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Definition of a new predictor for multiaxial fatigue crack 
nucleation in rubber
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b LAMEFIP, Ecole Nationale Supérieure d’Arts et Métiers, 33405 Talence, France
From an engineering point of view, prediction of fatigue crack nucleation in automotive rubber parts is an essential 
prerequisite for the design of new components. We have derived a new predictor for fatigue crack nucleation in rubber. It is 
motivated by microscopic mechanisms induced by fatigue and developed in the framework of Configurational Mechanics. 
As the occurrence of macroscopic fatigue cracks is the consequence of the growth of pre-existing microscopic defects, the 
energy release rate of these flaws need to be quantified. It is shown that this microstructural evolution is governed by the 
smallest eigenvalue of the configurational (Eshelby) stress tensor. Indeed, this quantity appears to be a relevant multiaxial 
fatigue predictor under proportional loading conditions. Then, its generalization to non-proportional multiaxial fatigue 
problems is derived. Results show that the present predictor, which is related to the previously published predictors, is 
capable to unify multiaxial fatigue data.
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1. Introduction

The last decade experienced major advances in the development of finite element tools for the simulation of
a wide range of industrial rubber parts. The corresponding studies were mainly motivated by the need to
improve time and cost efficiencies in the automotive industry; they are especially devoted to anti-vibration
systems (AVS) such as vibration isolators, structural bearings, . . . . While actual simulation tools satisfactorily
predict stress and strain histories of rubber parts under service loading conditions, the use of these results to
estimate the fatigue life of components remains a critical issue.

As emphasized by Mars and Fatemi (2002), two approaches are generally adopted to define the end-of-life
of rubber parts: crack nucleation and crack growth approaches. While crack growth approach has been
extensively investigated since the pioneering work of Rivlin and Thomas (1953), less attention has been given
to crack nucleation approach despite its simplicity (see Mars and Fatemi, 2002 and the references herein).
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In fact, the latter is advantageous to predict the spatial distribution of fatigue life in ideal parts, i.e. without
macroscopic defect, as it relates the fatigue life to the history of quantities defined at material points in the
sense of continuum mechanics. Therefore, this approach can be used during the product development process
in order to reduce the number of fatigue experiments.

In the industrial context, AVS end-of-life is defined by a significant decrease in their mechanical stiffness.
Previous studies showed that this decrease can be correlated with the number of cycles required to cause the
appearance of a crack of a certain size (Cadwell et al., 1940; Fielding, 1943; ASTM, 1994; Mars, 2001). Thus,
experimentally, both stiffness decrease and crack occurrence can be used to define samples end-of-life. In order
to relate experimental measurement of the end-of-life with numerical results, a relevant continuum mechanics
quantity should be defined. Then, for given loading conditions, the numerical values of this quantity are
plotted against the end-of-life, i.e. number of cycles to failure, to obtain the so-called Wöhler curve. This
mechanical quantity is referred to as a predictor through the rest of the paper. Then, a fatigue life criterion can
be obtained by comparing this predictor with its critical value, i.e. its experimental value at end-of-life for a
given material.

In our opinion, a relevant predictor should fulfil the following conditions:
(i)
 it should be written in terms of continuum mechanics quantities rather than fracture mechanics quantities
in order to predict the spatial distribution of fatigue life in each particle of a rubber body without
macroscopic defect (see above),
(ii)
 its formulation should be motivated by the physical phenomena observed during fatigue crack nucleation
experiments. Thus, the microscopic mechanisms representative of fatigue damage should be considered to
derive the predictor,
(iii)
 it should be theoretically well formulated,

(iv)
 it should be easily implementable into finite element softwares without requiring excessive running time.
Finally, in order to validate the theoretical derivation, the multiaxial ability of the predictor has to be
demonstrated: for different loading conditions (for example uniaxial tension, equibiaxial tension, torsion,
shear, ...), the predictor should be able to unify experimental end-of-life data, i.e. the corresponding Wöhler
curves have to be superimposed.

The aim of the present paper is to develop such a predictor. More precisely, the emphasis will be laid on
requirements (ii) and (iii) because requirement (i) is considered as an essential prerequisite. Requirement (iv)
will be examined in further work. It is to note that no fatigue life criterion will be proposed here; such proposal
necessitates the determination of the critical value of the predictor by means of appropriate experimental
measurements. This value will depend on the considered material.

The paper is organized as follows. In Section 2, microscopic mechanisms involved during fatigue crack
nucleation in rubber will be first presented; the importance of pre-existing flaws in component life will be
highlighted and the necessity to consider their energy release rate will be demonstrated. Then this section will
be closed by the presentation of the classical predictors adopted for rubber fatigue life. Section 3 is devoted to
the derivation of the predictor. First, it will be shown that the general theory of Configurational Mechanics,
initially introduced by Eshelby (1951, 1975) is the appropriate tool to rationalize previously published works.
So, a brief overview of this theory will be given. Then, the derivation of our predictor is detailed by
considering both simple proportional and complex multiaxial loading conditions. The validation of our
approach is presented in Section 4. First, basic analytical results are established. Then, previously published
experimental data are considered to demonstrate the efficiency of the predictor. Finally, Section 5 closes the
paper.

2. Physical motivation and classical predictors

2.1. Microstructural mechanisms

From a macroscopic point of view, fatigue crack nucleation is generally defined by the occurrence of a small
crack of a given size (1mm for André et al., 1999; 2mm for Ostoja-Kuczynski et al., 2003). Such cracks usually
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correspond with a decrease of the component stiffness. It has been believed for a long time that crack
nucleation observed at the macroscopic scale is the consequence of the propagation of microscopic defects
presumably present in the virgin material (Gent et al., 1964). Typical flaws found in rubber are carbon black
agglomerates, compounding inclusions and cavities; they are thought to be equally distributed throughout the
material. Therefore, the understanding of macroscopic fatigue crack initiation necessitates the study of both
nucleation and propagation of microscopic flaws.

Two main mechanisms were found to occur during microscopic fatigue crack nucleation independently of
loading conditions: decohesion between rubber matrix and inclusions, and cavitation (Le Cam, 2005; Saintier
et al., 2006). Decohesion was mostly observed at rigid inclusions such as SiO2 or CaCO3 while cavitation, the
spontaneous process of void nucleation, was found to occur in the neighbourhood of carbon black
agglomerates. Even though flaws of all orientations are presumed to be initially present, the growth of
favourably oriented flaws with respect to loading conditions is more rapid than other flaws (Mars and Fatemi,
2002). Concerning propagation of flaws, Le Cam et al. (2004) recently demonstrated that fatigue crack
propagation in filled natural rubber can be explained by growth and coalescence of small voids being
predominantly the consequence of the decohesion between rubber matrix and zinc oxides or filler aggregates.
These observations generalize previous studies which highlighted the influence of cavitation on crack initiation
and propagation in elastomers (see for example the works of Gent, 1990 for static loading conditions and of
Legorju-Jago and Bathias, 2002 for fatigue under high hydrostatic pressure).

Finally, to emphasize the importance of flaw growth on macroscopic fatigue crack nucleation, two recent
works can be cited. In his Ph.D. thesis, Le Cam (2005) demonstrates that flaws grow from the very first
loading cycle. Moreover, it was also shown that about 75% of the fatigue life of the part (defined in this study
by the number of cycles required to create a 1mm long crack on a diabolo sample) corresponds to the
propagation of pre-existing flaws. More recently, Hainsworth (2007) observed small cracks in sample edges
after cycling to 8% of the fatigue life, and the emergence of a dominant crack at the specimen edge at 40% of
the life.

2.2. Existing predictors for fatigue crack nucleation

The crack nucleation approach, which follows the work of Wöhler (1867) and was first applied to rubber by
Cadwell et al. (1940), considers that fatigue life of rubbers can be determined from the history of strain and
stress at each material point in the body. The three most widely used predictors for rubber fatigue are the
maximum stretch ratio, the maximum principal Cauchy stress and the strain energy density. They are briefly
presented in the following sections. Then, the recent predictor, the cracking energy density proposed by Mars
(2002), which attempts to encompass microscopic observations, is presented.

2.2.1. Maximum stretch ratio ðlmaxÞ

As most of rubber fatigue experiments are conducted by prescribing certain displacement to specimens, it is
considered quite natural to relate fatigue life to strain measures. Furthermore, it was widely observed that
cracks initiate in a plane normal to the maximum tensile strain. Earliest studies investigated fatigue life of
rubber for different stretch levels in both uniaxial extension and shear; they showed that for elastomers which
crystallize under strain (such as natural rubber), increasing minimum stretch can significantly improve the
fatigue life (Cadwell et al., 1940; Fielding, 1943). More recently, Roberts and Benzies (1977) and Roach (1982)
investigated fatigue life under conditions of simple and equibiaxial tension: when plotted against the
maximum stretch ratio (or strain), fatigue life was longer in simple tension than in equibiaxial tension. Several
years later, Ro (1989) concluded that strain is generally not relevant for unifying multiaxial fatigue data.

2.2.2. Maximum principal Cauchy stress ðsmaxÞ

Bathias et al. (1998), André et al. (1999), Abraham et al. (2005), Saintier et al. (2006) correlated fatigue life
with the maximum principal Cauchy stress. In fact, the authors adopted this predictor in order to investigate
fatigue life improvement due to crystallization in rubber under non-relaxing tension cyclic loading condition:
in general, for constant maximum stress level, fatigue life is observed to increase when the minimum stress is
strictly positive. Under simple torsion, André et al. (1999) showed that cracks orientation is perpendicular to
3



the direction of the largest principal Cauchy stress; consequently, they suggested that this predictor may be the
appropriate local variable to describe multiaxial fatigue damage. Nevertheless, Abraham et al. (2005) inferred
that the maximum principal Cauchy stress cannot be used to predict fatigue life of elastomers.

2.2.3. Strain energy density (W)

After the development of fracture mechanics for rubber in the early 1960s, strain energy density came into
use as a parameter to predict fatigue crack nucleation because under simple loading conditions the energy
release rate is proportional to the product of strain energy density and crack size (Gent et al., 1964). Therefore,
the strain energy density can be considered as a measure of the energy release rate of pre-existing flaws in
relation with the phenomena observed during the propagation of microscopic defects. Nevertheless, Roberts
and Benzies (1977) and Roach (1982) showed that this predictor is not able to unify Wöhler curves for uniaxial
and equibiaxial tension loading conditions. Furthermore, being a scalar quantity, it does not provide a specific
orientation of potentially occurring cracks. Despite these observations, Ro (1989) and Abraham et al. (2005)
argued that the strain energy density is a better predictor than strain or stress-based predictors.

2.2.4. Cracking energy density

The inability of the strain energy density to unify multiaxial fatigue life predictions can be explained by the
fact that, in complex problems, only a portion of the strain energy density is available for flaw growth.
Approaches that attempt to take into account the energy release rate of microscopic defects in order to render
microscopic phenomena were previously investigated by Rivlin and Thomas (1953), Greensmith (1963),
Lindley (1972), Young (1990) who related the tearing energy, i.e. the energy release rate of Griffith (1920) as
applied to elastomers, to the strain energy density for classical fracture mechanics of rubber test specimens
such as the single edge specimen or the trouser specimen. This approach was recently extended to multiaxial
loading conditions by Mars (2002) through his concept of cracking energy density. This predictor represents
the portion of the total strain energy density that is available to be released as microscopic defects grow. In the
context of elasticity, the author postulated that the increment of energy available to be released on a given
material plane of normal vector r is defined as the dot product of the Cauchy traction vector r r (r being the
Cauchy stress tensor) with the increment of strain in the r-direction. This strain increment vector being defined
as the product of the increment of the strain tensor de with the vector r, the increment of energy is given by:

dWc ¼ ðr rÞ � ðde rÞ ¼ r � rde r. (1)

It leads to the definition of an energetic tensor which increment is rde. Then, Mars predictor consists in
accumulating this tensor over one cycle and calculating the material plane in which the maximum of energy is
released. In the last few years, this theory was used in several papers (Kim et al., 2005; Zine et al., 2006;
Martinovs and Gonca, 2006).

3. Theoretical derivation

As demonstrated in the previous section, a relevant predictor for rubber fatigue should take into account
the fact that macroscopic fatigue crack nucleation is mainly due to the propagation of microscopic defects
initially present in rubber. The classical predictors (strain, stress, strain energy) were empirically developed
with no connection to the microscopic mechanisms. In our opinion, the concept of cracking energy density
proposed by Mars (2002) is more appropriate. However, its theoretical foundation needs to be improved using
a well-established theoretical framework. In the following, we consider that Configurational Mechanics, which
provides the basis for the study of inhomogeneities of continuous media and for capturing elastic singularities
in continuum mechanics (Maugin, 1995), is the relevant theoretical framework to develop a new predictor.

3.1. Brief overview of Configurational Mechanics

In this section, the basic concepts and results related to the general theory of Configurational Mechanics are
recalled. The emphasis is laid on the definition and the significance of the configurational stress tensor because
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it is the cornerstone of our approach. For more details on the general theory, the reader can refer to the
various references cited in the following.
3.1.1. Basic theory

The theory of Configurational Mechanics was introduced by Eshelby (1951) when he proposed the concept
of energy-momentum tensor and configurational forces in continuum mechanics of solids by studying the
driving force of a moving defect. Twenty years later, both Eshelby (1975) and Chadwick (1975) extended the
previous theory to finite strain. As the notion of body configuration is essential in this theory, Steinmann
(2000) highlighted the importance of its derivation in the finite strain framework.

The Configurational Mechanics is also designated as the Eshelbian Mechanics by Maugin (1993), and the
Mechanics in Material Space by Kienzler and Herrmann (2000) by contrast to the Newtonian Mechanics or
the Mechanics in Physical Space, respectively. In classical Newtonian Mechanics, attention is focused on
physical forces generated by displacements in physical space, i.e. the three-dimensional Euclidean space E3. In
Eshelbian Mechanics, we deal with a different class of forces, referred to as configurational forces, which are
generated by displacements not in the physical space but in the material space (or manifold) M3, i.e. the
abstract set of particles that constitute the body (Truesdell and Noll, 1965). While Gurtin (2000) considers
configurational forces as basic objects of new concepts in mechanics, Maugin (1995) shows that they can be
directly derived from classical continuum mechanics. Here the latter viewpoint is adopted.

Consider an elastic body in its reference configuration ðCRÞ; this configuration is defined in the material
manifoldM3. Under deformation, the body occupies a series of physical configurations defined in the classical
physical space E3. Here, we restrict the discussion to hyperelastic materials characterized by the existence of a
strain energy density per unit of volume in the reference configuration W ðF;XÞ. It is considered that the body
may be inhomogeneous, i.e. the strain energy density depends on both the deformation gradient and the
material position. Considering a static motion under mechanical loading and in absence of body force, balance
equations of linear and angular momenta are expressed in the Eulerian description as

divxr ¼ 0 and rT ¼ r. (2)

In this equation, x is the position of the particle in the deformed configuration, r is the Cauchy stress tensor
defined by

r ¼ J�1
qW

qF
FT, (3)

with J ¼ detF and the superscript �T denoting the transposition. Lagrangian counterparts of the balance laws
Eq. (2) are easily derived by expressing the quantities per unit of surface and volume in the reference
configuration of the body, it leads to

DivXP ¼ 0 and PFT ¼ FPT, (4)

in which X is the position of the particle in the reference configuration and P is the first Piola–Kirchhoff stress
tensor given by

P ¼
qW

qF
. (5)

Generally, deformation induces microstructural changes or rearrangements in the material, e.g. growth of
microscopic defects, dislocation or displacement of boundary phases. As argued by Steinmann (2000),
describing such rearrangement in the physical space is not an easy task. Thus, to overcome this difficulty, the
balance of physical linear momentum has to be completely written onto the material space (Maugin, 1995);
indeed, the pull-back operation that introduced P from r is only partial because the resulting expression in
Eq. (4) is still containing components in the current configuration. So, it is necessary to make one more pull-
back operation that allows to canonically project balance equations onto the material space M3. For the
balance of linear momentum, it can be performed either by applying the Noether’s theorem (Gross et al., 2003)
or by using a direct method which consists in simply multiplying the left-hand side of Eq. (4)1 by F

T (Maugin, 1995).
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After some algebraic manipulations, this equation reduces to

DivXRþG ¼ 0 (6)

with:

R ¼WI� FTP ¼WI� CS (7)

and

G ¼ �
qW

qX

����
expl

. (8)

In Eq. (7), R is the configurational stress tensor (or the energy momentum tensor or the Eshelby stress tensor)
and I is the 3� 3 identity tensor. In Eq. (7)2, S is the second Piola–Kirchhoff stress tensor and C is the right
Cauchy–Green strain tensor equal to FTF. Moreover, in Eq. (8) G is referred to as the configurational force
vector associated with inhomogeneities. It is defined by the negative explicit differentiation of the strain energy
with respect to the particle position in the material manifold (see the index �jexpl). Considering the balance of
physical angular momentum, the configurational stress tensor satisfies the following symmetry condition
(Epstein and Maugin, 1990):

RC ¼ CRT. (9)

If the material is assumed homogeneous, the configurational force G vanishes and the configurational stress
tensor satisfies a strict conservation law

DivXR ¼ 0. (10)

Moreover, in the special case of isotropic materials, for which C and S are coaxial and then commute, Eq. (9)
simplifies and the configurational stress tensor is symmetric.

3.1.2. Applications

In the majority of studies involving Configurational Mechanics, only configurational forces are investigated
through the calculation of path-independent integrals around inhomogeneities, because these forces are
recognized as the driving forces of defect evolution. So, configurational stress only appears in the definition of
surface tractions, i.e. after contraction with the outward normal of the contour. Most of these works focus on
the application of Configurational Mechanics to Fracture Mechanics (see for example Steinmann, 2000 and
the references herein). Indeed, it is now well-established that, for hyperelastostatic problems, configurational
forces which apply on crack tip generalize the classical J-(Rice, 1968), L- and M-(Budiansky and Rice, 1973)
path-independent integrals. Extensions for fracture of more complex materials are proposed by Maugin et al.
(1992) for electromagnetism, by Maugin (1999) for thermoelasticity, by Liebe et al. (2003) for continuum
damage and by Nguyen et al. (2005) for linear viscoelasticity and elastoplasticity. Moreover, as proposed by
Kolling et al. (2003), other problems can be analysed with the help of the Configurational framework:
dislocations in metal (Steinmann, 2002), movement of interfaces in two-phase bodies (Gurtin, 2000), defects in
piezo-electric material (Gross et al., 2003), etc. Finally, numerical procedures devoted to configurational forces
were recently examined by Steinmann et al. (2001), Denzer et al. (2003) and Menzel et al. (2004).

Opposite to the case of configurational forces, only few studies are concerned with the peculiar properties of
the configurational stress tensor R. As an example, for the linear theory, the physical significance of the
Cartesian components of this tensor were identified only recently by Kienzler and Herrmann (1997), who
explain that ‘‘[the ij-component] of the Eshelby tensor is the change in the total energy density at a point of an
elastic continuum due to a material unit translation in xj direction of a unit surface with normal in xi-
direction’’. Authors also investigated principal values and directions of the tensor in two dimensions. More
recently, they introduced local fracture criteria for small strain problems based on the components of the
configurational stress tensor (Kienzler and Herrmann, 2002): in two dimensions, principal values and a von
Mises-like value of this tensor were related to the classical stress intensity factors of linear fracture mechanics.
Until now, we are not aware of other accounts which explicitly deal with the components of the
configurational stress tensor.
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Remark 1. The previous definition of Sij can be extended to the finite strain framework without restriction
(Andriyana, 2006). This tensor being completely defined in the material manifold, one should consider a unit
surface in the reference configuration and moves this surface by a unit material translation, i.e. a translation in
this manifold. So, R contains energy changes due to the evolution of the reference configuration (or the change
of natural configuration as proposed by Rajagopal and Srinivasa, 2005), i.e. a continuum expression of
microstructural evolution. As an example, the growth of a straight crack from a length a to aþ da is such a
material translation.

In fact, considering the geometrical definition via the notion of local structural rearrangement advocated by
Epstein and Maugin (1990), it is to say that the configurational stress is the driving force governing local
structural rearrangements (Maugin, 2002). As fatigue loading conditions induce significant microstructural
rearrangements in rubber, it becomes obvious that configurational stresses, in the appropriate form, are the
driving forces of these evolutions (Andriyana, 2006; Andriyana and Verron, 2007). Thus, based on the above
theoretical summary and considering the physical significance of the configurational stress components as
proposed by Kienzler and Herrmann (1997), we consider that the Eshelby stress tensor, which focuses on the
behaviour of defects in the material manifold, appears to be the relevant continuum mechanics quantity to
derive a new fatigue life predictor for rubber.

3.2. Development of the predictor

In the following, rubber is assumed to be hyperelastic, isotropic and incompressible. Only isothermal
processes are investigated. Moreover, the material is considered homogeneous at the scale of the continuum.
This mesoscopic scale is defined by the representative volume element (RVE) in which material properties can
be represented by continuous fields: mass density, stress, strain, . . . (Lemaitre, 2001). Indeed, for elastomers,
the RVE contains rubber matrix and a large number of microscopic defects such as carbon black
agglomerates, inclusions, cavities, . . . (Mars and Fatemi, 2002; Le Cam et al., 2004). The transition between
the microscopic and the mesoscopic scales will be the foundation of our theory. So, with the previous
assumptions, the mechanical response of the material can be entirely defined by a strain energy density W

which depends on the two first strain invariants:

W ¼ eW ðI1; I2Þ (11)

with

I1 ¼ trC and I2 ¼
1
2½ðtrCÞ

2
� trðC2

Þ�. (12)

The third strain invariant I3 ¼ det C is equal to 1 due to the incompressibility assumption. For details on
hyperelasticity and large strain, the reader can refer to the monograph of Holzapfel (2000).

Consider a rubber body B defined by its reference configuration ðCRÞ. This configuration is defined as a set
of particles in the material manifold M3; it is depicted in Fig. 1. One particle of this set is located at X in the
physical space E3. To simplify the discussion, the reference configuration is assumed to correspond to a
vanishing stress and strain, stable configuration of minimum energy. Under mechanical loading, the body
deforms and occupies a time sequence of physical configurations (in E3). Let ðCÞ be the body configuration at
time t defined by the mapping xðX; tÞ and by its gradient FðX; tÞ. As shown in Fig. 1, when loading is removed
the body will, in general, occupy a new stress-free configuration ðC0RÞ defined by the motion gradient fðx; tÞ.
Both configurations ðCRÞ and ðC

0
RÞ represent natural configurations of the body (Rajagopal and Srinivasa,

2005). The physical reasons for a body to possess different natural configurations can be very diverse. Indeed,
it is the consequence of structural rearrangements at the microscopic scale, e.g. movement of dislocations,
cavitation, cleavage fracture, which manifests in various ways at the mesoscopic scale, e.g. plasticity, damage;
or at the macroscopic scale, e.g. crack growth. If the material is perfectly elastic, f ¼ F�1 and the natural
configurations ðCRÞ and ðC

0
RÞ are identical. Nevertheless, if irreversible microstructural changes take place

during the motion, the gradient f can be considered close, but not equal, to F�1.
To illustrate this discrepancy, we focus our attention on the deformation of the RVE. Consider a given

material point P of the body B. The motion of the RVE which constitutes the particle P is shown in Fig. 2.
7



Fig. 1. Motion of a rubber body B. Definition of its configurations.

Fig. 2. Motion of the RVE P at the microscopic scale.
This RVE contains both bulk material (grey in the figure) and various defects which are schematized by the
white circle in the figure. Under motion, the defect evolves: it may grow or shrink as shown in the deformed
configuration ðCÞ in Fig. 2. Note that the size and shape of the RVE, i.e. the grey square, remain unchanged
during motion because it is considered that microstructural rearrangements do not change the definition of the
RVE. Then, similarly to Fig. 1, if the rearrangement is reversible, the defect will recover its initial size and
shape defined by ðCRÞ after unloading; otherwise the microstructural change is irreversible. Consequently, the
defect configuration evolves as shown in the configuration ðC0RÞ of Fig. 2. It might be confusing to consider
irreversible process, i.e. dissipation, in an elastic material. However, as underlined by Gross et al. (2003), the
presence of microscopic defects in the body yields to the change of its total energy if these defects move
relatively to the reference configuration. So, recalling the microstructural phenomena observed in rubber
under fatigue loading conditions and presented above, we should now quantify the energy released during this
structural rearrangement, i.e. calculate the energy release rate between configurations ðCRÞ and ðC

0
RÞ depicted

in Fig. 2.
As emphasized above, energetic properties of microstructural rearrangements are completely encompassed

within the configurational stress tensor R. Thus, as this stress tensor is the driving force governing local
structural rearrangement (Maugin, 2002), the evolution of the flaw between ðCRÞ and ðC

0
RÞ is driven by this

tensor. As depicted in Fig. 3, consider a unit material surface of outward normal vector N on the flaw
boundary (see also Fig. 2). Due to the deformation defined by the gradient F, this surface is subjected to the
8



Fig. 3. Evolution of the flaw.
material traction RN. Recalling the definition of the components of R proposed by Kienzler and Herrmann
(1997) (see Section 3.1.2), for a given material translation h of the previous surface, i.e. a translation
in the material manifold (not a physical one), the scalar h � RN represents the change of total energy at the
material point P due to the change of configuration of the defect between the natural configurations ðCRÞ

and ðC0RÞ. Knowing that the body will tend to reduce as much as possible its total energy during
microstructural evolution, one should determine the material surface defined by N and the material translation
h which maximize the energy release rate. Moreover, as energy changes are defined positively in R, material
vectors N and h which maximize h � ð�RÞN should be considered. Note that this is similar to the definition
proposed by Eshelby (1951, 1975) for the force on a defect which is equal to the negative gradient of the
total energy with respect to the change in position of the defect; and with the remark of Steinmann et al. (2001)
who consider that the morphology of defects evolves with respect to the direction opposite to the material
force.

Considering experimental observations of fatigue damage in rubbers (see Section 2), decohesion and
cavitation are the two main mechanisms involved in crack nucleation. Moreover, opening and closing of
cavities are supposed to be due to only material normal traction and not due to material shear. Thus, vectors
N and h coincide with the principal directions of �R and more precisely with the principal direction associated
with its maximum eigenvalue, i.e. the minimum principal configurational stress. Finally, the fatigue life
predictor, denoted Sn, can be written as

Sn ¼ jminððSiÞi¼1;2;3; 0Þj, (13)

where ðSiÞi¼1;2;3 are the principal configurational stresses. When one (or more) principal stress is negative, the
predictor is strictly positive, and the defect tends to grow and to turn into a plane crack orthogonal to Vn, the
eigenvector associated with �Sn. When the three principal stresses are positive, the material tractions tend to
shrink the flaw. In this case, the predictor is set to 0; it can be seen as the microscopic counterpart of the
classical crack-closure effect.

Remark 2. In the hyperelastic framework, the second Piola–Kirchhoff stress tensor is defined as the
differentiation of W with respect to the right Cauchy–Green strain tensor C (see for example Holzapfel, 2000):

S ¼ �pC�1 þ 2
qW

qC
(14)

where p is an arbitrary scalar due to the incompressibility kinematic constraint. Note that p can only be
determined from equilibrium equations and boundary conditions. Moreover, considering that the strain
energy only depends on the two first strain invariants (Eq. (11)), S reduces to

S ¼ �pC�1 þ 2ðW 1 þW 2I1ÞI� 2W 2C, (15)
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where W i are the partial derivatives of the strain energy with respect to the strain invariants:

W i ¼
q eW
qI i

for i ¼ 1; 2. (16)

Thus, considering Eqs. ð7Þ2 and (15), the configurational stress tensor can be written as:

R ¼ ðW þ pÞI� 2ðW 1 þ I1W 2ÞCþ 2W 2C
2. (17)

Remark 3. Recalling that S and C are coaxial for isotropic hyperelastic materials and denoting ðbNiÞi¼1;2;3 the
principal strain directions in the reference configuration (also called principal referential directions) these
tensors can be written as:

C ¼
X3
i¼1

l2i bNi � bNi and S ¼
X3
i¼1

Si
bNi � bNi (18)

where ðliÞi¼1;2;3 and ðSiÞi¼1;2;3 are respectively the stretch ratios and the principal second Piola–Kirchhoff
stresses. Thus, the configurational stress tensor reduces to:

R ¼WI�
X3
i¼1

l2i Si
bNi � bNi ¼

X3
i¼1

ðW � l2i SiÞbNi � bNi. (19)

Moreover, as the principal Cauchy stress are related to the principal second Piola–Kirchhoff stress by

si ¼ l2i Si for i ¼ 1; 2; 3, (20)

the configurational stress tensor can also be written as

R ¼
X3
i¼1

ðW � siÞbNi � bNi. (21)

However, it should be noted that the quantity
P3

i¼1si
bNi � bNi in the right-hand side of this equation is not the

Cauchy stress tensor; indeed the spectral decomposition of the Cauchy stress tensor is

r ¼
X3
i¼1

si bni � bni (22)

where ðbniÞi¼1;2;3 are the principal spatial directions defined in the deformed configuration ðCÞ and related to
ðbNiÞi¼1;2;3 by the rotation tensor issued from the polar decomposition (Holzapfel, 2000, p. 90).

Remark 4. Examining the previous Eq. (21) proves that there exist relationships between the proposed
predictor Sn and the three classical predictors:
�
 For W it is obvious.

�
 In regard to Eqs. (13) and (21), the predictor reduces to

Sn ¼ maxðsmax �W ; 0Þ, (23)

where smax is the maximum principal Cauchy stress. Thus, the new predictor is related to the classical
maximum principal stress predictor.

�
 Finally, if smax4W in Eq. (23) then

Sn ¼ smax �W (24)

and the normal vector to the crack Vn is the principal referential direction associated with the principal
strain which corresponds to smax. In fact, considering the Baker and Ericksen (1954) inequality,

si � sj

li � lj

40 with lialj (25)

which states that the principal Cauchy stresses have the same ordering as the stretch ratios, the normal
vector to the crack plane is the principal referential direction corresponding to the maximum stretch ratio
lmax. In this way, our predictor is also related to the maximum strain predictor.
10



Remark 5. Note that in the present case of isotropic hyperelasticity, R is symmetric and then admits three real
eigenvalues; the more complex case of viscoelasticity in which R may be not symmetric is partially discussed in

Andriyana (2006).

3.3. Extension to multiaxial fatigue

The previous predictor defines an instantaneous value of fatigue damage in every material points of the
body, but it is not able to take into account deformation history. Two different time scales should be
considered to extend this predictor to multiaxial problems. The first time scale is the one of the loading cycle,
i.e. the cycle period. Classically, the derivation of multiaxial fatigue predictors over one cycle is achieved by
using quantities defined in the cycle such as stress or strain or energy amplitudes, mean values, maximum
values, . . . The second time scale is the one of the fatigue life, defined by numbers of cycles. In the present
work, we only focus on the former time scale, the latter will be investigated in further studies. As elastomers
exhibit a steady state cyclic response under fatigue loading conditions, characterized by a stabilized hysteretic
stress-strain response (André et al., 1999; Abraham et al., 2005), the determination of the fatigue predictor
over only one stabilized cycle is supposed sufficient to predict fatigue end-of-life. It is to note that the
determination of this appropriate stabilized cycle is not an easy task.

Thus, to take into account the deformation history, the cumulation of fatigue damage should be performed
over one loading cycle. More precisely, only the part of the configurational stress tensor which contributes to
flaw opening should be accumulated. This part will be referred to as the damage part of the configurational

stress tensor and denoted Rd in the following. Let dRd be the increment of Rd, thus

Rd ¼

Z
cycle

dRd. (26)

Actually, dRd is the damage part of the increment of the configurational stress tensor dR which is defined by

dR ¼
dR
dC

: dC, (27)

because R only depends on the strain tensor C for hyperelastic materials. To relate dRd to dR, the previous
predictor formula Eq. (13) should be applied by considering the spectral decomposition of the configurational
stress increment

dR ¼
X3
i¼1

dSi Vi � Vi, (28)

where ðdSiÞi¼1;2;3 and ðViÞi¼1;2;3 are its eigenvalues and eigenvectors respectively. Invoking the same
assumption as the one retained for the instantaneous predictor Sn, i.e. only normal material tractions are
involved in growth of defects, the damage part of dR is

dRd ¼
X3
i¼1

dSd
i Vi � Vi (29)

with

dSd
i ¼

dSi if dSio0 and Vi � RVio0;

0 otherwise:

�
(30)

This formulation can be explained as follows:
�
 For each loading increment, the configurational stress increment dR as well as its principal values
ðdSiÞi¼1;2;3 and principal directions ðViÞi¼1;2;3 are computed. Only the part of dR that opens defects ðdSio0Þ
is considered.

�
 To verify the state of defects in a given direction Vi, the normal configurational traction that applies in this

direction is calculated using the current value of the configurational stress tensor. The defects are said to be
in a materially stretched state when Vi � RVio0.
11



�
 The components of the fatigue damage configurational stress increment dSd
i are defined by retaining only

the part of dS that opens materially stretched defects, i.e. for each principal directions ðViÞi¼1;2;3 when both
conditions dSio0 and Vi � RVio0 are satisfied (Eq. (30)).

Next, the integration of increments over one whole cycle (Eq. (26)) necessitates that all increments are
expressed in the same tensorial basis. As eigenvectors of configurational stress increments change in the cycle
(for multiaxial loading), this integration should be performed in the global basis adopted to describe the
motion

Rd ¼

Z
cycle

dSd
kl ek � el . (31)

Finally, the fatigue crack nucleation predictor for multiaxial fatigue loading conditions can be summarized as
follows:

Proposition. Multiaxial fatigue predictor for rubber (elastic case):

Sn ¼ jminððSd
i Þi¼1;2;3; 0Þj

where ðSd
i Þi¼1;2;3 are the eigenvalues of the damage part of the configurational stress tensor Rd. This tensor is

obtained by the integration over the cycle of

dRd ¼
X3
i¼1

dSd
i Vi � Vi

with

dSd
i ¼

dSi if dSio0 and Vi � RVio0;

0 otherwise;

(
ðdSiÞi¼1;2;3 and ðViÞ being the eigenvalues and eigenvectors of the configurational stress tensor increment

dR ¼
dR
dC

: dC.

Then,
�
 if Sn40, the defect tends to grow and to turn into a plane crack orthogonal to Vn, the eigenvector

corresponding to �Sn,

�
 if Sn ¼ 0, material tractions tend to shrink the flaw.

Remark 6. For fully relaxing proportional loading conditions, the integration over one cycle reduces to the
determination of the instantaneous value of the configurational stress tensor for the maximum strain state. In
this way, the multiaxial predictor defined in the previous proposition reduces to Eq. (13).

4. Examples

In this section, three examples are examined in order to demonstrate the ability of the predictor to
satisfactorily estimate multiaxial fatigue damage in rubber. The first example presents the solutions of simple
loading problems. The next two ones are comparisons with experimental results published in the bibliography.
In these cases, it will be shown that the predictor unifies experimental end-of-life data.

4.1. Simple deformation of a neo-Hookean material

This first example compares the results obtained with classical predictors lmax, smax and W with those
obtained with the present predictor for simple loading conditions, i.e. uniaxial extension, pure shear and
12



equibiaxial extension. In these cases, as loading conditions are proportional (for equibiaxial loading), Remark
6 applies and the value of Sn reduces to Eq. (13).

In order to simplify the discussion, only the neo-Hookean strain energy density is considered

W ¼ CðI1 � 3Þ, (32)

where the material parameter C is set equal to 1MPa. Indeed, W 2 ¼ 0 in Eqs. (15) and (17). Thus, the Cauchy
and configurational stress tensors are respectively given by

r ¼ �pIþ 2C B (33)

and

R ¼ ðW þ pÞI� 2C C. (34)

Consider the three simple deformation modes, uniaxial extension, pure shear and equibiaxial extension. In
the principal stretching directions ðeiÞi¼1;2;3, the corresponding deformation gradient can be written in the
following compact form:

F ¼ le1 � e1 þ lBe2 � e2 þ l�ðBþ1Þe3 � e3, (35)

where l is referred to as the stretch level and B is the biaxiality factor which takes the following values
depending on the deformation mode:

B ¼

�0:5 for uniaxial extension;

0 for pure shear;

1 for equibiaxial extension:

8><>: (36)

In the three cases, the body (the sample) being assumed thin in the e3-direction, it is in plane stress conditions
and then s33 ¼ 0. This condition is used to determine the incompressibility pressure p in Eqs. (33) and (34); it
leads to

r ¼ 2Cðl2 � l�2B�2
Þe1 � e1 þ 2Cðl2B

� l�2B�2
Þe2 � e2 (37)

and

R ¼ Cð�l2 þ l2B
þ 3l�2ðBþ1Þ � 3Þe1 � e1

þ Cðl2 þ l2B
þ l�2ðBþ1Þ � 2l3B�1

þ 2l�B�3
� 3Þe2 � e2

þ Cðl2 þ l2B
þ l�2ðBþ1Þ � 3Þe3 � e3. ð38Þ

Thus, for a given stretch level l, the classical predictors reduce to

lmax ¼ F11 ¼ l,

smax ¼ s11 ¼ 2Cðl2 � l�2B�2
Þ,

W ¼ Cðl2 þ l2B
þ l�2ðBþ1Þ � 3Þ.

The corresponding results are presented in Figs. 4–6 for uniaxial extension, pure shear and equibiaxial
extension respectively. In each figure, left-hand side graph (a) shows the maximum principal Cauchy stress and
the strain energy as functions of the stretch level (the maximum stretch predictor is not presented because it is
simply equal to the stretch level, see above), and right-hand side (b) shows the three principal configurational
stresses. In every cases the predictor is equal to �S1. For uniaxial extension, S1 is the only negative eigenvalue
of R (see Fig. 4(b)) and defects tend to open in the plane normal to e1 as also predicted by stretch and stress
predictors. For pure shear, both S1 and S2 are negative with jS1j4jS2j for lo1:74. Then for greater stretch
levels, only S1 is negative (see Fig. 5(b)). For all l, defects tend to open in the plane normal to e1. Finally, for
equibiaxial extension, as shown in Fig. 6(b) S1 and S2 are negative and equal due to the symmetry of loading
conditions (it is also similar for s11 and s22 and for l1 and l2). Indeed, defects may open in planes normal to e1
or e2 with the same probability.
13
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Fig. 5. Pure shear results. (a) Maximum principal Cauchy stress ð�Þ, strain energy ð� � �Þ, (b) S1ð�Þ, S2ð� � �Þ, S3ð��Þ.
4.2. Comparison between uniaxial and equibiaxial fatigue prediction

The aim of this second example is to demonstrate the relevance of our approach by comparing theoretical
predictions with multiaxial experimental data. The most different deformation modes for elastomers are the
uniaxial and biaxial extension deformation modes: this is the case for the stress–strain response (Ogden, 1972)
and also for the fatigue life (Mars, 2002). There are few studies devoted to the comparison between uniaxial
and equibiaxial fatigue end-of-life (Gehman and Clifford, 1954; Roberts and Benzies, 1977) because of the
difficulty to perform biaxial fatigue experiments. Here we consider the data of Roberts and Benzies (1977),
since they are the most comprehensive ones we found in the bibliography.

4.2.1. Experiments

In their paper, Roberts and Benzies investigated four elastomers: a carbon black-filled (45 phr) and an
unfilled natural rubber (NR), and a carbon black-filled (45 phr) and an unfilled styrene butadiene rubber
14
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Fig. 6. Equibiaxial tensile results. (a) Maximum principal Cauchy stress ð�Þ, strain energy ð� � �Þ, (b) S1 ¼ S2ð�Þ, S3ð� � �Þ.
(SBR) (details of compounds are given in the original paper). For uniaxial extension fatigue loading
conditions, classical dumb-bell samples are used; for a given stretch level, the experimental end-of-life is the
mean value of 7 or 12 samples end-of-life. For equibiaxial extension loading conditions, authors develop a
membrane inflation apparatus in which four flat circular sheets are simultaneously inflated; for a given stretch
level, the equibiaxial end-of-life is the mean value of 8 tests. It is to note that such bubble inflation technique
was widely used to determine stress–strain curves of elastomers or heat-softened polymers (Verron, 1997).
Nevertheless, its application to fatigue investigation is not common.

In both uniaxial and equibiaxial cases, the experimental end-of-life is defined as the number of cycles which
corresponds to the complete failure of the sample. Recalling that we focus our attention on fatigue crack
nucleation, it might be confusing to consider nucleation predictors for the present data. To overcome this
difficulty, it is assumed that the propagation of a macroscopic crack until complete failure of the sample is
very rapid, in terms of number of cycles, comparing to the nucleation phase, i.e. most of cycles are spent
during crack nucleation.

For each fatigue tests, published data are the mean fatigue life in number of cycles Nf , the maximum stretch
level and the strain energy in a cycle. The latter is obtained from integration of the stress–strain curve for
uniaxial loading conditions and by simulation for equibiaxial loading conditions. No stress values are given in
the paper.

4.2.2. Prediction

As loading conditions are proportional, the predictor reduces to Sn given by Eq. (13). In order to calculate
classical predictors and Sn, constitutive equations of the materials are needed. In this way, for each material
strain energy in a cycle vs. stretch level curves for both uniaxial and equibiaxial experiments are
simultaneously fitted with a second-order Mooney–Rivlin strain energy function

W ¼ C10ðI1 � 3Þ þ C01ðI2 � 3Þ þ C20ðI1 � 3Þ2. (39)

Values of the parameters for the four materials are given in Table 1. Similarly to the first example presented
above, each predictor can be easily computed. The deformation gradient is given by Eq. (35) with B ¼ �0:5
for uniaxial extension and B ¼ 1 for equibiaxial extension. The maximum stretch is equal to the stretch level l
prescribed during experiments and the strain energy is given in the original paper. The maximum principal
Cauchy stress is derived from Eq. (15), the relation between the Cauchy and the second Piola–Kirchhoff stress
tensor:

r ¼ J�1 FSFT with J ¼ 1, (40)
15



Table 1

Parameters for the four materials considered by Roberts and Benzies (1977)

Material C10 (MPa) C01 (MPa) C20 (MPa)

Filled NR 0.89 0.46 0

Unfilled NR 0.44 0.056 0

Filled SBR 0 1.13 0.04

Unfilled SBR 0.27 0.1 0.011
and the plane stress condition s33 ¼ 0; then it leads to

smax ¼ s11 ¼ 2ðW 1 þ I1W 2Þðl
2
� l�2B�2

Þ � 2W 2ðl
4
� l�4B�4

Þ, (41)

with

I1 ¼ l2 þ l2B
þ l�2B�2. (42)

Finally, recalling Eq. (23), the predictor reduces to

Sn ¼ jW � smaxj, (43)

where smax is given by Eq. (41), W is given by Eq. (39), the first strain invariant is given by Eq. (42) and the
second strain invariant is

I2 ¼ l�2 þ l�2B
þ l2Bþ2. (44)

The performances of the predictors are illustrated in Figs. 7–10 for the maximum stretch, the strain energy, the
maximum principal Cauchy stress and the minimum principal configurational stress respectively. In each figure,
four graphs are presented, each one corresponds to one of the four materials. In each graph, two Wöhler curves
are drawn: one for uniaxial tension data and the other for equibiaxial data. In these curves, one point
corresponds to one experiment and its coordinates are the end-of-life (here the logarithm of the number of cycles
to failure) and the value of the predictor (the experimental stretch level in Fig. 7, the experimental strain energy
in Fig. 8, the maximum principal Cauchy stress given by Eq. (41) in Fig. 9 and our predictor given by Eq. (43) in
Fig. 10). As mentioned in the Introduction, the quality of the predictors can be assessed from their ability to
unify uniaxial and equibiaxial experimental data, i.e. to superimpose the corresponding Wöhler curves.

For the first three materials, i.e. filled and unfilled NR, and filled SBR, results are similar
(see Figs. 7–10(a)–(c)).
�
 The strain predictor lmax gives relatively good agreement for long fatigue life but important discrepancy for
shorter life as shown in Fig. 7(a)–(c). In fact shorter life values correspond to large stretch levels and it is
well known that the difference of material response between uniaxial and equibiaxial deformation modes
increases as stretch increases (Treloar, 1944).

�
 For the strain energy predictor W , a similar conclusion can be drawn: even if the agreement is roughly

better than for the maximum stretch, the discrepancy for large strain is substantial (see Fig. 8(a)–(c)).

�
 For the stress predictor smax, results are quite better: uniaxial and equibiaxial fatigue curves are

superimposed. For filled and unfilled NR, both small and large strain predictions are in good agreement as
shown in Fig. 9(a)–(b). For filled SBR, results are not as good as the previous ones but quite better than
those predicted with maximum stretch and strain energy (see Fig. 9(c)).

�
 Finally, Fig. 10(a)–(c) shows the superiority of the proposed predictor with respect to the previously

mentioned ones: both small strain (long fatigue life) and large strain (short fatigue life) data are well-
predicted, the best results being obtained for the gum rubber (see Fig. 10(b)).

For the unfilled SBR, results are completely different: only the stretch predictor lmax is able to superimpose the
uniaxial and equibiaxial curves. The three other predictors are revealed inefficient (see Figs. 7–10(d)). Until
now, we are not capable to satisfactorily interpret this result. Nevertheless, it should be noted that even if the
predictor corresponds with microscopic mechanisms in fatigue, particular material behaviours (anisotropy due
16
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Fig. 7. Comparison of uniaxial ð�Þ and equibiaxial ð&Þ tension fatigue life data of Roberts and Benzies (1977) using the maximum stretch

ratio lmax. (a) Filled NR, (b) unfilled NR, (c) filled SBR, (d) unfilled SBR.
to finite strain, strain-induced crystallization. . .) not included in hyperelastic constitutive equations could
adversely influence the ability to unify multiaxial experimental results.
4.3. Multiaxial fatigue prediction

The aim of this third example is to validate the complete formulation of our new predictor established in
Section 3.3 by considering comprehensive multiaxial fatigue experimental results, i.e. both proportional and
17
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(a) Filled NR, (b) unfilled NR, (c) filled SBR, (d) unfilled SBR.
non-proportional multiaxial fatigue data. Such data are rare in the bibliography; here, the
outstanding experimental database developed by Mars is retained. The author performed number of
uniaxial extension/torsion experiments for complex multiaxial loading conditions: prescribed force or
displacement, in- or out-of-phase, fully relaxing and alternate loading conditions were considered.
All details concerning samples, loading conditions, measurement methods and results are given in his
Ph.D. thesis (Mars, 2001).
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4.3.1. Experiments

In this study, Mars used an industrial carbon black-filled (60 phr) natural rubber and developed an original
test specimen. It is a short, hollow cylinder of rubber bonded between two steel mounting rings. Its cross
section has a slightly concave surface on the outer diameter and enlarged bonding areas on the top and bottom
surfaces. This design was proposed to fulfil, in particular, the following three requirements: to produce a
relatively uniform strain field in the sample, to assure that cracks initiate first on the outer surface of the
sample and to permit moderate compressive strain without buckling. In the following calculations, the sample
geometry is simplified and it is considered as a short thick cylinder which internal radius, external radius and
19
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height are respectively Ri ¼ 38:10mm, Re ¼ 43:18mm and h ¼ 6:35mm. According to the author, four main
types of cyclic loading conditions are investigated: pure uniaxial extension, pure torsion, proportional uniaxial
extension/torsion and non-proportional uniaxial extension/torsion. Displacement field, i.e. axial displacement
and twist, or forces, i.e. load and torque, can be prescribed; in the present work only prescribed displacement
loading conditions are retained. Thus, loading conditions can be written as

lðtÞ ¼ lm þ la sinðotÞ and tðtÞ ¼ tm þ ta sinðotþ fÞ, (45)
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where l is the stretch ratio in the axial direction and t stands for the twist per unit length. For a given
experimental test, six parameters are prescribed: the mean stretch ratio lm and its amplitude la, the mean twist
tm and its amplitude ta, the signal frequency 2p=o which varies between 0.5 and 6.0Hz, and finally the phase
angle f between extension and twist. Loading conditions are said proportional when f ¼ 0. Moreover,
classical extension and twist loading ratios are, respectively, defined by Rl ¼ ðlmin � 1Þ=ðlmax � 1Þ and
Rt ¼ tmin=tmax. The ten different types of loading conditions (from A to I, and L) considered here are sketched
in Fig. 11 and the corresponding loading parameters are given in Table 2; designations are those proposed by
Mars. In Mars (2001), two independent end-of-life criteria for crack nucleation were applied. The first
criterion is based on load and torque drop. More precisely, the load or torque drop which corresponds to end-
of-life is defined as the number of cycles Nf at which loading (load or torque) amplitude was 15% less than its
stabilized value (defined by the loading value at 128 cycles in this study). The second criterion is based on
photographic observation of cracks growth on sample surface and on the use of a crack growth model. In this
case, end-of-life corresponds with the occurrence of a 0.2–0.8mm long crack on sample surface. Indeed, both
failure criteria resulted in similar fatigue life to within a factor of about 2. Here we only adopt the value of Nf

given by the first criterion. Finally, for prescribed displacement tests, the retained experimental data are the
number of cycles at end-of-life Nf and the crack angle in the undeformed configuration.
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Fig. 11. Simultaneous uniaxial extension and torsion of a rubber cylindrical tube: different types of loading conditions as proposed by

Mars (2001).

Table 2

Loading parameters for Mars experiments

Data set A B C D E F G H I L

Number of exp. 13 (11) 12 (10) 9 (8) 16 5 3 3 5 4 (3) 5 (1)

Extension ratio Rl 0 – – 0 �1 �1 0 0 0 �1

Twist ratio Rt – 0 �1 0 �1 0 0 0 0 0

Phase angle f 0 0 0 0 0 �p p=4 p=2 �p 0

For the number of experiments, the number in brackets stands for the number of experiments for which it was possible to measure the

crack angle.
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4.3.2. Predictions

For each loading conditions, i.e. for each experiment, the predictor Sn is determined by solving the problem
of simultaneous uniaxial extension and torsion of a hyperelastic cylinder. The analytical solution of this
problem can be found for example in Green and Adkins (1960). The computation of the configurational stress
tensor in this case is given in the Appendix. Following Mars, the material is supposed to obey the neo-
Hookean model with C ¼ 1:5. Once the configurational stress increment dR being determined as a function of
l and t (see Eqs. (53)–(55)), the value of Sn and the crack angle, i.e. more precisely the normal vector to the
crack plane Vn, are calculated by using Eqs. (13) and (26)–(31).

The data are now used to validate our approach. In this way, it has been first verified that the predictor is
maximized at the external radius Re of the cylinder, thus, as predicted by Mars during sample design,
macroscopic fatigue cracks initiate first in the outer surface of the specimen for every loading cases. In order to
simplify the discussion, three different abilities of the new predictor are successively investigated by
considering three different sets of experimental data given in Fig. 11 and Table 2. First, the ability to manage
multiaxial loading conditions is studied by considering R ¼ 0 proportional loading conditions, i.e. data A, B,
D and F. Second, the ability to accumulate the damage is assessed by comparing R ¼ 0 and �1 proportional
loading conditions, i.e. data B, C, D and E. Third, the ability to predict non-proportional loading conditions,
i.e. fa0 is examined by comparing proportional and non-proportional loading conditions, i.e. data D, G, H,
I , F and L. In these three cases, two graphs are drawn. The first graph (left-hand side graph of the figures)
presents the Wöhler curve, i.e. the value of the predictor for given loading conditions Sn vs. the corresponding
experimental end-of-life log Nf . Similarly to the previous example, the efficiency of the predictor is assessed
from its ability to unify the data. The second graph (right-hand side graph in the subsequent figures) presents
the predicted crack angle vs. the measured crack angle; the diagonal line represents the case where the
measured crack orientation is exactly predicted by the theory.

Results dedicated to the ability to predict multiaxial proportional fatigue life are presented in Fig. 12. The
ability of the present approach to unify R ¼ 0 and �1 is illustrated in Fig. 13. Finally, the relevance of non-
proportional predictions is demonstrated in Fig. 14. In the left-hand side graph, one experimental point of the
data set L was not considered because it corresponds to Nf ¼ 76 cycles which is inferior to the number of
cycles for which the material response is assumed stabilized (128 cycles). Moreover, in the right-hand side
graph, two experimental points of the set I were not drawn in order to keep readable axis scales; the measured
angles are 43	 and 50	 and the corresponding predictions are �10	 and �23	. The three figures can be
commented simultaneously because they lead to the same conclusion. Left-hand side graphs demonstrate the
ability of the present approach to unify different multiaxial fatigue data in one Wöhler curve. Thus, the three
abilities proposed above are satisfied. Indeed, all data collected in a unique graph would be also superimposed:
curves shape and axis scales are similar in Figs. 12–14. In this case, all data could be fitted by a straight line.
Concerning the prediction of crack angles shown in the right-hand side graphs of Figs. 12–14, predictions are
also in good quite agreement with experimental data for all loading conditions. The only exception is for
alternate ðR ¼ �1Þ torsion experiments (set C) in Fig. 13 and non-proportional f ¼ p uniaxial extension/
torsion experiments (set I) as noted above. As shown by photographic data in Mars (2001, p. 231 and 278),
there are some uncertainties in the measure crack angles. It can be explained by the fact that a macroscopic
crack consists of a large number of microscopic cracks with different orientation (see Le Cam, 2005, p. 79).

5. Summary and conclusions

We have derived a new predictor Sn for multiaxial fatigue crack nucleation in rubber materials. Its
formulation is motivated by the observation of the microscopic damage induced by fatigue: first, the
nucleation of a macroscopic fatigue crack is the consequence of the propagation of pre-existing flaws in the
material; and second, most of cycles experienced by rubber specimen until complete failure are spent during
flaws growth. Following these observations, the theoretical derivation of our predictor is founded on the
framework of Configurational Mechanics, described as ‘‘a tool to capture singularities’’ by Maugin (1995). In
order to calculate the energy release rate of microscopic flaws, the peculiar properties of the configurational
stress tensor are considered. Knowing that most of these flaws are micro-voids which grow under traction, the
predictor is given by the smallest negative eigenvalue of the damage part of this stress tensor. The method to
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Fig. 12. Comparison of R ¼ 0 proportional loading conditions: ð&Þ uniaxial extension test (A), ð�Þ torsion test (B), ðnÞ uniaxial

extension/torsion test (D), ðnÞ uniaxial compression/torsion test (F).
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Fig. 13. Comparison of R ¼ 0 and �1 proportional loading conditions: ð�Þ R ¼ 0 torsion test (B), ðKÞ R ¼ �1 torsion test (C), ðnÞ

R ¼ 0 uniaxial extension/torsion test (D), ðmÞ R ¼ �1 uniaxial extension/torsion test (E).
accumulate the damage part of the configurational stress tensor for non-proportional multiaxial fatigue has
also been proposed. It should be noted that Sn is written in terms of continuum mechanics quantities (strain,
stress, energy). Thus, it can be easily computed for ideal rubber parts (without considering defects) during
product development process in order to estimate the spatial distribution of fatigue life. The efficiency of our
proposal is assessed by considering experimental data in the literature. It is demonstrated that the new
predictor, which rationalizes the previously published predictors, is capable to unify multiaxial fatigue data.
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Fig. 14. Comparison of proportional and non-proportional loading conditions: ðnÞ proportional uniaxial extension/torsion test (D), ðmÞ

non-proportional f ¼ p=4 uniaxial extension/torsion test (G), ð,Þ non-proportional f ¼ p=2 uniaxial extension/torsion test (H), ð.Þ non-

proportional f ¼ �p uniaxial extension/torsion test (I), ðnÞ proportional uniaxial compression/torsion test (F), ðþÞ non-proportional

f ¼ p uniaxial compression/torsion test (L).
Some important issues are, however, left unresolved. First, as most of the authors, we have considered
that flaws in rubber grow only due to material traction. A thorough study of this assumption would be
necessary to precisely determine which part of the configurational stress tensor induces fatigue damage.
Second, the relevant mechanical quantity that should be experimentally measured to develop a complete
fatigue criterion for given materials should be determined, and the corresponding experimental methods
should be defined. Finally, until now, the application of our theory is limited to simple problems; the
numerical implementation of the predictor, and more precisely of its accumulation during a cycle, is currently
under investigation.

Appendix A. Uniaxial extension/torsion of a hyperelastic tube

This appendix summarizes the derivation of the governing equations for the simultaneous uniaxial
extension and torsion of a cylindrical hyperelastic tube. Moreover, the configurational stress tensor and its
increment are derived in order to compute the multiaxial predictor Sn.

Let ðR;Y;ZÞ and ðeR; eY; eZÞ be the coordinates and the cylindrical unit vectors in the undeformed
configuration. Let ðr; y; zÞ and ðer; ey; ezÞ denote their counterparts in the deformed configuration. The
deformation of simultaneous uniaxial extension and torsion of a circular tube is given by

r ¼
Rffiffiffi
l
p ; y ¼ Yþ ltZ; z ¼ lZ, (46)

where l is the stretch ratio and t is the twist per unit length. The corresponding deformation gradient is

F ¼
1ffiffiffi
l
p ðer � eR þ ey � eYÞ þ R

ffiffiffi
l
p

tey � eZ þ lez � eZ (47)

and left and right Cauchy–Green strain tensors can be expressed as

B ¼
1

l
er � er þ

1

l
þ l2t2r2

� �
ey � ey þ l2trðey � ez þ ez � eyÞ þ l2ez � ez (48)
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and

C ¼
1

l
ðeR � eR þ eY � eYÞ þ tRðeY � eZ þ eZ � eYÞ þ ðl

2
þ lt2R2ÞeZ � eZ. (49)

Using the constitutive equation (15) with qW=qI1 ¼ C and qW=qI2 ¼ 0, the relation between Cauchy and
second Piola–Kirchhoff stress tensor Eq. (40), equilibrium equations and the boundary condition which
imposes that the external lateral surface ðR ¼ ReÞ is traction free, the pressure p is derived

pðRÞ ¼ 2C
1

l
þ Clt2ðR2

e � R2Þ (50)

and the Cauchy stress can be expressed as a function of the undeformed radius:

rðRÞ ¼ Clt2ðR2 � R2
eÞer � er þ Clt2ð3R2 � R2

eÞey � ey þ 2Cl
3
2tR

�ðey � ez þ ez � eyÞ þ 2C l2 �
1

l

� �
þ Clt2ðR2 � R2

eÞ

� �
ez � ez. ð51Þ

Thus, using Eqs. (49)–(51) and the relationship S ¼ JF�1rF�T, the configurational stress tensor reduces to

R ¼ C l2 þ
2

l
þ lt2R2

e � 3

� �
ðeR � eR þ eY � eYÞ � 2CtRðeY � eZ

þ eZ � eYÞ þ C �l2 þ
4

l
þ lt2ðR2

e � R2Þ � 3

� �
eZ � eZ. ð52Þ

Finally, the integration of the configurational stress tensor over a fatigue cycle necessitates the determination
of its increment

dR ¼
dR
dl

_lþ
dR
dt
_t

� �
dt, (53)

where

dR
dl
¼ C 2l�

2

l2
þ t2R2

e

� �
ðeR � eR þ eY � eYÞ þ C �2l�

4

l2
þ t2ðR2

e � 2R2Þ

� �
eZ � eZ (54)

and

dR
dt
¼ 2CltR2

eðeR � eR þ eY � eYÞ � 2CRðeY � eZ þ eZ � eYÞ þ 2CltðR2
e � 2R2ÞeZ � eZ. (55)
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