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Discontinuous Galerkin Methods Applied to Shock 
and Blast Problems

N. Chevaugeon,1 J. Xin,1 P. Hu,1 X. Li,1 D. Cler,2 J. E. Flaherty,1

and M. S. Shephard1

We describe procedures to model transient shock interaction problems using
discontinuous Galerkin methods to solve the compressible Euler equations. The
problems are motivated by blast flows surrounding cannons with perforated
muzzle brakes. The goal is to predict shock strengths and blast over pressure.
This application illustrates several computational difficulties. The software must
handle complex geometries. The problems feature strong interacting shocks,
with pressure ratios on the order of 1000 as well as weaker precursor shocks
traveling rearward that also must be accurately captured. These aspects are
addressed using anisotropic mesh adaptation. A shock detector is used to con-
trol the adaptation and limiting. We also describe procedures to track projectile
motion in the flow by a level-set procedure.

KEY WORDS: Discontinuous Galerkin methods; hyperbolic conservation prob-
lems; blast; shock detection; anisotropic mesh refinement; adaptive methods.

1. INTRODUCTION

We propose to solve blast problems motivated by flows surrounding
cannons with perforated muzzle brakes using a discontinuous Galerkin
method (DGM), as described in Sec. 2. Detection of shock structures
appears crucial to drive both adaptive mesh refinement and limiting and
we describe such detection scheme (Sec. 3) and present some one-dimen-
sional examples. We also describe an anisotropic adaptive mesh refinement
procedure (Sec. 4), that allows us to solve large problems, in an efficient
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manner. We apply this to two examples involving blast simulation. In Sec.
5, we describe progress to include the presence of solid objects moving in
the flow field by using a level-set/ghost-fluid approach, and present some
applications.

2. DISCONTINUOUS GALERKIN METHODS
FOR EULER EQUATIONS

The discontinuous Galerkin method was introduced by Reed and Hill
in 1973 [23] as a technique to solve neutron transport problems. Lesaint
and Raviart [18] presented the first numerical analysis of the method for
a linear advection equation. However, the technique lay dormant for sev-
eral years and has only recently become popular as a method for solving
fluid dynamics and electromagnetic problems [6]. As with all mesh based
procedures, DGM uses a double discretization. First, the physical domain
Ω is discretized into a collection of Ne elements

Te =
Ne⋃

e=1

e (2.1)

called a mesh. Then, the function space V (Ω) containing the solution
of the problem is approximated on each element e of the mesh by a
finite-dimensional space Ve(Te).

The accuracy of the double discretization depends on geometrical and
functional discretization. Classical Galerkin finite element approximation
uses conforming meshes where elements share only complete boundary
segments. The space Ve is also constrained to be a subspace of a contin-
uous function space, for example, H1, with a basis that is typically asso-
ciated with element vertices, edges, faces, or interiors. These simplify the
imposition of the C0 continuity requirements of H1 but limit choices. The
DGM allows more general mesh configurations and discontinuous bases
that simplify both h- and p-refinement. For example, non-conforming
meshes and arbitrary bases for functional approximation [32] may be used.
Herein, we use a L2-orthogonal basis as a product of Joacobi polynomials
[8] that yields a diagonal mass matrix [24].

The DGM can easily support arbitrary orders of spatial discretization
accuracy without the need to construct complex stencils for high-order
reconstruction [24]. Indeed, the DGM stencil remains invariant for all
polynomial degrees. This greatly simplifies parallel implementation. The
DGM has additional flexibility in specifying fluxes across elements faces
and permits the use of fluxes based on exact or approximate solutions of
Riemann problems [5].
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We apply the DGM to hyperbolic conservation laws (Sec. 2.1) using
a spatial discretization of p-degree orthogonal polynomials. Time discret-
ization is performed by an explicit total variation diminishing Runge–
Kutta method [14]. To improve the performance of the explicit integration
on irregular and unstructured grid, we use a new local time stepping pro-
cedure [11,26].

2.1. Discontinuous Finite Element Formulation for Conservation Laws

Consider an open set Ω ⊂ R
3 with boundary ∂Ω. We seek to deter-

mine u(Ω, t): R
3 ×R→L2(Ω, t)m =V (Ω, t) as the solution of a system of

m conservation laws

∂tu +div �F(u)= r. (2.2)

Here div = (div , . . . ,div ) is the vector valued divergence operator and

�F(u)= ( �F1(u), . . . , �Fm(u)) (2.3)

is the flux vector with the ith component �Fi(u): (H1(Ω))
m → H(div ,Ω),

where H(div ,Ω) consists of square integrable vector valued functions
whose divergence is also square integrable, that is,

H(div ,Ω)=
{

�v | �v ∈ L2(Ω3) , div �v ∈L2(Ω)
}

. (2.4)

With the aim of constructing a Galerkin form of Eq. (2.2), let (·, ·)Ω
and 〈·, ·〉∂Ω , respectively, denote the standard L2(Ω) and L2(∂Ω) scalar
products

(u,w)Ω =
∫

Ω

uw dω (2.5)

and

〈u,w〉∂Ω =
∫

∂Ω

uw dσ. (2.6)

Multiply Eq. (2.2) by a test function w ∈V (Ω), integrate over Ω and
use the divergence theorem to obtain the variational formulation

(∂tu,w)Ω − (�F(u),grad w)Ω +〈�F(u) · �n,w〉∂Ω = (r,w)Ω , ∀w ∈V (Ω).

(2.7)
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With the DGM, Ve is a “broken” function space that consists of the direct
sum of elementary approximations ue

Ve(Te) =
{

u | u ∈L2(Ω)m, restriction (u) |e
=ue ∈P

p(e)m =Ve(e),∀e∈Te

}
, (2.8)

where P
p(e)m is a polynomial of degree p on element e. Because all

approximations are disconnected, we can solve on each element to obtain

(∂tue,w)e − (�F(ue),grad w)e +〈Fn,w〉∂e = (r,w)e, ∀w ∈Ve(e). (2.9)

A discontinuous basis implies that the normal flux Fn = �F(u) · �n, where
�n is the unit outer normal to ∂e, is not defined on ∂e. In this situation,
a “numerical flux” Fn(ue,uek

) is used on each portion ∂ek
of ∂e shared by

element e and neighboring element ek. The numerical flux must be contin-
uous, so Fn ∈H(div ,Ω)m, and consistent, so Fn(u,u)= �F(u) · �n. With such
a numerical flux, Eq. (2.9) becomes

(∂tue,w)e − (�F(ue),grad w)e

+
ne∑

k=1

〈Fn(ue,uek
),w〉∂ek

= (r,w)e, ∀w ∈Ve(e), (2.10)

where ne is the number of faces of element e. Only the normal traces
have to be defined on ∂ek and several options are possible (see, e.g., Refs.
[31,33]). It is usual to define the trace as the solution of a Riemann prob-
lem across ∂ek. Herein, when we consider problems with strong shocks
[7,33], an exact Riemann solver is used to compute the numerical fluxes
and a moment limiter [2] is used to restrict spurious oscillations when
polynomial degrees p>0 are used. The moment limiter is applied on each
element after a new solution field is computed, so that the minimal and
maximal value of the solution moments in one element are bounded by
their mean values on neighboring elements.

2.2. Euler’s Equations

Flows satisfy the compressible Euler equations, which, in two dimen-
sions, have the form (2.2) with

u = [ρ,ρu,ρv,E]T (2.11)
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where ρ is the density of the fluid, �v is the velocity with Cartesian com-
ponents u and v and E is the internal energy. The flux is

�F(u)=
[

�F1, �F2, �F3, �F4

]
= [

ρ�v, ρu�v +P �ex, ρv�v +P �ey, (ρE +P)�v]
(2.12)

where P is the pressure and �ex and �ey are unit vectors in the x and y

coordinate directions. An equation of state (EOS) P =P(ρ,E) is necessary
to close the system. The DGM software can be used with any physically
consistent EOS and we choose the perfect gas law.

P = (γ −1)ρ

[
E − ‖�v‖2

2

]
(2.13)

with gas constant γ =1.4.

3. DISCONTINUITY DETECTION

A discontinuity detection procedure automatically detects regions of
the flow field where the solution is discontinuous. For the Euler equa-
tions, discontinuities may be contact discontinuities, where the density is
discontinuous; shock waves, where the density, velocity, and pressure are
discontinuous; and expansion wave where flow gradients are discontinu-
ous. A knowledge of discontinuity locations allows us to restrict the limit-
ing procedure to the vicinity of discontinuities, which both saves time and
improves solution accuracy in smooth flow regions. Discontinuity detec-
tion is also used to drive the anisotropic adaptation procedure (Sec. 4).

To define a discontinuity detection strategy, we partition an element
boundary ∂e into portions ∂e− and ∂e+ where, respectively, the flow is
into (�v · �n<0) and out of (�v · �n>0) element e.

Let q be a flow variable or a derived quantity from the flow field, for
example, density or entropy, for the Euler equations, and Qe be the DG
value of q on element e. Consider the jump in Qe across the inflow edges
(faces) of e and examine

Ie =
∫

∂e−

(Qe −Qek
) dσ =

∫

∂e−

(Qe −q) dσ +
ne∑

k=1

∫

∂e+
k

(q −Qek
) dσ. (3.1)

In smooth flow regions, the first integral on the right is O(hp+2), while the
second might be O(h2(p+1)) [1,15,16] due to super-convergence. Here, h is
a measure of an element size, as defined below. Thus, in smooth regions,
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Ie = O(hp+2). If q is discontinuous in the immediate vicinity of ∂e, then
either or both of q −Qe and q −Qek

are O(1); hence,

Ie =
{

O(hp+2), if q|∂e is smooth,

O(h), if q|∂e is discontinuous.
(3.2)

We construct the detector by normalizing Ie relative to an “average”
O(h(p+1)/2) convergence rate and the solution on e to obtain

Ie = | ∫
∂e−(Qe −Qek

)dσ |
h(p+1)/2

∣∣∂e−∣∣‖Qe‖
. (3.3)

In examples, we choose h as the radius of the circumscribed circle in
element e, and use a maximum norm based on local solution maxima
at integration points in two dimensions and an element average in one
dimension.

Using (3.2), Ie → 0 as either h → 0 or p → ∞ in smooth solution
regions, whereas Ie →∞ near discontinuities. Thus, a detection scheme is

{
if Ie >1, q is discontinuous,
if Ie <1, q is smooth.

(3.4)

Example 3.1. We apply the discontinuity detection scheme [Eqs. (3.3)
and (3.4)] to a blast problem [33] for the one-dimensional Euler Eq. [[(2.2),
(2.11)–(2.13)] with v =0] subject to the initial data

(ρ, u,P )(x,0)=





(1, 0, 1000), 0 � x <0.1,

(1, 0, 0.01), 0.1 � x <0.9,

(1, 0, 100), 0.9 � x � 1. (3.5)

The solution involves multiple interactions of strong shocks, expan-
sions, and contact discontinuities. The most important interactions take
place in a short period prior to t =0.04. An exact solution of this problem
is not known, so, following Woodward and Colella [33], comparisons were
done relative to a numerical solution computed with Ne = 3072 uniform
elements and piecewise polynomials of degree p =2. We present solutions
for the density (Fig. 1) with Ne = 800, p = 2, using entropy as the quan-
tity q for the shock detection scheme and moment limiting [2] in regions
where discontinuities were detected.

We see that the shocks have been identified and limiting is confined to
these regions. Comparing the numerical and “exact” solutions, we see that
all the important features of the various interactions have been sharply
captured.
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Fig. 1. Density for Example 3.1 at t =0.016 (top left), 0.026 (top right), 0.028 (bottom left),
and 0.038 (bottom right) for computations performed with p = 2, Ne = 800. Elements where
discontinuity is detected and moment limiting is applied are marked with a + sign at unity.

4. MESH ADAPTATION

Our software is able to perform hierarchical mesh refinement where
elements are refined using an isotropic refinement template. Since interele-
ment continuity constraints are not needed with the DGM, element refine-
ment need not consider neighboring cells. The level of mesh refinement of
a cell is computed using an error indicator [24] based on the value of the
jump in solutions between neighboring cells. Coarsening is equally simple,
by reversing refinement after projecting the solution from a finer mesh to
the coarser parent mesh.

Example 4.1. To illustrate this process, consider a simple scalar
advection equation in two dimensions on a unit square. The square is
partitioned by an unstructured mesh of triangles with edge length of the
order of approximately 0.1. The initial density is
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Fig. 2. Meshes for Example 4.1. From left to right: initial mesh, non-conforming isotro-
pic mesh at t = 0.6, enlargement of this mesh near the discontinuity, anisotropic conforming
mesh at t =0.6, and enlargement of this mesh near the discontinuity.

ρ =
{

1, if 0 � x <0.8,

2, if 0.8 � x � 1.
(4.1)

This initial field is advected by a unit velocity in the −x direction. The
boundary conditions are reflective at y =0,1, and prescribed at x =1. With
six levels of adaptive mesh refinement, the minimum edge has a size of
order h0 =0.1/(26)=0.0015625. The solution has the same accuracy as one
on a uniform mesh of 819200 elements in two dimensions. Figure 2 dis-
plays the initial mesh and the adaptive mesh at t = 0.6 with six levels of
mesh adaptation. The adapted mesh has 6097 elements, which is 134 times
less than needed by a uniform mesh with the same resolution. This gain
in degrees of freedom has to be weighted against the cost of adapting the
mesh with the evolving solution.

Isotropic mesh refinement does not account for situations, such as the one
at hand, where refinement is only needed in one direction. Thus, an anisotropic
mesh refinement scheme has the potential to greatly improve performance [12].

Our anisotropic mesh refinement procedure adapts a conforming
mesh using local mesh modification operations such as element subdivi-
sion, edge collapsing, and edge and face swapping. A complete description
of this mesh adaptation procedure appears in Refs. [19,20].

The anisotropic mesh adaptation procedure requires the definition of
an anisotropic mesh size field. The natural way to represent an anisotropic
size field is to define a symmetric positive definite tensor field or a metric.
Given any point x in the size field domain, and a direction �a, the size field
describes the size l of a mesh edge in the given direction. The mesh adap-
tation procedure uses a definition of the metric at each vertex and assumes
a linear variation of the size field along element edges.

Building an anisotropic size field requires directional error informa-
tion. For piecewise linear (p = 1) approximations, this may be based on
the Hessian of the field. The principal directions of the Hessian are then
the principal direction of the metric field. The eigenvalues of the Hessian
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field are used to define the eigenvalues of the metric field by using a
normalization,obtained by selecting a small mesh size in directions where
the Hessian is large.

We compute an approximation of the Hessian of the field using a pro-
cedure of Remacle et al. [25], where a stabilized gradient of the field is
first computed by solving a DG problem on each element. A stabilized
Hessian is obtained from this gradient by solving a second local DG prob-
lem. Near discontinuities, the Hessian of the exact solution does not exist.
Thus, using an approximate Hessian near discontinuities will provide unre-
liable results. Our procedure uses the shock detector (Sec. 3) to decide if
the Hessian should be used or not. If the Hessian cannot be used, we use
the gradient of the field on each side of the shock to determine princi-
pal directions of the size field. A user defined minimal size field and a
user defined maximum aspect ratio are used to specify mesh spacing in the
principal direction of the size field.

The problem of Example 4.1 is solved using the anisotropic proce-
dure. For consistency with the prior results we set hmin =h0 and select an
aspect ratio α = 100. The mesh obtained at time t = 0.6 with this setting
is displayed in Fig. 2. This mesh only has 100 elements, and the results
are as accurate as the solution with isotropic refinement. Element edges
are aligned with the discontinuity, which makes the computation of the
numerical flux across edges more accurate. In realistic situations, discon-
tinuity surfaces are not planar and the aspect ratio that the mesh adap-
tation procedure will be able to reach for a fixed minimum size depends
on the curvature of the discontinuity surface. Nevertheless, the savings in
the number of degrees of freedom makes simulation of problems involving
complex shock structures less expensive.

Example 4.2. The mesh adaptation procedure is used to solve a sim-
plified two-dimensional blast problem. The domain under consideration
(Fig. 3) is a slice of the three-dimensional problem with a tube having a
diameter of 7.65 mm, and a length of 30 mm. The left side of the domain
represents an axis of symmetry. On the tube walls we prescribe slip bound-
ary conditions. The edge inside the tube at the bottom left is the inlet, and
other edges are subsonic outflow surfaces. At t =0, the external pressure is
atmospheric at 101325 Pa, the velocity is 0 m/s and temperature is 300 K.
At the inflow boundary, we impose a pressure of 6 × 106 Pa, a tempera-
ture of 631.626 K, and a velocity of 631 m/s, which correspond to a typ-
ical precursor shock in a blast problem [4,13]. Time steps are adaptively
set to maintain a maximum CFL limit of 0.9, and correspond to a range
of 1 × 10−8 − 5 × 10−8 s. Mesh Adaptation is done every 1 × 10−6 s and
the problem is solved to for 1×10−4 s.
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Fig. 3. Density profile (left) near the tube and adaptive mesh (right) for Example 4.2 at
t =2×10−5, 6×10−5, and 8×10−5s (left to right).

We set the minimum mesh size for adaptation to 0.1 mm and the
maximum aspect ratio to 50. In the first phase of the simulation, the flow
is mostly one-dimensional while the shock structure progresses in the tube.
Thus, like a shock tube, a shock is followed by a contact discontinuity
which is followed by an expansion wave traveling toward the open end of
the tube. The adaptive mesh is concentrated at the contact discontinuity
and the shock is aligned with the shock plane. Even when the two dis-
continuities are close, the mesh adaptation procedure is precise enough to
separate the two structures with some coarsening between them. At time
t =6×10−5, the shock has exited the tube and forms a characteristic bub-
ble shape. The contact is just at the edge of the tube. At time t =8×10−5,
the structure is fully developed, with a main “spherical” shock, followed
by the contact, and a shear layer linking the contact with the exit of the
tube. The final mesh contains 50,000 degrees of freedom.

Example 4.3. We consider a more complex tube with a muzzle
brake. The tube has a diameter of 155 mm and a set of 16 perfora-
tions of 28.6 mm diameter near the muzzle. We model a slice of it with
a cut plane through the center of the holes. A shock-tube type initial
condition, with a shock placed 75 mm to the left of the perforations is
used to initiate the flow. The upstream pressure is 565 times the down-
stream pressure and the upstream temperature is 2111.5 K. Fig. 4 shows
the density and meshes at time t = 1 × 10−4, 5 × 10−4 and 1 × 10−3s.
At time t = 1 × 10−4 s, the initial shock has reached the fourth hole,
and “mushroom-like” structures are forming outside the first and second
holes. At time 5×10−4 s, the initial shock is outside the tube, forming its
own plume. Inside the tube, shear layers from each hole are propagating
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Fig. 4. Density (left) and adaptive mesh (right) for Example 4.3. at t = 1 × 10−4, 5 × 10−4,
and 1×10−3 s (top to bottom).

downstream. A main “pear-shaped” shock structure, enclosing the com-
plex “diamond-shaped” structures resulting from the interacting shocks, is
forming and moving away from the muzzle. At time t =2×10−3 s, the ini-
tial shock has exited the muzzle and formed a “spherical” structure that
merges with the pear-shaped one. The mesh is closely following the evo-
lution of the shock structures and is aligned with them. Even though the
shocks are of very different strengths, they are captured by the size field
computation. The mesh at t =1×10−3 s after 1001 mesh adaptations con-
tains 900,000 degrees of freedom.

5. MOVING OBJECT

The next step is to include moving objects such as projectiles in
the flow field. The basic approaches to handle such calculations involve
(i) using deformable meshes that move with the interface [28,30] and
(ii) using a fixed mesh and a technique to capture the interface, such as
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a volume of fluid [17], front tracking [21], or level-set [3,29]. Herein, we
describe a level-set technique [22,27] to track the interface between the
rigid body and the compressible fluid. We adapt the Ghost Fluid Method
(GFM) [10] to capture the correct boundary conditions at the interface
and enable us to perform flow calculations over the whole domain, with-
out explicit regard of the object.

The level-set function φ(�x, t) is defined as a signed distance function
from a point �x to the boundary of the moving object at time t . If we
denote the boundary of the object as B, the inside of the object as I , and
the fluid part of the domain as O, then φ(x, t) satisfies

φ(�x, t) < 0, if �x ∈ I, φ(�x, t) = 0, if �x ∈ B, φ(�x, t) > 0, if �x ∈ O.

(5.1)

The normal vector to the moving object is

�n(�x, t)=�φ(�x, t), �x ∈F, (5.2)

and is extended to the entire domain (I ∪ B ∪ O). This normal vector
is a constant on any trajectory perpendicular to a surface with a con-
stant value of φ. In the present work, we assume that φ(�x, t) can be
explicitly defined, which is reasonable for the rigid objects under consid-
eration. Treatment of deformable objects will need an actual discretization
and computation of the change of the shape of φ. The development of
the following “boundary” conditions implied by the moving object would,
however, be the same.

Elements inside the rigid object (φ < 0) are modeled as “ghost fluid”
elements. The Euler equations are solved using the DG method just as
they are in the actual fluid. The field variables in ghost elements are set
to reproduce the behavior at a solid–fluid interface.

Mesh entities that lie completely in the fluid (φ >0) require no special
attention. Entities that are either in the object (φ <0) or span the interface
φ = 0 require a proper setting of fluid variables in the “ghost” (interior)
part of the object to capture the correct conditions at the moving inter-
face. The moving interface is treated as a contact discontinuity since the
fluid near the interface moves with the speed of the object. Thus, the pres-
sure and normal velocity �vn = �v · �n are continuous at the interface and we
prescribe ghost fluid values as a reflection about φ = 0 surface to enforce
these conditions[9,10]. Consider any ghost point �xG in the object and its
reflected image �xR across the interface. The density ρG, energy EG, and
velocity �vG at �xG, in terms of similar quantities at �xR are
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ρG = ρR, (5.3)

�vG = �vt
R − �vn

R +2 �Un
G, (5.4)

EG = ER − 1
2ρR|�vR|2 + 1

2ρR|�vG|2, (5.5)

where �vt
R and �vn

R are the tangential and normal velocity components and
�UG is the velocity of the moving rigid body at �xG. For a given point �xG,
the closest point �xI on the interface can be approximated as

�xI = �xG −φ(�xG)�φ(�xG). (5.6)

Thus, the reflected point is

�xR = �xG −2φ(�xG)�φ(�xG). (5.7)

In the practice, only those ghost entities within a small distance to the
interface need be considered. The bandwidth can be set to about three to
four times the element cell size near the interface. Thus, the level-set func-
tion need only be defined in a small neighborhood of the fluid–solid inter-
face. Thus, the computation is efficient even when the object has a large
volume relative to the element size.

Example 5.1. Consider a two-dimensional Mach 3 flow in a 1 × 4
channel. Initially the channel contains a diatomic gas having a unit den-
sity and pressure. A gas having this density and pressure enters from the
left boundary at Mach 3. A circular cylinder with radius 0.125 moves from
right to left at Mach 3. Reflecting boundary conditions are applied to
solid channel walls.

Density contours are shown at t =0.1, 0.25, and 1.6 s in Fig. 5. These
results compare well with the flow about a fixed ball in a channel with the
fluid having a speed corresponding to the sum of the speed of the cylinder
and the speed of the fluid.

Example 5.2. We solve Example 4.2, with the flow driven by a
square projectile having an initial speed of Mach 0.9. Preliminary results,
presented in Fig. 6, show the pressure field at stages when the projectile
is inside the tube and when it has exited. These preliminary results are
encouraging. We reproduce the strong precursor shock. Had we applied
a moving-mesh to explicitly track the projectile, difficulties arise when the
projectile exits the tube. With the presented method, no special difficulties
arise in this case.
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Fig. 5. Density field at t = 0.1 (upper left), 0.25 (upper right), 0.5 (lower left), and 1.6 s
(lower right).

Fig. 6. Pressure field for Example 5.2 at t =6×10−5 s when the projectile is inside the tube
(left) and at t =2×10−4 s when the projectile has left the tube (right).

6. CONCLUSION

We described procedures to model transient shock problems applied
to blast flow using DGMs and mesh adaptation. The DGM enables
us to sharply resolve shocks and other discontinuities. Error estimation
results related to DG theory [1,15] allow us to build robust discontinuity
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Fig. 7. Three-dimensional results: density iso-surface. Left idealized square section cannon,
right, idealized hexagonal section cannon with muzzle break.

indicators that efficiently drive the limiting and the mesh adaptation
procedures. The level-set method/GFM introduced to account for moving
objects is an interesting alternative to the more complex procedure of fol-
lowing objects with a moving mesh. More work is necessary to assess the
method’s accuracy, stability, and efficiency. Future work includes compar-
isons with a moving-mesh approach and extensions to three-dimensional
problems. Encouraging results in this direction are shown in Fig. 7. Two
three-dimensional idealized blast problems were solved in a parallel com-
putational environment. The results on the left of Fig. 7 were obtained on
a four-processor system with a final mesh of about two million degrees of
freedom. The idealized tube has a square section. The result on the right
of Fig. 7 is an idealized tube with a hexagonal cross section and with holes
in the tube wall. This computation was done on an eight-processor system
with a final mesh of about eight million degrees of freedom.
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