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Abstract 

A one-site elastic self-consistent model following the mathematical formalism introduced by 
Kroner and Eshelby (KE) has been developed in order to solve the case of multiphase materials. 
This model has been applied to duplex steels and aluminium - silicium carbide Metal Matrix 
Composites (MMC) in the aim to study the evolution of their stiffness at pseudomacroscopic scale. 
Simulations justify the usually implicit hypothesis of the identity of the elastic moduli of a given 
phase, at macroscopic and pseudomacroscopic scales. The implementation of KE model by this 
hypothesis yields a new implicit formulation for the stiffness of a given unknown phase embedded 
in a two-phases material. This original characterization method will be applied to the B-phase of Ti-
17 alloy. The singular behaviour in terms of residual pseudomacrostress of each phase after uniaxial 
loadings will be deduced from these data. 

Introduction 

Elasticity constants, Young modulus and Poisson ratio constitute fundamental data in residual stress 
analysis. They are especially essential to determine stresses from measured strains through 
diffraction means. Nevertheless, direct characterization methods of macroscopic elastic moduli 
should generally be applied to single-phase samples. It explains why the elastic constants of phases 
stable at high temperature of numerous two-phases materials are often not well known. 
a+B titanium or zirconium alloys illustrate this property [1]. It will be demonstrated in the 
following that the combination of ultrasonic and mechanic tests to micromechanical self consistent 
simulation models provides the calculation of these constants under precise but justified conditions. 

1- Multi-phase one site self consistent elastic scheme 

1- 1 Study of pseudomacroscopic stiffness in multi-phase materials. In order to solve the case 
of multi-phase materials, one will easily extend the fundamental hypothesis of Kroner and Eshelby 
single-phase self consistent model [2] . Let us consider a given a-phase embedded in a multi-phase 
polycrystal. It has been demonstrated in [3] that the pseudomacroscopic stiffness tensor Ca of this 
phase was given by the relation : 

c a =(ca(Q).A(Q))a .. (A(Q)):' (Eq. 1) 
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Where co:(Q) denotes a phase single crystal elastic stiffness referred to a sample fixed coordinate 
system whose orientation is given by Q. A(Q) symbolize the fourth order strain localization tensor 
expressed by : 

A(Q)= [E .. fa(Q)-C }+ IJ
1 

(Eq. 2) 

I is the identity tensor, C the elastic modulus of the homogeneous equivalent multi-phase 
polycrystalline medium. E denotes Hill's tensor which depends on C value and on the morphology 
assumed for the crystallites [ 4]. One could express C as an average on each phase i of the material : 

(Eq. 3) 

a-phase pseudomacroscopic stiffness is quite different from the expression obtained in the single
phase material, which could be obtained assuming that a grains are embedded in a homogeneous 
equivalent medium with stiffness equals to co: instead of C in (Eq. 1-2) : 

(Eq. 4) 

Differences observed between (Eq.1) and (Eq. 4) are explained by the influence on co: of the other 
phases elastic properties, through the value of C and thus, of E. The multiplier term 

(A(Q )) :
1 

= ([E .. fa (n )- C }+I J1
) ~~ might be considered as a deviation factor corresponding to the 

average interaction between a-crystallites and the infinite equivalent medium. In consequence, in a 
multi-phase material, the nature and the proportion of the other phases forming the polycrystal 
should affects the average elastic properties of a given a-phase. As a result, the 
pseudomacrostiffness of a given phase might not be identified to its macroscopic stiffness, when it 
is integrated in a n-phases material. 

1-2 Justification of the assumption of stiffness identity for a phase at macroscopic and pseudo 
macroscopic scales. Numerous simulations have been done in the aim to quantify two-phases 
effects on pseudomacroscopic stiffness. Let us consider the results obtained in the cases of two 
usually encountered materials presenting interesting properties (cf Table 1) : 

duplex steels, whose two phases are constituted by strongly anisotropic single crystals 
but present similar macroscopic elastic behaviours. 
Aluminium - silicon carbide MMC, present strong elastic pseudomacroscopic 
heterogeneities and one phase whose single crystal is quasi-isotropic (aluminium). 

Although pseudo-macro-stiffness varies with the nature and the volume fraction of the other phase, 
the bulk modulus K of each phase remains perfectly constant at pseudomacroscopic scale. It is well 
known that K values are, since it is an invariant of the stiffness tensor, identical in single crystal 
(mesoscopic scale) and in cubic structure single phase polycrystals (macroscopic scale). In 
consequence a variation of the bulk modulus would not be physically acceptable. Results obtained 
satisfy this criterion. This confirms the numerical validity of the model developed which implies the 
deviation of pseudo macro stiffness values in order to assure the consistence criterion. 
Table 1 demonstrates that pseudo macro stiffness components deviation due to secondary phase 
interactions remains weak and, in most case, negligible. Two-phase influence is particularly weak, 
when the single crystal of the phase considered is almost elastically isotropic (AI), or when the two 
phases have similar macroscopic mechanical properties (duplex steels). 
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In consequence, this study justifies the usually implicit hypothesis of the identity of the stiffness of 
a given phase, at macroscopic or pseudomacroscopic scale, whatever the nature of the 
polycrystalline aggregate in which it is embedded. 

Table 1: Two-phase influence on pseudomacrostif{ness values[3] 
Pseudo-macro stiffness tensor components and bulk moduli calculated in the case of Al-SiC MMC 
f(Al) -0.00 0.25 0.50 0.75 -1.00 
C 11(Al) [GPa] 112.2 112.2 112.1 112.1 112.1 
CJ2(Al) [GPa] 59.3 59.3 59.3 59.3 59.4 
K_{Al) [GPa] 76.9 76.9 76.9 76.9 77.0 
C11(SiC) [GPa] 437.7 434.2 430.8 428.1 426.7 
C!2(SiC) [GPa] 97.6 99.4 101.1 102.5 103.2 
K (SiC) [GPa] 211.0 211 .0 211.0 211.0 211.0 
Pseudo-macro stiffness tensor components and bulk moduli calculated in the case of Al-SiC MMC 
f(Fea) -0.00 0.25 0.50 0.75 -1.00 

C 11(Fea) [GPa] 281.0 281.1 281.2 281.2 281.2 

C!2(Fea) [GPa] 112.9 112.8 112.8 112.8 112.7 

K(Fea) [GPa] 168.9 168.9 168.9 168.9 168.9 

C11(Fey) [GPa] 250.6 250.8 251.1 251.3 251.5 

Cn(Fey) [GPa] 97.9 97.8 97.7 97.6 97.5 

K(Fey) [GPa] 148.8 148.8 148.8 148.8 148.8 

2- Determination of the elastic macroscopic constants of a phase embedded in a multi-phase 
material 

2 - 1 Kroner and Eshelby model implementation. Let us introduce the hypothesis justified in the 
previous paragraph in the formalism of the self consistent model. One would demonstrate that this 
assumption yields a new expression of the elastic properties of an unknown phase embedded in a 
multiphase material. In fact, the stiffness tensor of the studied phase will be given as a function of 
the elastic constants of the polycrystal and of the other phases. Now, let us assume that the 
macroscopic elastic constants of a n-phases polycrystal are known, just as those of n-1 phases. For 
example, the phases { 1, 2, ... , i, ... , n-1 } whose volume fractions are respectively denoted by { f1

, 

f, ... , r, ... , f"'1 
}. The implicit equation (Eq. 3) may be developed as an terms summation: 

C=fnCn .. [E .. (Cn -C)+IJ
1 

+ ~fiCi .. [E .. (Ci -C)+IJ
1 

i=l 
(Eq. 5) 

The stiffness tensor of the unknown phase denoted by n verifies another implicit equation : 

(Eq. 6) 

In the point of view of KE model, this assumption leads to represent a n-phases material under the 
form of n single phase inclusions embedded in an infinite homogeneous medium. The elastic 
properties of the matrix are the same as those of the multi-phase polycrystal and satisfy the equation 
(Eq. 5) in which one will assume the elastic constants of a given phase i identical to the stiffness of 
the pure single phase i. 

2 - 2 Application to the determination of Ti-17 P-phase macroscopic elastic constants. In the 
case of titanium alloys, the presence of alloying elements may provide the stabilization at room 
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temperature of a certain volume fraction of the ~ phase. It is difficult to obtain a single phase 
polycrystal of~ through thermo-mechanical treatments in order to characterize its elastic properties. 
Any variation in the fractions of the different alloying elements modifies the nature of the alloy and 
in consequence, the mechanical properties of the B-phase [5]. Thus, it is necessary to measure the 
elastic constants of the unknown phase directly on the a+~ two-phases polycrystal. For the study of 
this kind of material, our model is based on the following equation deduced from (Eq. 6) : 

(Eq. 7) 

The application of this equation implies that the pseudomacroscopic mechanical behaviour of a
phase is perfectly determined. This behaviour will be identified to a single phase polycrystal elastic 
moduli. The macroscopic stiffness tensor C of the polycrystal is also needed. The corresponding 
information is contained in the Young modulus Y and the Poisson Ratio v of the two-phase 
material. As a result, only these parameters should be precisely measured in the case considered. 
This method has been applied in order to determine the macroscopic stiffness tensor of Ti-17 P
phase. This alloy is constituted by 70% in volume of hexagonal a-phase and 30% of body centered 
cubic f3-phase. a-phase macroscopic elastic constants have been calculated from its single crystal 
stiffness (given in Table 2) through a single phase scale transition model according to (Eq. 4). The 
results are given in Table 3. 

Table 2 : a-Ti single crystal elastic constants[ 6 ]. 
c11 [GPa] c12 [GPa] C13 [GPa] C33 [GPa] C44 [GPa] c66 [GPa] 

162.4 92.0 69.0 180.7 46.7 35.2 

Table 3: Ti-17 a-phase macroscopic elastic constants calculated through KE model. 
C11 [GPa] C12 [GPa] Y [GPa] v 

165.1 78.4 114.6 0.322 

Samples have been machined in order to perform to tensile and ultrasonic tests. The Young 
modulus of Ti-17 polycrystal has been determined from the slope of the tensile curve obtained. The 
ultrasonic longitudinal waves celerity CL depend on the elastic constants of the material as follow : 

(Eq. 8) 

Where p represents the density of the material. 
Its Poisson ratio satisfies the following equation obtained from eq. 8 : 

(Eq. 9) 

Density, Young's modulus and ultrasonic longitudinal celerity of the Ti-17 have been precisely 
determined. The Poisson ratio has then been deduced : 

p = 4644 ± 7 kg/m3 Y = 110.0± 2.2 GPa CL = 6040 ± 11 m/s v = 0.340 ± 0.005 

Ti-17 density is quite similar to pure titanium density, which is announced to 4510 kg/m3
, according 

to [7]. The difference observed is obviously explained by the alloying elements contained in Ti-17. 
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In the same way, weak discrepancy between the Young moduli of Ti -17 and a-Ti (3 .5%) is due to 
the high volume fraction of a-phase in Ti-17. 

C11 and C12 components of the multi-phase polycrystal stiffness tensor could easily be deduced 
from Y and v: 

vY-Y 
ell =--2---

2v +v-1 
C =- vY 

12 2v 2 +v -1 
(Eq. 10) 

The macroscopic elastic properties of the multi-phase Ti-17 polycrystal and those of the Ti-17 B
phase (calculated from Eq. 7, 10) are summarized in Table 4. 

Table 4: macroscopic elastic constants ofTi-17 and Ti-17 ~phase polycrystal. 

Ti-17 polycrystal 
C11 [GPa] C12 [GPa] Y[GPa] v 

169.4± 4.2 87.4± 3.9 110.0± 1.6 0.340 ± 0.005 

Ti-17 J3-phase 
C1, [GPa] C12 [GPa] Y[GPa] v 

183.0± 12.6 111.0± 13.0 99.3±6.9 0.377 ± 0.015 

From the experimental deviation on the constants measured in the alloy, the errors on B-phase 
Young modulus and Poisson ratio have been quantified. They have been respectively estimated to 
7% and4%. 
The elastic constants of a and B phases in Ti-17 deviate from about 15%. Thus, they present an 
elastic mechanical behaviour quite similar. In the point of view of the multi-phase influence, the 
case of Ti-17 could be compared to the case of duplex steels. This remark a posteriori justifies the 
assumption of stiffness identity at pseudomacroscopic and macroscopic scales for any phase of the 
material. The weak elastic anisotropy of a-phase single-crystal is another argument justifying this 
hypothesis. 
The analyze is based on the assumption of mechanical macroscopic and pseudomacroscopic 
isotropy. But, the method could be extended to the case of textured material if the ODF and the 
macroscopic elastic anisotropy are taken into account. 

3 - Simulation of residual pseudomacrostresses after tensile uniaxial loading 

A self consistent elastic-plastic model has been developed in the aim to simulate the average 
residual stresses undergone by each phase of Ti-17 alloy submitted to macroscropic loadings 
corresponding to small plastic strains. Figure 1 details the curves obtained. It shows that Ti-17 alloy 
exhibit a singular behaviour in terms of pseudomacroscopic residual stresses. Pseudomacrostress 
sign inversion constitutes an original property. In fact, a-phase presents a Young modulus higher 
than B-phase modulus. Consequently, when the strain is purely elastic, the axial stresses are in 
tension for a phase and compressive for B phase. However, as P phase remains elastic at small 
plastic strains [8], it becomes harder than a-phase during plastic deformation. Thus, axial residual 
pseudomacrostresses signs change during plastic deformation. 
Usually, the softer phase presents the lower elasticity limit, that's why it keeps a tensile axial 
residual pseudomacrostress whatever the plastic strain level. At the opposite, the harder phase has 
often the higher elasticity limit, thus, it keeps a compression axial residual pseudomacrostress 
whatever the plastic strain rate. The case of pearlitic steels illustrates this classical property of two
phases materials [9]. 
Figure I : Ti-17 macroscopic stress-strain curve and deviation between longitudinal 
pseudomacrostresses and macrostresses simulated at small plastic strain rates. 
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A three scales self consistent model has been developed in the aim to take into account the effects 
of the other phases on the pseudomacroscopic elastic moduli of a given phase. Numerous 
simulations have been done in particular in the cases of duplex steels and aluminium - silicon 
carbide MMC. The numerical results justify the assumption of the identity of the 
pseudomacrostiffness with the macroscopic stiffness of the pure single phase. The implementation 
of the self consistent model with this supplementary criterion yields a new implicit equation leading 
to the determination of the pseudomacroscopic stiffness of an unknown phase embedded in a multi
phase material, from the elastic properties of the polycrystal and ot the other constituents. This 
original method has been applied to the characterization of Ti-17 ~-phase macroscopic elastic 
properties. These data allowed to predict the average residual stresses in each phase of Ti-17 alloy. 
Moreover this study provides the values necessary to determine of Ti-17 ~-phase X-Ray Elastic 
Constants and single crystal elastic constants. 
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