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In this study, the computation of the traction-torsion-bending behavior of single-walled carbon nanotubes (SWCNTs) 
is investigated. A structural mechanics model is used to describe the response of the nanotube; the atomic interactions 
are represented with 3D beams. Nanotubes are slender structures, taking benefit from their axial periodicity or helical 
symmetry. Homogenization theory is used to obtain their overall beam behavior from the solution of basic cell problems. 
These problems are solved through a finite element approach and involve concise models, whatever the SWCNT type. 
The computed results show that the bending beha-oior appears to be decoupled from the axial one and independent of 
the moment direction. Young's and shear moduli are derived, and it is shown that the Young's moduli are very close 
in traction and bending. Comparisons with the data in the literature reveal good agreements. Finally, scale effects 
are studied, and the moduli of the SWCNTs are compared to those of the graphene, thus demonstrating mechanical 
sensitivity to curvature. 

KEY WORDS: SWCNTs, homogenization, helical symmetry, periodic stntctures, Young's modulus, shear modulus 

1. INTRODUCTION 

Carbon nanotubes (CNTs) can be described as lengthy nanostructures (with nanometer diameters and micrometer 
lengths) of connected carbon atoms forming straight tubular atomic bond networks. Since the single-walled carbon 
nanotubes (SWCNTs) were discovered by Iijima in 1991, they have been the focus of considerable interest in scien­
tific communities. Such great attention is due in particular to their remarkable electrical, thermal, and also mechanical 
properties, such as strength and stiffness. Therefore, CNTs have been involved in numerous recent research studies 
dealing with low-weight structural nanoreinforced composite materials, nanorobotics, and nanoengineering develop­
ments. 

Such CNT applications require a sharp knowledge of their mechanical response. Therefore, the determination of 
elastic moduli of SWCNTs has been the subject of much research, including experimental techniques and modeling 
and numerical approaches, e.g., the review papers Qian et al. (2002), Srivastava et al. (2003), and Rafii-Tabar (2004). 
Of the modeling approaches, the main categories which can be found are ab initio, molecular dynamics, tight-binding 
molecular dynamics, and continuum mechanics. The latter involves a structural mechanics approach and continuum 
shell modelling. The results obtained from these different approaches will be exposed and discussed in the present 
paper. 
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NOMENCLATURE 

Ao cross-section area kr bond stretching force constant 
aJ:l.~m 
~J 

coefficient stiffness of graphene sheet ke bond angle bending force constant 

Dapprox. approximate nanotube diameter k.._ torsional resistance 
Dexact,D exact nanotube diameter M,N chiral nanotube index 
dR highest common divisor of (M + 2N, 2M+ N) o<c-c Nb number of hexagons in the axial 
Egraphite equivalent Young's modulus of graphene sheet cell of a nanotube 
EE Ec1 macroscopic strain components of Scell graphene basic cell surface 

' ' Ec2 ET 
' extension, bending, and torsion T length of axially periodic structures 

E~wCNT' 
EswcNT' 

equivalent Young's and t nanotube equivalent wall thickness 

GswcNT shear moduli of an SWCNT u displacement field 
Eu E22 

plane macroscopic strain and shear strain macroscopic variables ' ' Xi El2 

e slenderness ofthe structure Yi microscopic variables 
F,M1, macroscopic axial force, bending 
M2,M3 moment, and torque Greek Symbols 

Ggraphite, equivalent shear modulus and Poisson exe-c interatomic distance 
'Ygraphite ratio of graphene sheet in the ( 1 ,2) plane 6.r bond stretching increment 
Io moment of inertia of the cross-sectional area 6.ex bond angle change 
Jo polar moment of inertia of the cross-sectional 6.4> angle change ofbond twisting 

area E. ratio of the period length to the 
Khom 

BB' 
Khom bending stiffness total length of the structure c1c1' 
Khom 

c2c2 
Khom tensile stiffness a chiral angle EE 
Khom torsion stiffness II strain energy TT 
Khom 

ET coupling tension-torsion stiffness (J" stress tensor 

The objective and contribution of the present study is to propose a computational homogenization approach. In 
the first step, and following a discrete description of such tubular atomic networks, the SWCNTs are modeled as 
space-frame structures, using straight 3D beams representing the car~on atomic covalent links. The choice of this 
modeling approach- instead of an atomistic model-is justified because of the use of a homogenization theory which 
was initially developed in a structural mechanics framework. Moreover, the coupling of this homogenization theory 
and a solution approach such as the finite element method is very easy, and in the literature, numerical applications 
appear to be limited, especially in the case of nanotubes. By applying this homogenization procedure based on the 
asymptotic expansion method, the overall mechanical beamlike behavior is derived from the solution of basic cell 
problems, taking benefit from the repetitive hexagonal atomic bonds patterns. These problems are solved through a 
finite element (FE) approach, which involves very concise axial or helical basic cell FE models for the computation 
of the tension-torsion-bending, beamlike behavior of SWCNTs. This approach was performed in a previous work by 
Messager and Cartraud (2008), where the study was restricted to the axial behavior of armchair and zigzag SWCNTs. 
In this paper, the latter approach is applied to SWCNTs of arbitrary chirality. Moreover, in addition to the overall axial 
behavior (traction and torsion), the bending behavior is also investigated. Once the overall beam behavior is known, 
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an axial Young modulus can be derived from its axial or bending behavior, and a shear modulus from the torsional 
stiffness. The traction and bending Young's moduli are compared. Finally, the results are processed by performing 
comparisons with the stiffness of the graphene sheet in order to evaluate the scale effects related to diameter size and 
their evolution with the chirality. 

In Section 2 this paper presents the geometrical description of SWCNTs, detailing the covalent link network and 
diameter calculation. In Section 3 the overall mechanical elastic response of the SWCNT is introduced, relating the 
macroscopic strain components and loadings. Next, a briefbibliography survey details the approaches devoted to the 
determination of the SWCNT mechanical properties, as well as results obtained from analytical, computational, and 
experimental techniques. Next, Section 4 describes the developed homogenization procedure and its corresponding 
numerical FE implementation. The results obtained from this approach, for the SWCNT elastic behavior, are presented 
in Section 5. They are expressed in terms of beam stiffnesses (traction-torsion-bending) or material moduli and for 
several chirality types, and are compared with literature data. The study of the scale effects is discussed next. Finally, 
concluding remarks are given in Section 6. 

2. NANOTUBE DESCRIPTION 

The single-walled carbon nanotubes (SWCNTs) are rolled-up tubular shells of graphene sheet. The latter is a plane 
sheet of carbon atoms where interatomic links form a hexagonal pattern as schematized in Fig. 1; this hexagonal 
pattern is repeated periodically, leading to the binding of each carbon atom to three neighboring atoms with covalent 
bonds. These covalent bonds are strong chemical links and play a major role in the impressive mechanical properties 
of graphite, and of all carbon-related nanostructures. 

The single-walled carbon nanotubes (SWCNTs) can be viewed as a graphene sheet that has been rolled into a 
cylinder of radius R by joining the two points 0 and 0', represented in Fig. 1. The atomic structure of a nanotube 

~ 

depends on the chirality, which can be represented by the chiral vector 00', expressed as a linear combination of the 
unit translational vectors in the hexagonal pattern 

~ 

00' = M . iiM + N . iiN' (2.1) 

where aM and iiN are the basic vectors of the hexagonal pattern, and the positive integers M and N are the chiral 
~ 

index numbers. The corresponding chiral angle 9 depicted in Fig. 1 is the angle between the chiral vector 00' and 
the basic vector (iiM + liN ) and is defined as follows: 

SWCNTaxis 

FIG. 1: Plane sheet of graphene with SWCNT ( 4,2) chiral parameters 
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( 
M-N ) 

e =arctan (M + N) v'3 . 

The SWCNTs can be classified as follows: 

(1) armchair, when N = M, leading toe= 0°; 

(2) zigzag, with N = 0, inducing e = 30°; 

(2.2) 

(3) chiral, where N f:. 0 and N f:. M, thus leading to oo < e < 30° when M > N, and -30° < e < 0 when 
M<N. 

As discussed in Sections 3.1 and 3.2, an SWCNT exhibits a beamlike behavior. Therefore, since the objective is 
to derive material parameters such as Young's and shear moduli from this beamlike behavior, the definition of the 
geometrical properties of the SWCNT's cross section should be studied carefully. The interatomic links between the 
carbon atoms represented in Fig. 1 remain straight in the rolled-up tubular geometry of an SWCNT. Consequently, the 
cross section of a nanotube is polygonal, which is obvious for cross sections with small diameters, as shown in Fig. 2. 
For a polygonal section (see Fig. 2), it is possible to define an exact diameter Dexact as the ratio of its circumference 
to the number 7t. The value of this diameter is found by solving the following nonlinear equation: 

(
cxc c cos e) (exc _ c cos (!f -e)) (cxc _ c cos (21 +e)) 

(M +N) arcsin D +M arcsin D 3 +N arcsin D 3 
= 7t. 

exact exact exact 
(2.3) 

However, an approximation for SWCNT diameters can be found in the literature [e.g., Tserpes and Papanikos (2005), 
Barros et al. (2006)], which is assumed to be circular by using the relation 

D - 00' - exe-c V (M2 N2 MN) approx. - -- - -- 3 + + . 
7t 7t 

(2.4) 

Figure 3 illustrates the variation of the SWCNT diameters for the three series of chiral nanotubes with respect to 
the chiral index M. Moreover, it illustrates the comparison between the exact diameter Dexact and its approximation 
Dapprox .. It can be observed that the polygonal section for a large diameter is similar to the circular section. 

Finally, the multiwalled carbon nanotubes (MWCNTs) are composed of sets of coaxially situated SWCNTs of 
growing radius (Dresselhaus et al., 2001 ). CNTs can be depicted as lengthy cylinders with nanometer diameters and 
micrometer lengths. In the present study we are interested by their overall mechanical behavior, without taking into 
account the end effects. 

Polygonal section 

Zigzag (5,0) 

Circular section 
(approximation) 

//~~, 
I \ 

I ' 

( ) 
\ ! 
\ ,. 
\ I 
\~ / 

-~ 
Zigzag (20,0) 

FIG. 2: Cross-sectional of (5,0) and (20,0) CNTs 
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, ...,._ arrrchair (M. M) I 

15 20 

M 

FIG. 3: Variation of the CNTs diameter with the chiral index M 

3. OVERALL MECHANICAL PROPERTIES 

3.1 SWCNT Beam Properties 

25 

Several approaches have been discussed in the literature to compute the overall elastic mechanical properties ofSWC­
NTs. In most of them, the properties are derived from the study of a structure consisting of a large part of the nanotube 
(Li and Chou, 2003). 

Since the nanotube is a slender structure, it is expected to behave as a beamlike structure. This result can be 
justified by the asymptotic expansion method, which is a classical approach in the framework of continuum mechanics 
[see Trabucho and Viaii.o (1996), which is a major reference in this field]. This method has been used for various 
applications in the literature [see Dallot et al. (2009) for limit analysis of periodic beams, or Boutin and Hans (2003, 
2008) and Moustagh:fir et al. (2007) for studying their dynamics]. Another method is proposed in Geers et al. (2007), 
in which the overall beam behavior is asswned, and then the localization problem is formulated on the representative 
volume element. 

In this work the asymptotic expansion method is used, and it will be proved in Section 4.2 that the macroscopic 
behavior corresponds to an anisotropic Navier-Bemoulli beam theory, as shown in Fig. 4. Hence, the macroscopic 
beam behavior (including traction, bending, and torsion) of the nanotube can be expressed under the following form: 

F KEhoEm Khom Khom KEhoTm EE 
EC1 EC2 

Ml Khom Khom Khom Khom Ec1 
= [Khom] {E} = CtE c1c1 c1c2 C1T 

(3.1) 
M2 Khom Khom Khom Khom EGa C2E c2c1 c 2ca C2T 

M3 Khom 
TE 

K hom 
TC1 

Khom 
T C2 

Khom 
TT 

ET 

where [Khom] is symmetric and the Ktom ( i, j = E, cl I c2, T) matrix terms are the homogenized stiffness coeffi­
cients, relating the axial force F , the bending moments M1o M2 , and the torque Mz (represented in Fig. 4) to the 
overall strain components of extension, curvature, and torsion noticed in E E , Ec1 , EGa, and ET (Cartraud and 
Messager, 2006). 

However, most of the time in the literature, the SWCNT elastic properties are given under the form of the Young 
and shear moduli. Therefore, in order to derive from the beam the stiffness matrix of Eq. (3 .1) equivalent elastic 
moduli, one has to consider the SWCNT as a solid cylinder. The geometrical properties of this cylinder of diameter 
Dexact [see Eq. (2.3)] are denoted A0 for its cross-sectional area, Io for its moment of inertia, and Jo for its polar 
moment of inertia. Then, one can define the equivalent traction Young's modulus E~wcNT by 

Khom 
ET _ EE 
SWCNT-~· (3.2) 
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FIG. 4: Loading and displacements of a e3-axis beam! ike structure 

Since we will prove later that K~~c1 = K~~c2 , the bending Young's modulus is defined by 

Khom 
EB c1c1 

SWCNT = f o (3.3) 

Similarly, the shear modulus of SWCNTs is obtained using the following relation: 

G 
K~'Tm 

SWCNT= ~· (3.4) 

The problem is now to define the geometrical characteristics A 0 , ! 0 , and J0 , and it raises the question of the definition 
of thickness of the cylinder. We share the point of view of several authors (Huang et al. , 2006 and Tu and Ou-Yang, 
2008), according to which we cannot define the wall thickness in a unique way. Huang et al. (2006) have investigated 
the effective wall thickness of the graphene sheet and SWCNTs from interatomic potential. They found that SWCNTs 
have a thickness ranging from 0.06 to 0.09 nm, and it depends on the type of loading. Tu and Ou-Yang (2008) listed 
three methods to find the wall thickness of SWCNTs. The first one is around 0.07 nm, derived from continuum shell 
modeling. The second one is about 0.14 nm, calculated from molecular dynamics. The third one is equal to 0.34 nm, 
which is the interlayer spacing of the graphene sheet. In the following, we use this latter value, as did Dresselhaus et 
a!. (200 1) and Li and Chou (2003 ). 

3.2 A Brief Literature Survey 

Many experimental and numerical studies were performed to obtain the elastic moduli of SWCNTs and the graphene 
sheet. 

Numerous experimental investigations on the mechanical properties of carbon nanotubes can be cited. Krishnan 
et al. (1998) found that the average value of Young's modulus is 1.3 TPa for 27 SWCNTs by measuring thermal 
vibrations using transmission electron microscopy. In order to determine the elastic properties from deflection versus 
force measurements, a technique of atomic force microscopic was used by Salvetat et al. ( 1999); they reported that the 
Young's modulus of SWCNT is 1 TPa. Due to the difficulty in experimental techniques arising from the very small 
size of SWCNTs, to the best of our knowledge, there is no report on the measured values of the shear modulus of 
carbon nanotubes. 

Some research works are based on numerical atomistic modeling approaches to investigate the mechanical prop­
erties of carbon nanotubes. The atomistic approaches include the ab initio method, density functional theory (DFT), 
atomistic molecular dynamics (MD), and tight-binding molecular dynamics (TB). 

The ab initio is a simulation method to directly solve the complex quantum many-body Schrodinger equation 
using numerical algorithms. Current ab initio simulation methods are based on a rigorous mathematical foundation 
of the DFT. The Young's modulus and Poisson's ratio have been computed using an ab initio method by Van Lier et 
al. (2000); the corresponding values found are 1.14 TPa and 0.11 , respectively. The MD refers most commonly to the 
situation where the motion of atoms or molecules is treated in approximate finite difference equations of Newtonian 
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mechanics (Wenxing et al., 2004; Agrawal et al., 2006). Atomistic studies of SWCNTs can find the surface Young's 
modulus of the nanotube, which is the product of Young's modulus and nanotube thickness t. The TB is based on the 
combined use of features in ab initio and MD. For example, Zhang and Dumitrica (2008) obtained an effective wall 
thickness equal to 0.08 run and a Young's modulus of around 5.2 TPa. Lu (1997) calculated the Young's modulus 
of SWCNTs and the graphene sheet, subjected to axial strain, to be around 0.974 and 1.02 TPa, respectively. The 
elastic moduli for SWCNTs are shown to be insensitive to nanotube diameter and chirality because an empirical pair 
potential was used. However, Hernandez et al. (1998), by employing a nonorthogonal TB theory, showed the evolution 
of the Young's modulus with nanotube diameter and chirality and gave an average value of 1.24 TPa. It was found 
that the Young's modulus is noticeably dependent on the nanotube diameter, as the tube diameter is small Gupta and 
Batra (2008) have used molecular mechanics to study the free vibrations of the relaxed configuration of an SWCNT 
to calculate the elastic properties of SWCNTs. Gupta et al. (2005) calculated the elastic moduli by applying pressure 
along the tube axis using the Tersoff-Brenner potential. 

In the literature, the elastic moduli of carbon nanotubes has also been studied in the framework of continuum 
mechanics. These approaches replace discrete molecular structure with continuum models. In Odegard et al. (2002), 
a nanotube carbon is modeled by many truss members. Such approaches appear to be more efficient from a computa­
tional point of view. Using the harmonic potential, Li and Chou (2003) and Tserpes and Papanikos (2005) presented 
a structural mechanics approach to model the deformation of SWCNTs, described as geometrical space-frame struc­
tures. Young's and shear moduli have been calculated by applying tensile force and torsional moment, respectively, 
on one end and fixing the other end. Using the same approach, To (2006) derived the Poisson ratio from the traction 
response. Their results show that SWCNTs' mechanical properties depend strongly on tube diameter and weakly on 
chirality. Assuming a wall thickness equal to that of graphene (0.34 run), they found an average value of Young's and 
shear moduli of 1.04 and 0.48 TPa, respectively. Using a similar approach, by incorporating a modified Morse poten­
tial, Meo and Rossi (2006) calculated the Young's modulus of the SWCNTs and the graphene sheet by modeling the 
interactions between the atoms with linear and torsion springs. In order to compute their Young's modulus, all degrees 
of freedom of the one extremity were restrained while a displacement was imposed in the opposite extremity. On the 
other hand, Kalamkarov et al. (2006) derived the elastic properties of SWCNTs by modeling the carbon nanotubes 
as a continuum shell using the asymptotic homogenization method. Their elastic properties were investigated under 
the action of pure tension and pure torsion. Chang et al. (2005) and Natsuki et al. (2004) used an analytical molecular 
structural mechanics approach to study the mechanical properties of a carbon nanotube subjected to axial loadings. 
In their work, analytical expressions for the elastic moduli and Poisson ratio of SWCNTs have been deduced as a 
function of the nanotube diameter. Using an analytical molecular structural mechanics approach, Xiao et al. (2006) 
studied the elastic properties of SWCNTs under radial pressure. By combining the methods of molecular mechanics 
and continuum mechanics, Wu et al. (2006) derived the elastic response of armchair and zigzag SWCNTs and the 
graphene sheet by considering an SWCNT as a thin cylinder subjected to an axial tension loading or torsion load­
ing. The tube thickness used in their work is equal to 0.258 run. For a given tube diameter, the Young's modulus for 
armchair nanotubes is stiffer than for zigzag nanotubes. However, the shear modulus for zigzag nanotubes is slightly 
larger than that for armchair nanotubes. 

The results of the overall elastic mechanical behavior of the SWCNTs and the graphene sheet are summarized in 
Tables 1 and 2 for the different cited works found in the literature. 

In Table 1, note that the values of the Young's modulus depend on the tube wall thickness t. The smaller the wall 
thickness, the higher the Young's modulus calculated. The Young's modulus and the wall thickness t ofSWCNTs are 
not well-defined physical quantities, as mentioned previously in Section 3.1. However, the surface Young's modulus 
has the same value. Thus it is a better-defined quantity than the Young's modulus and the tube wall thickness as 
reported in Tu and Ou-Yang (2008) and Huang et al. (2006). 

4. COMPUTATIONAL HOMOGENIZATION METHODOLOGY 

In this paper, the homogenization theory is applied to determine the overall behavior of CNTs. In the first step, the 
mechanical response of the nanotube is modeled by using a structural mechanics approach with beams linking the 
neighboring atoms. 
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TABLE 1: Comparison of traction Young's modulus, shear modulus, and Poisson ratio results for different values of 
wall thickness 

Authors Method 
Elastic moduli and wall thickness 

t E'fwcNT GswcNT 'V 

(nm) (TPa) (TPa) 

Numerical or theoretical studies 

Lu (1997) MD 0.34 0.974 - 0.28 

Hernandez et al. (1998) TB 0.34 1.24 - -
Van Lier et al. (2000) Ab-initio 0.34 1.14 - 0.11 

Odegard et al. (2002) Equivalent continuum modeling 0.69 - - -
Li and Chou (2003) Structural mechanics 0.34 1.038 0.48 -
Natsuki et al. (2004) Molecular structural mechanics 0.34 1.1-0.73 0.86-0.55 0.27 

Pantano et al. (2004) Continuum shell modeling 0.075 4.75 - -
Chang et al. (2005) Molecular structural mechanics 0.34 1.06 - 0.16 

Gupta et al. (2005) Hydrostatic pressure 0.34 1.223 0.3281 -
Tserpes and Papanikos (2005) Structural mechanics 0.34 1.05 0.485 

Agrawal et al. (2006) MD 0.34 0.73-0.82 - -
Kalamkarov et al. (2006) Asymptotic homog. model 1.29 1.44 0.27 -

Structural mechanics 0.68 0.97- 1.05 0.14--0.47 -
Meo and Rossi (2006) Structural mechanics 0.34 0.92 - -
To (2006) Structural mechanics 0.34 1.03 0.47 -
Xiao et al. (2006) Molecular structural mechanics 0.34 1- 1.2 - 0.16 

Wu et al. (2006) Molecular mechanics 0.258 1.06 0.418 0.27 

Zhang and Dumitrica (2008) TB 0.34 1.26 0.455 0.38 

Gupta and Batra (2008) Molecular mechanics 0.34 0.93- 1 0.38-0.44 0.19 

Experimental studies 

Krishnan et al. ( 1998) Thermal vibrations 0.34 1.3 ± 0.4 - -
Salvetat et al. (1999) AFM 0.34 1 - -

TABLE 2: Young's modulus, shear modulus, and Poisson's ratio values for graphene 

Researchers Thickness Young's modulus Shear modulus Poisson's ratio 
(nm) (TPa) (TPa) 

Lu (1997) 0.34 1.02 - 0.16 
Van Lier et al. (2000) 0.34 1.11 - -
Chang et al. (2005) 0.34 1.06 - 0.16 
Caillerie et al. (2006) 0.34 0.82 - 0.26 
Huang et al. (2006) 0.0678 3.58 - 0.397 
Reddy et al. (2006) 0.34 1.11 - 0.25 
Wu et al. (2006) 0.258 1.06 0.418 0.27 
Meo and Rossi (2006) 0.34 0.945 - -

4.1 Modeling of the Atomic Interactions 

As mentioned earlier, CNT carbon atoms are bonded together with covalent bonds forming a hexagonal lattice. These 
bonds have a characteristic length and direction angle expressed in a 3D basis. Therefore, the total deformation of 
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the nanotube is the result of the interactions between these bonds. As previously performed in Qian et al. (2002), the 
atomic interactions are described using a relation between molecular and structural mechanics. Thus, the nanotubes 
are assumed to behave as space frame structures (Li and Chou, 2003). 

From the viewpoint of molecular mechanics, CNTs may be regarded as large molecules consisting of carbon 
atoms. The general expression of the total potential energy is the following sum of energies due to the valence of 
bonded interactions and nonbonded interactions (Rappe et al., 1992): 

" 
Utota.l = L Ur + L Ua + L U4> + L Uw + L Uvdw, (4.1) 

where Uris the energy due to bond stretch interaction, Ua is the energy due to bending bond angle variations, U4> is 
the energy due to the dihedral angle torsion, Uw is the energy due to out-of-plane torsion, and Uvdw is the energy 
due to nonbonded van der Waals interactions. 

For the covalent bond, the main contributions to the total energy come from the first four terms of Eq. ( 4.1) 
(Rappe et al., 1992). Moreover, under the assumption of small deformation, the harmonic approximation is adequate 
for describing the energy (Liu et al., 2006). By adopting the simplest harmonic forms and merging dihedral angle 
torsion and out-of-plane torsion into a single equivalent term, we get for each energy term 

1 2 1 2 
Ur = 2kr (r- ro) = 2kr (~r) 

1 2 1 2 
Ua = 2ke (!X- !Xo) = 2ke (~oc) , (4.2) 

1 2 
U-r = U4> + Uw = 2k-r (~<!>) 

where kr. ke ,and k-rare the bond-stretching force constant, bond angle-bending force constant, and torsional resis­
tance, respectively, and the symbols ~r. ~oc, and~<!> represent the increment of the bond stretching, the bond angle, 
and the angle of bond twisting, respectively. It is important to notice that these ki parameters are actually constant 
because of the choice of harmonic energies. 

The interactions between the atoms are modeled using Bernoulli's 3D linear beams, whose stiffness is defined 
in such a way that the beam strain energy is equal to the potential energy due to atomic interactions. The length 
of the beam corresponds to the interatomic distance IXC _ c, i.e., 0.1421 nrn. According to the theory of classical 
structural mechanics (Li and Chou, 2003), a direct relationship between the structural mechanics parameters, the 
tensile resistance E A, the flexural rigidity E I, the torsional stiffness G J , and the molecular mechanics parameters 
kr, ke, and k-r is deduced as follows: 

EA - k 
- T! 

!Xc- c 
_E_ = ke, 
occ-c 

and _!!_!___ = k-r . 
!Xc-C 

(4.3) 

In the present model, for the kr. k9 , and k-r constants, the values of6.52 x w-7 N nm- 1, 8.76 x w-10 N nm rad- 2 , 

and 2.78 x 10- 10 N nm rad- 2 taken from Cornell et al. (1995) have been, respectively, adopted. 
Since CNTs may be represented as a lattice structure with a linear elastic behavior and a regular microstructure, 

the objective is now the description of the homogenization process in order to obtain their effective properties. 

4.2 Homogenization Theory 

The starting point of the homogenization theory is the 3D elastic problem posed on the nanotube which is modeled as 
a space frame structure. The nanotube is a slender structure and has a periodic structure along its axis. Therefore, the 
elastic problem exhibits two small parameters: e, which corresponds to the slenderness ofthe structure, and e. , which 
represents the ratio of the length of the axial period to the total length of the structure. These two parameters are of 
the same order of magnitude and tend to zero simultaneously, thus allowing use of the asymptotic expansion method 
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with one small parameter (Buannic and Cartraud, 2001). The displacement solution of the elastic problem is searched 
as follows: 

(4.4) 

where Xi are the macroscopic variables of the problem related to the global axis system (e1 ; e2 ; e3 ) (see Fig. 5). The 
microscopic variables are defined as follows : 

(4.5) 

The functions 'Uk ( x 3 , y 1 , y2 , y3 ) are periodic in variable y3 (the length of the cell Y at the microscopic scale, see 
Fig. 5), which are denoted Y3 periodic in the following equation: 

(4.6) 

In Eqs. (4.4), (4.5), and (4.6), the 3D elasticity problem splits into a sequence of3D microscopic problems, posed 
on the axial basic cell, and lD macroscopic problems, providing the overall nanotube response. Only the main results 
of the method are reported here; for more details see Buannic and Cartraud (200 1 ). 

The solution of the leading order (first-order) microscopic elastic problem is expressed by 

(4.7) 

where fh denotes f) I fJx3, u§ and <P 1 are the macroscopic axial displacement and rotation, and u~ is the transverse 
displacements (see Fig. 4). 

From the previous solution, the data of the next order (Oth order) of microscopic problem are the macroscopic strain 
components of extension (EE ) , curvatures (Ee 1 and E e2 ), and torsion (ET), which are given by (833 denoting 
fJ2 I fJx~) 

E E(x3 ) = fJ3u§(x3) 

Ee 1 (x3) = fJ331t~ (x3 ) 

E e2 (x3) = fJ33ug(x3 ) 

ET (x3) = 83 <P 1 (x3) 

(4.8) 

The leading-order macroscopic problem is obtained from the compatibility conditions of the first-order microscopic 
problem. This problem generalizes and justifies the Euler-Bemoulli-Navier's model. The macroscopic behavior which 
is involved in this beam problem is obtained from the solution of the previous Oth-order microscopic problem, which 
we call the basic cell problem. 

Beam like-structure 

axial period helical period 

FIG. 5: Periodic helical structure and the corresponding basic cell 
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The numerical implementation of the basic cell problems using FE software appears to be very easy. The data 
corresponding to a macroscopic strain are imposed through a set of linear relationships relating displacement com­
ponents of the opposite nodes (situated on the+ and- sides) (Cartraud and Messager, 2006; Messager and Cartraud, 
2008): 

Ut - U1- = Y3 (y3E01 - Y2ET) 

Ut - Ui = Y3 (y3Ee2 
- Y1ET) 

Ui- U:; = Y3 (EE- Y1Ee1 - Y2Ee2 ) 

et - 81 = Y3Ee1 

et - 82 = Y3Ec2 

et -83 = Y3ET 

(4.9) 

where Y3 = (y;t + Y3)/2, Yoc. = Y! = y;_, and where the superscript- and+ denotes the two parts ay- and 8~+ 
respectively, of the period boundary concerned with periodicity conditions (see Fig. 5). 

Considering the expression of the total strain energy, 

II = - cr · e dy = -1 J y3 
2 . 2 (4.10) 

""lr. 

the homogenized stiffness coefficients Ktom can be deducted afterward from different combination sets of strain 

components. K~'Em is thus obtained by applying EE = 1 and Ee1 = Ee2 = ET = 0; K~~c1 is obtained by 
applying Ee1 = 1 and EE = E 0 2 = ET = 0, etc. 

The homogenized beam behavior ofthe nanotube (i.e., the matrix [Khom] coefficients) can thus be computed from 
the solution of these basic cell problems posed on its axial period. The geometrical description of this axial period is 
given in the Appendix. 

The homogenization theory can be seen as an optimal method to derive the effective nanotube properties. Instead 
of considering a large part of the nanotube submitted to mechanical tests, the analysis actually involves only an axial 
period. This process can be applied one step further, in the case where the loadings of the basic cell problem fulfill 
helical symmetry, which is encountered for traction and torsion. Thus it is possible to define a reduced helical basic 
cell as depicted in Fig. 5. 

In the case of SWCNT, the periodicity in the plane of the graphene sheet, characterized by the two translation 
vectors aM and aM - aN, leads to two helical symmetry properties for the nanotube. The definition of a reduced unit 
cell with the aim to minimize the computational domain has been addressed in several papers (e.g., Barros et al., 2006; 
Dumitrica and James, 2007; Zhang and Dumitrica, 2008), where it is shown that a two-atom reduced unit cell can be 
used in the case of an atomistic framework. Since in this work interatomic interactions are modeled with a structural 
mechanics approach, the basic cell is composed of three interatomic bonds. 

The definition of our helical basic cell is shown in Fig. 6, associating two couples of opposite nodes (m+ , m-) 
and ( n +, n- ) on a half-hexagon. From this helical basic cell, "A/ e. denoting its axial length, the initial periodicity 
property defined in Eq. (4.5) now becomes 

k ( - ) _ k ( _ 2nL "A) + u r, e ' Y3 X ei = u r, e + T' Y3 + £ X ei ' (4.11) 

then expressed in the local cylindrical coordinates (i = r, 9, 3) (Messager and Cartraud, 2008). Thus, one can define a 
problem posed on this helical basic cell oflength "A/ e to compute the axial properties of an SWCNT. Denoting ui- (as 
typed above) and U/ the degrees of freedom expressed in the local cylindrical frames ( e;:; e9 ; et ) and ( e-:; et; et ) 
of the opposite nodes (m+ , rn- ) and (n+ , n- ) of the FE model (see Fig. 6), the linear relationships corresponding to 
a given axial macroscopic strain are 
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FIG. 6: Helical basic cell of an SWCNT 

u:- ur- = 0 

ut-u;=rl\Erj£ 
u: - u:; = l\EE 1£ 
e;t- e; = o 
et- e9 = o 
8j-83=l\ET/E 

(4.12) 

These relationships are expressed in the local cylindrical frames represented in Fig. 5. It is possible to check that 
these relations derived from the helical symmetry properties expressed in Eq. (4.11) are consistent with the objective 
molecular dynamic formulation (Dumitrica and James, 2007; Zhang and Dumitrica, 2008). The strain energy is given 
by 

(4.13) 

and is used to compute the axial homogenized behavior of the nanotube. 

5. NUMERICAL RESULTS AND DISCUSSION 

5.1 Stiffness of a Graphene Sheet 

In the first step, the overall properties of a graphene sheet are calculated. The aim is twofold. It first enables us to 
compare the overall material properties identified from the homogenized beam properties of the nanotube to those 
of the graphene sheet. It also allows validation of the homogenization approach used for the nanotube, since it is 
expected that for large diameters, the overall material properties of the nanotube tend to be similar to those of the 
graphene sheet. 

In this section, the effective properties of the graphene sheet correspond to an overall plane stress behavior. There­
fore, the classical homogenization theory for periodic media is used (Bendsoe, 1989), the macroscopic strain being a 
constant in the basic cell. 

The periodic basic cell of the plane graphene sheet can be obtained from the repetition of a half of a hexagon, 
using the two translation vectors aM and aM - aN. These vectors actually allow switching from the carbon atom 
denoted n1 to the carbon atom nt, and in the same way allow switching for the couple n2 and nt atoms, as shown 
in Fig. 6. 

Therefore, the basic cell reduces to these four atoms, which are represented by nodes in the finite element model 
with Bernoulli's beam element between them, according to the structural mechanics modeling approach described in 
Section 4.2. 
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The effective properties of the graphene sheet are deducted from the solution of the 2D basic cell problem. The 
data of this problem is a macroscopic strain, with three components denoted E 11 , E 22, and E 12 associated to the 
extensions and shear in the plane, respectively. The corresponding deformed shapes are presented in Fig. 7. 

The overall strain energy II of the graphene is given by 

E22 2 E12 } [ahom] { ~~~ } , 
2 E12 

(5.1) 

where Been is the basic cell surface and [a hom] is the matrix of coefficients stiffness in plane stress: 

(5.2) 

Based on classical properties ofhomogenization theory ofperiodic media, e.g., Lene (1984), this matrix is symmetric. 
Moreover, due to the hexagonal symmetry of the basic cell, it is shown that the 2D homogenized behavior is isotropic 
(Lene, 1984). 

Using this method, the numerical results for [ahom] are in very good agreement with the isotropy property of the 
overall behavior; the terms ( a13 , a23, ag1, a32) of the matrix are actually negligible compared to the others, and the 
relation 2a33 = an - a22 is fulfilled by the numerical results. From these results, and with the thickness t taken as 
the interlayer spacing of the graphene sheet, i.e., 0.34 nm [see Dresselhauss et al. (2001)], the homogenized material 
properties ofthe graphene sheet are found to be Egraphite = 1.0482 TPa, Ggraphite = 0.49 TPa, and 'Ygra.phite = 0.06. 

As can be seen from Table 2, several authors have calculated the Young's modulus of graphene sheet to be around 
1 TPa for a wall thickness equal to 0.34 nm. The Young's modulus of a graphene sheet has been computed using 
an ab initio method by Van Lier et al. (2000) as 1.11 TPa. Using a continuum mechanics approach based on Brenner 
potential, Reddy et al. (2006) calculated the Young's modulus of graphene to be around 1.11 TPa and the Poisson ratio 
to be around 0.25. Caillerie et al. (2006), using a discrete homogenization technique, calculated a Young's modulus 
and Poisson ratio for graphene sheet equal to 0.82 TPa and 0.26, respectively. From TB simulations, Hernandez et 
al. (1998) calculated the Young's modulus of graphite to be about 1.02 TPa. Chang et al. (2005) gave graphite a 
Young's modulus value of 1.06 TPa using an analytical molecular structure mechanics model. Using the modified 
Morse potential, Meo and Rossi (2006) calculated the Young's modulus of graphene sheet to be around 0.945 TPa. 

The results for the Young's and shear moduli presented in our study are consistent with the data reported in the 
literature (see Table 2). However, the results are different for the Poisson ratio--the value obtained in this work is 
lower than the Poisson ratio calculated by Caillerie et al. (2006), Reddy et al. (2006), and Huang et al. (2006). The 
difference between the results of the present work and those coming from other numerical studies results from the use 
of different potentials. 

5.2 Overall Axial Stiffness of SWCNTs 

In this section, the homogenization theory described in Section 4.2 is applied for the determination of the axial 
behavior of SWCNTs. In this case, the helical symmetry property can be taken into account, and the traction and 

Basic cell Traction Shear 

\ 

·10 
\ 

I 
j _,) 

I .r 

/ 
.... 

FIG. 7: Computations of the elementary plane cells 
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torsion homogenized properties are computed, i.e., three terms of the symmetric matrix in Eq. (3.1): K~E;m, K!J!Tm, 
and Khom _ Khom 

ET - ET · 
In the following, zigzag, armchair, and SWCNTs or arbitrary chirality are considered. Thanks to helical symmetry, 

the basic cell reduces to four atoms only, as depicted in Fig. 8, but contrary to the case of the graphene sheet, the basic 
cell is not plane. The homogenization computations are performed from the linear relationships of Eq. ( 4.12). 

First, the homogenization theory is validated by comparison with the reference results obtained in Tserpes and 
Papanikos (2005). In this reference the homogenized properties of the nanotube are computed from the analysis of 
a nanotube which includes a large number of atoms. Along with the results given in Tserpes and Papanikos (2005), 
mechanical tests are also performed in our study on a macroscopic finite element model [see Fig. 8(a)] solved with 
the commercial code Samcef. The macroscopic properties of the nanotube are identified from its response. The results 
given in Table 3 for the axial stiffness show that our results are in very good agreement with those reported in this 
reference for three different nanotube geometries: (8,8), (14,0), and (11,5). The results for Samceflarge FE models 
are also given. The homogenized stiffness in torsion can also be validated using the same approach [see Messager and 
Cartraud (2008)]. 

Next, the study of the tensile, torsion, and the coupling coefficients stiffness evolutions of ( M, 0) zigzag, ( M, M) 
armchair, and (M, N) chiral SWCNTs was performed from the solution of the helical basic cell problem. The corre­
sponding variations of axial stiffness components with regard to the nanotube diameter Dare presented in Figs. 9(a) 
and 9(b). The tensile stiffness is proportional to D, and the torsion coefficient evolutions are found to follow nearly 
cubic dependences on D. Furthermore, the tensile and torsion coefficients' stiffnesses depend weakly on the chiral 
angle. Moreover, the coupling coefficients for zigzag and armchair nanostructures logically vanish due to the axial 
symmetry, i.e., K~Tm = K¥£m = 0. For chiral SWCNTs, the results given in Fig. 9 correspond toM ~ N, which 
yields a chiral angle 0 ~ 9 ~ 30°. In this range, the coupling coefficients stiffness is maximum fore = 15°, as shown 
in Fig. 9(c). Moreover, it has been checked that K~'Tm(a) = -K~'T( -9). 

5.3 Bending Stiffness of SWCNTs 

In order to complete the determination of the homogenized beam properties of the SWCNTs [see Eq. (3.1 )], its bending 
behavior has to be considered. In that case, due to the loading mode discussed in Section 4.2, the helical symmetry 

TABLE 3: Tensile stiffness coefficients of(8, 8), (14, 0), and (11, 5) SWCNTs 

K~Em(w-6 N) 

(8,8) (14,0) (11,5) 

Microscopic FE 1.216 1.215 1.239 

Macroscopic FE 1.216 1.215 1.24 

Macroscopic FE (Tserpes and Papanikos, 2005) 1.217 1.215 1.24 

large '[' e~ 

M3~ 
r ~V'Y~i.'VVI 

10 j 

' 

' ' 

I~l 

I 'J. 

~· ~;+i);~. /7' •. ·- - ··•ei 

microscopic 

FIG. 8: Present FE models: (a) macroscopic model of the SWCNT (14, 0) and (b) helical basic cell. 
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FIG. 9: Traction (a), torsion (b), and coupling traction-torsion (c) stiffness evolutions of zigzag, armchair, and chiral 
SWCNTs. 

properties cannot be used. Thus, the basic cell is defined from the axial periodicity property of the nanotube. The 
geometric description of this axial period is given in the Appendix. 

The FE model of this cell was generated thanks to a Matlab macro developed for armchair, zigzag, and chiral 
nanotubes. In the following, the chiral indices were chosen of the form (M, M/2), (M, M/3), and (M, M/4). The 
case (10, 5) is presented in Fig. 10(a). From the axial basic cell, the homogenization theory described in Section 4.2 is 
implemented, which consists oflinear relationships between two opposite nodes of the basic cell [see Eq. (4.8)]. Since 
the traction-torsion properties are already known from the results of the previous section, seven new computations need 
to be performed to obtain the whole symmetric four-by-four matrix given in Eq. (3.1). The deformed shape obtained 
for a macroscopic curvature Ec2 is presented in Fig. lO(b ). 

Similar to the overall axial behavior, the results for the bending stiffnesses were checked by comparison with 
the macroscopic FE model response solved with Samce£ Based on the results of the homogenization problems, it is 

FIG. 10: Axial basic cell for chiral nanotube (10,5) (a) in the initial configuration and (b) submitted to a macroscopic 
curvature Ec 2 • 
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found that in all cases the bending behavior is uncoupled from traction and torsion. Moreover, the bending behavior 
is isotropic, since K~~c1 = K~~c2 and K~~c2 = 0. The latter result is in agreement with those of the macroscopic 
model, from which the curvature of the nanotube is independent of the bending moment direction. 

Thus, the homogenized SWCNT beam behavior is of the form 

[ 

Khom 
EE 

[Khom] = 

+sym. 

Khom] ET 
0 
0 . 

Khom 
TT 

(5.3) 

The bending stiffness evolutions of (M, 0) zigzag, (M, M) armchair, and (M, N) chiral SWCNTs for increasing 
nanotube diameters were then studied. The variation of K1a with regard to nanotube diameter Dis presented in 
Fig. 11. The bending coefficient evolutions follow nearly cubic dependences on D and are weakly dependent on the 
chiral angle. 

The results of the analysis of the overall mechanical behaviors of different nanotubes are summarized in Table 4. 

TABLE 4: Overall mechanical behavior of SWCNTs 

Tube 

Zigzag (5,0) 

(8,0) 

(15,0) 

(20,0) 

Armchair (5,5) 

(8,8) 

(14,14) 

(20,20) 

Chiral (6,3) 

(8,4) 

(14,7) 

(20,10) 

-"' e . 
c: .... 

'1' 
Q .... -E 

~~ 

4 

3,5 

3 

2,5 

2 

Dexact 
(nm) 

0.3982 

0.63079 

1.1773 

1.56848 

0.68222 

1.08789 

1.901066 

2.71484 

0.62592 

0.83217 

1.45269 

2.074 

I • 
! lt. 

Khom 
EE 

(10-6N) 

0.402909 

0.67876 

1.3039 

1.74594 

0.76017 

1.21628 

2.12849 

3.04071 

0.68997 

0.92378 

1.62265 

2.32026 

I 
arrrchair (M, lVI) : 

chiral (M, M'2) 

- chiral (M. M'3) 

x chiral (M. M'4) 

• zigzag (M. 0) 

1,5 i -graphite 

1 ~ 
' 

0,5 

0 

0 0,5 1 

Khom 
TT 

{lo-2s N .m2) 

0.080825 

0.328 

2.1524 

5.0979 

0.380353 

1.63858 

8.97866 

26.321733 

0.297449 

0.725923 

3.99252 

11.71585 

1,5 2 2,5 

D (nm) 

Khom 
ET 

Khom 
BB 
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3 3,5 

FIG. 11: Bending stiffness evolutions of zigzag, armchair, and chiral SWCNTs 
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5.4 Equivalent Young's Modulus of SWCNTs 

Once the overall beam behavior of the nanotube has been obtained, its equivalent Young's modulus can be defined 
from the traction or bending stiffuess, the bending behavior being isotropic [see Eq. (5.3)]. 

If the stiffuess in traction is used, i.e., the first term on the diagonal in Eq. (5.3), the Young's modulus is given by 
Eq. (3.2) with Ao = 7t.Dexact·t, hence: 

Khom 
ET EE 

SWCNT = D · 
1t exactt 

(5.4) 

Otherwise, from the bending stiffness-second or third term on the diagonal-the Young's modulus is provided by 
the ratio of this stiffness to the moment of inertia of the cross-sectional area. Using for this moment of inertia the 
expression proposed in Wang and Varadan (2005), one obtains 

Khom 
EB - BB 

SWCNT- (D )3 · 
exact t 

1( 2 

(5.5) 

In Eqs. (5.4) and (5.5), the geometrical properties are calculated with the approximation t « D exact· However, the 
true justification of these expressions is different. Our aim is the comparison of the SWCNT material properties with 
the graphene 2D plane-stress homogenized behavior, which are proportional to the sheet thickness t. Therefore, as the 
value of this thickness is not well established, it is important to use expressions which are also proportional to t for 
the geometric properties of the SWCNT cross section. In the same way, the value of the thickness is the same as the 
one used in Section 5.1, i.e., t = 0.34 nm. 

Next, the scale effects for SWCNTs are studied through the evolution of traction and through bending Young's 
moduli as a function of the exact diameter. The results are shown in Fig. 12. To perform comparisons, the graphene 
equivalent modulus value (obtained in Section 5.1) has also been displayed. As seen in Fig. 12, for both the traction 
and bending Young's moduli, as the diameter increases, their values converge to the homogenized Young's modulus 
ofthe graphene sheet, i.e., 1.048 TPa (see Section 5.1). The nanotube traction Young's modulus is very close to the 
homogenized value ofthe graphene sheet, the difference being less than 5% [see Fig. 12(a)]. For the nanotube bending 
Young's modulus, these differences reach 10% for diameters between 0.5 and 1 nm but are less than 3% if the diameter 
is greater than 1 nm. 

It can also be seen that for a given diameter, the traction and bending Young's moduli are maximum for the 
armchair configuration and minimum for the zigzag one. The same results were obtained in Kalamkarov et al. (2006), 

1,055 ··-·······----------------·-·········-----·----------------- j t = 0,34nm ~ ' 1,06 

1,05 1,05 -- 1,045 l. 1,04 

l. 1,04 1,03 j--+-annchair {M, M) I 
~ 

1-+-annoh~'(M, M)l ~ - 1,035 - 1,02 i ---chiral {M, M/2) .... 
1,03 --+-chiral {M, M/2) ~ i3 1,01 __.,_chiral {M, M/3) 

~ 1,025 -chiral {M, M/3) ·. ~ 
~chiral (M, M/4) (I) I __ ,, ... (M, M/4) I (I) 1 

.... 1,02 ~ 
-.+-zigzag (M, 0) UJ LU 0,99 

I 1.015 ---w-zigzag (M, 0) i - - - - graphite 0,98 
1,01 

1 - - - -graphite 
1,005 0,97 

0 0,5 1,5 2 2,5 3 0 0,5 1,5 2 2,5 3 

D (nm) D(nm) 

(a) (b) 

FIG. 12: Variation of Young's modulus of different types of SWCNTs with tube diameter compared to the graphite 
value (a) from the traction stiffness and (b) from the bending stiffness. 
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Giannopoulos et al. (2008), Wu et al. (2006), Chang et al. (2005), Li and Chou (2003), and Tserpes and Papanikos 
(2005). 

In order to compare the nanotube traction and bending Young moduli, the ratio EfwcNrl E'fwcNT is studied 
as a function of the diameter and the nanotube chirality (see Fig. 13). For diameter values greater than 0.5 nm, the 
difference is less than 2%. Therefore, within an accuracy of 2%, the nanotube You.ng's modulus can be derived 
indifferently from its overall traction or bending stiffness. 

Thus, we are led to propose the following approximation: 

E B ,...,ET "'E SWCNT,...., SWCNT,...., graphite, (5.6) 

which will be more accurate for large-diameter values. 

6. EQUIVALENT SHEAR MODULUS OF SWCNTS 

The shear modulus of SWCNTs is computed from its overall stiffness in torsion. So the polar moment of inertia of 
the cross section has to be defined, and once again (see the previous section), the expression used for this geometric 
property is proportional to the graphene thickness t. Thus, the shear modulus is defined as 

G K}j.9J? 
SWCNT = 3 · 

27[ ( De;act) t 

(6.1) 

The variation of the SWCNT shear modulus as a function of the tube diameter and chirality is illustrated in Fig. 14. The 
shear modulus value for graphene is also recorded. The shear modulus behaves similarly to the Young's modulus in 
that it increases with increasing tube diameter. Moreover, for large diameters, the shear modulus becomes insensitive 
to tube diameter and converges to the graphene sheet value 0.49 TPa. However, for small diameters, for example 
diameters less than 1.5 nm, the shear modulus exhibits a stronger dependence on the diameter than that ofthe Young's 
modulus. In contrast to Young's modulus results for a given tube diameter, the shear modulus for zigzag nanotubes 
is slightly larger than that for armchair nanotubes. Similar variations of the shear modulus with regard to diameter 
and chirality have been obtained by Tserpes and Papanikos (2005) and Li and Chou (2003) for armchair, zigzag, and 
chiral SWCNTs. 

To summarize, for a variation of the tube diameter between 0.5 and 3.0 nm, the shear modulus of both types 
of SWCNTs varied from almost 0.445 to 0.495 TPa compared to the graphene sheet value of 0.49 TPa. Hence the 
following approximation resulted, which is a stronger approximation than Eq. (5.6) proposed for the Young's modulus: 

E:wcNT 
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FIG. 13: Variation of Young's modulus from the tensile and bending stiffness 
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FIG. 14: Variation of shear modulus of different types of SWCNTs with tube diameter compared to the graphite value 

6.1 Comparison with Literature Data 

From the previous results, it can be claimed that the homogenization method has been validated. It has actually been 
checked that the homogenized stiff.nesses agree with those obtained from a macroscopic model (see Table 3) and 
that equivalent moduli of the SWCNTs tend to be similar to those of the graphene sheet as the diameter increases. 
However, it is interesting to compare our results to those reported in the literature. 

Our computational results and corresponding tendencies are comparable with those obtained from theoretical and 
experimental studies discussed in Section 3.2 and detailed in Tables 1 ~nd 2. Our results are in very good agreement 
with those given by theoretical approaches, as can be seen in Hernandez et al. (1998), Li and Chou (2003), Tserpes 
and Papanik:os (2005), Kasti (2007), Chang and Gao (2003), Xiao et al.(2006), and To (2006). The Young's and 
shear moduli variation was in the range of 1- 3%, which can be considered negligible. However, in the works ofMeo 
and Rossi (2006), Giannopoulos et al. (2008), Zhang and Dumitrica (2008), Natsuki et al. (2004), and Agrawal et 
al.(2006), this variation reaches 8- 14%. The reason for this difference could be found in the different potentials used. 

Furthermore, the Young's modulus evaluated in the present work is in good agreement with the experimental 
results (see Table 1) reported in Krishnan et al. (1998), and Salvetat et al. (1999). As mentioned in Section 3.2, 
difficulty still exists in experimental techniques which measure the torsion response of nanotubes. 

Figures 12 and 14 show an increase in Young's and shear moduli with increasing tube diameter. These values 
converge with those of a graphene sheet for large diameter, as demonstrated in Sections 5.4 and 5.5. Based on structural 
mechanics, Li and Chou (2003), Chang et al. (2005), Tserpes and Papanikos (2005), Meo and Rossi (2006), To (2006), 
and Xiao et al. (2006) found similar variation trends of Young's and shear moduli of SWCNTs with those diameters. 
Moreover, Hernandez et al. (1998) and Zhang and Dumitrica (2008), using TB simulations, also showed an increase in 
elastic moduli with increase in diameter for small diameter and a quasi-constant evolution for large diameter. We also 
note that the reverse trend, i.e., a decrease in elastic moduli with diameter, has been noted [see for example, Srivastava 
et al. (2003), Natsuki et al. (2004), and Agrawal et al. (2006)]. 

7. CONCLUSIONS 

This work devoted to the computation of the overall elastic mechanical properties of SWCNTs is based on the ho­
mogenization theory. In contrast with most computational approaches reported in the literature where large models 
of the nanotube are computed, this rigorous mathematical approach enables us to detennine the overall behavior of 
these periodic structures by using microscopic FE models with a reduced number of degrees of freedom. The bending 
stiffness is thus deducted from an axial basic cell model. Moreover, taking benefit from the two helical symmetries 
formed by the hexagonal patterns representing the atomic bonds, the mechanical axial behavior can be obtained using 
a very concise FE model representing a halfhexagon. 
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The calculus of SWCNT mechanical properties performed, inducing very reduced computational times, demon­
strated that our reduced FE models lead to equivalent elastic moduli comparable to those obtained from other complex 
modelling techniques. Armchair. zigzag. and chiral SWCNTs were included in the investigation. 

The overall beam behavior of the SWCNT was found to be diagonal, except for a traction-torsion coupling for 
chiral nanotubes. Moreover, this study demonstrated the isotropy of the flexural behavior. From these results, equiv­
alent material moduli were defined, and it was shown that the difference between the traction end bending Young's 
moduli is very small and tends to zero as the diameter increases. 

It appears that for medium and large diameters (more than 1 nm), these Young and shear moduli are very close 
to those of a graphene sheet, both in axial and bending loadings. In that way, the corresponding stiffness can be 
deduced from the simple analytical Bernouilli-beam formula. By contrast. this work has shown scale-effects for small 
chiral index nanotubes; the equivalent moduli are sensitive to diameter-about 7% reduction with respect to graphene. 
Armchair nanotubes proved to provide slightly higher values of Young's modulus and lower values of shear modulus 
than zigzag nanotubes for small diameter values. 

The developed homogenized approach will be applied soon to the computation of multiwalled carbon nanotubes 
using basic cell FE models integrating the effects of the interwall nonlinear forces of van der Waals. Moreover, our 
work will focus next on improvement of the microscopic behavior representation of the carbon atomic interactions 
and will evaluate the influence of geometric nonlinearity due to large displacements. 
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APPENDIX 
. --+ 
In the plane of the graphene sheet, the nanotube axis is orthogonal to 00'. Therefore, the nanotube axis aligns to the 
translational vector 

(A.l) 

where t 1 and t 2 are related to the chiral indices: 

{ 
t1 = (M + 2N)/dn 
t2 =-(2M+ N)/dR ' 

(A.2) 

dR being the highest common divisor of (M + 2N, 2M + N). For the SWCNT (M = 4, N = 2) example shown in 
Fig. 1, we have dR = 2, and the axial periodicity translation was found to beT = 4aM - 5aN. For armchair and 
zigzag chiral tubes, we obtain general forms for this translation vector representing the axial periodicity: for annchair 
(M, M). T = aM - aN. while for zigzag SWCNTs (M, 0) it is iiM- 2aN. The axial cell ofSWCNT is delineated 

by the vectors Tand 00' (see Fig. 1). The area of the nanotube axial cell can be easily calculated as a vector-product 
ofthese two vectors (Mintmire and White, 1995): 

lloo' 1\ rll = v'3 Ccxc-c)
2 

(M
2 + M.N + N 2

) /dR. (A.3) 

By dividing this product by the area of the axial cell of a graphene layer, 

!raM 1\ aNJJ = VJ(OCc-c)
2 /2, 

one can get the number ofhexagons in the axial cell of a nanotube (Barros et al., 2006): 

Nb = 2(M2 + M N + N 2
). 

dR 
The length of the translational vector is given by 

T = 3cxc- c JM2 + N2 + MN. 
dR 

An example of an axial period of chiral SWCNT is presented in Fig. 10. 

(A.4) 

(A.5) 

(A.6) 
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