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Discontinuous enrichment in "nite elements with
a partition of unity method

John Dolbow!,*, Nicolas MoeK s", Ted Belytschkob

!Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham NC 27708-0287, USA 
"Mechanical Engineering, Northwestern University, USA

A technique is presented to model arbitrary discontinuities in the "nite element framework by locally 
enriching a displacement-based approximation through a partition of unity method. This technique allows 
discontinuities to be represented independently of element boundaries. The method is applied to fracture 
mechanics, in which crack discontinuities are represented using both a jump function and the asymptotic 
near-tip "elds. As speci"c examples, we consider cracks and crack growth in two-dimensional elasticity and 
Mindlin}Reissner plates. A domain form of the J-integral is also derived to extract the moment intensity 
factors. The accuracy and utility of the method is also discussed.

Keywords: Discontinuous enrichment; Partition-of-unity; Fracture

1. Introduction

The modeling of evolving discontinuities with the "nite element method is cumbersome due to
the need to update the mesh topology to match the geometry of the discontinuity. In this paper, we
present a technique to model discontinuities in the "nite element framework in a general fashion.
The essential feature is the incorporation of enrichment functions which contain a discontinuous
"eld. In the application of the technique to fracture mechanics, functions spanning the appropriate
near-tip crack "eld can also be included to improve accuracy. The enrichment of the "nite element
approximation in this manner provides for both the modeling of discontinuities and accurate
moment intensity factors with minimal computational resources.

*Corresponding author. Fax: 1-919-660-5219.

E-mail address: jdolbow@duke.edu (J. Dolbow).
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The concept of incorporating crack "elds in a "nite element context is not new, see for example
[1]. In addition, there are several well-established techniques for modeling cracks and crack
growth such as boundary element methods, "nite elements with continuous remeshing [2], and
meshless methods [3]. Recently, the trend has focused on the development of "nite element
methods which model discontinuities independently of element boundaries. These include the
incorporation of a discontinuous mode in an assumed strain framework [4], and enrichment with
near-tip "elds for crack growth with minimal remeshing [5]. The latter method has recently been
extended by enriching with a discontinuous function behind the crack tip [6,7], such that no
remeshing is necessary.

In this paper, the method of discontinuous enrichment is cast in a general framework, and we
illustrate how both two-dimensional and plate formulations can be enriched to model cracks and
crack growth. The enrichment of the approximation with discontinuous near-tip "elds requires
a mapping technique, and so an alternative near-tip function is developed. The present method
o!ers several advantages over competing techniques for modeling crack growth. In contrast to
traditional "nite element methods, this technique incorporates the discontinuity of the crack
independently of the mesh, such that the crack can be arbitrarily located within an element. The
present technique has a distinct advantage over boundary element methods as it is readily
applicable to non-linear problems, anisotropic materials, and arbitrary geometries. The method
does not require any remeshing for crack growth, and as it is an extension of the "nite element
method, it can exploit the large body of "nite element technology and software. Speci"c examples
of augmenting well established two-dimensional and plate elements with both discontinuous and
asymptotic near-tip functions are presented.

The present technique exploits the partition of unity property of "nite elements "rst cited by [8],
which allows global enrichment functions to be locally incorporated into a "nite element approxi-
mation. A standard approximation is &enriched' in a region of interest by the global functions in
conjunction with additional degrees of freedom and the local nodal shape functions. The applica-
tion of this idea to capture a speci"c frequency band in dynamics can be found in [9]. The utility of
the method has found application in solving the scalar Laplacian problem for domains with
re-entrant corners [10]. In the context of fracture mechanics, the appropriate enrichment functions
are the near-tip asymptotic "elds and a discontinuous function to represent the jump in displace-
ment across the crack line. In contrast to the work of [4], the enrichment is not through an
assumed-strain method, so the displacement "eld is continuous along either side of the crack.

This paper is organized as follows. Following this introduction, we review the construction of an
enriched approximation and we develop a discontinuous near-tip function which does not require
a mapping. For speci"c applications we consider two-dimensional linear elastic fracture mechanics
and the fracture of Mindlin}Reissner plates in Section 3. Numerical results to verify the accuracy of
the formulation are given in Section 4, with a summary and some concluding remarks provided in
the last section.

2. Construction of a 5nite element approximation with discontinuities

In this section, we present the construction of a "nite element approximation with discontinuous
enrichment. Emphasis is placed on modeling cracks, in which a standard approximation is
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Fig. 1. Various discretizations for (a) a domain with an internal boundary C
#
. (b) A mesh which does not model the

internal boundary. (c) A mesh which conforms to the geometry of C
#
. (d) A uniform mesh in which the circled nodes have

additional degrees of freedom and enrichment functions.

enriched with both the asymptotic near-tip functions and a discontinuous &jump' function. The
incorporation of discontinuous near-tip functions requires a mapping for kinked cracks, and so an
alternative near-tip function is presented. The manner in which nodes are selected for enrichment
and the modi"cations to the numerical integration of the weak form are also given.

2.1. General form

To introduce the concept of discontinuous enrichment, we begin by considering the domain
X bounded by C with an internal boundary C

#
as shown in Fig. 1a. We are interested in

the construction of a "nite element approximation to the "eld u3X which can be discontinuous
along C

#
.

Consider the uniform mesh of N nodes for the domain shown in Fig. 1b which does not model
the discontinuity. The discrete approximation uh to the function u takes the form

uh(x)"+
I

N
I
(n(x))u

I
, (1)

where N
I

is the shape function for node I in terms of the parent coordinates (n(x)), and u
I

is the
vector of nodal degrees of freedom. The nodal shape function N

I
is non-zero over the support of

node I, de"ned to be union of the elements connected to the node.
We now pose the question of how to best incorporate the discontinuity in the "eld along C

#
. The

traditional approach is to change the mesh to conform to the line of discontinuity as shown in
Fig. 1c, in which the element edges align with C

#
. While this strategy certainly creates a discontinu-

ity in the approximation, it is cumbersome if the line C
#

evolves in time, or if several di!erent
con"gurations for C

#
are to be considered.
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Fig. 2. Regions of a crack for enrichment. The circled nodes are enriched with a discontinuous function, while the

squared nodes are enriched with near-tip functions.

In this paper we propose to model the discontinuity along C
#

with extrinsic enrichment [11], in
which the standard approximation (1) is modi"ed as

uh(x)"
n
+
I/1

N
I
(n(x))AuI

#
nE (I)
+
l/1

a
Il

G
l
(x)B, (2)

where G
l
(x) are enrichment functions, and a

Il
are additional nodal degrees of freedom for node I. In

the above, the total number of enriched degrees of freedom for a node is denoted by n
E
(I). If the

enrichment functions G
l
are discontinuous along the boundary C

#
, then the "nite element mesh

does not need to model the discontinuity. For example, the uniform mesh in Fig. 1d is capable of
modeling a jump in u when the circled nodes are enriched with functions which are discontinuous
across C

#
.

The above form of a "nite element approximation merits some discussion. We note that the
enrichment functions G

l
are written in terms of the global coordinates x, but that they are

multiplied by the nodal shape functions N
I
. In this fashion the additional enrichment takes on

a local character. This concept of multiplying global functions by the "nite element partition of
unity was "rst suggested in [8]. The change in the form of the approximation from (1) to (2) is only
made locally in the vicinity of a feature of interest, such as a discontinuity.

We now turn to the precise form of the enrichment functions used to model discontinuous "elds,
with the goal of modeling cracks and crack growth. Three distinct regions are identi"ed for the
crack geometry, namely the crack interior and the two near-tip regions as shown in Fig. 2. In the set
I of all nodes in the mesh, we distinguish three di!erent sets which correspond to each of these
regions. The set J is taken to be the set of nodes enriched for the crack interior, and the sets K

1
and

K
2

are those nodes enriched for the "rst and second crack tips, respectively. The precise manner in
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Fig. 3. Illustration of normal and tangential coordinates for a crack. xH is the closest point to x on the crack. In the above

case, the jump function H(x)"!1.

which these sets are determined from the interaction of the crack and the mesh geometry is given in
Section 2.3.

The enriched approximation takes the form

uh(x)"+
I

N
I
u
I
#+

J

N
J
H(x)b

J
# +

K|K1

N
KA

4
+
l/1

c1
Kl

F1
l
(x)B# +

K|K2

N
KA

4
+
l/1

c2
Kl

F2
l
(x)B, (3)

where b
J

and c1
Kl

, c2
Kl

(l"1,2,4) are nodal degrees of freedom corresponding to the enrichment
functions H(x), F1

l
(x) and F2

l
(x), respectively. The function H(x) is discontinuous across the crack

line, and the sets F1
l
(x) and F2

l
(x) consist of those functions which span the near-tip asymptotic

"elds. For two-dimensional elasticity, these are given by

MF
l
(r, h)N4

j/1
,GJr sinA

h
2B, Jr cosA

h
2B, Jr sinA

h
2Bsin(h), Jr cosA

h
2Bsin(h)H. (4)

where (r, h) are the local polar coordinates for the crack tip [12]. Note that the "rst function in (40),

Jr sin (h/2), is discontinuous across the crack faces whereas the last three functions are continuous.
The form of the near-tip functions for plates is similar and is developed in Section 3.

The jump function H(x) is de"ned as follows. The crack is considered to be a curve parametrized
by the curvilinear coordinate s, as in Fig. 3. The origin of the curve is taken to coincide with one of
the crack tips. Given a point x in the domain, we denote by xH the closest point on the crack to x. At
xH, we construct the tangential and normal vector to the curve, e

s
and e

n
, with the orientation of

e
n

taken such that e
s
'e

n
"e

z
. The function H(x) is then given by the sign of the scalar product

(x!xH) ) e
n
. In the case of a kinked crack, the cone of normals at xH needs to be considered (see [6]).

Roughly speaking, the function H(x) takes the value of 1 &above' the crack, and !1 &below' the
crack.

2.2. An alternative near-tip tunction

The jump function H(x) is in general not capable of representing the discontinuity in the
displacement "eld along the entire crack geometry. For example, if the crack tip is not aligned with
an element edge, then a near-tip function must also be used (see [6]). For cracks which are not
straight, a mapping is required to align the near-tip discontinuities with the crack edges. Due to the
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Fig. 4. Initial geometry for the mapping of the enrichment functions for the segment adjacent to the crack tip segment.

local form of the enrichment, the mapping procedure is only necessary in those elements with nodes
enriched with the near-tip functions. In this section, we review the mapping procedure and present
an alternative near-tip function.

The crack is modeled as a series of straight line segments connecting vertices, with new crack
segments added as the crack grows. The discontinuities in the near-tip "elds are aligned with each
segment by using a procedure developed in [12,5]. In this procedure, the discontinuity in the
near-tip functions are aligned with the crack by a mapping technique that rotates each section of
the discontinuity onto the crack model.

A key step in technique is the modi"cation of the angle h in F
l
(r, h). Given a point (x

1
, y

1
), we

de"ne an angle hM (x
1
, y

1
) in terms of the angle of the segment h

R
(see Fig. 4) and the sampling point

angle a(x
1
, y

1
) by

hM "GA
p/2

3p/2!h
R
B (a!h

R
) for a'h

R
,

A
p/2

h
R

!p/2B (a!h
R
) for a(h

R
.

(5)

The coordinates of the sampling point (x
1
, y

1
) are mapped to coordinates in the crack tip frame

(x( , y( ) as shown in Fig. 5:

(x(
1
, y(

1
)"(!l!r6 cos(hM ),!r6 sin(hM )), (6)

where l is the distance between (x
1
, y

1
) and (x

2
, y

2
) and r6 is as shown in the "gure. The variables

r and h in the enrichment functions are then computed in terms of the local (x( , y( ) coordinates. This
procedure is repeated similarly for each segment of the crack and the sequence of mappings leaves
the length of the crack invariant.

In [5], the entire crack was modeled with the near-tip "elds and the above mapping procedure.
The use of the discontinuous function H(x) eliminates the need for the mapping on the crack
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Fig. 5. The mapped point (xH, yH) used to determine r and h in the near-tip functions F
l
(r, h).

interior, so that the above procedure is only necessary at each crack tip. In the following, we
propose the use of a smooth &ramp' function in conjunction with the function H(x) to model the
near-tip region.

Consider the following function de"ned in terms of the crack tip coordinates (x( ,y( ):

R(x( , y( )"G
3(x(

l#
)2#2(x(

l#
)3 for x(("0,

0 for x('0,
(7)

where the length l
#

is taken to be the characteristic length of the element containing the crack tip.
The above function and its derivative vanishes at the crack tip.

When this smooth ramp function is multiplied by the function H(x), i.e.,

RI (x)"R(x( , y( ) ) H(x) (8)

a near-tip function which is discontinuous across the crack edges and vanishes in front of the crack
tip results. This function in turn does not require any mapping to align the discontinuity with the
crack edges. The function RI is shown in Fig. 6 in the vicinity of a crack tip and two consecutive
segments. It is clear from the "gure that the resulting near-tip function is continuous in the domain
X and discontinuous across the crack line.

The above near-tip function is useful on several levels. In the "rst instance, in conjunction with
the function H(x) for the crack interior it is perhaps the simplest means to model the entire crack
discontinuity. In addition, for non-linear problems the exact near-tip functions may not be known.
The concept of multiplying a smooth function which vanishes at the crack tip by the jump function
H(x) can also be extended to three-dimensional problems. In linear elastic fracture mechanics,
however, the incorporation of the asymptotic near-tip "elds is still useful to obtain greater accuracy
at the crack tip. To some extent, this advantage can be maintained by simply replacing the "rst
function in (4) with the function RI :

MF
l
(r, h)N4

j/1
,GR(x( , y( )H(x), Jr cosA

h
2B, Jr sinA

h
2Bsin(h), Jr cosA

h
2B sin(h)H. (9)
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Fig. 6. Surface plot of near-tip function RI (x) in an element. The crack tip is located at (x, y)"(0.0, 0.0) with a crack vertex

at (!0.5,0.0).

The last three functions need not be mapped into the crack faces, as they are all continuous in the
domain X.

2.3. Node selection for enrichment

In the preceding development, three distinct regions were identi"ed for enrichment, correspond-
ing to the nodal sets J, K

1
and K

2
. In this section we de"ne these sets precisely, and present the

methodology by which nodes are identi"ed for inclusion in each set.
We begin with some preliminary notations. The support of node I is denoted by u

I
, with closure

u6
I
. Essentially, a node's support is the open set of element domains connected to the node, and the

closure is the closed set which includes the outer boundary. The distinction as it applies to nodal
selection will be discussed shortly. We also denote the location of crack tips 1 and 2 by x

1
and

x
2

respectively, and by C the geometry of the crack.
With these de"nitions, the sets J, K

1
and K

2
are de"ned as follows. The sets K

1
and K

2
consist

of those nodes whose support closure contains crack tip 1 or 2, respectively. The set J is the set of
nodes whose support is intersected by the crack and do not belong to K

1
or K

2
:

K
1
"Mk3I: x

1
3u6

k
N, (10)
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Fig. 7. Crack on a uniform mesh (left) and on a non-uniform mesh (right). The circled nodes are enriched by the jump

function whereas the squared nodes are enriched by the crack tip functions.

K
2
"Mk3I: x

2
3u6

k
N, (11)

J"Mj3I: u
j
WCO0, jNK

1
, jNK

2
N. (12)

Note that the set J consists of nodes whose support, as opposed to support closure, is intersected by
the crack. This distinction implies that if the crack only intersects the boundary of a node's support,
the node will not be enriched with the function H(x). This prevents any nodes from being enriched
with a constant function (either !1 or #1) over their entire support, which is important in order
to avoid creating a linear dependency in the approximation. We note that for the alternative
near-tip function proposed in the previous section, the support closure must be changed to the
open set for similar reasons.

In practice the above sets are determined as follows. All elements intersected by the crack are "rst
determined. From this set of elements, we distinguish three disjoint sets of &tip elements' (for either
tip 1 or 2) and 'interior elements'. The set of tip elements are given by those which contain either
crack tip. The nodes of the &tip elements' correspond to either set K

1
or K

2
. The nodes of the

'interior elements' in turn correspond to the set J. Fig. 7 illustrates the nodes that are selected as tip
nodes and interior nodes for the cases of a uniform mesh and an unstructured mesh.

An additional step is taken to remove those nodes from the set J whose support closure, but not
support, is intersected by the crack. For this purpose, subpolygons which align with both the crack
and element boundaries are generated as shown in Fig. 8b. These subpolygons are generated easily
enough by triangulating the polygons formed from the intersection of the crack and element
boundaries.

The generation of the subtriangles allows the computation of the amount of a node's support
&above' and &below' the crack, which can then be compared against a tolerance. In two-dimensional
analysis, we denote the area of a nodal support by Au , which is calculated from the sum of the areas
of each element connected to the node. With the aid of the subtriangles, we also calculate the nodal
support area above A!"u and below A"%u the crack. We then calculate the ratios

r
!"07%

"
A!"u
Au

, (13a)

r
"%-08

"
A"%u
Au

. (13b)
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Fig. 8. (a) Nodal support cut by a crack. (b) The subtriangles associated with elements cut by the crack for node selection

and the numerical integration of the weak form.

If either of these ratios are below a tolerance (we have used 0.01, or 1%), the nodes are removed
from the set J.

2.4. Numerical integration of the weak form

For elements cut by the crack and enriched with the jump function H(x), we make a modi"cation
to the element quadrature routines for the assembly of the weak form. As the crack is allowed to be
arbitrarily oriented in an element, standard Gauss quadrature may not adequately integrate the
discontinuous "eld. For those nodes in the set J, it is important that the quadrature scheme
accurately integrate the contributions to the weak form on both sides of the discontinuity. If the
integration of the discontinuous enrichment is indistinguishable from that of a constant function,
spurious singular modes can appear in the system of equations. In this section, we present the
modi"cations made to the numerical integration scheme for elements cut by a crack.

The discrete weak form is normally constructed with a loop over all elements, as the domain is
approximated by

XM "
m
Z
e/1

XM
e
, (14)

where m is the number of elements, and X
e

is the element subdomain. For elements cut by a crack,
we de"ne the element subdomain to be a union of a set of subpolygons whose boundaries align with
the crack geometry

XM
e
"

m
e
4

Z
e/1

XM
4

(15)

where me
4

denotes the number of subpolygons for the element. The subtriangles shown in
Fig. 8 already generated for the selection of the interior nodes also work well for integration.
It is emphasized that the subpolygons are only necessary for integration purposes; no additional
degrees of freedom are associated with their construction. In the integration of the weak form, the
element loop is replaced by a loop over the subpolygons for those elements cut by the crack.
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3. Application to fracture mechanics

In this section, we review the pertinent equations for linear elastic fracture mechanics. In this
paper, emphasis is placed on plate fracture, although some two-dimensional plane-strain studies
are discussed. A key di!erence in the plate formulation is the enrichment of the displacement
components with di!erent sets of near-tip functions. After reviewing the governing equations for
Mindlin}Reissner plates, we examine the form of the asymptotic crack tip "elds. A domain form of
the J-integral for plates is derived for the calculation of the energy release rate and the moment
intensity factors. Finally, the enriched "nite element approximation is presented.

3.1. Mindlin}Reissner plate formulation

Two main formulations exist to model a plate: the classical theory or Kirchho! plate theory and
the Mindlin}Reissner plate theory. Allowing three boundary conditions instead of two for the
Kirchho! theory, the Mindlin theory gives a more realistic shear and moment distribution around
a crack tip (see [13,14]). A summary of the Mindlin theory follows.

3.1.1. Governing equations

There are several di!erent ways to introduce the Mindlin theory. As we are also interested in
examining problems in two-dimensional elasticity, the theory is presented here as a degeneration of
the three-dimensional elasticity problem using the principal of virtual work with the appropriate
kinematic assumptions.

Consider a plate of thickness t whose mid-plane lies in the x
1
}x

2
Cartesian plane. The

conventions used throughout this paper are shown in Fig. 9. The main assumptions of the Mindlin
theory state that the in-plane displacements, u

1
and u

2
vary linearly through the thickness with the

section rotations t
1

and t
2
. In addition, the normal stress p

33
is assumed to vanish in the domain.

For the sake of simplicity, we make the additional assumptions that the surface of the plate and any
crack faces are traction free.

In the (e
1
, e

2
, e

3
) basis, where e

3
is the unit normal vector to the plate, the deformation

components at a point (x
1
, x

2
,x

3
) are given by

u(x)"G
u
1
"x

3
t

1
(x

1
, x

2
),

u
2
"x

3
t

2
(x

1
, x

2
),

u
3
"w(x

1
, x

2
),

(16)

where w is the transverse displacement and t
1

and t
2

are the rotations about the x
2

and x
1

axes,
respectively. The above can be expressed in a more compact form as

u(x)"we
3
#x

3
w, (17)

where w"t
1
e
1
#t

2
e
2
.

The strain is given by

1
2
(+u#(+u)5)"x

3
e
"
(w)#1

2
(e
4
(w, w)?e

3
#e

3
?e

4
(w, w)) (18)

11



Fig. 9. Notations and sign conventions for a plate.

with the bending contribution

e
"
(w)"1

2
(+w#(+w)5) (19)

and a shear contribution

e
4
(w, w)"+w#w. (20)

We note that the x
3

related components are zero for both e
"

and e
4
.

The virtual internal work is de"ned by

d=*/5"PX

r : +(du) dX (21)

where r is the symmetric stress tensor, and du is an arbitrary virtual displacement from the current
position. After a few manipulations, we obtain the relation

r : +(du)"x
3
rn : e

"
(dw)#rs ) e

4
(dw, dw) (22)

where the n superscript indicates a reduction of the operator to the in plane (x
1
, x

2
) component and

rs is the shear stress vector rs"r ) e
3
.

Making substitution (22) into (21) and integrating through the thickness gives the work
expression

d=*/5"P
A

(M : e
"
(w)#Q ) e

4
(w,w)) dA, (23)

12



where the moment M and shear Q are de"ned by

M"P
t@2

~t@2

x
3
rndx

3
Q"P

t@2

~t@2

rsdx
3
. (24)

The virtual external work is composed of the action of the bending and twisting moments
gathered in a couple vector C, and of the shear traction T. We assume there is no external pressure
acting on the plate. The virtual external work is then given by

d=%95"PC

C ) dwdC#PC

Tdw dC. (25)

Equating the internal and external virtual work, and applying the divergence theorem yields the
equilibrium equations in X

+ ) M!Q"0, (26a)

+ ) Q"0 (26b)

and the traction boundary conditions on C

C"M ) n, (27a)

T"Q ) n, (27b)

where n is the unit outward normal to the boundary.
The constitutive relationships are obtained by energetic equivalence between the plate and the

three-dimensional model. Assuming the plate is made of an isotropic homogeneous elastic material
of Young's modulus E and of Poisson's ratio l, the constitutive relations are given by

C
M

11
M

22
M

12
D" Et3

12(1!l2)C
1 l 0

l 1 0

0 0 1!lD C
e
"11

e
"22

e
"12

D (28)

and

C
Q

1
Q

2
D"

Ekt

2(1#l) C
e
41

e
42
D, (29)

where k"5
6

is a correction factor which accounts for the parabolic variation of the shear stresses
through the plate thickness.

These are rewritten in a more compact form using the fourth-order bending sti!ness tensor
D

"
and the second-order shear sti!ness tensor D

4
:

M"D
"
e
"

Q"D
4
e
4
. (30)

3.1.2. Weak form

Let the boundary C be divided into a part C
u

on which displacement boundary conditions are
imposed and a part C

t
on which loads are applied with the restrictions

C"C
u
XC

t
, C

u
WC

t
"0. (31)
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The kinematics constraints are given by a prescribed transverse displacement w and prescribed
rotations w while the loads come from the prescribed couples C and prescribed shear tractions T.
As in Section 2, we also designate C

#
as an internal boundary across which the displacement "eld is

allowed to be discontinuous.
Let V

'
be the space of kinematically admissible transverse displacements and rotations

V
'
"M(w, w)3V: w"w

'
, w"w

'
on C

u
N, (32)

where V is a space of su$ciently smooth functions on X. The details on this matter when the
domain contains an internal boundary or re-entrant corner may be found in [15,16]. We note that
the space V allows for discontinuous functions across the crack line.

The space of test functions is de"ned similarly as

V
0
"M(w, w)3V: w"0, w"0 on C

u
N. (33)

The weak form is to "nd (w, w)3V
'

such that

PX

(D
"
e(w)): e(dw) dX#PX

(D
4
s(w, w)) ) s(dw, dw) dX

"PC

C ) dwdC#PC

TdwdC ∀(dw, dw)3V
0
. (34)

It can be shown that the above is equivalent to the equilibrium equations (26) and traction
boundary conditions (27). When the space V is discontinuous along C

#
, the traction-free condi-

tions on the crack faces are also satis"ed. In contrast to boundary element techniques, this enables
the method to be easily extended to non-linear problems.

In the "nite element method, the space V is approximated with a "nite-dimensional space
VhLV. The spaceVh is typically made discontinuous across C

#
by explicitly meshing the surface,

as in Fig. 1c. In the present method, the approximating space is constructed with discontinuous
enrichment.

3.2. Plate fracture mechanics

Consider the problem of a through crack in a plate as shown in Fig. 10, where for convenience we
adopt a local polar coordinate system centered at the crack tip. In contrast to the stress intensity
factors obtained in classical linear elasticity, in plate theory the quantities of interest are moment
and shear force intensity factors. The moment intensity factors are denoted by K

I
and K

II
, while the

shear force intensity factor is denoted by K
III

. These are de"ned as

K
I
"lim

r?0

J2rM
22

(r, 0), K
II
"lim

r?0

J2rM
12

(r, 0), (35)

K
III

"lim

r?0

J2rQ
2
(r, 0). (36)
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Fig. 10. Local polar coordinate system for a through crack in a plate.

The relationship between these factors and the energy release rate G is similar to the three-
dimensional theory

G"
12p
Et3

[K2
I
#K2

II
]#

6p
5Et

K2
III

. (37)

The form of the asymptotic near-tip displacement "elds di!ers signi"cantly from the three-
dimensional theory. In particular, the transverse displacement w is only singular when a K

III
mode

is present. The asymptotic displacement "elds in Mindlin}Reissner plate theory are given in [17],
and they are provided here for the sake of completeness.

w"
6J2r

5hk
K

3
sinA

h
2B

#
6J2r3@2K

1
Eh3 C

1

3
(7#l)cosA

3h
2 B!(1!l)cosA

h
2BD

#
6J2r3@2K

2
Eh3 C!

1

3
(5#3l)sinA

3h
2 B#(1!l)sinA

h
2BD, (38a)

t
1
"

6J2rK
1

Eh3
cosA

h
2B[4!(1#l)(1#cos(h))]

#
6J2rK

2
Eh3

sinA
h
2B[4#(1#l)(1#cos(h))]

#
6J2r3@2K

3
Eh3

8

15 C!sinA
h
2B!(1#3l)cosA

h
2Bsin(h)D, (38b)
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t
2
"

6J2rK
1

Eh3 C4 sinA
h
2B!(1#l)AcosA

h
2Bsin(h)BD

#
6J2rK

2
Eh3 C!2 cosA

h
2B(1!l)#(1#l)sinA

h
2Bsin(h)D

#
6J2r3@2K

3
Eh3

8

15
cosA

h
2B[1#(1#3l)cos(h)]. (38c)

For the purposes of de"ning the near-tip enrichment functions in the plate theory, we consider only

the terms proportional to Jr for the rotations t
1

and t
2
. For the transverse displacement, we

consider terms proportional to both Jr and r3@2. With these restrictions, the near-tip "elds are
contained in the span of the sets

w3Mg
i
(r, h)N5

i/1
, (39a)

Mt
1
, t

2
N3Mf

i
(r, h)N4

i/1
, (39b)

where

Mg
I
(r, h)N,GJr sinA

h
2B, r3@2 sinA

h
2B, r3@2 cosA

h
2B, r3@2 sinA

3h
2 B, r3@2 cosA

3h
2 BH, (40a)

Mf
I
(r, h)N,GJr sinA

h
2B,Jr cosA

h
2B,Jr sinA

h
2Bsin(h),Jr cosA

h
2Bsin(h)H. (40b)

The discrete approximation for the plate which incorporates the above near-tip functions is
presented in Section 3.4.

3.3. Domain form of the J-integral

Several di!erent domain and path-independent integrals have been developed for the extraction
of mixed mode moment and shear force intensity factors in plates [17]. These integrals typically
consist of a contour integral enclosing the crack-tip singularity. With "nite elements, the numerical
evaluation of these integrals usually involves some kind of smoothing technique, as the required
"eld quantities are discontinuous at element interfaces.

In this section, we illustrate the use of a weighting function q to recast these line integrals into
their equivalent domain form. The development presented here closely follows that given for
two-dimensional elasticity in [18]. The domain forms of crack contour integrals are particularly
well suited for use with "nite elements, as the same quadrature points used for the integration of the
weak form can be used to calculate the domain integral. The construction of additional quadrature
points or the use of a smoothing procedure is not required.

Consider the open contour C surrounding a through crack as shown in Fig. 11. In the following,
we use indicial notation where the Greek indices (a, b) range over the values 1,2,2, and a comma
denotes a derivative with respect to the following argument. The contour integral proposed by [17]
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Fig. 11. Conventions at the crack tip for the domain form of the J-integral.

in the absence of an externally applied pressure is given by

J
1
"QC

M=d
1b![Mabta,1#Qbw,1

]Nnb dC, (41)

where= is the strain energy density of the plate. This is de"ned as

="1
2
[Mabta,b#Qb(tb#w

,b )]. (42)

We now introduce a weight function q
1

which is de"ned over the domain of interest. Consider
the simply connected curve C"C

0
#C

`
#C

~
#C as shown in Fig. 11. The function q

1
is

de"ned to be su$ciently smooth in the area A enclosed by C, and is given on the surfaces by

q
1
"G

1 on C,

0 on C
0
.

(43)

We then use this function to rewrite (41) as

J
1
"Q

C

M!=d
1b#[Mabta,1#Qbw,1

]Nmbq1 dC

!P
C``C~

[Ma2ta,1#Q
2
w
,1

]m
2
q
1

dC, (44)

where we have used m
i
"n

i
on C

0
, m

i
"!n

i
on C, and m

1
"0, m

2
"#!1 on the crack faces.

The last integral above vanishes for traction-free crack faces. Applying the divergence theorem to
the closed integral, we then obtain

J
1
"P

A

M[Mabta,1#Qbw,1
]!=d

1bNq1,b dA!P
C``C~

[Ma2ta,1#Q
2
w

,1
]m

2
q
1

dC, (45)

which is the equivalent domain form of the J
1

integral proposed by [17].
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The measure number J
1

is domain independent and its magnitude is equivalent to the energy
release rate (37). Therefore, under pure mode I loading, the moment intensity factor K

I
is given by

K
I
"S

Et3

12p
G (46)

In more general mixed-mode conditions, the values K
I
, K

II
and K

III
cannot be separated so easily.

While the comparison of J
1

to analytical values is adequate to assess the e!ectiveness and qualities
of the enrichment strategy, crack growth laws are typically expressed in terms of the mixed-mode
intensity factors. In classical linear elasticity, the interaction integral approach [19] has proven
e!ective to extract mixed-mode stress intensity factors. The application of this method to plate
fracture is currently under development [20].

3.4. Enrichment of the MITC4 plate element

When discretizing the plate equations (26), some care must be taken to avoid shear locking. As
the plate becomes very thin (i.e. tP0), the following relationship must be satis"ed to keep the strain
energy in the plate bounded:

+w#w"0. (47)

In other words, the shear strain e
4

must vanish as tP0. Standard displacement-based elements,
such as the four-node isoparametric element, have di$culty satisfying this constraint. The conse-
quence is a structure which exhibits an overly sti! response, often referred to as shear locking.

To discretize the plate displacements (16), we begin with the MITC4 element. To avoid shear
locking, the MITC formulation modi"es the approximation for the section rotations w in the
expression for the shear sti!ness (see [21]). In the following, we express this modi"cation using the
notation NI

I
, where it is understood that only those expressions relating to the shear components

are modi"ed.
The enriched discretization takes the form

wh(x)"
4
+
I/1

N
I
w

I
#+

J

N
J
H(x)bw

J
#+

K

N
KA

4
+
l/1

cw
Kl

G
l
(r, h)B, (48a)

wh(x)"
4
+
I/1

NI
I
w

I
#+

J

NI
J
H(x)bt

J
#+

K

N
KA

4
+
l/1

ct
Kl

F
l
(r, h)B, (48b)

where N
I

are the standard bilinear shape functions. In the above, we have collapsed the sums over
each crack tip into one for compactness.

The sets of near-tip functions G
l
and F

l
are derived from (40) in the following fashion. We take

G
l

to be only those functions in g
l

which are proportional to r3@2. The set F
l

is taken to be
equivalent to f

l
. In addition to having four additional degrees of freedom for each displacement

component, this choice for G
l
and F

l
satis"es the following relation:

+G
l
(r, h)3spanF

l
(r, h), (49)
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such that a linear combination of the near-tip enrichment functions can satisfy (47). We note that
this relationship does not ensure that the enriched formulation will be completely free of shear
locking. However, the numerical examples presented in the next section indicate that the above
formulation performs well for a wide range of plate thicknesses.

4. Numerical examples

In this section we present several di!erent numerical calculations. We "rst examine some
problems in two-dimensional elasticity, including a robustness test and the simulation of crack
growth. Then a benchmark and an additional study are presented for Mindlin}Reissner plates.

4.1. Two-dimensional problems

We begin with a simple example of an edge crack to demonstrate the robustness of the
discretization scheme, and then present results for more complicated geometries. In all of the
following examples, the material is taken to be isotropic with Young's modulus E"200 GPa, and
Poisson's ratio l"0.3, and plane strain conditions are assumed. The calculation of the stress
intensity factors is performed with the domain form of the interaction integral, and the maximum
hoop stress law is used to govern crack growth (see [19,5]).

4.1.1. Robustness tests

Consider the geometry shown in Fig. 12: a plate of width w and height ¸ with an edge crack of
length a, subjected to a far-"eld stress p0. We analyze the in#uence of the location of the crack with
respect to the mesh on the K

I
stress intensity factor when the position of the crack is perturbed by

dx in the X direction and dy in the> direction. The geometry is discretized with a uniform mesh of
24]48 4-noded quadrilateral elements.

In this study, several di!erent discretizations are obtained depending on the position of the crack
with respect to the mesh. Two cases are shown in Fig. 13. In this investigation, we wish to examine
the performance of the modi"ed tip function RI (x), and the accuracy of the formulation when it is
used in conjunction with the other near-tip functions as in (9).

The exact solution for this problem is given by [22]

K
I
"CpJap (50)

where C is a "nite-geometry correction factor

C"1.12!0.231A
a

=B#10.55A
a

=B
2
!21.72A

a

=B
3
#30.39A

a

=B
4
. (51)

The numerical results normalized by the exact solution when only the function RI (x) is used to
model the near-tip region are given in Table 1. Depending on the location of the crack tip, the total
number of degrees of freedom varies from 2483 to 2503. The results vary by approximately 4% over
all crack tip locations tested. When the near-tip functions are added, the accuracy improves as
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Fig. 12. The geometry of the edge crack problem for the robustness and shear studies. The parameters are

a/="1
2
, ¸/="16/7, ="7.

Fig. 13. Zoom of the mesh in the vicinity of the crack tip, with (a) the initial con"guration and d
x
, d

y
shown. The

enrichment is also shown for (b) the "nal con"guration. The circled nodes are enriched with the jump function and the

squared nodes with the near-tip functions.
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Table 1

Normalized K
I
values for various crack tip positions using near-tip function RI (x)

d
y
/h

y
d
x
/h

x

0.171 0.343 0.514 0.686 0.857

!0.60 0.924 0.910 0.914 0.909 0.918

!0.30 0.925 0.912 0.914 0.911 0.919

0.0 0.942 0.939 0.948 0.952 0.949

0.30 0.925 0.913 0.915 0.911 0.919

0.60 0.923 0.909 0.914 0.909 0.918

Table 2

Normalized K
I
values for various crack tip positions using near-tip functions RI (x) and f (r, h)

d
y
/h

y
d
x
/h

x

0.171 0.343 0.514 0.686 0.857

!0.60 0.945 0.939 0.954 0.936 0.941

!0.30 0.945 0.937 0.948 0.937 0.941

0.0 0.955 0.950 0.961 0.970 0.960

0.30 0.945 0.939 0.949 0.937 0.941

0.60 0.944 0.937 0.954 0.936 0.942

shown in Table 2. These results are consistent with those reported in [6] in that the best results are
obtained when the crack is aligned with mesh boundaries. We note that the results are not as

accurate as when the exact asymptotic function Jr sin(h) is used, in which case the error is less than
2% (see [6]).

4.1.2. Crack growth from a xllet

This example shows the growth of a crack from a "llet in a structural member, and serves to
illustrate how the present method can be used as an aid to design against failure. The con"guration
to be studied is shown in Fig. 14, with the actual domain modeled as indicated. The setup is taken
from experimental work found in [23]. In this example, we investigate the e!ect of the thickness of
the lower I-beam on crack growth. Only the limiting cases for the bottom I-beam of a rigid
constraint (very thick beam) and #exible constraint (very thin beam) are considered. In addition,
the welding residual stresses between the member and the I-beam are neglected.

The structure is loaded with a traction of P"20.0 kN, and the initial crack length is taken to be
a
0
"5 mm. The geometry is discretized with 8243 three-node triangular elements.To model a rigid

constraint, the displacement in the vertical direction is "xed along the entire bottom of the domain.
A #exible constraint is idealized by "xing the vertical displacement at both ends of the bottom of
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Fig. 14. Experimental con"guration for crack growth problem.

Fig. 15. Zoom of the crack paths (thick lines) for the cases of a rigid (top crack) and #exible (bottom crack) I-beam.

the domain. For both sets of boundary conditions, an additional degree of freedom is "xed to
prevent a rigid-body rotation.

For each load case, we simulate crack growth with a step size of *a"5 mm for a total of 14
steps. Fig. 15 shows the mesh in the vicinity of the "llet and compares the crack paths for the cases
of a thick I-beam (upper crack) and a thin I-beam (lower crack). It is emphasized that the same
mesh is used throughout the simulation, and that no remeshing is required. As new crack segments
are added, additional enriched degrees of freedom are generated for each new segment. The results
shown are consistent with both the experimental [23] and previous numerical results [24].
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Fig. 16. Loading con"guration for bending of cracked plate.

4.2. Plate examples

In this section, we present some examples using the enriched MITC4 plate formulation de-
veloped in Section 3.4). We "rst examine the accuracy of the method as a function of plate
thicknesses for a benchmark problem, and then present a more general example. Throughout this
section, the material properties are assumed to be isotropic with Young's modulus of E"200 GPa,
and Poisson's ratio l"0.3.

As a benchmark problem we consider a through crack in an in"nite plate subjected to a far-"eld
moment M

0
. The crack is oriented at an angle b with respect to the x

1
axis as shown in Fig. 16.

Recently, very accurate calculations were carried out by [25] for various plate thicknesses for the
case when b"03. In this case, the loading is purely mode I, and the domain form of the J-integral
for plates (45) is used in conjunction with (46) to determine the moment intensity factor K

I
. In the

"nite element model, only one-half of a square plate is modeled, with symmetry conditions along
the x

2
axis. To approximate the in"nite plate, the plate width w is taken to be 10 times the half

crack length a. The crack length for all of the results presented in this section is taken to be
2a"1.0.

Fig. 17 shows the normalized K
I
for four discretizations, two standard and two enriched. The

lower curve corresponds to a non-enriched formulation, and the values for K
I
are within 5% of the

exact for the entire range of plate thicknesses t. These values are improved when the mesh is re"ned
for a total of 2463 degrees of freedom as shown. We observe that the enriched solution with only
755 degrees of freedom is as accurate as the solution with 2463 degrees of freedom without
enrichment. The last curve for the enriched case with 3087 degrees of freedom exhibits less than 1%
error. The enriched solutions show good correlation with the analytical solution for the full range
of plate thicknesses tested.
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Fig. 17. Normalized moment intensity factors for varying plate thickness.

Table 3

Normalized K
I
values for "nite plate

t"w/4 t"w/8 t"w/12 t"w/16

a

w

K
I

K%9!#5
I

a

w

K
I

K%9!#5
I

a

w

K
I

K%9!#5
I

a

w

K
I

K%9!#5
I

0.025 0.988 0.025 0.989 0.0333 1.067 0.0250 1.077

0.05 0.992 0.050 0.993 0.0500 1.052 0.0375 1.090

0.10 0.997 0.075 0.995 0.0667 1.069 0.0500 1.094

0.20 1.000 0.100 0.996 0.0833 1.070 0.0625 1.092

0.25 0.999 0.125 0.997 0.1667 1.054 0.1250 1.072

0.333 1.013 0.250 0.998 0.3333 1.057 0.2500 1.062

As a last example, moment intensity factors are calculated for a "nite plate as a function of crack
length for various plate thicknesses. The geometry of the plate is taken to be the same as the
previous example, and the results are compared to those given in [26]. In this study, the mesh does
not model the crack discontinuity; the jump in the rotations and transverse displacement is created
entirely with enrichment. Table 3 gives the results for four di!erent plate width-to-thickness ratios
for the case when the plate is modeled with 1424 MITC4 elements. These results show excellent
correlation for the cases when t"w/4 and w/8, in which the maximum error is 1.2%. For the
remaining cases the maximum di!erence between the numerical solutions and those given in [26] is
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9.4%. We note, however, that Ref. [26] is not as current as [25]. In the latter, the moment intensity
factors are shown to be signi"cantly greater than the classical results as the thickness tP0. The
results shown in Table 3 are consistent with these "ndings.

5. Summary

A method of constructing "nite element approximations with enrichment functions was present-
ed which allows for the simulation of evolving discontinuities in a straightforward fashion. The
speci"c examples of cracks and crack growth in two-dimensional elasticity and Mindlin}Reissner
plate theory were examined. By incorporating the appropriate asymptotic near-tip "elds, accurate
moment and stress intensity factors were obtained for coarse meshes. A new near-tip function was
also developed to remove the need for a mapping in the case of kinked cracks. The methodology for
the construction of the discrete approximation from the interaction of the crack geometry and the
mesh was provided, and numerical tests served to illustrate the algorithm's robustness. Additional
numerical studies for Mindlin}Reissner plates demonstrated the extent to which stress intensity
factors can be calculated accurately for a wide range of plate thicknesses.

The present method has a lot of potential to extend the "nite element method for the modeling of
evolving interfaces and free surfaces. A key feature of the enrichment in conjunction with numerical
integration is the capability of modeling geometrical features which are independent of the mesh
topology. As was shown in this paper, several di!erent crack con"gurations can be considered for
a single mesh of a component, simply by changing the enrichment scheme according to the crack
geometry. Future work will focus on the application of the method to three-dimensional and
dynamic fracture, as well as other areas of mechanics in which moving interfaces are of importance.
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