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Direction-dependent elastic grain-interaction
models – a comparative study

U. WELZEL*, S. FRÉOUR and E. J. MITTEMEIJER

Max Planck Institute for Metals Research, Heisenbergstrasse 3,
D-70569 Stuttgart, Germany

Mechanical and diffraction (X-ray) elastic constants (diffraction (X-ray) stress factors for
macroscopically elastically anisotropic specimens) can be calculated for polycrystalline
specimens from single-crystal elastic data by employing elastic grain-interaction models.
Traditionally, only so-called isotropic grain-interaction models are considered: all directions in
the polycrystal are taken equivalent with respect to the grain interaction. Only recently, so-
called direction-dependent, i.e. anisotropic grain-interaction models, have been proposed.
These models can express the effects of the reduced dimensionality of thin films, of the surface
anisotropy of bulk polycrystals and of a grain-shape (morphological) texture on the elastic
properties of polycrystals. In this work, the available, recently proposed direction-dependent
grain-interaction models will be compared, in particular on the basis of numerical calculations
of diffraction and mechanical elastic constants, of variances of certain orientation-dependent
stress and strain tensor components and of the distributions of strains in the Euler
(orientation) space. It will be demonstrated that the so-called Vook–Witt and inverse Vook–
Witt models become (but only approximate) equivalent to the Eshelby–Krö ner model for
certain grain-shape textures.

1. Introduction

Grain-interaction models describe the distribution of stresses and strains over
the (crystallographically) differently oriented grains in a polycrystalline specimen
subjected to an internal or external load. By adopting a grain-interaction model,
macroscopic, mechanical elastic constants, relating mechanical strains to mechanical
stresses, and diffraction (X-ray) elastic constants (diffraction (X-ray) stress factors
for macroscopically elastically anisotropic samples), relating (diffraction) lattice
strains to mechanical stresses, can be calculated for polycrystals from single-crystal
elastic data of the individual grains composing the polycrystal [1, 2].

Traditionally, the Reuss [3], Voigt [4], Neerfeld [5]–Hill [6] and the Eshelby [7]
Kröner [8, 9] models are employed. These models can be called isotropic grain-
interaction models [2]: for all directions in the polycrystal, the same grain-interaction
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assumptions are adopted. It is common to all the above-mentioned, traditional
grain-interaction models that they assume that a polycrystal is mechanically elasti-
cally isotropic in the absence of crystallographic texture. However, polycrystals
cannot generally be considered as being mechanically elastically isotropic, even in
the absence of crystallographic texture.

An example for the occurrence of macroscopic elastic anisotropy in the absence
of crystallographic texture is provided by thin films, which can exhibit mechanical
transverse isotropy owing to their microstructure and reduced dimensionally [10, 11].
A body is said to be mechanically elastically transversely isotropic, if the mechanical
elastic constants exhibit rotational symmetry with respect to a particular symmetry
axis (the specimen normal in the case considered here). Only recently, it has been
demonstrated theoretically and experimentally by van Leeuwen et al. [10] that the
occurrence of anisotropic grain-interaction is compatible with macroscopic elastic
anisotropy even in the absence of crystallographic texture (see also Leoni et al. [12]).
The notion ‘direction-dependent grain interaction’ (i.e. ‘anisotropic grain inter-
action’) signifies that different grain-interaction assumptions prevail along different
directions in the specimen. Consider as an example the so-called Vook–Witt model
adapted to diffraction stress analysis by van Leeuwen et al. [10] (see also Vook and
Witt [13]). Here, a Reuss-type grain interaction is adopted perpendicular to the film
surface (i.e. the stress tensor components perpendicular to the surface are identical
for all crystallites), whereas a Voigt-type grain interaction is adopted for (all) direc-
tions within the plane of the film (i.e. the strain tensor components parallel to the
surface are identical for all crystallites). The Vook–Witt grain-interaction assump-
tions thus represent extreme assumptions for the in-plane directions and for the
direction perpendicular to the surface of the film. For this reason, the Vook–Witt
model will, in general, not be able to describe the true elastic behaviour of a real thin
film. To overcome this problem, the so-called inverse Vook–Witt model has been
recently introduced by Welzel et al. [14] (see also Welzel et al. [15]) and it can be
made likely that the four extreme models. Vook–Witt, inverse Vook–Witt, Reuss
and Voigt, define bounds for true grain interaction in polycrystalline solids. Hence,
the construction of an effective grain-interaction models has been proposed as
a linear combination of the Reuss, Voigt, Vook–Witt and inverse Vook–Witt
models [14].

Surface anisotropy was considered by Stickforth [11] as a source of macroscopic
elastic anisotropy: the elastic behaviour of crystallites adjacent to the surface of a
(bulk) polycrystal can be different from the elastic behaviour of crystals at some
distance from the surface. In the bulk of a polycrystal, each crystallite is surrounded
by other crystallites in three dimensions, whereas crystallites located at the surface
of a polycrystal have no neighbouring crystallites in the direction perpendicular to
the surface. Thus, for the crystallites adjacent to the surface not all directions are
equivalent for the interaction of the grains.

Polycrystals with a grain-shape (morphological) texture provide another possible
example for the occurrence of macroscopic elastic anisotropy (i.e. already in the
absence of crystallographic texture). The grain-interaction in this case can be
modelled by employing an extension of the Eshelby–Kröner grain-interaction
model [16–18]. Whereas spherical grains (inclusions) have been considered in the
traditional Eshelby–Kröner model, a procedure for the calculation of mechanical
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and diffraction elastic constants involving ellipsoidal grains with their principal
directions aligned along common axes in the specimen frame of reference has been
developed for the case of an ideal grain-shape texture; for details, see Koch et al.
[18]. It has to be stressed that it is the preferential morphological alignment of
non-spherical grains that induces the macroscopic elastic anisotropy. Obviously, a
polycrystal consisting of non-spherical grains with a random distribution of their
shape orientations will be macroscopically elastically isotropic.

Both the Vook–Witt and inverse Vook–Witt models for surface anisotropy and
the Eshelby–Kröner model for the case of grain-shape anisotropy involve direction-
dependent (anisotropic) grain-interaction constraints. Thus, a comparative study of
these models suggests itself. It will be shown here that similarities can be observed
between the Vook–Witt and inverse Vook–Witt results on the one hand and the
Eshelby–Kröner results on the other hand. This is remarkable, recognizing that the
origin of a morphological texture has no relation with the origin of surface aniso-
tropy. It will be demonstrated by both numerical and analytical calculations that the
Eshelby–Kröner model becomes (approximately, to different degrees of accuracy)
equivalent to the Vook–Witt and inverse Vook–Witt models in the limits of flat-disc
shaped grains oriented parallel to the surface and needle-shaped grains oriented
perpendicular to the surface, respectively. This can greatly simplify numerical algo-
rithms for the calculation of elastic (and possibly plastic) grain interaction.

2. Theoretical background

2.1. Definitions

2.1.1 Frames of reference. Stresses, strains, and elastic constant are tensorial quan-
tities and it is thus necessary to define frames of reference. It is convenient for the
considerations presented in the following to use three Cartesian frames of reference:
The crystal frame of reference (C), the specimen frame of reference (S) and the
laboratory frame of reference (L). For details on the definition of these frames
of reference, see, for example, Welzel et al. [15] (for the definition of the crystal
frame of reference in the case of non-cubic crystallites, see also Giacovazzo et al.
[19]. In the following, a superscript (C, S or L) indicates the reference frame adopted
for the representation of the reference frame used for tensor representation, but the
same reference frame has to be adopted for all tensors in the equation. The relative
orientation of the specimen frame of reference with respect to the laboratory frame
of reference is given by the angles  and ’, where  is the inclination angle of the
sample surface normal with respect to the diffraction vector (aligned along the L3

axis) and ’ denotes the rotation of the sample around the sample surface normal
(see also figure 1).

Rotation matrices can perform transformations of tensors from one to another
frame of reference. For a detailed description of the rotation matrices required for
performing the calculations described in this paper, see Leoni et al. [12] for the case
of cubic crystal symmetry and consider the Appendix of Koch et al. [18] for cases
of lower crystal symmetry. For a general introduction to the use of transformation
matrices, see for example Hauk [1].
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2.1.2 Definition of tensor averages. In the following, it is useful to distinguish three
types of averages of a tensor : (to be identified as for example the strain tensor e).

(i) Averages of a tensor over all grains with a particular crystallographic orienta-
tion in the volume considered: this average will be denoted by the symbol :(g),
where g represents a vector in the three-dimensional crystallographic orienta-
tion (Euler) space G and defines the crystallographic orientation, g¼ (�,�, �)T,
where �, � and � are the three Euler angles. The convention of Roe and
Krigbaum [20] for the definition of the Euler angles is adopted (see also
Leoni et al. [12]).

(ii) Averages over diffracting grains: a diffraction line contains data on only a
subset of (generally non-connected) crystallites for which the diffracting planes
are perpendicular to the chosen measurement direction (¼direction of the dif-
fraction vector). For a hkl diffraction line, the group of diffracting crystallites
is selected by specifying the hkl of the reflection considered and the orientation
of the diffraction vector with respect to the specimen reference frame, which can
be identified by the angles (’, ). Therefore the sub (’,  ) and superscripts (hkl)
are attached to the corresponding average denoted by braces, f:g

hkl
’, . For

details, see Leoni et al. [12].
(iii) Averages over all crystallographically differently oriented grains in the volume

considered: this average will be denoted by angular brackets, h:i, and can be

S1 

S3 

L2 

ϕ 

ψ 

L3 

S2 

L1 

ψ 

ϕ 

Figure 1. Definition of and relations between the sample (S) and laboratory (L) frames of
reference.  is the inclination angle of the sample surface normal (S3 axis) with respect to the
diffraction vector (L3 axis) and ’ denotes the rotation of the sample around the sample surface
normal.
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calculated as follows:

h:i ¼
1

8p2

ð
G

: d3
g: ð1Þ

The factor 1/8p2 serves as a normalization factor and is the volume of the Euler
space G.

2.1.3 Grain-shape/morphological texture. For the calculation of mechanical and
diffraction elastic constants of polycrystals with a grain-shape texture, the treatment
will be restricted to polycrystals consisting of ellipsoidal grains. Of course, a real
polycrystal cannot consist of ellipsoidal grains (only). The ellipsoidal shape is an
idealized shape, which is adopted in order to represent grains with (average) aspect
ratios different from one, whereas a spherical shape is adopted for grains with an
(average) aspect ratio of one. It is assumed that the ellipsoidal grains exhibit identical
orientations of their principal (shape) axes in the specimen frame of reference, i.e.
the ellipsoidal grains are aligned along common axes (an ideal grain-shape texture
occurs). An ideal grain-shape texture is considered because only in this case unique
mechanical elastic constants and diffraction stress factors can be calculated employ-
ing the Eshelby–Kröner model (for a more detailed discussion of the effect of a
non-ideal morphological texture, see Koch et al. [18]).

Note that the principal axes of a grain, as meant here, are only related to the
external (geometrical) shape of the grain. Thereby nothing is prescribed regarding
the crystallographic orientation of the grain (crystallite). In general, the (ellipsoidal)
grains constituting the specimen will have different crystallographic orientations.

The shape of the grains is described by a shape parameter �, which is defined as
the ratio of the length of the principal axis of the ellipsoid in the S3-direction (a3)
of the specimen frame of reference to the length of the principal axes of the ellipsoid
in the S1-direction (a1) and the S2-direction (a2) in the specimen frame of reference:

� ¼
a3
a1

¼
a3
a2

ð2Þ

Thus, the considered ellipsoidal grains present rotational shape symmetry with
respect to the surface normal of the specimen.

2.1.4 Mechanical elastic constants. The Vook–Witt and inverse Vook–Witt models
were initially developed for the case of a plane, rotationally symmetric state of
mechanical stress/strain. Such loading states are frequently met in thin films [15]:

heSi ¼

"Sjj 0 0

0 "Sjj 0

0 0 "S?

0
@

1
A, ð3Þ

hrSi ¼

�Sjj 0 0

0 �Sjj 0
0 0 0

0
@

1
A: ð4Þ
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Under these loading conditions two mechanical elastic constants A and B suffice, as
only three independent non-zero stress and strain tensor components occur:

"Sjj ¼ A�Sjj , ð5Þ

"S? ¼ B�Sjj : ð6Þ

2.1.5 Diffraction (X-ray) stress factors. The ’, and hkl-dependent diffraction
stress factors Fij( , ’, hkl) relate the diffraction strain f"L33g

hkl
’, measured for an hkl

reflection at a specimen tilt angle  and rotation angle ’ to the mechanical stress
tensor expressed in the specimen frame of reference hrSi (see Welzel and Mittemeijer
[2]; the Einstein convention, i.e. summation over indices appearing twice in a
formula, is adopted throughout the paper):

"L33
� �hkl

’, 
� "hkl’, ¼ Fijð , ’, hklÞ h�

S
ij i: ð7Þ

In the following, the abbreviation introduced with the first equality (identity) in
equation (7) will be used to denote the diffraction strain. Note that the
Fij( , ’, hkl) are not components of a tensor since they relate the lattice strain
(a scalar) to the stress tensor (expressed in the S-system).

For the case of a plane, rotationally symmetric state of stress (cf. equations (3)
and (4)) equation (7) can be simplified to:

"hkl�, ¼ F11  , ’, hklð Þ þ F22  , ’, hklð Þð Þ �Sjj : ð8Þ

For the case of transverse elastic isotropy and under a plane, rotationally symmetric
state of stress, the diffraction strain is independent of the angle ’, thus, ’ can be
arbitrarily set to zero (or any other value) for the diffraction stress factors and ’ as
an index can be suppressed for the diffraction strain:

"hkl ¼ F11  , 0, hklð Þ þ F22  , 0, hklð Þð Þ �Sjj : ð9Þ

For the case that the specimen is macroscopically elastically isotropic, the diffraction
(X-ray) elastic constants Shkl

1 and ð1=2ÞShkl
2 can be used instead of the diffraction

(X-ray) stress factors. The diffraction (X-ray) elastic constants depend on the reflec-
tion hkl, but they do not depend upon ’ and  . The relation between the diffraction
(X-ray) stress factors and the diffraction (X-ray) elastic constants for macroscopically
elastically isotropic specimens reads (see, for example, Hauk, [1]):

Fijð , ’, hklÞ ¼
1

2
Shkl
2 mS

i m
S
j þ Shkl

1 �ij , ð10Þ

where ms in the normalized diffraction vector in the specimen frame of reference:

m
s
¼

sin  cos ’
sin  sin ’
cos

0
@

1
A: ð11Þ
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For macroscopically elastically isotropic specimens, equation (8) can be rewritten in
terms of the diffraction (X-ray) elastic constants as:

"hkl’ ¼ 2Shkl
1 �Sjj þ

1

2
Shkl
2 �Sjj sin

2  : ð12Þ

2.2. Thin films and surface anisotropy: the Vook–Witt and inverse
Vook–Witt models

The calculation of mechanical elastic constants and diffraction stress factors on
the basis of the Vook–Witt and inverse Vook–Witt models has been discussed in
detail by Welzel et al. [14, 15]. The essentials relevant to this work will be briefly
summarised in the following.

2.2.1 The Vook–Witt model. In a thin film (with a columnar microstructure) or in
any case for solids adjacent to the surface, in contrast with bulk specimens, each
crystallite is surrounded by neighbouring crystallites in only two dimensions. The
interaction between the crystallites (columns) in a direction perpendicular to the
surface (of the film) can be weak (there are often voids at the grain boundaries in
thin films) and thus, the grain interaction cannot be the same for the inplane direc-
tions and the direction perpendicular to the surface. Grain-interaction assumptions
under a plane, rotationally symmetric state of stress (cf. equations (3) and (4)) may
then formulated as follows: (i) the strain parallel to the surface is rotationally sym-
metric and (ii) equal for all crystallites and (iii) the stresses perpendicular to the
surface are zero for all crystallites, i.e. the crystallites can deform freely in this
direction. These assumptions fix parts of the stress and strain tensors for all crystal-
lites, recognizing the symmetry of the stress and strain tensors:

e
S
¼

"Sjj 0 }

0 "Sjj }

} } }

0
@

1
A, ð13Þ

rS ¼

} } 0
} } 0
0 0 0

0
@

1
A ð14Þ

The tensor components marked by } are not explicitly specified for every crystallite,
but these components can be calculated from Hooke’s law for every crystallite as
follows:

"Sij ¼ sSijkl�
S
kl: ð15Þ

The sSijkl are the single crystal elastic compliances expressed in the specimen frame
of reference. Equation (15) represents a system of nine equations for eighteen
unknown, but as the strain and stress tensors are symmetric (i.e. "ij¼ "ji and
�ij¼ �ji), equation (15) is a short notation for six independent equations for twelve
independent unknowns. If six components of the twelve unknowns are known, as
a consequence, the other components can be calculated by solving the system of
equations (15). Adopting the Vook–Witt model (cf. equations (13) and (14)), six
stress and strain tensor components are set equal to the corresponding mechanical
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values for all crystallites and thus, the remaining six unknown tensor components
can be calculated from the system of equation (15). The elastic constants A and B
can be calculated from (cf. equations (5) and (6)):

A ¼
"Sjj
�Sjj

¼
h"S11i

h�S11i
ð16Þ

and

B ¼
"S?
�Sjj

¼
h"S33i

h�S11i
: ð17Þ

The sum of the two stress factors relevant for the loading state considered (cf.
equations (3) and (4)) follows from equations (9):

F11  , 0, hklð Þ þ F22  , 0, hklð Þð Þ ¼
"hkl 

�Sjj
: ð18Þ

2.2.2 The inverse Vook–Witt model. The inverse Vook–Witt model has been intro-
duced on the basis of a ‘symmetry’ consideration for extreme material behaviour:
Reuss vs. Voigt and Vook–Witt vs. inverse Vook–Witt. Thus, the inverse Vook–Witt
model is essential for the construction of an effective grain-interaction model for thin
films and surface adjacent material of bulk solids. The inverse Vook–Witt model was
originally proposed by Welzel et al. [14]. The grain-interaction assumptions for this
model are as follows: (i) the in-plane stress (parallel to the surface) is rotationally
symmetric and (ii) equal for all crystallites and (iii) the strain perpendicular to the
surface is equal for all crystallites. Like in the Vook–Witt model, these assumptions
fix certain strain and stress tensor components for all crystallites, recognising the
symmetry of the stress and strain tensors (cf. equations (13) and (14); note that
grain-interaction assumptions of this type have been proposed in a different context
for composites; see Tsai and Hahn [21]):

eS ¼

} } 0

} } 0

0 0 "S?

0
@

1
A, ð19Þ

r
S
¼

�Sjj 0 }

0 �Sjj }

} } }

0
B@

1
CA: ð20Þ

The missing strain and stress tensor components for each crystallite, marked by },
can be calculated by solving the system of equations (15) (cf. above discussion for
the Vook–Witt model).

For the calculation of the mechanical elastic constants, A and B, it is necessary to
assure that �S? ¼ h�S33i is zero (with the Vook–Witt approach this is inherently the
case as this has been realized by the boundary conditions). To this end, a procedure
as described in Welzel et al. [14] can be followed. When it has been realized that �S?
is zero for a given combination of �Sjj and "

S
?, the elastic constants A and B can be

calculated from equations (16) and (17). The sum of the two stress factors relevant
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for the loading state considered (cf. equations (3) and (4)) follows from equation (9)
(cf. also section 2.1).

2.3. The Eshelby–Kröner model – the case of a grain-shape texture

In order to calculate the elastic constants of a polycrystal from single-crystal data
according to the approach by Eshelby [7] and Kröner [8], the crystallites surrounding
a considered individual grain in a polycrystal are conceived as an elastically homo-
genous matrix with the elastic properties of the entire polycrystal. The elastic con-
stants of the polycrystal are determined by the calculation of the stresses and strains
of an inclusion (a grain) embedded in the homogeneous matrix (the polycrystal).
Traditionally, a spherical shape of the inclusion is considered [8]. It goes without
saying that the Eshelby–Kröner model based on a spherical inclusion will only work
for polycrystals consisting of (on the average) spherical, equi-axed grains.

The effect of an ideal grain-shape (morphological) texture on mechanical and
diffraction elastic constants can be considered in the Eshelby–Kröner model by
considering ellipsoidal inclusions with their principal axes aligned along common
directions in the specimen frame of reference. For characterizing the grain-shape
texture, the convention introduced in section 2.1 (Grain-shape/morphological
texture) will be adopted. For a detailed outline of the calculation and a thorough
discussion of results, the reader is referred to Koch et al. [18]. The essentials relevant
for the following will be briefly summarized here.

In the Eshelby–Kröner model, the strain e in the considered crystallite (inclusion)
can be calculated from the mechanical strain hei via the tensor ( as follows:

"ð�,�, �Þ ¼ u ð�,�, �Þ þ Ið Þh"i ¼ ( ð�,�, �Þ h"i, ð21Þ

where I is the rank-four identity. ( has sometimes been called strain-localization
tensor (see, for example, Mouden and Molinari [22]; use of this name should not be
promoted, as the indication ‘strain-localization tensor’ is misleading). The tensor u
depends on the mechanical, macroscopic elastic stiffness tensor C, the single-crystal
elastic constants of the grain considered c and the so-called Morris tensor E

(see below):

u ð�,�, �Þ ¼ E cð�,�, �Þ � Cð Þ þ I½ �
�1
�I: ð22Þ

The orientation dependence of u originates from the orientation dependence of c.
The Morris tensor E can be calculated for the case of an ellipsoidal grain (inclusion)
shape as follows [23, 24]:

Eijmn ¼
a1a2a3
8p

ðp
0

d� sin �

ð2p
0

d�
D�1

hj kð Þ kjkn þD�1
fk kð Þ kikj

a1k1ð Þ
2
þ a2k2ð Þ

2
þ a3k3ð Þ

2
� �3=2 ð23Þ

where the ai are the lengths of the principal axes of the ellipsoid (see section 2) and

Dik ¼ Cjiknkjkm: ð24Þ
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C is the elastic stiffness tensor of the matrix (polycrystal, see above). The ki can be
expressed in terms of the two spherical co-ordinates ’ and  as:

k1 ¼ sin cos ’, ð25Þ

k2 ¼ sin sin ’, ð26Þ

k3 ¼ cos : ð27Þ

It should be noted that, strictly speaking, Eijmn should be written as EG
ijmn, where G is a

frame of reference defined by the principal axes of the ellipsoid. Due to the definition
of the orientation of the ellipsoid (see section 2), the frame of reference G coincides
with the frame of reference S. The stiffness tensor C has to be expressed in the
frame of reference S for practical calculations. Thus, according to equation (23),
the effect induced by a morphological texture on the local strain is described by the
Morris tensor E.

The macroscopic, mechanical elastic constants can be determined as follows.
Calculating the mechanical average strain " by adopting equation (21) for each
grain in the specimen implies that

h(ð�,�, �Þi ¼ I: ð28Þ

Thus, it holds that

huð�,�, �Þi ¼ 0: ð29Þ

Equation (29) defines implicitly the mechanical stiffness tensor (C, or compliance
tensor S) of the polycrystal: the tensorial equation (29) can be considered as a set of
scalar equations, where the unknowns are the components of the mechanical stiffness
tensor. It has to be noted that hui exhibits the same symmetries as C (and S), i.e. the
number of independent tensor components is equal (e.g. only two independent com-
ponents occur for a macroscopically elastically isotropic polycrystal). Equation (29)
is thus a short notation for a set of N independent (scalar) equations containing N
independent components of the mechanical stiffness (or compliance) tensor. Only
in rare cases, the (sets of) equations can be solved for the (components of the)
stiffness or compliance tensors explicitly. Generally, numerical iterative procedures
are required. A detailed outline of the calculation scheme can be found in Koch
et al. [18].

The diffraction stress factors can be calculated from (see equations (41)–(44) in
Koch et al. [18]):

Fopð’, , hklÞ ¼

ð2p
0

SS
ijop þ tSijop hkl, ’, , 	ð Þ

� �
f � hkl, ’, , 	ð Þ d	

ð2p
0

f � ðhkl, ’, , 	Þ d	

mS
i m

S
j , ð30Þ

where

tijklð�,�, �Þ ¼ uijmn ð�,�, �ÞSmnkl: ð31Þ
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Note that to calculate Fij ð’, , hklÞ the mechanical elastic constants, SS
ijkl , have to

be calculated first, employing the above mentioned procedure.

3. Comparison of the Vook–Witt and the inverse Vook–Witt models with the

Eshelby–Kröner model

3.1. Diffraction stress analysis

The Vook–Witt (VW) model, the inverse Vook–Witt (iVW) model, by forcing
specific strain and stress components to be equal for all crystallites, and the
Eshelby–Kröner (EK) model, by adopting a grain-shape (morphological) texture,
are direction-dependent grain-interaction models. They imply that a polycrystal is
macroscopically elastically anisotropic even in the absence of crystallographic
texture. This macroscopic elastic anisotropy is revealed in diffraction-stress analysis
by the occurrence of non-linear, instead of linear, sin2  -plots (even in the absence
of shear stresses; see Welzel et al. [14, 15, 25]).

The sin2  -plots as calculated according to the VW and iVW models and the EK
model (for morphological textures with �¼ 0.01 and �¼ 100, cf. section 2), all for
crystallographically untextured copper polycrystals subjected to a plane-rotationally
symmetric state of stress (�k¼ 100MPa), are shown in figure 2. Similarities can be
observed between the VW and iVW results on the one hand and the EK results on
the other hand. This is a remarkable observation, recognizing that the EK model
expresses the effect of a morphological texture whereas the VW/iVW models are
compatible with the occurrence of surface anisotropy. The VW model results in
sin2 -plots simliar to those of the EK model for flat-disc shaped grains (�¼ 0.01),
whereas the sin2  -plots obtained from the iVW model exhibit similarities (but less
outspoken than for the VW model) with the corresponding plots obtained from the
EK model for needle-shaped grains (�¼ 100).

In the following it will be shown that such similarities do not only occur for
sin2  -plots (i.e. for the diffraction stress factors), but also for the mechanical,
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Figure 2. sin2  -plots for the hhh and 00l reflections of a crystallographically untextured
copper polycrystal subjected to a plane-rotationally symmetric state of stress (�k ¼ 100MPa):
(a) according to the Vook–Witt (VW) and inverse Vook-Witt (iVW) models; (b) according
to the Eshelby–Kröner model for an ideal grain-shape texture involving different ellipsoidal
crystallite morphologies (for single-crystal compliances of copper, set table 1).
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macroscopic elastic constants, the variances of specific stress and strain-tensor
components and for the distributions of stresses and strains in Euler space.
Closed-form simplifications of the tensor ( (cf. equation (21)) will be presented in
section 3.5, which demonstrate why such similarities do occur.

3.2. Mechanical elastic constants

The mechanical elastic constants A and B (cf. equations (5) and (6)), as calculated
employing the EK model, are shown as functions of the grain-aspect ration � in
figure 3 (line with open circles). The values of A and B for the VW and the iVW
models as well as for the Reuss (R) and Voigt (V) models have been indicated too.
It can be observed that the values of A and B calculated according to the EK model
depend on the grain shape (for the grains-shape texture considered here) and fall
between the VW and iVW values calculated for the same material. As the grain shape
approaches the limit of a flat-disc shaped grains (�! 0), A and B tend to the
corresponding VW values, whereas in the limit of needle-shaped grains ð�! 1Þ,
A and B tend towards the corresponding iVW values, but much less outspokenly as
for the VW values for �! 0:

lim
�!0

AEK � AVW , ð32Þ

lim
�!0

BEK � BVW , ð33Þ

lim
�!1

AEK ! AiVW , ð34Þ

lim
�!1

BEK ! BiVW , ð35Þ

Subscripts have been attached to A and B in order to specify the grain-interaction
model. The symbol ‘�’ (‘approximately equal’) is used, instead of ‘¼’, in order to
express, that, within the investigated range of grain shapes for the case �! 0, within
numerical accuracy the values for A and B are equal to the values obtained using the
VWmodel, for the same material. The symbol ‘!’ has been used for the case �! 1

in order to express that the values of A and B approach the values obtained using the
iVW model for the same material, but still differ significantly.

It was shown by Hill [6] that the mechanical elastic constants calculated accord-
ing to the Reuss and Voigt models provide absolute bounds for the possible elastic
behaviour of a polycrystal. The results obtained for the mechanical elastic constants

Table 1. Single crystal elastic constants of copper [26]. The compliance matrix components sij
have been given together with the anisotropy factor Ai ¼ 2ðsC11 � sC12Þ=s

C
44. The Voigt two-index

notation (see, for example, Hauk [1]) is used.

s11(TPa
�1) s12(TPa

�1) s44(TPa
�1) Ai (TPa

�1)

Cu (fcc) 14.98 �6.29 13.26 3.21
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A and B from the VW, iVW and EK models accordingly fall in between the Reuss
and Voigt values (see figure 3).

3.3. Variances of stress and strain components

The variance of a tensor : will be denoted by square brackets [:2] and can be
calculated as follows

½:2
� ¼

1

8p2

ð
G

:� h:ið Þ
2 d3g: ð36Þ

Obviously it holds for the VW model (cf. equations (13) and (14)):

"S11
� �2h i

VW
¼ "S22

� �2h i
VW

� 0 ð37Þ

and

�S33
� �2h i

VW
� 0, ð38Þ

and similarly for the iVW model (cf. equations (19) and (20)):

�S11
� �2h i

iVW
¼ �S22

� �2h i
iVW�0

� 0 ð39Þ
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Figure 3. The macroscopic, mechanical elastic constants A and B of a crystallographically
untextured copper polycrystal (see equations (5) and (6)) according to the Vook–Witt (VW),
inverse Vook–Witt (iVW) and the Eshelby–Kröner model for an ideal grain-shape texture,
as a function of the grain aspect ratio � (line with open circles). For comparison, the values
for A and B according to the Reuss (R) and Voigt (V) models have also been indicated (for
single-crystal compliances of copper, see table 1).
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and

"S33
� �2h i

iVW
� 0: ð40Þ

The variances of the tensor components "S11, "
S
33, �

S
11 and �

S
33 as calculated employing

the EK model are presented in figure 4 as a function of the grain aspect ratio � (lines
with open and closed circles). Comparing the results shown in figure 4 with the
identities (37)–(40), it can be observed that the grain-interaction constraints of the
EK model approach the VW constraints for �! 0 and the iVW constraints for
�! 1:

lim
�!0

"S11
� �2h i

EK
� 0, ð41Þ

lim
�!0

�S33
� �2h i

EK
� 0, ð42Þ

lim
�!1

�S11
� �2h i

EK
! 0, ð43Þ

lim
�!1

"S33
� �2h i

EK
� 0: ð44Þ

It is worth noting that the similarities with the EK model occur much less obviously
for the case of the iVW model (for �! 1) than for the VW model (for �! 0): the
variance of the stress tensor component �s11 still differs significantly from zero.
This has been indicated by using the symbol ‘!’ instead of the symbol ‘�’ in
equation (43).
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Figure 4. Variances (cf. equation (36)) of specific stress- and strain-tensor components
calculated employing the EK model for an ideal grain-shape texture as a function
of the grain aspect ratio � of a crystallographically untextured copper polycrystal.
(a) Variances of the strain tensor components "s11 and "s33. (b) Variances of the stress
tensor components �s11 and �s33. For all calculations, a plane, rotationally symmetric state of
mechanical stress with �sjj ¼ 100MPa has been imposed (for single-crystal compliances of
copper, see table 1).
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3.4. Strain contours in Euler space

So far, average quantities, like diffraction and mechanical elastic constants, have
been employed for comparing the grain-interactions prescribed by the VW, iVW and
EK models. A sensitive way to investigate (non)similarities in the grain-interaction is
provided by local inspection of the Euler space G. Thus, contour plots for the strain-
tensor component "s11 calculated according to different grain-interaction models in
the section �¼ 0 of Euler space G are shown in figure 5.

Results for the EK model with �¼ 0.1 and �¼ 1 are shown in figures 5a and 5b.
Evidently, decreasing � decreases the extent of strain variation which is com-
patible with approaching the VW model for which "s11 is constant. Increasing �
(cf. figures 5b and 5c) leads to results resembling those obtained for the iVW
model shown in figure 5d.
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Figure 5. Contour plots for the strain-tensor component "s11 of crystallographically untex-
tured copper polycrystal calculated according to different grain-interaction models in the
section �¼ 0 of the orientation, Euler space G: for an ideal grain-shape texture with �¼ 0.1
(a), �¼ 1 (b), �¼ 10 (c) and inverse Vook–Witt model (d). For all calculations, a plane,
rotationally symmetric state of mechanical stress with �sjj ¼ 100MPa has been imposed
(for single-crystal compliances, see table 1). Ten contour levels in the strain range from
0 (black) to 0.85� 10�3 (white) have been used.
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Similar results were obtained for other strain and stress components and for
other sections of Euler space.

3.5. Analytical simplifications of the Eshelby–Kröner model for limiting grain shapes

So far, the VW, iVW and EK models have been compared on the basis of numerical
calculations. The results obtained have suggested that the EK model for the ideal
grain-shape texture considered here approaches the VW model for �! 0 and the
iVW model for �! 1. Hence it is attempted in this section to arrive at analytical
approximations of the tensor ( (cf. equation (21)) in the limits �! 0 and �! 1.
On that basis identification of effective grain-interaction assumptions concerning
the strain tensor can be made using equation (21). Analogously, grain-interaction
assumptions concerning the stress tensor can in principle be made using
(cf. equations (15) and (21))

r ð�,�, �Þ ¼ c ð�,�, �Þ( ð�,�, �Þ hei: ð45Þ

However, even if analytical results for ( are available, analytical simplifications of
equation (45) are not feasible in general, as c(�,�, �) generally has only non-zero
components. Thus, grain-interaction assumptions concerning stress tensor compo-
nents cannot be easily identified. The reason for this (seeming) in-equivalence of the
stress and strain tensors with respect to the identification of grain-interaction
assumptions is a consequence of the formulation of Eshelby’s Gedanken experiment
[7], which is the basis for the derivation of equation (21), in terms of strains. In
principle, the character of the stress and strain tensors with respect to a straight-
forward identification of grain-interaction assumptions would have been reversed,
had Eshelby’s Gedanken experiment been formulated in terms of stresses instead of
strains.

3.5.1 The limit of flat-disc shaped grains. The following analytical simplification of
( can be obtained in the limit of flat-disc shaped grains ð�! 0; for the details of the
derivation, see Appendix):

lim
n!0

� ¼

1 0 0 0 0 0

0 1 0 0 0 0

�31 �32 �33 �34 �35 �36

�41 �42 �43 �44 �45 �46

�51 �52 �53 �54 �55 �56

0 0 0 0 0 �66

2
666666664

3
777777775
: ð46Þ

Inserting equation (46) into equation (21), considering a planar, rotationally sym-
metric state of stress-strain (cf. equation (3)), results in the following form for the
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strain tensor:

eS ¼

"jj 0 �51 þ�52ð Þ"jj þ�51"?

0 "jj �41 þ�42ð Þ "jj þ�43"?

�51 þ�52ð Þ"jj þ�53"? �41 þ�42ð Þ "jj þ�43"? �31 þ�32ð Þ"jj þ�33"?

2
664

3
775:

ð47Þ

Comparing equation (47) with equation (13) it follows that the grain-interaction in
the EK model in the limit of flat-disc shaped crystallites leads to constraints for the
strain tensor components compatible with those adopted in the VW model.

3.5.2 The limit of needle-shaped grains. The following analytical simplification of
� can be obtained in the limit of needle-shaped grains ð�! 1; for the details of the
derivation, see Appendix):

lim
n!1

� ¼

�11 �12 �13 �14 �15 �16

�21 �22 �23 �24 �25 �26

0 0 1 0 0 0

�41 �42 �43 �44 �45 �46

�51 �52 �53 �54 �55 �56

�61 �62 �63 �64 �65 �66

2
66666666664

3
77777777775
: ð48Þ

Inserting equation (48) into equation (21), considering a planar, rotationally
symmetric state of stress/strain (cf. equation (3)), results in the following form for
the strain tensor:

es ¼

�11 þ�12ð Þ"jj þ�11"? �16 þ�26ð Þ"jj þ�36"? �51 þ�52ð Þ"jj þ�53"?

�16 þ�26ð Þ"jj þ�36"? �12 þ�22ð Þ"jj þ�23"? �41 þ�42ð Þ"jj þ�43"?

�51 þ�52ð Þ"jj þ�53"? �41 þ�42ð Þ "jj þ�43"? "?

0
B@

1
CA:

ð49Þ

Now compare equation (19) with equation (49). In both descriptions of es the same
result holds for the strain tensor component "s33 ¼ "?. However, the components
"s11 ¼ "s31 ¼ "s23 ¼ "s32 are equal to zero according to the constraints of the
iVW model, whereas these components are generally non-zero according to
equation (49). As only off-diagonal components of the tensor ( contribute to
these components, these terms will generally be small compared with the component
"s33 (note that h(i ¼ I).

As a result, it can be concluded that the EK model in the limit of needle-
shaped crystallites leads to constraints for the strain tensor components which
approach, but are not equal to, those adopted in the iVW model. These findings
explain, why a better agreement of the VW model with the EK model is observed
for �! 0 than for the iVW model with the EK model for �! 1. This has been
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made clear at various places in sections 3.1–3.4 presenting the results of the
numerical calculations.

4. Discussion

The VW and the iVW models can be used to account for the effect of surface
anisotropy (anisotropic grain interaction invoked by the presence of a surface) in
a polycrystal. The EK model can account for the occurrence of a morphological
texture, which effectively involves overall anisotropic grain interaction. At first
glance, the occurrence of surface anisotropy and the occurrence of a grain-shape
texture bear no relation. However, for the special ideal grain-shape texture
considered here (all ellipsoidal crystals are oriented with their principal a, axis
perpendicular to the surface), the similarities in the result of the VW and the iVW
models, on the one hand, and the EK model, on the other hand, can be made
plausible as follows.

First, consider the limit of flat-disc shaped grains (i.e., �! 0). In this case, the
polycrystal can be conceived as a stack of flat disc-shaped grains with the discs
oriented parallel to the surface (see figure 6a). If such a polycrystal is subjected to
a plane, rotationally symmetric mechanical strain parallel to the disc interfaces,
all discs (grains) will obviously experience the same in-plane strain. The stress
acting perpendicular to the interfaces is zero at the top and bottom surfaces, as
the surfaces are unloaded. Recognising the symmetry of the stack (all interfaces
are equivalent) and the mechanical equilibrium conditions (force balance across
the interfaces), all discs must experience the same stress (¼ nil, as the surface is
unloaded) perpendicular to the interfaces. The grain-interaction constraints are
thus of the Vook–Witt type.

c) 

a) b) 

Figure 6. Sketches of polycrystals consisting of (a) flat-disc shaped grains (b) needle-shaped
grains, subjected to a rotationally symmetric mechanical strain, such that contour coherency is
preserved. (c) Top view on the assembly of needle-shaped grains.
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Next, consider the limit of needle-shaped grains (i.e., �! 1). In this case, the
polycrystal can be conceived as an assembly of needle-shaped grains with their
needle axis perpendicular to the surface (see figures 6b and 6c).

If such a polycrystal is subjected to a plane, rotationally symmetric mechanical
strain perpendicular to the needle axes, all grains will experience the same strain
along the needle axes because the outer contour of the assembly should not change.
With respect to the in plane direction, the grains can neither experience the same
in-plane stresses nor the same inplane strains: If the grains would all experience the
same in-plane stresses, the conditions of mechanical equilibrium (force balance
across the contact lines) would be met: however, the strains would then be different
for crystallographically differently oriented grains and the assembly would not be
strained coherently laterally (cf. figure 6c). If, on the other hand, the grains would all
experience the same in-plane strains, the assembly would be strained coherently
laterally, but mechanical equilibrium could not occur as the stresses of crystallogra-
phically differently oriented grains would not match. In conclusion, the ‘true’ grain-
interaction constraints perpendicular to the needle axes (i.e. for in-plane directions)
will lie somewhere between the bounds defined by the Reuss (constant stresses) and
Voigt (constant strains) models.

The above discussion elucidates the findings obtained in section 3. The EK model
in the limit of needle-shaped grains leads to grain-interaction constraints with respect
to the in-plane direction which approach, but are not equal to, those adopted in the
iVW model (cf. equations (43) and (49) and figure 4). The grain-interaction con-
straints along the needle axes, however, are equal for the iVW and EK (in the limit of
needle-shaped grains) models (cf. equations (44) and (49) and figure 4). As a con-
sequence, the similarities of the EK (for needle-shaped grains) and iVW models with
respect to the diffraction and mechanical elastic constants are much less pronounced
than the similarities of the EK (for flat disc-shaped grains) and VW models (cf.
figures 2 and 3).

Strikingly opposite to what may be expected on the basis of the above discussion,
the Vook–Witt model has first been applied successfully to thin films exhibiting a
columnar grain microstructure [10]. This can be understood as follows. In the latter
case the boundaries (in the sputter-deposited films) are conceived to have an ‘open
structure’, i.e. it can be assumed that a reduced interaction occurs across the column
boundaries. The misfit (cooling induced thermal misfit) is imposed at the base of
the columns, i.e. the imposed misfit strain parallel to the layer/substrate interface
is the same for all columns (cubic materials, i.e. of isotropic thermal expansion,
are considered). This naturally leads to the concept of equal strains parallel to the
layer/substrate interface in all columns and equal stresses perpendicular to the
surface of the layer (equal to nil) for all columns. Hence, Vook–Witt type of grain
interaction. In contract with this discussion, pertaining to thin films considered by
van Leeuwen et al. [10] and Welzel et al. [14, 15], the grains (either flat discs, or
needle-shaped grains) considered in this paper are tightly connected with each other
across the grain boundaries and this explains an inverse Vook–Witt type of grain
interaction for the case of the needle-shaped (say columnar-shaped) grains.

Even though it has been shown in this work that the Vook–Witt and inverse
Vook–Witt models, originally introduced for the description of surface anisotropy as
especially evident in thin films, exhibit similarities with the Eshelby–Kröner model,
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for cases of extreme grain-shapes textures, the similarities of the Vook–Witt and
the inverse Vook–Will models with the Eshelby–Kröner model are of mathematical
nature and do not imply that the Eshelby–Kröner model can be used to account
for the effect of surface anisotropy; the Eshelby–Kröner model is a model for bulk
polycrystals. Rather, the Vook–Witt (for flat-disc shaped grains) and inverse
Vook–Witt (for needle-shaped grains) models may be used as substitutes for the
mathematically much more tedious Eshelby–Kröner model. Thereby time consum-
ing numerical integrations, cumbersome handling of tensors and the iterative pro-
cedure required in the application of the Eshelby–Kröner model may be replaced
by the much less elaborate calculations in the Vook–Witt and inverse Vook–Mitt
models for cases of extreme grain-shape textures.

5. Conclusions

. Anisotropic grain interaction is induced by the presence of a surface (surface
anisotropy, most clearly observed for thin films) and the occurrence of a grain-
shape, morphological texture. Recently applied models for the description of
surface anisotropy and grain-shape texture are the so-called Vook–Witt (VW)
and inverse Vook–Witt (iVW) models and the Eshelby–Kröner (EK) model,
respectively. For the case of an ideal grain-shape texture relations/similarities
between results obtained from these models occur.

. Considering mechanical elastic constant, diffraction stress factors, variances
of specific stress/strain tensor components and even the detailed strain/stress
distributions in orientation (Euler) space, it follows that, for the case of ellip-
soidal crystallites oriented with their a3 axis perpendicular to the surface, the
EK model approaches the VW model if the crystallites become flat discs
ð�! 0Þ and approaches the iVW model if the crystallities become needles
ð�! 1Þ.

. These observations can be given an analytical basis by approximations of the
tensor ( (cf. equation (21)) for flat disc shaped and needle shaped grains. It
follows that the grain interaction in the EK model in these limiting cases leads
to constraints for the strain tensor components compatible with those adopted
in the VW and iVW models, respectively.

. It can also be proven analytically that the similarity of the VW and EK (for
�! 0) models is stronger than of the iVW and EK ð�! 1Þ models, in full
agreement with the numerical calculations.

. Hence, even though the Vook–Witt and inverse Vook–Witt models have been
developed in particular to express the effect of elastic surface anisotropy of
bulk polycrystals and thin films, they are capable of modelling the effect of
special, limiting morphological textures on the elastic grain-interaction. Thus,
time consuming numerical calculations as required in the application of the
Eshelby–Kröner model can be replaced by much less elaborate calculations
according to the Vook–Witt (for flat-disc shaped grain morphology) and
inverse Vook–Witt (for needle-shaped grain morphology) models. This
can greatly simplify numerical algorithms for the calculations of elastic and,
possibly, plastic grain interaction.
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Appendix

Analytical approximations of the ( tensor

Consider the ideal grain-shape texture composed of ellipsoidal grains with their
principal axes aligned along common directions in the specimen frame of reference.
This is the homogenous matrix, instead of a matrix of spherical grains, in the current
elaboration of the Eshelby–Kröner model. Following the conventions introduced
in section 2, the axes of rotationally symmetry of the ellipsoids coincide with the
S3 axis. Hence, the polycrystal exhibits transverse elastic isotropy and thus the stiff-
ness tensor of the specimen takes the following form in Voigt notation (see, for
example, Hauk [1]):

C ¼

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66

2
6666666666664

3
7777777777775

: ð50Þ

By inserting equation (50) into equation (24), simplifications for the tensors D�1 can
be obtained. By subsequently inserting the simplified tensor D�1 in equation (23) and
considering the limits �! 0 and �! 1, simplified forms of the tensor E can be
obtained. These calculations are cumbersome and have been conducted here employ-
ing the programme ‘Mathematica’ (Version 4.1). The following results have been
obtained.

Flat discs (g ! 0): a1Va2, a3 ! 0. For the tensor D�1 it holds that:

lim
a3!0

D
�1

¼

H11 H12 H13

H12 H11 H23

H13 H23 H33

0
BB@

1
CCAþ O a43

� �
ð51Þ

where

H11 ¼
a23

C44k
2
3

ð52Þ

H12 ¼
a43k1k2 C2

13 � C12C33 þ 2C13C44 þ C2
44 � C33C66

� �
a21C

2
33C

2
44C

4
3

ð53Þ
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H12 ¼ �
a33k1 C13 þ C44ð Þ

a1C33C44k
3
3

ð54Þ

H23 ¼ �
a33k1 C13 þ C44ð Þ

a1C33C44k
3
2

ð55Þ

H33 ¼
a23

C33k
2
3

ð56Þ

Insertion of equation (51) into equation (23) leads to the following simplification for
the tensor E:

lim
a3!0

E ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0
1

C33

0 0 0

0 0 0
1

4C44

0 0

0 0 0 0
1

4C44

0

0 0 0 0 0 0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

: ð57Þ

Upon insertion of equation (57) into equation (21), equation (46) is obtained.

Needles (g !‘): a1 ¼ a2, a3 !‘. For the tensor D�1 it holds that:

lim
a3!1

D
�1

¼

H11 H12 H13

H12 H11 H23

H13 H23 H33

0
B@

1
CA ð58Þ

where:

H11 ¼
a21 C11k

2
1 � C12k

2
1 þ 2C11k

2
2

� �
C2

11 � C11C12

� �
k21 þ k22
� �2 ð59Þ

H12 ¼ �
a21 C11 þ C12ð Þ

C2
11 � C11C12

� �
k21 þ k22
� �2 k1k2 ð60Þ

H13 ¼ 0 ð61Þ

H23 ¼ 0 ð62Þ

H33 ¼
a21

C44 k21 þ k22
� �2 ð63Þ
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Insertion of equation (51) into equation (23) leads to the following simplification for
the tensor E:

lim
a3!1

E ¼

5C11 � 3C12

8C2
11 � 8C11C12

C11 � C12

8C2
11 � 8C11C12

0 0 0 0

C11 þ C12

8C2
11 � 8C11C12

5C11 � 3C12

8C2
11 � 8C11C12

0 0 0 0

0 0 0 0 0 0

0 0 0
1

8C44

0 0

0 0 0 0
1

8C44

0

0 0 0 0 0
3C11 � C12

8C2
11 � 8C11C12

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

:

ð64Þ

Upon insertion of equation (64) into equation (21), equation (48) is obtained.
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