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1. Introduction degradation process. Prediction of phenomena as crack initiation
This work is motivated by the aim of building a model to predict
the full scenario of degradation of quasi-brittle solids under quasi-
static mechanical loading. Such a model involves the interaction of
complex processes and obviously requires at least two main ingre-
dients: fracture and damage mechanics.

On the one hand, although the basis of fracture mechanics can
be considered as well-known, many open questions still remain
about cracks modeling. For instance, processes as cracks merging
or a single crack branching are still difficult to both model physi-
cally and represent numerically. Classical numerical representa-
tions of cracks, based on the eXtended finite element method
[23] using level set functions (see e.g. [36,40,6,3]), quickly becomes
a tedious task as the number of cracks grows. If cracks are not rep-
resented by level sets, merging may be handled with some care as
in Budyn et al. [4] but this strategy will be most likely very cum-
bersome in three dimensions. Moreover, besides numerical issues,
mechanical issues still remain with every single crack model. For
instance, the cracks initiation, bifurcation and branching processes
cannot be easily predicted. It is now commonly admitted that
fracture mechanics alone is insufficient to model the entire
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requires damage mechanics [14,16]. However, the link between
damage and fracture is not obvious from both the physical and
numerical point of view [5,20,13,35].

Also, it is well known that local damage models may experience
spurious localization and mesh dependencies when considering
localization phenomena. Special care is thus required for the dam-
age field treatment to avoid these problems. Several models have
been developed to avoid these issues. All these models introduce
somehow, explicitly or not, a characteristic length to obtain non-
locality. Classical non-local integral damage models are based on
an averaging operator [2,29], integrating the local driving force
on a given prescribed length, to obtain a non-local driving force,
responsible for the damage growth. Such approaches may lead to
relatively high computational costs. Indeed, averaging the local
driving forces is done everywhere, even when no damaged zone
is present yet. Moreover, the average itself requires to take topo-
logical interactions into account, especially when averaging close
to notches, boundaries or cracks. The average around a point close
to a crack lip for instance should not consider information from the
other side of the crack (if considering an open crack). Solving these
problematic topological interactions is not a priori trivial, espe-
cially when considering averaging operators based on a fixed char-
acteristic length [27]. Another class of non-local models is the
high-order gradient models. The main idea is to add a variable,
as the damage gradient [8,30,25] or the deformation gradient
[1,37,33], to the mechanical formulation. Second order operators



then introduce the required diffusion to avoid spurious localiza-
tions. The additional cost of such methods cannot be neglected
since new variables and corresponding relationship have been
added to the problem over the whole domain, even where non-
locality is not required, not to mention the need to find appropriate
boundary conditions for the unknown gradients. Hiding the non-
locality treatment into the formulation also makes it more difficult
to control. Comparison between these two families of methods can
be found in Peerlings et al. [27]. A third kind of method avoiding
spurious localization is the phase-field approach [10,9,15]. A phase
field varying from 0 to 1 is introduced to characterized the material
degradation, providing a transition zone between sane and de-
stroyed material. A new phase equation presenting a laplacian
operator is added to the mechanical equations, providing somehow
an additional characteristic length to the problem. This additional
variational formulation is solved over the whole domain. Note fi-
nally that locating a crack in a highly damaged zone is a complex
issue with all these classical non-local models.

The TLS model [24] has been developed to:

– Obtain an efficient and thermodynamically consistent non-local
damage model.

– Provide answers to the fracture mechanics questions of crack
initiation, branching and merging.

– Offer a natural transition between damage and fracture.

Let us stress the fact that the TLS model is a new theoretical
damage model and not a pure numerical method. However, as le-
vel set based methods, it offers a natural and easy way to deal with
topological crack-related issues.

The main idea of the TLS approach is to locate a damaged zone,
possibly multiply connected, using a single level set function as de-
picted in Fig. 1. This easily solves the numerical questions of merg-
ing or branching. Indeed, level set functions, introduced in Osher
and Sethian [26], have been widely used to represent material
interfaces or free boundaries in an easy manner [22,18]. The iso-
zero of the level set / is called the damage front and corresponds
to the transition between the sane and the damaged material.
The level set / considered is a signed distance function: its value
/(x) at point x is the minimum distance between x and the iso-zero
of the level set field /. In the TLS model, damage is considered as a
given (increasing) function of the level set, d = d(/). As depicted in
Fig. 1, the damage raises from 0 to 1 as / goes from 0 to lc respec-
tively. Therefore, the minimum distance between a point where
d = 0 and a point where d = 1 is lc, preventing spurious localization.
It is important to notice, however, that the minimal distance be-
tween a point of the iso-zero and the iso-lc can be much larger than
lc as illustrated in Fig. 1(between points A and B for instance).
Fig. 1. A single level set function locating two damaged zones. The iso-zero C0

locates the transition between the sane and damaged material. As the damage
growth, the iso-lc appears, locating transition between damaged and fully damaged
zones. This zone where d = 1 can be seen as a macro crack.
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As shown in Möes et al. [24], this approach is very promising
because of the following reasons:

– The non-local treatment is restricted to damaged areas. It only
requires a special treatment in the transition zone, where
0 < d 6 1, leading to lower computational costs.

– The non-locality only appears where and when needed, without
additional variable or equation to solve over the whole domain.

– The transition from damage to crack is automatic, no additional
computation is required.

– The TLS model tends to the local model as the damage tends to
zero: the damage initiation is simple and well-posed.

– Compared to standard non-local integral models, the character-
istic length of the non-local operator is not fixed, but automat-
ically varies from 0 to lc as the damage grows, avoiding
topological issues around cracks.

– The approach is not a so-called ‘‘element deletion’’ method as in
Saanouni et al.[32]: the fully damaged zone is delimited by the
iso-lc. Accurate integration in cut elements can be done while
degrees of freedom are kept in the damage zone.

The objective of this paper is to present some improvements to
the first TLS implementation given in Möes et al. [24], in particular
to propose an efficient, simple and robust way to implement the
TLS model, trivially extensible to three dimensions. Some funda-
mentals of the TLS damage model are recalled in Section 2. The
reader is also referred to Möes et al. [24] for a detailed description
of the theoretical model.

The paper is organized as follows: in Section 2, the governing
equations are described including the damage evolution law. The
local damage model is combined to the TLS to obtain the non-local
model and some interesting properties of the TLS are stressed. Sec-
tion 3 is devoted to the numerical resolution of the TLS model. We
first introduce the ramped Heaviside enrichment function used in
the elastic computation, with the aim to decouple degrees of free-
dom on both sides of the fully damaged zone. We insist at this
point on the fact that this enrichment is not mandatory to use
the TLS model, but provides a more accurate solution since it re-
duces the numerical dissipation induced along the macro-crack
by a coarse mesh. A second paragraph is devoted to a variational
formulation to efficiently compute the regularized damage energy
release rate on the front using a standard finite element discretiza-
tion. The last paragraph finally presents the explicit algorithm used
to propagate the front as well as the level set update through a var-
iational problem. The results are finally presented in Section 4: the
TLS damage model is compared to Griffith’s fracture theory in the
case of the three points bending problem and errors are computed,
leading to good convergence rates. Some standard benchmarks are
then performed and the results are compared to experimental data.
We finally illustrate the potential of the TLS approach by perform-
ing more complex computations where damage initiation plays an
important role.
2. Governing equations: from local to non-local models

In this section, we first present the local governing equations. In
order to simplify the TLS model equations, we choose to represent
the damage in the simplest possible way using a single scalar dam-
age variable. Indeed, in the framework of this paper, a scalar vari-
able seems sufficient to present the main features of the model, its
discretization, and to analyze its properties. Notice however that
this is not a limitation of the TLS model. Anisotropic damage will
for instance be considered in future works. The TLS model is
introduced to derive the non-local damage evolution laws from
the local behavior in Section 2.2.



1 This is not necessarily true for all similar potentials, for instance the similar
potential u(r,d) written as a function of the stress eigenvalues.

2 Note that the following are theoretical observations, of course not required for the
actual finite element computation.
2.1. A free energy involving dissymmetric behavior in tension/
compression

We consider the domain of computation X bounded by C. The
equilibrium equation reads:

r � r ¼ 0 on X; ð1Þ

with r the Cauchy stress tensor and usual Neumann boundary con-
ditions r � n = f with f the external loading on CN and n the outgoing
normal vector to the domain boundaries. We consider the frame-
work of small strains and displacements, providing the relation:

� ¼ 1
2
ruþ ðruÞT
� �

; ð2Þ

between the strain tensor � and the displacement field u. Prescribed
displacements u ¼ u are imposed on CD.

The stress is related to the strain through a state law derived
from the free energy u. We consider in the following a general
expression for the free energy, u(�,d), yielding the state laws de-
fined as the derivatives of the free energy:

r ¼ ou
o� ;

Y ¼ � ou
od :

(
ð3Þ

For instance, let us consider a simple scalar damage variable d
and the standard elastic free energy:

uð�;dÞ ¼ 1
2
ð1� dÞ� : E : �; ð4Þ

with E the Hooke tensor. Using their definition (3), the state laws
read:

r ¼ ð1� dÞE : �;

Y ¼ 1
2� : E : �:

(
ð5Þ

We clearly observe here that the material presents the same behav-
ior in tension and compression. In other words, the energy release
rate Y is independent of the signs of the strain eigenvalues and dam-
age will grow even if the damaged zone only experiences compres-
sion. In some cases, this behavior may not be realistic and may lead
to solutions drastically different from observations. Therefore, we
use the following slightly non-linear free energy:

uð�;dÞ ¼ lð1� aidÞ�2
i þ

k
2
ð1� adÞtrð�Þ2; ð6Þ

where k and l are the Lamé elastic coefficients, �i the eigenvalues of
the strain tensor and

ai ¼b if �i < 0;
1 if �i P 0;

a ¼b if trð�Þ < 0;
1 if trð�P 0;

with 0 6 b 6 1. The case b = 1 corresponds to the linear elastic po-
tential (4). Indeed, the derivations with respect to � and d read:

ri ¼ 2lð1� dÞ�i þ kð1� dÞtrð�Þ;
Y ¼ �ltrð�2Þ � k

2 trð�Þ2;

(
ð7Þ

which is equivalent to (5).
On the contrary, if b is set to zero, we obtain in complete

tension:

ri ¼ 2lð1� dÞ�i þ kð1� dÞtrð�Þ
Y ¼ �ltrð�2Þ � k

2 trð�Þ2

(
if �i P 0 8i; ð8Þ

and in complete compression:

ri ¼ 2l�i þ ktrð�Þ
Y ¼ 0

�
if �i < 0 8i: ð9Þ
3

We thus observe the expected behavior: the damage has no effect
on the material in compression. It recovers a complete stiffness in
compression and the energy release rate becomes zero, meaning
that damage does not grow. Note that the dissymmetric potential
u is convex1 with respect to the strain for any damage value
(0 6 d 6 1). Other similar models involving closure effects may be
found in Lemaitre and Desmorat [17].

Although the behavior of this dissymmetric potential is close to
the well-known Mazars model [19], it is important to mention that
it affects both the stress and the energy release rate state laws, pro-
viding thermodynamical consistency.

2.2. Revisiting the damage evolution laws in the TLS model

Let us now write the relationships of the local damage evolution
and introduce the TLS representation to obtain the non-local quan-
tities driving damage growth. The numerical computation of these
quantities will be addressed on Section 3.2.

In this paper, we are interested by time-independent damage
models. We consider the following well-known local behavior stat-
ing that damage grows as Y reaches Yc:

Y 6 Yc;
_d P 0; ðY � YcÞ _d ¼ 0: ð10Þ

Let us consider the case of the damaged zone depicted in Fig. 2.
A portion ds of the damage front C0 moves of a distance d/. Be-
cause of the level set properties, this front advance has an impact
on the whole zone sharing the same curvilinear coordinates s
(the gray zone in Fig. 2). The non-locality clearly appears here since
the damage on a single point (say, for instance, point P in Fig. 2)
cannot grow without affecting the surrounding points sharing
the same s coordinate, preventing spurious localization. In the
TLS framework, the damage is assumed to be a function of the level
set, d = d(/). The potential energy E(u,d) thus becomes a function
of the level set:

Eðu;/Þ ¼
Z

X
u �ðuÞ;dð/Þð Þ dX�

Z
CN

f � udC; ð11Þ

with f = r � n the imposed load on CN. This relation can be differen-
tiated using the relationship:

du ¼ ou
o�

d�þ ou
od

dd;

the state laws (3) and the integration by part of the equilibrium (1)
on X. The amount of dissipated energy as the front moves of a dis-
tance d/(s) on a front part ds then reads:

dE ¼ �
Z

X
Yd0d/ðsÞ dX: ð12Þ

This quantity, the front energy release rate, is the required infor-
mation to predict the damage variation. One may observe here a
huge advantage of the TLS model: the damage derivative d0(/) is
zero everywhere except in the damaged zone. Therefore, comput-
ing this variation of energy only requires integration in the
damaged zone Xd. The treatment of the non-locality is thus ‘‘local’’,
unlike classical non-local models which require important
numerical efforts even in zones where d = 0. The computational
cost required for propagating the damage then becomes clearly
much smaller.

Explaining the TLS approach requires now to introduce a change
of variables.2 Let us rewrite the dissipated energy (12) in the orthog-
onal basis (/,s) depicted in Fig. 2 using the variable change

dX ¼ 1� /
qðsÞ

� �
d/ds as previously done in Möes et al. [24]:



Fig. 2. Alternative system of coordinates (/,s) is depicted on the left. As suggested on the right plot, a damage front C0 experiencing a front advance d/(s) has an impact on
the whole damaged zone sharing the same curvilinear coordinate s (represented by the gray zone), because of the signed distance function properties of the level set function.
dE ¼ �
Z

C0

Z l

0
Yð/; sÞd0ð/Þ 1� /

qðsÞ

� �
d/|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gðsÞ

d/ðsÞds; ð13Þ

with l comprised between 0 (damage initiation) and at most lc(lead-
ing to a fully damaged zone) and q being the front curvature on C0.
We see here appearing a quantity of dimension dim(X) � 1 defined
on C0, the configurational force g(s). Once Y homogenized on the
band width / 2 [0, l], the front propagation is thus basically a prob-
lem of dimension dim(X) � 1.

It is now possible to fulfill the homogenized version of the local
propagation law (10) by searching g = gc:Z

C0

Z l

0
Yð/; sÞd0ð/Þ 1� /

qðsÞ

� �
d/d/ðsÞds

¼
Z

C0

Z l

0
Ycð/; sÞd0ð/Þ 1� /

qðsÞ

� �
d/d/ðsÞds; ð14Þ

for all front advance d/.
However, g(s) and gc(s) clearly tend to 0 as l ? 0. Therefore,

finding the load factor required to obtain a front advance leads to
comparing two quantities tending to zero. Hence, unlike the first
TLS paper [24], we choose another quantity, YðsÞ, defined as a con-
stant value along / such that:

gðsÞ ¼
Z l

0
Yð/; sÞd0ð/Þ 1� /

qðsÞ

� �
d/ ¼

Z l

0
YðsÞd0ð/Þ 1� /

qðsÞ

� �
d/:

ð15Þ

Since Y depends only on s, it can be removed from the integral to
obtain its alternative definition:

YðsÞ ¼

R l
0 Yð/; sÞd0ð/Þ 1� /

qðsÞ

� �
d/R l

0 d0ð/Þ 1� /
qðsÞ

� �
d/

: ð16Þ

This homogenized quantity Y is thus a simple weighted average of
Y, tending to Y as l tends to zero. The homogenized propagation con-
dition finally simply reads:Z

C0

YðsÞd/ds ¼
Z

C0

YcðsÞd/ds 8 d/ðsÞ; ð17Þ

with Yc the same weighted average of Yc. If Yc is uniform over the
domain, Yc ¼ Yc . We observe here that the TLS model is also well-
posed in the sense that the limit of the defect tending to zero (dam-
age initiation) corresponds to the local model, Y = Yc, since:

lim
l!0

Y ¼ Y :

Non-locality thus only appears for d > 0. Finally, the front evolution
related to the local damage evolution (10) reads:

Y 6 Yc; _a P 0; ðY � YcÞ _a ¼ 0: ð18Þ
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If more complex evolution laws than (10) are considered, the strat-
egy introduced in Möes et al. [24] may be used to obtain the front
evolution relating Y and _a.

3. Variational formulations and discretization

In this work, we use a simple explicit algorithm, decoupling the
elastic computation and the damage front propagation. We first
consider the damage as a given field and compute elastic fields.
The first paragraph is devoted to this first step and to the introduc-
tion of a new enrichment function. Then, based on these elastic
fields, we compute the damage front propagation. A robust and
efficient variational formulation is presented in the second para-
graph to compute the non-local variables Y and Yc in the damaged
zone. The third paragraph is devoted to the numerical computation
of the time-independent model and to the actual damage
propagation.

3.1. Elastic computation using ramped Heaviside enrichment

The standard Galerkin formulation is obtained by multiplying
Eq. (1) by a smooth function û 2 U0 and integrating on the domain,
with U0 the appropriate function space of admissible test
displacements:

U0 ¼ v : v 2 H1ðXÞ; v ¼ 0 on CD

n o
:

Integrating the divergence by parts, the weak formulation reads:Z
X
r : �ðûÞ dX ¼

Z
CN

f � ûdC 8û 2 U0: ð19Þ

The displacement solution belongs to the space of admissible trial
displacements:

U ¼ v : v 2 H1ðXÞ; v ¼ u on CD

n o
:

We seek an approximation uh of u such that uh 2 Uh
p with Uh

p � U the
finite dimensional space of admissible trial displacements com-
posed of polynomials Np of degree at most p:

uh ¼
PN
j¼1

Np
j U j 2 Uh

p; ð20Þ

where Ui are the nodal values and N is the number of degrees of
freedom.

The Newton–Raphson loop on the iterate uh
i to solve the non-

linear potential (6) reads:Z
X
� Duh
� 	

: H : � ûh
� 	

dX ¼
Z

CN

f � ûhdC

�
Z

X
r uh

i

� 	
: � ûh
� 	

dX 8ûh 2 U0h
p
; ð21Þ



with Duh ¼ uh
iþ1 � uh

i and H the tangent operator. Details about its
computation can be found in the appendix. Note that the tangent
operator can be singular in the case of a complete damage in ten-
sion. In this case, a residual stiffness is imposed to the tangent oper-
ator to prevent singularities, but the right hand side is computed
exactly. We therefore converge to a solution satisfying the equilib-
rium in spite of this approximation in the tangent operator.

To obtain a proper solution, we still need to introduce some
enrichment in this formulation. Indeed, let us consider the fully
damaged zone depicted in Fig. 3. The strain field on the left was
Fig. 3. Close-up view of the strain field on the three points bending specimen. Without e
the fully damaged zone (white zone) are still coupled. With the use of the ramped Hea
tension-free crack lips, mandatory for an accurate computation of the damage propagat

Fig. 4. Comparison of the Heaviside (H) enrichment for a crack (located exactly on a node
extending from x0 to x1. The dashed lines indicate the locations of the iso-lc. Classical FEM
their product on the right column. As the fully damaged zone tends to zero, the ramped
row.
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computed without any enrichment. The consequence is that, since
using continuous finite elements, the degrees of freedom on both
sides of the completely damaged zone are still connected. Nodes
in the fully damaged zone should be properly enriched to decouple
both sides of the crack, providing tension-free crack lips. A node in
the zone d = 1 must be enriched if it presents a support (i.e. the set
of surrounding elements) cut twice (or more) by the iso-lc, as node
‘‘n’’ in Fig. 3. On the other hand, enrichment is not required if the
support is cut only once as for instance the nodes of element ‘‘e’’
in Fig. 3.
nrichment (left), crack lips experience high strain at several spots and both sides of
viside enrichment (right), we obtain a complete decoupling in tension, yielding to
ion.

i)(upper row) with the ramped Heaviside (Hr) enrichment for a fully damaged zone
function Ni for node i and the enrichment functions are depicted on the left column,
Heaviside function clearly tends to the Heaviside function, as depicted in the lower



In the extended finite element method, both sides of a crack are
decoupled by enriching the mesh with a Heaviside enrichment
[23]. To handle the case depicted in Fig. 3, we introduce an enrich-
ment being +1 on one side of the fully damaged zone and �1 on the
other side. Then, we connect +1 and �1 values by a continuous
ramp in the fully damaged area. If the material law is dissymmetric
as in (6), contact will be automatically handled since the material
in the fully damaged zone will recover its stiffness under compres-
sion. We shall call this enrichment ramped Heaviside.

Let us illustrate this on the one-dimensional example depicted
in Fig. 4, with a crack located exactly on node i (Fig. 4(a)). Using
classical X-FEM method for a single crack, the product of the shape
function Ni and the Heaviside function H, HNi(Fig. 4(d)), is the clas-
sical additional discontinuous function required in the finite ele-
ment basis to represent a discontinuous field on node i. In the
following, we consider that the level set function is discretized as
a piecewise linear function. Therefore, the elements are cut only
once by the iso-lc, and we can consider that there is always at least
one node in the fully damaged zone. Let us assume the fully dam-
age zone delimited by x 2 [x0,x1] in Fig. 4(b). We thus define the
ramped Heaviside function as:

HrðxÞ ¼
1 if x 6 x0

1� 2
x1�x0
ðx� x0Þ if x0 < x < x1

�1 if x P x1

8><>: : ð22Þ

As the fully damaged zone tends to zero, as illustrated in Fig. 4(c),
the additional function HrNi clearly tends to the classical HNi.
Although the ramped Heaviside function is continuous, it yields to
a complete decoupling of the two sides of the fully damaged zones
since the stiffness in this zone is zero for tension loading. But once
associated to a dissymmetric potential resisting in compression, its
continuity also ensures that the contact between the two sides is
satisfied. Contact is therefore automatically handled with this
approach.

In practice, for two- or three-dimensional applications, building
a ramped Heaviside function with the definition (22) can be very
Fig. 5. In practice, the ramped Heaviside is actually much easier to build using
piecewise linear functions defined on every element in the damaged zone (solid
line) instead of one single linear function (dashed line).

Fig. 6. Domain, boundary conditions and mesh: white zones correspond to a full damage
stiffness. A first computation is carried out in tension, imposing Dirichlet rigid translation
considers a constant pressure on all boundaries.
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complicated. A much more simple approach consists in considering
that the function is zero at node i, i.e. the nodes in the fully dam-
aged zone, as illustrated in Fig. 5.

Let us consider now a two-dimensional application to illustrate
the potential of this approach. The domain and computational
mesh is depicted in Fig. 6, where the white zones correspond to
a complete damage d = 1 (complete loss of stiffness in tension)
and the gray zones to an undamaged stiffness. We first apply
appropriate Dirichlet rigid translation conditions on each block of
this domain (see Fig. 6), avoiding contact between blocks, using
the linear elastic potential (4). We obtain motion of perfect rigid
bodies (upper row in Fig. 7), each block being completely indepen-
dent of the others and experiencing a zero strain field. Without
applying any boundary condition, the global stiffness matrix pre-
sents 33 null eigenvalues, corresponding to the rigid modes of
the 11 independent blocks. On the other hand, when applying a
constant pressure on the four boundaries using potential (6), the
material recovers its stiffness (lower row in Fig. 7) and the contact
is naturally handled on the blocks interfaces. This demonstrates
the capability of the ramped Heaviside enrichment to numerically
take into account the dissymmetric behavior of the material.

3.2. Variational formulation for the non-local model

We now wish the front to move when the homogenized quan-
tity Y reaches Yc . Let us recall its definition (15):Z l

0
YðsÞd0ð/Þ 1� /

qðsÞ

� �
d/ ¼

Z l

0
Yð/; sÞd0ð/Þ 1� /

qðsÞ

� �
d/:

First, we would like to avoid direct computation of the Jacobian
depending on the curvature q. Integrating this relation along the
damage front to obtain a variational formulation leads to integrals
on Xd: the curvature computation is therefore not required. The
major issue for the numerical discretization is the fact that this
quantity YðsÞ is clearly of a dimension dim(X) � 1, along the dam-
age front. This problem can be written as the following variational
formulation: find Y 2 Y such that:Z

Xd
Y bY d0ð/Þ dX ¼

Z
Xd

Y bY d0ð/Þ dX 8bY 2 Y;
with the constrained space:

Y ¼ y \regular" on Xd : y;/ ¼ ry � r/ ¼ 0; i:e: yð/; sÞ ¼ yðsÞ
n o

;

strongly imposing the fact that Y is constant along the level set gra-
dient, i.e. only function of the curvilinear coordinate s. The formula-
tion is very simple, but the difficulty lies here in the numerical
construction of such a constrained space. One possible way to
implement this is to parametrize the front curvature s, and extend
this parametrization into the damaged zone, as done in Möes
, i.e. a zero stiffness in tension, while the gray zones are the sane material with full
conditions on three of the degrees of freedom of each block. A second computation



Fig. 7. Displacement norm (left column) and strain norm (right column) obtained for the tension (upper row) and compression (lower row) tests. The ramped Heaviside
enrichment allows the different sane blocks to experience rigid body motion in tension, while the degraded zone is able to recover stiffness in compression.
et al. [24]. The field Y is therefore easily discretized. But it requires a
parametrization of the front, which is not trivial if dim(X) = 3, or in
presence of multiple fronts using parallel computing.

We therefore choose another approach to weakly impose the
fact that Y is constant along the level set gradient, working directly
on the variational formulation itself instead of using a complicated
space. In other words, we consider in the discretization that
Y ¼ Yð/; sÞ instead of YðsÞ, and weakly impose the constraint
rY � r/ ¼ 0. Let us define the following simple spaces Y and Y0 as:

Y ¼ fy \regular" on Xdg ð23Þ
Y0 ¼ fy \regular" on Xd and y ¼ 0 on C0g: ð24Þ

Finding Y can be achieved by considering the following variational
formulation:

Find Y 2 Y; k 2 Y0 such that:R
Xd Yd0ð/ÞbY þ h2

lc
rY � rbY� �

dX

þ
R

Xd lcðrk � r/ÞðrbY � r/Þ dX ¼
R

Xd Yd0bY dX 8bY 2 YR
Xd lcðrk̂ � r/ÞðrY � r/Þ dX ¼ 0 8k̂ 2 Y0

8>>><>>>: ;

ð25Þ
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where (rk � r/) is a Lagrange multiplier to enforce the condition
rY � r/ ¼ 0 and h denotes the characteristic element size. The dif-
fusion term in h2 has been introduced to get rid of possible small
oscillations on Y . Note that this term is not necessary to ensure
the stability of the formulation.

We then simply discretize Y and k in the same way, in the sup-
port of the damaged zone, as a sum of piecewise linear functions:

Yh ¼
P

i
LiYi; ð26Þ

kh ¼
P

i
Liki; ð27Þ

with Li the standard linear Lagrange shape functions. Finally, the
Dirichlet boundary conditions on k, see (24), is approximated by
setting k to zero at all nodes of the elements crossed by C0.

The computation of Y is therefore eventually very simple and
robust using formulation (25). It only requires a standard finite ele-
ment space defined only in the damaged zone, leading to solving a
small system made of mass and diffusive matrices, trivially ex-
tended to a three-dimensional configuration. If the critical energy
release rate Yc is not a constant value, the exact same system is
solved to compute its homogenization Yc , to be compared to Y .



Fig. 8. Damage shape d(/) used in all computations. The dashed-dotted profile
corresponds to the L-shaped panel while other computations are performed using
the solid profile.

Fig. 9. Domain definition and boundary conditions for the three points bending
problem, with dimensions in millimeters. We consider a beam thickness of 0.1 m
without initial notch.
3.3. Damage front propagation and explicit algorithm for the time-
independent model

Based on a given level set configuration (denoted by the lower
script n) /n, we computed the elastic problem for a reference load,
say eF , and found the damage front energy eY nðsÞ (the upper bar is
omitted to simplify the notations) using the variational formula-
tion (25). The discretization of Y on the front is known as a sum
of modes with nodal values Yi. We now wish to find a simple ex-
plicit algorithm to propagate the damage front according to the
homogenized time-independent local law, Y ¼ Yc . We also wish
to find the required load F, or the required load factor l ¼ F=eF ,
to obtain this front advance. We consider here the general case
where Yc is not constant, i.e. Yc can experience variations along
C0. In order to capture possible snap-backs, a generalization of
the crack length control is used: a norm of the front advance is im-
posed between two time steps. This is taken to be the infinite norm
(maximum front advance) in this paper.

First, we want at least one of the modes Yi to be ‘‘activated’’, i.e.
leading to a front advance. For a given damage configuration and
due to the state laws used in this paper, the displacement (and
strain) is proportional to the load factor l. The energy release rate
is therefore proportional to its square, Y ¼ l2eY , and the smallest
load factor required to obtain a front advance is obviously given by

l2
n ¼min

i

YcieY i

 !
: ð28Þ

For a constant value of Yc, this corresponds to the largest value of eY .
In the framework of an explicit formulation, we impose that this
mode will lead to a front advance of amax, typically the size of an
element.

Now, the main question still remains: are other modes acti-
vated, which means other front parts moving, and what is their
front advance ai? Indeed, assume that we only move the front part
corresponding to the maximum mode. Then, we obtain the new le-
vel set /n+1, leading to a new load factor l2

nþ1. For such an explicit
load increment, Dlnþ1

n ¼ lnþ1 � ln, maybe other modes should
have been activated in the configuration at time step n. In an impli-
cit formulation, we would have to compute the sensitivity of Y to
the front advance a. One could also choose to iterate between time
steps n and n + 1 to optimize the front position. However, we
choose here a simpler explicit approach. At time step n, we assume
the following relationship between the front advance an = /-
n+1 � /n and the front energy Yn:
8

ain ¼ k ðln þ jDljÞ2
eY i

Yci

 !
n

� 1

* +
þ

; ð29Þ

with values:

Dl ¼ Dln
n�1; ð30Þ

k ¼ amax

1þ jDln
n�1 j

ln

� �2
� 1

; ð31Þ

where amax is the maximum front advance allowed at each time
step, i.e. the ‘‘crack length’’ control parameter. This value of param-
eter k is chosen to obtain consistency between time steps. More de-
tails about these parameters can be found in the appendix.

Finally, updating the level set still requires to know the level set
increment a anywhere in the domain and not just on the front. We
thus wish to extend the information from the front along the level
set gradient, to obtain /n+1 = /n + a everywhere in the domain.
There are many possible ways to extend the information from
the front to the whole domain, see for instance Sethian [34]. We
choose here to solve the following problem: find a 2 A such that:Z

X
ðra � r/Þðrâ � r/Þ dX ¼ 0 8 â 2 A0: ð32Þ

This variational formulation, imposing the condition ra � r/ = 0 in
the domain, simply corresponds to a diffusion operator in the level
set gradient direction. The test and trial admissible spaces are
respectively defined as:

A0 ¼ a : a 2 H1ðXÞ; a ¼ 0 on C0

n o
;

A ¼ a : a 2 H1ðXÞ; a ¼ a on C0

n o
:

The level set increments a are known on the nodes surrounding the
front C0 and are thus imposed as Dirichlet boundary conditions.

Note finally that, as many level set-based numerical methods,
the TLS method relies on the distance function properties of the le-
vel set in the damaged zone. Therefore, it is mandatory to guaran-
tee that the level set remains a signed distance function though
some ‘‘re-initialization’’ process [34].

3.4. Damage initiation

As stated in the previous section, the non-local model tends to
the local one as the defect size tends to zero. Indeed, the average of
the energy release rate Y clearly tends to Y in this case. In other
words, the criterion for damage initiation is local and reads
Y = Yc. Afterwards, non-locality gradually steps in as damage
grows. Again, we choose to use an explicit algorithm as simple as
possible: after each elastic computation on a front configuration
/n, we seek for the maximum of Yn (based on the loading factor
ln�1) in the whole domain. When this maximum is larger than
Yc, we initiate a circular defect with an approximate radius of h,
i.e. the smallest defect that can be represented on our mesh. Note



that with h� lc, the maximum damage in this initiated defect is
also much smaller than 1. This damage initiation is thus of course
much less invasive than initiating a crack and has a negligible im-
pact on the global stiffness of the structure.
Table 1
Computational times and number of propagation steps on different meshes for the three
single Intel Xeon Processor at 2.00 GHz.

Element size 0.0465 0.0345
Triangles 1194 2210
Propagation steps 187 265
Time (min) 7 22

Fig. 10. Close-up view of the damaged zones for the coarser and the finer meshes for a s
above, the elements cut by the iso-zero or iso-lc generate sub-elements used for an accu
visualize the macro-crack.

Fig. 11. Comparison of load–displacements curves and evolution of the dissipated energy
the TLS damage model and the Griffith’s crack solution (solid black). The five markers cor
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4. Results

The first paragraph concerns a simple benchmark, the three
points bending problem, to quantitatively validate the non-local
points bending computation, with a discretization using polynomials of order 2 on a

0.0240 0.0169 0.0120 0.0085
4420 8754 17188 34478
368 528 795 1204
67 216 780 3163

ame crack length (right) and before the appearance of the crack (left). As illustrated
rate integration. Elements are not represented in the fully damaged zone to clearly

with the crack length using several meshes. We observe a good agreement between
respond to five crack lengths for which errors and convergence rates are computed.



model by comparison with Griffith’s theory and computation of er-
ror convergence rates. A second benchmark is the L-shaped panel,
presenting a mixed tension–compression fracture. Both the crack
path and the load–displacement curves are compared with exper-
imental data. Other benchmarks are used to illustrate the potential
of the TLS model, and in particular the damage initiation process.
Although the check for possible damage initiation is done in all
Fig. 12. Convergence rates of order 2–4 are observed on the energy dissipation error (u
observed on the displacement and CMOD errors (bottom row). The five markers corresp

Fig. 13. Using the explicit algorithm on a given mesh, convergence is ob
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computations, multiple initiation only occurs in the computation
of the Brazilian test as in the benchmark of a multiply perforated
plate in tension.

Let us summarize the only three parameters used in the follow-
ing TLS computations. The first one is of course the shape of the
damage with respect to the level set. We use in the following com-
putations the arc-tangent profile depicted in Fig. 8:
pper row) using first (left) and second (right) order elements. Convergence is also
ond to the five crack lengths on Fig. 11.

served in amax, i.e. the maximum level set growth at each iteration.



Fig. 14. Load–displacement curves for the three points bending problem for several couples (lc,Yc) presenting the same product Gc = Yclc. As expected, we obtain the same
results with almost superimposed curves for lc sufficiently small compared to the size of the structure. A difference becomes visible as lc becomes too large, lc P 0.0204 m
(about 13% of the height of the beam).

Fig. 15. Domain definition and boundary conditions for the L-shaped panel test,
with dimensions in millimeters.
dð/Þ ¼ c2atan c1
/
lc
� c3

� �� �
þ c4: ð33Þ

Most of the computations are performed with c1 = 10 and c3 = 0.5
(solid line on Fig. 8), except the L-shaped panel where c1 = 35 and
c3 = 0.2 (dashed-dotted line on Fig. 8). The constants c2 and c4 are
determined to satisfy the conditions d(lc) = 1 and d(0) = 0
respectively:

c2 ¼ ðatanðc1ð1� c3ÞÞ � atanð�c1c3ÞÞ�1
;

c4 ¼ �c2atanð�c1c3Þ:

(
The two remaining parameters are the characteristic length lc

and Yc. One way to choose these values is to compare the TLS mod-
el to fracture mechanics. Considering a crack in an infinite domain,
i.e. with the shape of the equivalent damage front remaining un-
changed, it has been shown in Möes et al. [24] that the fracture en-
ergy Gc = 2AYclc, with A the area under the curve d(/). Therefore,
every couple (Yc, lc) presenting the same product will lead to the
same energy dissipation and the same load–displacement curve
in the well established crack propagation regime.

Unless specified otherwise, all computations were performed
using second order polynomial finite elements to discretize the
displacement field. For all computations, the initiated damaged
zones have a size of the order of h, the element size. The plane
strain assumption is considered in all test cases.

4.1. The three points bending problem: comparison with Griffith’s
fracture theory

The geometry and boundary conditions are depicted in Fig. 9.
The TLS damage model is quantitatively compared to the Griffith’s
fracture theory, the latter being solved using the standard X-FEM
method. The Griffith computation is initiated with a crack of
1.5 mm. The errors on relevant quantities as the energy dissipation
or displacements are then computed using several meshes with
decreasing characteristic element sizes and the convergence rates
are computed.

As shown in Möes et al. [24], when lc is small compared to the
size of the structure, results of the Griffith’s fracture and the TLS
damage theories should be close to each other. The Young modulus
and Poisson ratio used are respectively E = 36.5 GPa and m = 0.1,
while we choose a critical fracture energy Gc = 1 Nm�1 for the Grif-
fith’s fracture computation. The propagation direction of the crack
is imposed in the crack solution, while it is of course determined by
the TLS model in the TLS computations.

First, computations are performed on several meshes present-
ing different element sizes (see Table 1), the Griffith solution being
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computed on the finer mesh. The finer and coarser meshes are de-
picted in Fig. 10. The maximum front propagation distance used
here is amax = h/8 with h the element size. The values lc = 0.02 m
and Yc = 50 Pa have been chosen to obtain the same fracture energy
Gc = 1 Nm�1.

In Fig. 10 are depicted the damage transition zones on the coar-
ser and finer mesh, for a same crack length. The crack length is de-
fined here as the maximum vertical coordinate of the iso-lc. The
damage front position is similar while the fully damaged zone
width is of about one element, i.e. the minimum size to activate
the ramped Heaviside enrichment.

We may observe the efficiency of the TLS model in terms of
computational costs on the computational times reported in Table
1. The computational cost of the non-local damage treatment and
propagation represents about 10% of the elastic computational
cost.

In Fig. 11 are the resulting load–displacement curves. We visu-
ally observe a convergence of the curves with the spatial discreti-
zation and a good agreement with Griffith’s solution. On the
evolution of the dissipated energy with the crack length, we



Fig. 17. Evolution of the damage field for the L-shaped panel: it is observed that the TLS does not necessarily imply a circular damage front. With the damage shape d(/) used,
the damage first extends on a wide zone (left) before reaching 1 and creating a crack (right), providing some varying cohesive length at the ‘‘crack tip’’. The gray envelopes
denote the experimental crack path.

Fig. 18. Load–displacement curve and domain definition and boundary conditions
for the three holes plate.

Fig. 16. L-shaped panel: although the parameters and laws were not optimized, the crack path (right) and load–displacement curve (left) approximately match the
experimental measurements (gray envelopes).
observe that the slopes of the TLS curves tend to the Griffith’s
slope, which is consistent with the equivalency Gc = 2AYclc. How-
ever, some energy is also dissipated before the crack appears. This
amount of energy clearly depends on the length lc and the TLS and
Griffith’s curves thus merge for lc ? 0. Five crack lengths have been
chosen, represented by the five different markers in Fig. 11, to
compute errors and their corresponding convergence rates. The er-
rors on the dissipated energy (W), the displacement under the load
(U) and the crack mouth opening displacement (CMOD) are com-
puted using the finer mesh solution as reference. Errors are re-
ported in Fig. 12. First, we clearly observe a convergence, with a
rate of at least 2, using polynomials of order 1 or 2. Using polyno-
mials of order 2, the convergence rate seems to be of order 4 for the
small crack length (triangle markers with the smallest absolute er-
ror), and then tends to 2 for larger crack lengths. This can be ex-
plained by the fact that we use a simple explicit algorithm to
propagate the damage front, with a maximum advance of the front
of h/8. Therefore, the error in pseudo-time as no reason to converge
as fast as the spatial error and will finally alter the global conver-
gence rate for high-order polynomials. Note also that we try to
compare values for a same crack length. But since the time steps
are different, the crack lengths are not exactly the same, which
might also introduce a significant error.

A second experiment consists in using, on the same fine mesh,
different maximum values for the front propagation. We observe
in Fig. 13 the convergence of the explicit propagation algorithm
with amax using the four values amax = h/2, h/4, h/8 and h/16. Con-
vergence rate of 2 with the explicit time step is obtained, as
expected.

Finally, in Fig. 14 are depicted the results for different couples
(Yc, lc) having the same product Gc. Different meshes have been
used for these computations, presenting the same ratio h/lc to en-
sure that the driving fields inside the damage band are discretized
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with the same accuracy. The curves should be theoretically the
same (in an infinite domain) since they present the same dissipa-
tion. However, the domain is finite. We observe the expected result
on Fig. 14. The curves are almost superimposed, which enlightens
the fact that, for lc sufficiently small compared to the characteristic
size of the structure, the product Yclc is much more important than
the single value of lc.

4.2. The L-shaped panel

Specimen dimensions and boundary conditions are depicted in
Fig. 15. This benchmark, elaborated by Winkler [39], provides



experimental data to compare with and involves a mixed tension–
compression curved cracking. Several studies previously used this
benchmark, as the study of cohesive and cohesionless cracks mod-
els [21], the comparison of crack path tracking strategies [12], the
development of X-FEM-based models for cohesive cracks [38] or
the study of crack models comparison using adaptive grids [7].

Unlike the other TLS computations, we used different parame-
ters for the arc-tangent profile leading to the dashed-dotted profile
of Fig. 8 to obtain a better agreement with the experimental data.
The load–displacement curve is depicted in Fig. 16 as well as the
crack path. The experimental results are represented by the gray
envelopes on Figs. 16 and 17.

The main difference with the other computations done in this
paper is the importance of the initiation stage, and its impact on
the load–displacement curve. Indeed, we can observe the large im-
pact of the damage profile d(/) during the initiation on the evolu-
tion of the damage field on Fig. 17. Using this modified arc-tangent
Fig. 19. Evolution of the damage field with
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profile leads to the creation of a large zone where the damage does
not reach 1, until the step denoted ‘‘A’’. Then, this kind of ‘‘cohe-
sive’’ zone keeps moving with the crack tip (i.e. the zone d = 1),
but its length becomes smaller and finally tends to lc as the damage
front reaches the left edge of the panel. The shape of the damage
profile has thus a large impact on the load–displacement curve
and on the cohesive behavior of the damaged zone.

Although parameters were not really optimized to match the
experiment, we observe a relatively good agreement on the crack
path and the load–displacement response, even without using
any hardening behavior or cohesive traction-separation interface
law.

4.3. Damage initiation in a multiply perforated plate

We consider here a plate presenting three holes. Loading and
boundary conditions are represented in Fig. 18, taking into account
the underlying computational mesh.



the symmetry of the geometry. The upper part of the plate presents
a Young modulus ten times larger, the imposed load is therefore
very close to an imposed displacement during a large part of the
computation. This computation illustrates the potential of the
method, especially for the initiation of damage and cracks. The
computational mesh presents a characteristic element size of
about lc/10. Using the arc-tangent damage shape, we obtain a max-
imum initial damage value d� 0.1, which means a negligible im-
pact on the global structure stiffness. The Young modulus and
Poisson ratio used are respectively E = 36.5 GPa and m = 0.2, while
we choose lc = 4 � 10�2 m and Yc = 102 Pa.

The damage evolution and the computational mesh are shown
in Fig. 19. The corresponding load–displacement curve is depicted
in Fig. 18. During the first computation steps, we observe that six
small defects have been initiated on the holes, on the horizontal
symmetry axis. Then, one after the others, those defects first grow
Fig. 20. Domain definition and boundary conditions for the Brazilian test.

Fig. 21. The solid black line corresponds to the automatic initiation procedure, based on
forced and no other damage initation was authorized, as often computed in the literatu
curves for the Brazilian test. The vertical displacement under the load U and the horizo
specimen thickness of 0.05 m.
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until reaching a complete damage, and then propagate the crack
(fully degraded zone) horizontally. We also observe that the global
stiffness of the structure is not much affected as a defect grows
from d = 0 to d = 1. On the contrary, the crack propagation corre-
sponds to an unstable (strong snapback) process with large loss
of stiffness.

This computation took 110 min for 550 propagation steps on a
7688 triangles mesh using polynomials of order 2 on a single AMD
Opteron processor.

4.4. The Brazilian test

The loading and boundary conditions of this classical bench-
mark are depicted in Fig. 20. The specimen thickness is 0.05 m with
a radius of R = 0.1 m and bearing strips of width R/4 (we take the
symmetry of the problem into account, the load F is distributed
on a length R/8) presenting a Young modulus fifty times larger than
the specimen. The physical parameters used are E = 36.5 GPa,
m = 0.2, Yc = 66.6 Pa and lc = 10�2 m. Note that the use of the dis-
symmetric elastic potential is necessary here to obtain the ex-
pected vertical crack propagation.

As for the previous simulation, we check for possible required
damage initiations at each time step. The load displacement curves
are depicted in Fig. 21, the corresponding displacement fields and
iso-zero position in Fig. 22. The results are in very good agreement
with observations given in the literature [28,11]. Indeed, we ob-
serve that defects are initiated at an approximate distance of 2R/
3 from the center (A). The damaged zone grows until a crack ap-
pears (B) and propagates downward to the center. This propaga-
tion corresponds to a severe snap-back on the load–displacement
curve. Once the lower crack tip reaches the center (C), the upper
crack tip starts to grow upward (D). The final damage field seems
to be in agreement with numerical results from standard non-local
models, see Rodríguez-Ferran and Huerta [31] for instance. The
convergence of the load–displacement curve, the crack path and
the damage initiation process has been observed using several
meshes and level set increments amax.

Note finally that damage initiation might have a significant im-
pact on the displacement at some points as point P. In a second
computation, corresponding to the dashed blue lines of Fig. 21,
we considered a single initial damage at the center and did not ini-
tiate any other damaged zone during the computation, as done in
many crack computations on this benchmark.
local criterion Y = Yc. For the dashed blue line, a single centered damage has been
re. A severe snap-back is observed in both computations on the load–displacement
ntal displacement at point P are shown in the right and left plots respectively for a



Fig. 22. Norm of the displacement field for the Brazilian test. The bold black line is the iso-zero delimiting the damaged zone. The damaged zone is initiated (a) and grows
until a crack appears (b) and propagates downward to the center. Once the lower crack tip reaches the center (c), the upper crack tip starts to grow upward (d).
5. Conclusions

The TLS approach is an original and promising way to model
damage growth. It offers an efficient and consistent non-local dam-
age model with a natural transition to fracture. The damage initia-
tion process is correctly and easily handled since the non-local
damage model tends to the local one as the damage tends to zero.
We presented here an efficient and simple way to implement this
TLS damage model, using a simple variational formulation based
on standard finite element discretizations. We also presented an
explicit time-independent algorithm in the framework of quasi-
static loadings. Finally, we validated the model: the results ob-
tained for classical benchmarks are in good agreement with both
the literature and the experiments, even without using any hard-
ening or crack interface model, and the model exhibits good error
convergence rates. Less conventional benchmarks were used to
demonstrate the potential of the method to initiate defects or to
handle interaction of multiple cracks.

Future works will consider more complex three dimensional
cases. Although the computational cost associated to the TLS is
quite low, there is still plenty of room for costs improvements,
especially considering 3D computations. We plan for instance to
couple the TLS to standard fracture mechanics and X-FEM in the
wake of the advancing frack front.

Another future research topic is the representation of diffuse
damage. Indeed, the TLS model is based on the introduction of a
characteristic length for the transition zone, between d = 0 and
d = 1. The present model is therefore not well suited to represent
for instance a constant damage in an entire specimen, which
may happen without localization phenomena. If the TLS presents
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a great potential to deal with localization phenomena, a second
damage representation should be added to deal with the diffuse
pre-localization stage.

Finally, although no explicit cohesive behavior has been intro-
duced in our TLS model, we observed with the L-shaped panel test
that cohesive length may appear and automatically vary during the
computation. But this cohesive length variation in the TLS model
still has to be investigated. Indeed, we observed that the damage
profile in function of the level set has a great impact on this possi-
ble cohesive behavior, but the link between the two approaches is
not clear yet.
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Appendix A

A.1. Computational details for the tangent matrix of the elastic
computation

For a given free energy u(�), the stress tensor reads:

rij ¼
ou
o�ij
¼ ou

o�k

o�k

o�ij
;

with �i the eigenvalues of the deformation tensor. In the case of the
non-linear potential (6), the stress can be written:



rij ¼ Lkn�n
o�k

o�ij
;

where the matrix:

Lkn ¼
o2u

o�ko�n







ai

is considered constant and computed for fixed values of ai based on
the previous Newton–Raphson iterate of �.

The derivative of the eigenvalues is computed through the
deformation tensor invariants ik(�ij):

o�n

o�ij
¼ o�n

oik

oik

o�ij
:

Eigenvalues �n = �n(ik) are known to be roots of the characteristic
polynomial:

�3 � i1�2 þ i2�� i3 ¼ 0:

The analytical expression of the roots, simplified by the assumption
of real solutions, can be derived with respect to the invariants. Note
that such an analytical computation requires special care to avoid
numerical issues as for instance division by zero, appearing in the
case of double or triple roots. The tangent matrix then becomes:

Hijkl ¼
orij

o�kl
¼ o

o�kl

ou
o�m

o�m

o�ij

� �
ffi orij

o�kl






ai

¼ o

o�kl
�mLnm

o�n

o�ij

� �

¼ o�m

o�kl
Lnm

o�n

o�ij
þ �mLnm

o2�n

o�ijo�kl
:

The second derivative in the above expression is eventually com-
puted using invariants:

o2�n

o�ijo�kl
¼ o

o�kl

o�n

oim

oim

o�ij

� �
¼ o2�n

oikoip

oip

o�kl

oim

o�ij
þ o�n

oim

o2im

o�ijo�kl
:

A.2. Details about the crack length control algorithm

Here are some details and explanations about the computation
of the parameters Dl (30) and k (31).

Let us consider that the load factor at time step n, ln, has been
computed using its definition (28). The relationship (29) contains
two unknown parameters, Dl and k. First, let us write relationship
(29) at time step n for the maximum value of Y=Yc:

amax ¼ k ðln þ jDljÞ2
eY i

Yci

 !
n;max

� 1

0@ 1A ¼ k ðln þ jDljÞ2 1
l2

n
� 1

� �
:

This relationship provides the value k (31) to obtain a maximum
front advance of amax. The parameter jDlj still has to be deter-
mined. Clearly, we observe in (31) that k ?1 for jDlj? 0 and
k ? 0 for jDlj?1. The former case leads to the activation of only
one mode, while the latter leads to move all parts of the front. Both
solutions are clearly wrong, the value Dl must be consistent with
the explicit increment amax. In this framework of an explicit meth-
od, we simply choose to use the previous load increment, Dln�1

n , as
predictor for the value of Dl. Convergence has not been rigorously
demonstrated. However, expected convergence rates with the
‘‘damage length control’’ parameter amax were obtained for the
benchmarks considered in this paper.
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