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Abstract. This work summarises recent developments of so-called direction-dependent 

elastic grain-interaction models. The notion 'direction-dependent' grain-interaction signifies 

that different grain-interaction constraints prevail along different directions in a specimen. 

Practical examples of direction-dependent grain interaction are the occurrence of surface 

anisotropy in thin films (and, possibly, surface regions of bulk polycrystals) and the 

occurrence of a grain-shape (morphological) texture.  

Introduction 

Elastic grain-interaction models describe the distribution of stresses and strains over the 

(crystallographically) differently oriented grains of a mechanically stressed polycrystal and 

allow the calculation of mechanical and diffraction (X-ray) elastic constants (diffraction (X-

ray) stress factors for mechanically elastically anisotropic samples, relating (diffraction) 

lattice strains to mechanical stresses [1,2]), from single-crystal elastic data. Usually, the 

grain-interaction models proposed by Voigt, Reuss, Neerfeld-Hill or Eshelby-Kröner are 

employed [1]. These models devised for bulk polycrystals with an isotropic microstructure 

imply that (in the absence of crystallographic texture) a polycrystal as a whole is 

macroscopically elastically isotropic. They have therefore been termed 'isotropic grain-

interaction models' [2].  However, polycrystals cannot generally be considered as being 

macroscopically elastically isotropic. Two cases of direction-dependent (anisotropic) grain 

interaction can be distinguished: the case of surface anisotropy and the case of a grain-shape 

texture.  

Surface anisotropy: In a (columnar) thin film (or the surface layer of a bulk polycrystal), 

each crystallite is surrounded by neighbouring crystallites in only two dimensions. Thus, the 

grain-interaction perpendicular to the surface can be different from the grain interaction 

parallel to the surface: direction-dependent (anisotropic) grain interaction occurs [3-7]. 

Grain-shape texture: It appears obvious that deviations from an isotropic ‘microstructure’, as 

for example due to the reduced dimensionality of a thin film, may generally have an impact 

on the grain interaction. Following this line of reasoning, it can be anticipated that a 

polycrystal composed of non-spherical grains with their principal axes being aligned more or 

less preferentially along certain directions in the specimen (i.e., a grain-shape or 
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morphological texture occurs) exhibits macroscopically elastically anisotropic behaviour too, 

i.e. also in this case anisotropic grain-interaction occurs [9]. This work summarises recent 

developments of direction-dependent elastic grain-interaction models, presents a comparison 

and an experimental example.   

Theoretical background 

Thin films / surface anisotropy [3-7] 

In the following, an at least transversely elastically isotropic polycrystal is considered. Grain-

interaction assumptions taking into account that in (columnar) thin films and surface layers 

of bulk polycrystals, neighbouring grains surround a grain in only two dimensions can, for 

example, be formulated as follows (cf. also [8]): (i) in the plane of the film, the strains are 

equal for all crystallites and (ii) the stresses perpendicular to the layer are identical for all 

crystallites. These grain-interaction assumptions fix certain stress and strain tensor 

components to corresponding mechanical average values (mechanical averages are indicated 

by brackets   ):  
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The superscript S indicates that a tensor is expressed in the specimen frame of reference S. 

The tensor components marked by    are not explicitly specified for every crystallite, but 

these components can be calculated from Hooke’s law for every crystallite, S S S

ij ijkl klε s σ . The 

S

ijkls are the single crystal elastic compliances. Hooke's law represents a system of nine 

equations for eighteen unknowns, but as the strain ε  and stress σ  tensors are symmetric (i.e. 

ij ji   and ij ji  ), Hooke's law is a short notation for six independent equations for 

twelve independent unknowns. If six components of the twelve unknowns are known, as a 

consequence, the other components can be calculated by solving Hooke's law.  

Extreme grain-interaction assumptions (e.g. the stresses perpendicular to the layer are 

identical for all crystallites) are adopted in the above described Vook-Witt (VW) model. In 

terms of the bulk models it could be said that, Voigt behaviour ('equality of strains') is 

attributed to the in-plane directions, whereas Reuss behaviour ('equality of stresses') is 

attributed to the direction perpendicular to the film surface. Thus, the Vook-Witt model will 

generally be incompatible with the true elastic behaviour of a polycrystal. To overcome this 

problem, the inverse Vook-Witt model (iVW), required for the construction of an effective 

grain-interaction model, has been proposed [2,5,6]. The grain-interaction assumptions for the 

inverse Vook-Witt model are as follows: (i) the in-plane stress is equal for all crystallites and 

(ii) the strain perpendicular to the film surface is equal for all crystallites:  
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The tensor components marked by    are not explicitly specified for every crystallite, but 
these components can be calculated, as described above for the Vook-Witt model.  
The above formulated grain-interaction assumptions allow the calculation of the mechanical 
elastic constants and the diffraction stress factors.  
The need for introducing the inverse Vook-Witt model can be understood as follows: The 
number of grain-interaction models of extreme types of grain-interaction assumptions is two 
for bulk materials (Reuss and Voigt). However, four types of extreme grain-interaction 
models then can be formulated for (columnar) thin films, as two principal directions, each 
with two extreme grain-interactions, occur. These extreme grain-interaction models are the 
Reuss, the Voigt, the Vook-Witt and the inverse Vook-Witt models. In a so-called effective 
grain-interaction model, the mechanical and diffraction elastic constants (or diffraction stress 
factors) are calculated as arithmetic weighted averages of the elastic constants obtained from 
a set of extreme grain-interaction models. A well known example for an effective grain-
interaction model is the Neerfeld-Hill model (= 'average' of 'Reuss' and 'Voigt', in case of 
isotropic grain interaction). Here, a weighted average of the Reuss, Voigt, Vook-Witt and 
inverse Vook-Witt models is proposed for cases of anisotropic grain interaction. The 
background of any averaging of (extreme) grain-interaction models to describe physical 
reality could be described as follows: A real sample is conceived to be constituted from 
separate volume fractions of crystallites, each of which obeys a certain type of grain-
interaction.  

Grain-shape (morphological) texture [9] 
In order to calculate the elastic constants of a polycrystal from single-crystal elastic data in 
the Eshelby-Kröner (EK) model, the crystallites surrounding an individual grain (inclusion) 
in a polycrystal are conceived as an elastically homogenous matrix with the elastic properties 
of the entire polycrystal. Traditionally, a spherical shape of the inclusions is considered [1]. 
A grain-shape (morphological) texture can be incorporated in the Eshelby-Kröner model by 
considering ellipsoidal inclusions with their principal axes aligned along common directions 
in the specimen frame of reference. The shape of the crystallites can be described by a shape 
parameter  , which is defined as the ratio of the principal axis of the ellipsoid in the z-
direction ( 3a  ) of the specimen frame of reference and the principal axes of the ellipsoid in 
the x-direction ( 1a ) and the y-direction ( 2a ) in the specimen frame of reference, respectively: 

3 1 3 2/a a a a3 1 3 2a a a a3 1 3 2a a a a3 1 3 23 1 3 2/3 1 3 2/3 1 3 2a a a a3 1 3 2a a a a3 1 3 2a a a a3 1 3 2a a a a3 1 3 2/a a a a/3 1 3 2/3 1 3 2a a a a3 1 3 2/3 1 3 2 . Thus, the considered ellipsoids exhibit rotational symmetry with respect to 
the surface normal of the specimen. 

Diffraction stress analysis and diffraction analysis of elastic grain interaction 
The unknown stress tensor components S

ij  can be obtained as fit parameters in a (least-
squares) minimisation of the difference 2 ,
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where the meas

i represent the measured lattice strains. The index i stands for all lattice strains 

determined from measurements (for all different ,  and/or hkl analysed). The i are 

weighing factors which can be used to reflect the statistical relevance of the measured strains 

 , ,meas

i hkl    in the result of the minimisation and could correspond to the inverse of the 

standard deviations of the measured strains. For the case of macroscopically elastically 

anisotropic specimens considered here, the diffraction strains, calc

i , have to be calculated 

from 

 , , , ( , , )calc S S

i mn mnhkl F hkl       , (6)

where the ( , , )mnF hkl   are the so-called diffraction (X-ray) stress factors [1,2]. The following 

variant of the above-described method has been proposed [5,6]: In addition to the unknown 

stress tensor components, parameters related to the grain interaction can be refined in the 

fitting procedure. If the elastic grain interaction in the specimen can be parameterized by 

parameters fi, which are not known a priori, they can be used as fitting parameters in addition 

to the unknown stress tensor components. Such additional fitting parameters could, for 

example, be the weighing factors for the individual models in an effective grain-interaction 

model. This fitting is possible as the grain-interaction parameters have a distinct influence on 

the diffraction stress factors. Non-linear sin
2-plots are characteristic for the occurrence of 

anisotropic grain interaction. It is recommended to use measured data from various 

reflections simultaneously in the fitting, which can considerably support the uniqueness of 

the obtained fit results. 

Results and discussion 

Mechanical elastic constants 

Components of the mechanical stiffness tensor calculated employing various grain-

interaction models have been gathered in table 1. The stiffness tensor corresponds to 

transverse elastic isotropy and thus consists of five independent components (it holds that 

22 11

S SC C , 23 13

S SC C , 55 44

S SC C  and 

 1
266 11 12

S S S C C C ) for cases of 

anisotropic grain interaction. For 

the traditional Eshelby-Kröner 

model ( 1  ), an isotropic 

mechanical stiffness tensor is 

obtained, i.e. only two independent 

components occur ( 11

S
C , 12

S
C ). It can 

be concluded that the effect of the 

grain interaction on the mechanical 

elastic constants is relatively weak. 

Table 1: Independent components of the mechanical 

stiffness tensor of copper in Voigt notation (single-
crystal elastic stiffnesses taken from [9]; unit = GPa). 

Cu 
11

S
C

33

S
C  44

S
C 12

S
C

13

S
C

VW 202.39 198.88 47.16 102.65 106.16 

EK ( 0.1  ) 202.16 199.43 47.41 103.15 105.89 

EK ( 1  ) 201.30 201.30 48.17 104.95 104.95 

EK ( 10  ) 200.84 202.15 48.49 105.84 104.52 

iVW 200.80 204.08 49.56 106.84 103.56 
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Figure 1: sin2-plots for the hhh and 00l reflections of a  crystallographically untextured copper 
polycrystal subjected  to a plane-rotationally symmetric state of stress (100MPa) according to the (a) 
Vook-Witt (VW) and inverse Vook-Witt (iVW) models and (b) Eshelby-Kröner model involving 
different ellipsoidal crystallite morphologies (single-crystal elastic stiffnesses taken from [9]).
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Figure 3: sin2-plots for the 002 reflections of a copper 
thin film fitted employing grain-interaction models 
accounting for surface anisotropy(a) and grain-shape 
texture (b) (for details, see [12]). 

Diffraction stress factors 
The effect of the type of grain interaction 
on the diffraction (X-ray) stress factors will 
be demonstrated using plots of lattice strain 

 , ,hkl    versus sin2 (so-called sin2-
plots) assuming that the polycrystal 
considered is subjected to a planar, 
rotationally symmetric state of stress 

( 11 22
S      ). 

Sin2-plots 
calculated employing 
the different grain-
interaction models 
are shown in figure 1. 

The macroscopic elastic anisotropy (transverse isotropy) is reflected by the occurrence of 
non-linear sin2-plots. Only for the traditional Eshelby-Kröner model ( 1  ; spherical grain 
morphology), linear sin2-plots occur, as in this case, the polycrystal presents macroscopic 
isotropy. It can be concluded from figure 1 that the effect of the grain interaction on the 
diffraction stress factors generally is much more pronounced than the effect on mechanical 
elastic constants.  

Comparison of the direction-dependent grain-interaction models [11] 
Similarities in the results obtained for both the mechanical elastic constants and the 
diffraction stress factors from the different grain-interaction models occur. It has been found 
both on the basis of numerical calculations, analytical simplifications of certain tensors 
involved in the Eshelby-Kröner model and plausibility considerations, that the grain-

interaction assumptions in the 
Eshelby-Kröner model are similar to 
those of the Vook-Witt model if 
disc-like grain morphology is 
considered, whereas the grain-
interaction assumptions in the 
Eshelby-Kröner model are similar to 
those of the inverse Vook-Witt 
model if needle-like grain 
morphology is considered. These 
findings imply that for certain 
(hypothetical) cases, the effect of 
surface anisotropy on elastic 
properties of polycrystals cannot be 
distinguished from the effect of a 
grain-shape texture.  

An experimental example  
Six reflections of a sputter-deposited copper layer of 
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thickness 500nm have been fitted simultaneously employing the above explained strategy for 

stress analysis (see figure 3, showing exemplary sin
2-plots for the 200 reflections; [12]). A 

better fit to the experimental data has been obtained for the case of surface anisotropy. These 

findings are in line with the results of microstructural investigations. The specimen has a 

columnar microstructure with an average grain-aspect ratio close to one. Thus, surface 

anisotropy occurs.  

Summary 

(i)  The traditional grain-interaction models due to Voigt, Reuss, Neerfeld-Hill and Eshelby-

Kröner are inappropriate for the stress analysis of specimens exhibiting direction-dependent 

grain interaction.  

(ii) Thin films are generally mechanically elastically anisotropic also in the absence of 

crystallographic texture, due to the occurrence of surface anisotropy. The elastic grain 

interaction of such polycrystals can be modelled employing an effective grain-interaction 

model combining the extreme Reuss, Voigt, Vook-Witt and inverse Vook-Witt models.  

(iii) Polycrystals with a grain-shape (morphological) texture are mechanically elastically 

anisotropic also in the absence of crystallographic texture. Their elastic grain interaction can 

be modelled employing an extension of the traditional Eshelby-Kröner model. 

(iv) For extreme grain-shape textures (discs and needles, parallel and perpendicular to the 

surface, respectively), the grain interaction in the Eshelby-Kröner model exhibits similarities 

with the grain interaction in the Vook-Witt and inverse Vook-Witt models, respectively.  

(v) (X-ray) Diffraction is a sensitive tool to investigate elastic grain interaction. Grain-

interaction parameters can be refined in a stress analysis together with the unknown stress 

tensor components.  
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