, the sign of )) on Ap
and « [recall that N is determined from Eq. (8)]. If 1 > 0, the equilibrium point
(N = Ne, v = 0) is unstable and is a saddle point; if ) < 0, A(t) and v(t) are periodic
in the neighborhood of (A = \¢, v = 0), which is an elliptic center. The number and
stability of the equilibrium branches depend on Ap and a. If we note that

dAp Q

— =- (14)

(o) A= Ag
then we can clearly see that if {) < 0, the ascending branch(es) of a given static curve in
Fig. 1 is (are) stable. If {} > 0, the descending branch of the static curve is unstable,
which confirms previous stability findings [ Alexander (1971)]. [Figure 1 also shows the
span of stable and unstable branches with the limit points in Ap corresponding to the
extrema in the static curves.

Linear stability analysis is limited to small departures from equilibrium. Before ana-
lyzing the nonlinear dynamical behavior, it is helpful to examine the solution in the (A,V)
phase plane for the three values of the parameter « as in Fig. 1. The resulting phase
diagrams are shown in Fig. 3. For a = 0, if 0 < Ap < Apg , there are two equilibrium
points: one elliptic center (A,,,0) and one saddle point (Ag,0) with A, < Ng. The corre-
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FIG. 3. Phase—plane trajectories v vs N\ for three typical ranges of @ and Ap and general initial conditions
(Ninit > Vinit) -

sponding (\,V) trajectories are shown in Fig. 3(a). There are closed curves in the vicinity
of the elliptic center, and these curves become open branches in the neighborhood of the
saddle point. Depending on the initial conditions (Njpit,Vinit), the solution may oscillate
around the elliptic center or grow exponentially away from the saddle point. Figure 3(a)
displays a global homoclinic (separatrix) solution confining the area of periodic solutions
about the stable center and diverging solutions outside; note the similarity with Hamil-
tonian problems with ‘“‘escape from a potential well”> [Guckenheimer and Holmes
(1983)]. The homoclinic solution is obtained from Eq. (11) using the initial conditions of
the saddle. Figure 3(b) displays the trajectories corresponding to Ap > Apg. Regardless
of the initial conditions, the solution does not converge to a fixed point. This is, of course,
resulting from the fact that there are no real solutions to Eq. (8). The phase plane
trajectories in the presence of three fixed points are presented in Fig. 3(c) for « = 0.1 and
A pgnn <Ap < Apg. In this case, there are two elliptic centers ()\Vl,O) and (N 2,0) and
one saddle point (A ,0) with A, LS A <Ay, Depending on the values of the initial

conditions, the trajectories can be two closed curves, each one of them around one elliptic
center or only one closed curve that surrounds all three fixed points. Figure 3(c) shows



also the case of a periodic limit orbit that surrounds the three fixed points. In the former
case, the solution tends to oscillate around one elliptic center or the other. In the latter
case, the solution remains periodic but oscillates around both elliptic centers over one
period of time. The trajectory turns around one of the elliptic centers, then enters the
saddle-point neighborhood and goes on around the other elliptic center. For Ap
e[0,A pISnm[U]Apg ,+o9[, there is only one fixed point, which is an elliptic center. Thus,
the trajectories (not shown) are closed curves centered on this point, regardless of the
initial conditions. Figure 3(c) thus exhibits two homoclinic solutions confining (internal)
periodic solutions about the centers and a set of (external) periodic solutions about both
homoclinic solutions. This situation is similar to asymmetric double-well problems. Note
that for @« = 0.25 and for any value of Ap, there is only one fixed elliptic center.

2. Nonlinear dynamic inflation

In the previous section, we examined the phase—plane trajectories for general initial
conditions. We determined the number of fixed points and analyzed their stability as
function of the control parameters & and Ap. Consider now the special case of a mem-
brane initially in equilibrium subject to the following initial conditions (Njpi = 1,
Vinit = 0). This corresponds to a spherical membrane of a given radius initially in equi-
librium.

We first examine the conditions for a periodic response. Obviously, when the motion
of the membrane is periodic, the corresponding phase curve is a closed loop in the (A,V)
plane. Noting that the initial point (1,0) is an intersection point between the v = 0 axis
and the phase trajectory, it can be inferred that this trajectory must intersect the v = 0
axis at least one more time for it to be a closed loop. If v is set equal to zero in Eq. (11),
the relation between Ap and N becomes

3
Ap = <>\3—1>2 nS
0 (\=1)

(\n# 1)

AN NS
o 2
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The curves (\,Ap), corresponding to Eq. (15), are presented in Fig. 4, together with the
static curves based on Eq. (8), for different values of a. Thus, the solid curves in Fig. 4
correspond to the loci of solutions with zero velocity (v = 0) and nonzero acceleration
(v # 0), whereas the dashed (static) curves correspond to the loci of solutions with both
v = 0 and v = 0. It is clear from Fig. 4 that the overall behavior of the (\,Ap) curves
is the same for both static and dynamic inflations. There is a value of the material
parameter, agm = (.145, beyond which, similarly to alslm, Ap increases monotonically
with N. The a@ = 0 curve has one maximum corresponding to a critical pressure value,
Apg. For0) < a < al[')m, there are three branches, a local maximum Apg, and a local

minimum Apgm, as in the static case. Note that the values of the critical parameters are
highly dependent on the initial conditions. It is interesting to note that agm < alslm and
Apgnm < Apr[r)lm < Apg < Apg independently of the value of a.

It 1s useful to closely examine the interplay between the static and dynamic behaviors
through the corresponding curves, since the static curves represent equilibrium regions
towards which the dynamic solution may eventually be attracted in real systems (with
damping). There are four important ranges of values for a. Recalll'that in static inlﬂation

m m

three main ranges of interest were examined: @ = 0,0 < a < ag ,and a > ag . In

the dynamic case, we identify four regions of interest, namely, « = 0, 0 < a < all:l)m,
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FIG. 4. Ap vs \ for static (---) and dynamic (--) inflations (the corresponding value of « is shown on each
curve).

alll)m <a< agm, and o > agm. We are particularly interested in the conditions under
which oscillatory movement occurs; we must then determine the location of the first
intersection point A;(A; > 1), between a dynamic curve and a horizontal line, represent-
ing the value of a given pressure step Ap. Note that the same horizontal line intersects
the static curve (corresponding to the same « value) at \, (there may be more than one
intersection point). The solution may thus end up oscillating between N\ = 1 and \;
around A, .

We now focus our discussion on the range a > 0.1. Figures 5 and 6 display the
resulting dynamics for two different values of a. @ = 0.18 and 0.25, respectively, with
initial conditions N, = 1, Vinit = 0. Each figure shows (a) the dynamic and static
pressure curves together with the intersecting points \;’s and A .’s for a typical level of
inflating pressure, (b) the phase—plane trajectories for various levels of inflating pressure,
and (c) the corresponding temporal behaviors for \. Typically, there are four different Ap
ranges that can be identified. For 0 < Ap < A pg , there are generally two intersection
points, ; and N;,(N; < A;,), between the dynamic curve and the horizontal line, and

two intersecting (equilibrium) points, \, . and A, 2()\ e; < Ne 2), for the static curve. In
this case, the membrane oscillates between the unconstrained (initial) state and \; .
around the stable static equilibrium (elliptic) point \, .- For the particular case
Ap = A pg , there is only one intersection point \; and still two intersection points A, |
and A\, 5 This is, in fact, a degenerate case where the two roots of Eq. (15) are equal to
\;. Note also that \; is equal to A

membrane neither oscillates nor inflates any further but maintains a static (unstable)
equilibrium state. This corresponds to an oscillation with an infinite period. For

this latter being a saddle point. In this case, the

62’
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FIG. 5. a = 0.18: (a) Ap vs \ for static and dynamic inflations, (d) stable phase—plane trajectories correspond-
ing to Njpit = 1 and vy = 0, and (c) temporal behavior of the circumferential stretch ratio N, for four Ap
ranges: (—) 0 < Ap < Apg, (—) Ap = Aplc), (-+9) Apg < Ap < Apg, and (----) Ap = Apg,

Aplc) < Ap < Apg, the phase trajectory is reduced to an open curve. The membrane
tends to inflate indefinitely, but because of the presence of the saddle point the phase—
plane trajectory exhibits a local minimum in the neighborhood of the saddle point. For
Ap = Apg, there are no intersection points at all and the phase—plane trajectory in-
creases monotonically with A. . .

Consider now the case when agm <a< agm, more precisely, when @ = 0.18. Fig-
ure 5 shows the behavior for only three ranges of inflating pressure, since the dynamic
curve exhibits a strictly monotonic behavior [Fig. 5(a)]. Note that in this case the static
curve still exhibits two extrema. The phase—plane trajectory is always a closed cycle but
its shape depends on the value of Ap relative to the extrema of the static curve. For

10
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FIG. 6. o = 0.25: (a) Ap vs \ for static and dynamic inflations, (b) stable phase—plane trajectories correspond-
ing to Njpit = 1 and Vip;¢ = 0, and (c) temporal behavior of the circumferential stretch ratio A, for three Ap
ranges: (—) 0 < Ap < Apg™, (——) Apg™ < Ap < Apg, and (---) Ap = Apg.

Ap < Ap§™, there is only one equilibrium point on the first stable branch of the static
curve and the membrane oscillates around it. For Apg™ < Ap < Apg, there are three
equilibrium points, and the membrane oscillates around the two vortices as shown in
Figs. 5(b) and 5(c). Note that the necking is insignificant in this case since the motion
amplitude is relatively small.

For a = 0.25, both the dynamic and static curves are strictly monotonic. In this case,
condition (15) has only one root and there is always one equilibrium point. The mem-
brane always oscillates. Therefore, the period of motion remains finite. Figure 6 shows
the corresponding behavior for three different values of the pressure step.

11
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FIG. 7. Influence of the pressure step on the period of motion for different values of a.

After having determined the ranges of values for @ and Ap for which oscillatory
inflation occurs, we next examine the influence of these two parameters on the period of
oscillation. It was found above that the membrane tends to oscillate in most cases of
practical interest, and that the amplitude of the motion depends on the value of the
pressure step (for given «). Similarly, Figs. 5 and 6(c) show that the period of oscillation
is closely related to Ap. Figure 7 shows the dimensionless period 7 as function of Ap for
the four values of « considered above. Generally, the period of oscillation tends to
increase at small inflating pressure, reaches a maximum value and then decreases in the
higher Ap range. The only case in which the membrane becomes unstable is when & = 0
(neo-Hookean material) and Ap > Apg. For « =0 and Ap = Apg, and a = 0.1

(representing the case 0 < a < agm) and Ap = Apg, the membrane tends to reach an
unstable equilibrium (saddle) point and the period goes to infinity. After this point, for
a=0.1and Ap > Apg , the membrane oscillates again and the period of motion de-
creases monotonically. In all the other situations, the membrane oscillates. But, because
of the nonlinearity of the differential system, it is not enough to conclude that the period
of motion grov&l{s as the pressure step grows [see Figs. 5 and 6(c)]: for @ = 0.25 (repre-
m

senting & > ag ), the motion is never unstable but the period does not increase mono-

tonically with pressure. The corresponding curve T vs Ap admits a maximum. For
a = 0.18, the results are similar to the latter case, because « is also greater than agm
This last result differs from Akkas (1978) who concluded that, for o > agm , as Ap gets
larger, the period of oscillations also gets larger. This difference may be due to his

hypothesis of constant thickness of the membrane during inflation.

IV. DISCUSSION AND CONCLUSION

There are two major issues regarding the class of materials targeted in this study that
we would like to discuss in some detail. The first is the use of the Mooney—Rivlin model

12



as opposed to using other elastic models. The second is the fact that the material in
question does not include any viscous damping. Thus, it is important to point out the
limitations and advantages of the assumptions adopted here. Hyperelastic models, includ-
ing the Mooney—Rivlin model, can capture some of the phenomena observed during the
(primary) inflation stage in a wide range of forming processes. Beatty (1987) compared
the normalized pressure—stretch curve obtained from the experimental inflation of a
spherical balloon against results based on the Mooney—Rivlin model. He found that,
while the normalized pressure grows indefinitely with stretch, the slope of the Mooney—
Rivlin curve approaches a constant value for large stretch. Hence, the Mooney—Rivlin
model does not predict an indefinitely large, bursting pressure at a finite value of the
stretch. This shortcoming of the Mooney—Rivlin model is by now well accepted, as the
model can only be accurate for moderately large and not very large deformation. None-
theless, according to Beatty (1987), ‘‘the Mooney—Rivlin model does provide a satisfac-
tory qualitative (and probably conservative) description of the overall primary balloon
inflation phenomenon.’” Although the discrepancy between theory and experiment could
be in part due to the fact that the balloon was not perfectly spherical during the experi-
ment, and also to the assumption of incompressibility of the material applied throughout
the analysis. Obviously, some additional and systematical work is needed to examine the
effects of materials properties on inflation dynamics.

On the other hand, the present study should not be regarded as limited to the stability
analysis of only Mooney—Rivlin materials, but as a study relevant to a large class of
hyperelastic materials in the limit of moderately large strain. The methodology developed
in the present study can be applied to other constitutive models, and the type and range
of phenomenological behaviors examined are likely to be encountered in other hyperelas-
tic materials. The Mooney—Rivlin model is related to or is the limit of many more
realistic models for hyperelastic materials. These include the following models: general-
ized Rivlin [Rivlin (1948)], three-term model of Isihara et al. (1951), Rivlin—Saunders
(1951), Gent—Thomas (1958), Biderman (1958), Carmichael-Holdaway (1961), Hart-
Smith (1966), Valanis—Landel (1967), Alexander (1968), Ogden (1972), and Blatz—
Sharda—Tschoegl (1974). These models are derived on the basis of phenomenological,
statistical, or empirical arguments. Our own studies [Khayat and co-workers (1998);
(1995); (1994a); (1994b); (1993); (1992)] on the modeling of blow-molding and thermo-
forming processes showed a remarkable usefulness for the Mooney—Rivlin model, for
materials undergoing industrially complex transformations. See, in particular, Khayat and
Derdouri (1995) and Derdouri et al. (1994) for comparison between theory and experi-
ment. Similarly, other works also support this claim [see, for instance, Charrier et al.
(1989) and Delorenzi and Nied (1990)].

Let us now turn to the second issue regarding the absence of damping in the model. In
this regard, one may conclude hastily that the purely elastic model in this case is of no
relevance to physical reality. It is true that damping will make the oscillatory solution
decay to a fixed point. However, there are instances where transient and not only long-
term behavior is of the main physical or practical interest. It is possible that the inflation
process in question may be so short that sustained oscillations, which stem from domi-
nant elastic effects, are observed during the whole process. In blow molding and ther-
moforming, for instance, the inflation stage may last only a few milliseconds, and viscous
effects are negligible. Moreover, since the sustenance of oscillations depends on the
effects of elasticity relative to viscous effects, it is the type of (polymer) material used
that dictates the time it takes for oscillations to decay (relaxation time). In a previous
study [Khayat and Garcia-Rejon (1992)] we used a highly nonlinear viscoelastic consti-
tutive model to study the inflation of a spherical shell of a viscoelastic fluid. It was
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found that beyond a critical Deborah number, oscillatory (as opposed to monotonic)
growth sets in. It was also found that the amplitude and frequency of oscillations depend
strongly on the pressure history inside the shell; a sudden initial jump in pressure tends to
enhance oscillatory behavior.

In conclusion, the dynamic inflation of a spherical membrane made of Mooney—Rivlin
material and subjected to a uniform step pressure was extensively studied. The nature of
singular points was determined by a linear stability analysis for different ranges of values
of the material parameter and the pressure step. The problem of the dynamic inflation of
an initially unconstrained membrane exhibits critical values of the material parameter

agm and of the pressure step, A pcD: (counterparts of the classical static critical values agm

and Apg) [Alexander (1971); Beatty (1987)]. We examined, in particular, the conditions
for the onset of oscillatory inflation around the (static) equilibrium points. It was found
that oscillatory motion tends to set in for Mooney—Rivlin materials with a period that is
maximum at some inflating pressure. It was also found that the period tends to decrease
as the Mooney parameter ratio increases.

Although the equations governing the inflation of the spherical membrane are Hamil-
tonian (as they do not account for any damping), it is difficult to assess their physical or
practical relevance. A more realistic model should include the effects of viscosity, lead-
ing to a viscoelastic solid or fluid model. The inflation of a viscoelastic liquid shell
obeying the modified ZFD model was earlier examined by Khayat and Garcia-Rejon
(1992). 1t is found that, for a pressure suddenly imposed initially, the shell grows expo-
nentially with time as long as the Deborah number De is small. When De exceeds a
critical level, the growth becomes oscillatory. However, the amplitude and frequency of
oscillations is strongly influenced by the rate of internal pressure. Calculations show that
the oscillations are essentially absent for a slowly increasing pressure (compared to an
initial sudden step). Since the pressure, in practice, cannot be suddenly imposed, it is
likely that oscillations do not emerge in reality as a result of the strong damping.
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