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Abstract

During cyclic loading, both natural and synthetic elastomers exhibit a stress-softening phenomenon known as the
Mullins effect. In the last few years, numerous constitutive equations have been proposed. The major difficulty lies in the
development of models which are both physically motivated and sufficiently mathematically well defined to be used in finite
element applications. An attempt to reconcile both physical and phenomenological approaches is proposed in this paper.
The network alteration theory of Marckmann et al. [Marckmann, G., Verron, E., Gornet, L., Chagnon, G., Charrier,
P., Fort, P., 2002. A theory of network alteration for the Mullins effect. J. Mech. Phys. Solids 50, 2011-2028] is considered
and modified. The equivalence between three different strain energy functions is then used to develop two new constitutive
equations. They are founded on phenomenological strain energy densities which ensure simple numerical use, but the
evolution of their material parameters during stress-softening is based on physical considerations. Basic examples illustrate
the efficiency of this approach.

Keywords: Rubber material; Stress-softening; Finite strain; Constitutive equation

1. Introduction

Both natural rubber and synthetic elastomers are widely used in industrial design. In order to reduce the time
necessary to develop new parts, numerical simulations are nowadays revealed of fundamental importance. In
this context, one of the major difficulties encountered by engineers consists in the choice of a well-adapted con-
stitutive model which satisfactorily reproduces the large strain inelastic response of rubbers. Indeed, they exhi-
bit a time-dependent behaviour (relaxation, creep, hysteresis and Payne effect) and a particular stress-softening
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Fig. 1. Stress—stretch response of a pseudo-elastic material. The sample is first stretched to 4; and the stress follows path I. Then the
unloading path from /; to 0 follows path I'. The second loading path from 0 to Ay > /; first follows path I’ until 2 = 4; then it follows path
II. The second unloading path from stretch ratio Ay to 0 follows path II" which is different than path I'. It is to note that for a given stretch,
stress on II' is lower than stress on I'. Repeating this process, the loading path from 0 to Ay is the path that joins paths I’ and I1I. Finally,
the corresponding unloading response follows path III'.

phenomenon which takes place during the five first cycles of a fatigue experiment. This phenomenon is known
as the Mullins effect (Mullins, 1969).

The present paper only focuses on the Mullins effect; all other phenomena are not considered. Thus, it is
admitted that the response of rubber is pseudo-elastic as schematically described in Fig. 1. For 60 years,
numerous models have been proposed to predict stress-softening of rubbers. In the 1950s and 1960s, first
works were only qualitative and mono-dimensional models were developed; three-dimensional constitutive
equations have been proposed some years later. In the following, only three-dimensional models are reviewed.
As there is no unanimous explanation of the physical origins of the Mullins effect, different approaches have
been considered by authors.

First, some authors follows the phenomenological two-network theory of Mullins and Tobin (1957) who
consider that the material is composed of a soft and a hard phase and that a part of hard phase is broken
and transformed into soft phase during deformation. This approach was adopted by Wineman and Huntley
(1994) and Huntley et al. (1996, 1997) who consider that the stress should be corrected by a scalar reformation
function which depends on a measure of the deformation classically defined as a scalar function of principal
stretches. Similarly, Beatty and Krishnaswamy (2000) and Zuiiga and Beatty (2002) proposed a measure in
terms of strain invariants. These phenomenological models successfully describe the stress-softening phenom-
enon and their formulation is well adapted to finite element simulations. Nevertheless, these constitutive equa-
tions are not well adapted to material which admit large stress-hardening. Recently, using a similar approach,
Qi and Boyce (2004) took into account the quantity of fillers considering that stress-softening only occurs in
rubber bulk. Finally, Dorfmann and Ogden (2003) and Kazakeviciute-Makovska and Kacianauskas (2004)
proposed an original theory in which the stress-softening function evolves during the unloading path of cycles
instead of during loading path as in previous models.

Second, the general theory of Continuum Damage Mechanics has been applied to the Mullins effect since
the end of the 1980s. Simo (1987) introduced the thermodynamical framework and proposed a three dimen-
sional constitutive equation for the stress-softening. Later, many authors proposed phenomenological equa-
tions to predict the stress-softening phenomenon with this theory (DeSouzaNeto et al., 1994; Miehe, 1995;
Lion, 1996; Bikard and Desoyer, 2001). It has been recently demonstrated that the Continuum Damage
Mechanics and the two-network approaches are similar (Chagnon et al., 2004b). It should be mentioned that
all these phenomenological models are often easily implementable in finite element applications but cannot
describe very large stress-softening response of elastomers because of the coupling between the strain energy
density and the evolution laws adopted for damage variables.

Third, some physical-based constitutive equations were developed considering the evolution of the polymer
network under loading as proposed by Bueche (1960, 1961). Govindjee and Simo (1991) proposed a three
dimensional formulation that mimics the evolution of the chain network. They consider that chains break



progressively with the maximum deformation imposed. More recently, Drozdov and Dorfmann (2001) con-
sidered that the macromolecular chains are composed of two kinds of bonds: the flexed and the extended ones.
When the material is deformed, the macromolecular chains extends and the quantity of bonds evolves. This
permits to represent stress-softening and permanent set but the analytical form of the model is not easily
usable for numerical problems. Marckmann et al. (2002) consider the evolution of the cross-links in the poly-
mer network during deformation. Authors studied the evolution of the network without distinguishing the dif-
ferent natures of links breakage (between chains, between fillers and chains, or internal chain fracture). Thus,
this leads to a constitutive equation well adapted to both filled and unfilled materials. More recently, Horgan
et al. (2004) used a similar approach based on chain extensibility limit to derive a constitutive model based on
the Gent (1996) strain energy density. The model is revealed hyperelastic during the first loading and pseudo-
elastic during the subsequent loading.

The aim of the present paper is to develop new constitutive models for the Mullins effect which are both
physically-motivated and well adapted for numerical problems. In this way, the network alteration theory
of Marckmann et al. (2002) is retained for its physical meaning and the strain energy densities of Gent
(1996) and Hart-Smith (1966) are considered for their mathematical simplicity and their ability to predict large
strain response of elastomers. In the next section, the Marckmann et al. (2002) model is first briefly described.
Then, a minor modification based on physical considerations of the network alteration theory is proposed.
Implementation difficulties of this approach are exhibited, different solutions to simplify it are analyzed
and are revealed not efficient. Section 3 is devoted to the derivation of two new constitutive equations. They
are based on the equivalence between different strain energy densities: the 8-chain (Arruda and Boyce, 1993),
the Gent (1996) and the Hart-Smith (1966) models. Finally, the implementation of these models in the finite
element software Abaqus is presented in Section 4. Some examples illustrates their ability to predict the
Mullins effect in elastomers.

2. The network alteration theory for the Mullins effect
2.1. Basic formulation of the Marckmann et al. model

Marckmann et al. (2002) studied the evolution of the rubber network due to stress-softening. Rubber mate-
rials are composed of long macromolecular chains connected by strong and weak links; the number of these
links is increased by the presence of fillers. When the material is stretched for the first time, some links are
broken. Thus, the Mullins effect can be explained by the evolution of the macromolecular network under load-
ing. First, the mean distance between cross-links, i.e. the mean length of chains involved in elasticity, increases.
Second, the number of chains per unit of volume decreases. Then, considering that the driving parameter of
the Mullins effect is the maximum deformation previously endured by the material, the number of chains per
unit of volume and the mean number of monomers per chain are respectively a decreasing and an increasing
function of the maximum previous deformation. Moreover, authors made an additional assumption: they con-
sider that the number of active monomers per unit of volume, i.e. monomers of chains that lie between two
cross-links and are involved in elasticity, remains unchanged under loading.

These physical considerations are introduced in the 8-chain model because the corresponding strain energy
density only depends on two material parameters which are the mean number of monomers per chain N and a
scalar proportional to the chain density C,:

W:C,N[i\c/h%‘ﬁln (Smﬁhﬁﬂ, (1)

where

p=z" (”&) and  Agpain = \/ A + 42 + 2. (2)

In this equation, .# is the Langevin function defined by #(f5) = coth(f) — 1/f and (4;),—; 3 are the principal
stretch ratios. In the approach of Marckmann et al. (2002), the material parameters depend on the maximum
deformation through exponential functions:




C.=Cypexp(—Cna) and N = Nyexp(N,a), (3)
where C,, C,1, Ng and N are the material parameters, and & is the maximum of a deformation measure o:

o =a(t) = maxo(t). 4)
7€(0,1]
As explained in Chagnon et al. (2004b), the first strain invariant /i, i.e. the trace of the Cauchy—Green strain,
can be chosen because of its ability to simply represent three-dimensional deformation conditions. The addi-
tional assumption, i.e. the number of active monomer remains constant under loading, leads to

C, =N (5)

Thus the model admits only three material parameters.

2.2. A minor modification of the model

The strong assumption which states that the number of active monomers remains unchanged under loading
is discussed in this paragraph and a more relevant assumption is proposed. During the first loading, some links
are broken in the bulk material. The nature of these broken links is not well established; nevertheless, one can
think that many weak (van der Waals) and a few strong links (covalent) are broken: the chains can break or
can be detached from fillers. Thus, new dangling chains take place. In the classical theory of rubber elasticity,
only chains between cross-links are involved in the elastic response of the macromolecular network, dangling
chains are not active in the elastic response of the material. Consequently, the number of active monomers
does not remain constant during loading: it decreases with the maximum deformation endured by the material
(Chagnon, 2003). The condition (5) which relies the material parameters in the approach of Marckmann et al.
(2002) is no longer relevant. The number of active monomers in the network is defined as the product of the
chain density by the mean number of monomers per chain and it is proportional to

C,N(&) = C,()N() €Xp [(N] — C,])&], (6)
and this function decreases if and only if Ny — C,; <0.

Finally, the new model, called M2-model through the rest of the paper, admits four material parameters
and two of them should fulfill the previous inequality. The parameters are fitted using experimental data of
Chagnon et al. (2004b): C,o = 0.0575, C,; =0.0282, Ny =4.85 and N; =0.0278. The comparison between
experimental data and model predictions are presented in Fig. 2 for both uniaxial extension and pure shear
data. Results obtained with this model are similar to those previously presented in Marckmann et al.

(2002). Nevertheless, the physical assumptions adopted for the present model are more realistic than those
proposed in the above-mentioned paper. It is to note that the mechanical response presented in Fig. 2 admits
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Fig. 3. Evolution of the material parameters of M2-model with the maximum deformation: (a) chain density (proportional), (b) chain
length (proportional) and (c) number of active monomers in the network (proportional).

an upturn for stretch ratios of about 5.8 which corresponds to the maximum stretch ratio of the experimental
database considered here. In order to improve the fit of the model, experimental data for stretch ratios greater
than 6.0 should have been available. Nevertheless, this upturn is quite interesting because it corresponds to the
maximum stretch above which the previous material parameters should not be used for numerical applica-
tions. In fact, it defines the deformation range in which Drucker convexity conditions are fulfilled.

The evolution of the material parameters as a function of the first strain invariant is shown in Fig. 3. Obvi-
ously, the number of active monomers in the network is a decreasing function of the deformation level (see
Fig. 3(c)). It is noticeable that the slope of this curve is small: only few monomers are transferred from active
to dangling chains under loading.

2.3. Limitations

In the framework of hyperelasticity, numerous forms of the strain energy density have been proposed for
many years. Nevertheless, only few of them are actually used for finite element simulations. As an example,
in the finite element software Abaqus©, the following models are implemented: Rivlin series (Rivlin and
Saunders, 1951), the van der Waals model (Kilian, 1981), the Ogden model (Ogden, 1972) and the 8-chain
model (Arruda and Boyce, 1993). More precisely, the later is not implemented under its original form but only
its fifth order series expansion is considered:

W=C, Z GE —35, (7)

where C, is a material parameter proportional to the chain density and C; are the material parameters which
only depend on the mean number of monomers per chain N. Their values are given in Table 1 up to the 10th
order series expansion. In fact, the original form of this model is not easy to use in finite element applications
because it is written in the principal strain directions and it explicitly contains the inverse Langevin function.

Table 1

Material parameters of the I;-series expansion for the 8-chain model (Arruda and Boyce, 1993)
C 1/2

G 1/20N

C; 11/1150N?

Cy 19/7000N°

Cs 519/673750N*

Cs 59991/262762500N°
e 105771/1532781250N°
Cs 3123763/148898750000N”
Co 54543778207/8577405555468750N®

Cio 74301767/38899798437500N°
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Fig. 4. Predictions of the M2-model: original formulation (—), 10th order I;-series expansion (---), fifth order I,-series expansion (- - -).
(a) Uniaxial extension, (b) pure shear.

Even if the inverse Langevin function can be replaced by approximated functions (Bergstrom, 1999; Perrin,
2000), difficulties remains unchanged. The discrepancy between analytical and series expansion formulations
is not significant for small and medium strain but it cannot be neglected for large strain.

For the original formulation, the curve admits an asymptote which corresponds with the extensibility limit
of chains; in the two other cases, the function is polynomial. So, the difference is not very significant for clas-
sical elastic computations, but for the prediction of the Mullins effect it is quite different: responses of the
Marckmann et al. and M2-models highly depend on the position of the strain-hardening part of secondary
loading curves and the evolution N is directly relied to the position of this asymptotic part of the curve. As
an example, predictions for the M2-model are performed with the original formulation and the fifth and
10th series expansions for both uniaxial tensile and pure shear loading conditions. Here, the previous values
of the material are considered and the corresponding results are presented in Fig. 4. This example reveals that
I,-series expansions are not relevant to correctly describe the stress-softening phenomenon. Fitting the model
under its /;-series forms does not lead to results as good as those obtained with the original formulation (with
the inverse Langevin function): strain-hardening parts of the response are not correctly reproduced. Thus, the
original formulation is the only one which leads to good correlation between phenomena and modelling, but it
is not ecasily usable in finite element softwares. In fact, the use of the concept of network alteration for the
Mullins effect necessitates alternative formulations; this is the aim of the following section.

3. Development of new constitutive equations

In order to avoid the difficulties due to the mathematical complexity of the original 8-chain model and the
limitations of its series expansions, different strain energy densities should be considered and associated with
the concept of network alteration. Nevertheless, this theory being based on the evolution of network param-
eters, i.e. chain density and length, relationships between the material parameters of these strain energy den-
sities and the network parameters have to be investigated. Here, the Gent and the Hart-Smith models are
examined. The former is considered because it is explicitly expressed in terms of the first strain invariant.
The later is chosen because its strain-hardening response is approached by an exponential function contrary
to both previous constitutive equations which large strain responses are defined by asymptotic functions (cor-
responding to the limit of extensibility). The Gent strain energy density is defined by

E I, -3
W=—-—J,In|1- , 8
oain 1= 173 ®
where E and J,,, are the two material parameters. The response of this model presents a similar shape as the one
of the 8-chain model: it is defined by an initial stiffness, through E, and the position of an asymptote, through
J,»» which is related to the extensibility limit of chains and reproduces the strain-hardening phenomenon at large




strain. A few years ago, Boyce (1996) demonstrated the equivalence between the 8-chain and the Gent models
by establishing the following relationships between their material parameters:

E=3C, and J,=3(N-1). 9)

So, very simple equations relate the initial stiffness E to the chain density and the maximum deformation J,, to
the mean number of monomers per chain.

A similar study was recently conducted by Chagnon et al. (2004a) to compare the /;-part of the Hart-Smith
and the 8-chain constitutive equations. The original Hart-Smith strain energy density is defined as follows:

W =C / exp {03(11 - 3)2}d11 +Cn <%2> (10)

where (C;);— 3 are the three material parameters. The parameter C, is related to the second strain invariant /,
and permits to well reproduce the stiffness change observed for moderate strain, similarly to the classical Moo-
ney (1940) theory. Here, this parameter is set to 0 in order to define /;-part of the Hart-Smith model which is
revealed comparable with the 8-chain and Gent models. The only difference between the I;-part of the Hart-
Smith model and the two other models is that its large strain response is driven by an exponential function
instead of an asymptote. Finally, this model involves only two parameters: the first one C; describes the initial
stiffness and the second one Cj the large strain response. Chagnon et al. (2004b) derived the following rela-
tionships between the parameters:

C,=2C; and CyJ% =k, (11)

with k € [2.83; 2.98]. So, similarly to the Gent model, the material parameters of the Hart-Smith model can be
related to network characteristics: C; to the chain density and C; to the mean number of monomers per chain.

Thanks to the physical meaning of material parameters involved in the phenomenological strain energy
densities of Gent and Hart-Smith, two new constitutive equations for the Mullins effect can be derived; they
are studied in the following.

3.1. A network alteration model based on the Gent strain energy density

Thanks to the constitutive equation (3) of the M2-model and to the relationships between material param-
eters of the 8-chain and Gent models (9), the alteration equations of the Gent material parameters can be eas-
ily established:

E=3Cqhexp(—Cna) and J, =3[Nyoexp(Na) — 1]. (12)

Considering the material parameters of the M2-model fitted previously, Fig. 5 presents the comparison be-
tween responses of the M2- and the altered Gent models. Even if the new constitutive equation is revealed
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Fig. 5. Comparison of the altered Gent (—) and the M2- (---) models using the same values of the material parameter: (a) uniaxial
extension, (b) pure shear.
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Fig. 6. Comparison of the 8-chain (---) and Gent (—) responses for uniaxial extension.

slightly stiffer than the M2-model for large strain, response curves of both models are quite similar. The dis-
crepancy between them is due to the fact that the equivalence relationships are only based on the initial stiff-
ness and the extensibility limit. As an example, Fig. 6 shows both elastic 8-chain (with C, =1 and N = 10) and
Gent (with £ = 3 and J,, = 27) responses under uniaxial tensile loading conditions. Both curves are superim-
posed for small strain and close to for large strain, in the neighborhood of the asymptote. But for moderate
strain they slightly differs: the Gent model is stiffer. This explains why stresses predicted with the altered Gent
model are greater than those corresponding to the M2-model in Fig. 5.

To improve the model, it is possible to directly fit the material parameters of the altered Gent model using
experimental data. Then, the evolution of parameters is considered exponential:

E=Eyexp(—E o) and J, =Ju0exp(Jm10). (13)

The following values of the parameters are obtained: Ey = 0.196, E; = 0.0384, J,,c = 12.3 and J,,;; = 0.0304.
It is noticeable that they are different than those predicted with the equivalence relationships. The corre-
sponding stress-softening model, defined by Egs. (8) and (13), is called the M3-model through the rest of
the paper.

Predictions of this model for both uniaxial extension and pure shear are in good agreement with experi-
ments as shown in Fig. 7. Results are similar to those previously obtained with the M2-model (see Fig. 2).
Finally, the evolution of network parameters, i.e. £/3, J,,,/3 + 1 and E/3 x (J,,/3 + 1) which respectively cor-
respond to the chain density, the chain length and the number of active monomers in the network with defor-
mation are presented in Fig. 8. Even if the values of the parameters differ from those of the M2-model, their
evolutions are similar. Moreover, it is shown that the number of active monomers is a decreasing function of
the maximum deformation; in fact, E| > J,,,; is a sufficient but not a necessary condition to ensure that the
number of active monomers decreases with deformation.

3.2. A network alteration model based on the Hart-Smith strain energy density

The method employed in this section is similar to the previous one which conducted to the M3-model. The
major difference rests in the fact that the equivalence relationships between 8-chain and Hart-Smith models are
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more complicated than those examined previously. Thanks to Eq. (3) and relationships between material
parameters (Eqs. (9) and (11)), the evolution of the material parameters of the Hart-Smith model is given by

C, = Czro exp(=Cna) and Cj' :%[NO exp(N,a) — 1. (14)
The corresponding mechanical (stress—strain) response of the model is identical to the one presented in Fig. 6.
Stress for large strain are overestimated due to the discrepancy observed between the 8-chain and Hart-Smith
models for moderate strain (Chagnon et al., 2004a). Thus, in order to improve the model, material parameters
should be directly determined by fitting experimental data as performed above with the Gent model. The
material functions adopted are then

C] = C]o exp(—C”&) and C3 = C30 exp(—C315c), (15)

where Cyg, C11, C3p and C3; are the material parameters. The corresponding model, defined by Eq. (10) with
C, =0 and (15), is referred as to the M4-model in the following. Values of the parameters obtained with exper-
imental data are: C;y = 0.0376, C;; = 0.0434, C37=0.0135 and C5; = 0.0515.

The comparison of this new constitutive equation with experiments for both uniaxial extension and pure
shear is shown in Fig. 9. Results are in good accordance with experiments and predictions are similar to those
of the M2- and M3-models (see Figs. 2 and 7). Finally, evolution of the network parameters, i.e. 2Cy,
Vk/9C; +1 and 2C,(1/k/9C; + 1) which respectively correspond to the chain density, the chain length
and the number of active monomers in the network, are shown in Fig. 10. It is verified that the number of
active monomers is a decreasing function of the maximum deformation: a sufficient but not necessary condi-
tion to ensure this decrease is Cy; = Cs1/2.
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4. Numerical results

The previous models are implemented in the finite element software Abaqus. Here, equations necessary for
implementation are briefly recalled, then two examples are described.

4.1. Implementation

The previous constitutive equations assume the incompressibility of the material. This assumption greatly
simplifies analytical solutions for homogeneous deformation, but it leads to major numerical difficulties such
that a quasi-incompressible approach should be adopted (Bonet and Wood, 1997). In this context, the classical
separation between isochoric and purely spherical deformation is considered (Ogden, 1984) and the strain
energy density has to be decomposed into isochoric and spherical parts:

W =W, 1)+ U(ls). (16)

In this equaztion, the isochoric strain energy W depends on the two first isochoric strain invariants (I, =/ ;%I 1
and I, = I;°,) and the spherical strain energy U is only expressed in terms of the third strain invariant /3.

Finite element implementation necessitates the determination of the elasticity tensor. Thus, the Lagrangian
elasticity tensor €" is derived thanks to the differentiation of the second Piola—Kirchhoff stress tensor S with
respect to the right Cauchy—Green strain tensor C:
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where S*° and S*™" stand for the isochoric and spherical stress tensors given by
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The two elasticity tensors €= and €~**" of Eq. (17) are nowadays well established (Bonet and Wood, 1997;
Holzapfel, 2000). The isochoric elasticity tensor depends on the choice of the isochoric strain energy. As the
M3- and M4-models only depend on the first strain invariant, the isochoric elasticity tensor reduces to
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Thus, only the two first derivatives of the strain energy density with respect to I, have to be defined to compute
this elasticity tensor. For our new models, they are given by
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with
OE _ _EOEI exp(—El&) if o= 5(, (22)
ol 0 otherwise,
GJ,,, . JmOJml eXp(‘]mlat) lf o= &7 (23)
ol 0 otherwise.
o M4-model:
ow _
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with
oc, —CyoCrexp(=Cpa) if o =2, 26)
or, 0 otherwise,
oC; | ~CaCaexp(=Cya) if =2, o)
ol 0 otherwise.

Similarly, the spherical part of the elasticity tensor is calculated after having chosen a spherical strain energy
density. Here, we adopt U(I3) = 1/2K(I5 — 1)*, K being the compressibility modulus. For the details of the cor-
responding elasticity tensor, the reader can refer to Bonet and Wood (1997).



4.2. Simple examples

First, simple experiments, i.e. uniaxial extension and pure shear tests are considered. Simulations are con-
ducted using the two new stress-softening constitutive equations, i.e. M3- and M4-models.

For uniaxial extension, a classical bone specimen is considered. Its length is equal to 20 mm, its thickness is
2mm and the central section is 4 mm large. It is meshed with linear elements in displacement. One of its
extremity is fixed and the other one is subjected to a prescribed displacement cycle. In regards with the thick-
ness, the plane stress assumption is adopted. Pure shear tests are also simulated, only a quarter of the specimen
is meshed because of the symmetries. Linear displacement elements are used. The parameter values of the pre-
vious section are adopted for the two models.

First, the strain—stress response predicted by the simulation in the central section is identical to the analyt-
ical response for both models. As demonstrated with uniaxial extension computations, greater is the stress-
softening effect, smaller is the number of active monomers in the network. Fig. 11 shows the evolution of
nN which is proportional to the number of active monomers. Obviously, stress-softening is revealed homoge-
neous in the centre of the sample and smaller in the neighbourhood of sample extremities. Similarly, numerical
predictions for pure shear exactly reproduce analytical results for both models. In Fig. 12, the number of
active monomers after a pure shear cycle is presented in a quarter of the specimen. In comparison with uni-
axial predictions, the whole sample is softened. The stiffness decrease is quasi-uniform, except near the free
edge where the deformation is different than the one in the rest of the specimen.

These two results validate the implementation of both models and illustrate the inhomogeneity of stress-
softening even in simple structures subjected to simple loading conditions. Such computations are necessary
to exhibit areas of structures in which the level of stress-softening is noticeable and then in which the stiffness
will be highly reduced for further deformation.
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Fig. 11. Evolution of the number of active monomers in the rubber network for the M3- and M4-models.
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Fig. 12. Number of active monomers in the rubber network after a pure shear cycle for the (a) M3- (b) M4-models.

4.3. An example of 3D simulation

The efficiency of the M3- and M4-models is evaluated with a more complicated problem. A diabolo sample
of 60 mm height and 30 mm diameter is considered. It is meshed with hybrid elements linear in displacement
and constant in pressure. The parameter values of the M3- and M4-models are those of the previous section.
First the sample is softened in uniaxial extension and compression for different levels of stretch. Afterwards,
torsion of 5 rad is prescribed. The aim of this example is to investigate the influence of stress-softening on sub-
sequent material response.

Fig. 13 presents the torque—angle responses of the sample for the M3-model (the results obtained with the
M4-model are similar and are not presented here). In the case of compressive pre-loading, there is no major
differences with the case without pre-loading: even if the structure is deformed, local strain are not very large
and thus the stress-softening phenomenon is not activated. For uniaxial extension pre-loading, it is shown that
the level of extension highly influences the subsequent response of the sample. Finally, for the lateral extension
which renders the pre-loaded structure non-symmetric, the structure is less softened than for uniaxial tensile
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Fig. 13. Torque-angle responses of a diabolo sample after different softening conditions: (—) no previous loading, (- --) 10 mm uniaxial
compression, (——) 30 mm uniaxial extension, (— ) 45 mm uniaxial extension, (——) 60 mm uniaxial extension, (—-) 50 mm lateral
extension.



loading conditions: a part of the central area of the sample is not softened and then the subsequent response is
revealed stiffer.

5. Conclusion

In this paper, the theory of network alteration proposed recently by Marckmann et al. (2002) has been
modified in order to take into account the occurrence of dangling chains in the network. As a consequence,
the number of monomers involved in the elastic response of the material is a decreasing function of the max-
imum deformation. This model is demonstrated to be efficient to predict stress-softening but its mathematical
formulation makes it difficult to use for numerical simulation. Then, considering that invariant formulations
are often preferred, the equivalence between some classical hyperelastic strain energy densities was used to
develop two new stress-softening constitutive equations. Their numerical abilities were demonstrated with
some examples and the influence of stress-softening on the subsequent response of rubber parts was
highlighted.
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