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A model describing the damage at an interface which is coupled to an elastic homogeneous block is 
introduced[ Resorting to a real!space renormalization analysis\ we show that in the absence of heterogeneity 
localization proceeds through a cascade of bifurcations which progressively concentrates the damage from 
the global interface to a narrow region leading to a crack nucleation[ The equivalent homogeneous interface 
behaviour is obtained through this entire cascade\ allowing for the analysis of size e}ects[ When random 
heterogeneities are introduced in the interface\ prior to the onset of localization damage proceeds by a 
sequence of avalanches whose mean size diverges at the _rst bifurcation point of the homogeneous interface[ 
The large scale features of the bifurcation cascade are preserved\ while the details of the late stage are 
smeared out by the randomness.

[ 

0[ Introduction

Progressive failure of quasi!brittle materials can be separated in three di}erent phases ] _rst\ the
material response is elastic\ then microcracking appears and these microcracks coalesce eventually
in order to form a macro!crack which propagates suddenly[ From the theoretical point of view\
the di.culties involved in the transition between the last two phases are quite important[ In the
second phase\ the strain _eld is quasi!homogeneous at a macroscopic scale[ Then\ the strain _eld
becomes more and more heterogeneous\ and the strain grows only inside a narrow region[ The
subsequent apparition of a discontinuity is often called strain localization in a general sense[ There
are in the literature di}erent approaches to the description of this transition[ One of them is the
continuum approach\ e[g[ with continuous damage models[ It is based on the description of the
average behaviour of the material "see e[g[ Krajcinovic and Lemaitre\ 0876 ^ Laws and Brock!
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enbrough\ 0876 ^ Lemaitre\ 0881#[ For such continuum models\ the transition is viewed as a
bifurcation problem[ When strain localization is due to strain softening\ the tangent sti}ness
operator ceases to be de_nite positive[ The partial di}erential equations of equilibrium lose their
ellipticity which authorizes discontinuous rate of deformation _elds to develop suddenly[ The
inception of strain localization might be for instance depicted under some restrictive assumptions
by Hill|s criterion "Hill\ 0848# ]

det ðn = H = nŁ � 9 "0#

where H is the tangent sti}ness operator at the continuum point level and n is the orientation of
the localized band[ Another one is the loss of stability at the material level in the sense of the
Drucker postulate[ Note that in some well!de_ned cases "associative constitutive laws#\ the loss of
uniqueness coincides with the loss of stability in the rheological sense[

The second approach is discrete random modelling[ It is directed towards the description of the
study of the material heterogeneities "i[e[ at a scale lower than the representative volume of the
material# "see e[g[ Delaplace et al[\ 0885 ^ Fokwa\ 0881#[ Because of heterogeneity\ the usual
employed localization criteria in continuum models cannot be used for two reasons mainly ] the
_rst one is that the solution is always unique[ To some extent\ the situation for discrete models is
the same as the situation for some rate dependent models where bifurcation is not possible and
strain localization cannot be viewed as a loss of uniqueness problem anymore "see e[g[ Dudzinski
and Molinari\ 0880 ^ Leroy\ 0880#[ The second one is that no tangent operator can be calculated
because of the discrete characteristic of the response\ and because of the ~uctuations that appear
all along the curve[ There lies a subtle di.culty ] consider the dimensionless ratio o � a:L\ of the
microstructure units a of a discrete model over the system size L\ which characterizes the dis!
creteness of the medium[ When o tends to 9\ a continuum description is expected to hold[ As we
will see later\ the stressÐstrain response of the system converges towards a smooth law whose
tangent operator H can be de_ned[ The latter does provide information on the stability of the
structure[ However\ when stability is analysed using actual responses for non!zero o\ it can be
shown that the ~uctuations in the stressÐstrain responses give rise to a non!di}erentiable law\ and
this feature brings some useful additional informations on the approach to the loss of stability[
Elaborating over these notions leads to the useful concept of {avalanches|[

The aim of this paper is to propose a tool to characterize the transition from a homogeneous
state of microcracking to a localised one for the discrete models[ This tool should also be applied
to any response with ~uctuations\ like those met in experiments where dispersions and ~uctuations
due to material heterogeneity are unavoidable[ Because one cannot deal in this case with a loss of
uniqueness\ this tool should be based on stability considerations in the broad sense[ Therefore\ we
study the ~uctuations that are encountered all along the response of the system[ More precisely\
the avalanche statistics of the ~uctuations are analysed[ This formalism is used in many kinds of
model "Bak\ 0885 ^ Paczuski et al[\ 0884#\ from biological di}usion up to earthquake response[ All
these models have at least one thing in common ] their evolutions are structured around a critical
point\ as for the _bre bundle model that we used as a basis for our di}erent proposed models[

For the sake of simplicity\ we will consider a model problem ] the case of a band made of a
strain softening "discrete# material assembled in series to an elastic block "Fig[ 0#[ This system is
loaded by uniaxial tension\ perpendicular to the direction of the band[ Thus\ the problem of
localization will be strictly one directional as the orientation of the localised band is _xed[ Since
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Fig[ 0[ The model problem[

the band has a _nite width which might become small with respect to the block dimensions\ its
response may also be regarded to be the same as that of a softening interface located in between a
rigid substrate and an elastic body[

In the _rst part of the paper\ we will recall the analytical results obtained on the _bre bundle
model\ also called Daniels model[ We will particularly present the properties of the avalanches
distribution in the presence of ~uctuations due to the variability of the _bres strength and deal
with a simple derived model\ that is a Daniels model and a spring connected in series[ We will look
at the evolution of the avalanche properties\ and apply them for detecting the loss of stability[ In
order to have a realistic representation of the local mechanical redistribution of the stress _eld
when a micro!crack appears\ we will use in the second part a hierarchical model that takes into
account redistribution\ i[e[ a non!local load sharing on the surviving _bres when a bond breaks[
Again\ we will look at the evolution of the avalanche properties\ and we will carry out a complete
study in terms of stability[ In order to better understand the mechanism of rupture and the
apparition of successive bifurcation points\ this model will be compared to the equivalent con!
tinuum one[ This model also allows to have direct access to the damage pro_le at the onset of
unstable propagation of a macrocrack[

1[ The Daniels model and avalanche statistics

The Daniels model "Daniels\ 0834# albeit simple\ displays an amazingly rich behaviour which
is*at least partly*representative of the role of heterogeneity in the mechanical behaviour of some
materials[ It is commonly called the _bre bundle model[ N parallel _bres are equally stretched
between two rigid beams[ The _bre behaviour is elastic up to a threshold force where the _bre
breaks irreversibly[ The sti}ness is the same for all _bres*and thus can be chosen to be unity*
but the threshold force t is a random variable characterized by its probability distribution function
p"t#\ or its cumulative distribution P"t# � Ðt

9 p"t?# dt?[ The advantage of this model is that it is
completely solvable analytically[ For instance\ the mean force F\ that is the applied force divided
by the total number of _bres N\ vs displacement u is easily obtained as

F"u# �"0−P"u##u "1#

Then\ for a sti}ness of 0 "t � u for a single _bre at failure#\ the displacement u varies between 9
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Fig[ 1[ The response of a 499!_bre Daniels| model\ with an uniform distribution between 9 and 0 for the thresholds[ The
thin curve is the mean response\ that is a parabola[ A sketch of the model is included inside[

" free interface# and 0 "interface failure#[ As can be seen on Fig[ 1\ the response of a 499!_bre
bundle follows closely the theoretical expectation\ i[e[ a parabola for a uniform distribution p"t# � 0
of threshold forces between 9 and 0\ but all along the curve are superimposed ~uctuations[
Note that similar ~uctuations are also encountered experimentally on quasi!brittle heterogeneous
materials\ like _bre!reinforced concrete\ but they are usually not described by continuum models[
It is to be noted right away that the amplitude of these ~uctuations vanishes as N−0:1\ and thus
considering the limit of an in_nite system size\ N : �\ the response of the system converges to the
above given mean behaviour[ It is our aim to show that these ~uctuations\ albeit of modest
amplitude\ are of interest both from an experimental and a theoretical standpoint\ and that some
care has to be taken when considering the in_nite size limit[

Since we are interested in stability\ it is important to incorporate in the analysis the boundary
and load conditions[ In the following study\ we will consider that the bundle is loaded with a
testing machine of known sti}ness k[ Hence\ the analysis will be applied to a bundle connected in
series with a spring whose sti}ness is that of the testing machine as shown in Fig[ 2[ This simple
system can also be seen as a rough model for the mechanical behaviour of an elastic body "the
spring# attached to a rigid substrate through a damageable interface "the _bre bundle#[ The overall
displacement "bundle plus spring# will be controlled during the loading sequence[ If the bundle is
loaded with a sti} enough testing machine\ only one _bre may break for a constant loading[
However\ if the sti}ness is reduced\ one single failure may induce catastrophically a sequence of
failures before reaching a new stable position[ This sequence is what we call an {avalanche|[ In the
numerical simulations\ one can easily solve for the response of the bundle with an ideally sti}
control\ that is\ imposing strictly a prescribed displacement[ From such a response\ one can also
compute the response of the bundle under any boundary conditions "including a _nite sti}ness k\
and large viscous damping to avoid interial overshoot#\ as a succession of equilibrium positions[

Let us _rst consider the limit of an in_nite system size\ and substitute a deterministic damageable
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Fig[ 2[ The response of a 499!_bre Daniels| model connected in series with a spring\ with again an uniform distribution[
The thin curve is the mean response[ A sketch of the system is included inside[

interface instead of the bundle[ The damage law of the interface is chosen to be the asymptotic
mean forceÐdisplacement response of the bundle\ i[e[

F � u"0−u# "2#

as obtained above for a uniform distribution of _bre strengths Daniels "0834#[ The stability analysis
of this system is quite straightforward "see Baz³ant and Cedolin\ 0880# ] under a small enough
prescribed displacement U of the entire system "interface u plus elastic body v#\ the system has a
unique solution\ i[e[

u � ð"0¦k#−z"0¦k#1−3kUŁ:1

v � u"0−u#:k "3#

The second!order work of the system is ]

d1W � 0
1
"k¦K#du1 "4#

where K is the tangent sti}ness of the bundle\ i[e[ dF:du[ k is always positive\ as K is positive in
the prepeak part of the bundle behaviour\ and negative in the postpeak part[ The state of the
system is stable if d1W × 9\ that is equivalent to K × −k[

At the maximum displacement U� �"0¦k#1:3k\ we _nd a bifurcation point\ where the solution
is no longer unique[ At this point\ the displacement is u� �"0¦k#:1 and the tangent sti}ness in
the bundle is

dF
du

� −k "5#

It is exactly opposite to that of the elastic body[
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Fig[ 3[ The response of the continuous system\ with the stable path and the unstable one[

It corresponds also to the loss of stability\ because the second!order work is zero[ This is a trivial
example of a localization point[ If one tries to increase the displacement past U�\ then the entire
interface fails catastrophically[ Under an idealized controlled displacement\ the system response
follows a snap!back branch\ that represents instability "d1W ³ 9#[ Note that prior to the critical
equilibrium\ strain softening develops in a stable fashion as also pointed out in Baz³ant|s analysis
"Fig[ 3#[

Let us now come back to the _nite size _bre bundle as the interface[ The response of the bundle
is no longer a di}erentiable law such as eqn "2#\ but rather a sequence of linear elastic responses
limited by end!points where a _bre breaks[ Because of randomness of the _bre strength\ the
response of the system is always unique\ and no bifurcation point could be de_ned[ Let us call
"ui\ Fi# the sequence of failure displacements and forces\ respectively\ where i indicates the number
of broken _bres[ In a _rst approach\ we can repeat the same analysis as previously[ One cannot of
course consider that eqn "5# holds at bifurcation as in the previous example because the response
of the bundle is no longer di}erentiable[ Nevertheless\ tracing the maximum of the function
F"u#¦ku yields a criterion for the onset of unstable behaviour\ and if F"u# is di}erentiable one
recovers the previous analysis[

As we saw before\ the response of such a system is just a succession of ~uctuations[ It can be
analysed through {avalanches|[ With the introduced variables\ we can de_ne an avalanche in the
_bre bundle as follows ] an avalanche of size D and direction k\ starting at "ui\ Fi#\ is such that ]

6
Fi? ³ Fi−k"ui?−ui# for i ³ i? ³ i¦D
Fi? − Fi−k"ui?−ui# for i? � i¦D

"6#
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Fig[ 4[ A scale of the "u\ F# response of a discrete model[ Each point is the rupture of one _bre[ The arrow represents
the beginning of an avalanche of size D\ where D is the number of _bres that break under the arrow[ For this example\
it is an eight!size avalanche\ represented by the blank points[

This means that if the system is loaded up to a point where the ith _bre fails\ a series of D _bres
will fail simultaneously for the same overall displacement U "Fig[ 4#[ These avalanches are expected
to be experimentally observable through e[g[ acoustic emissions[

In the continuous case\ prior to the point u�\ damage in the bundle is controlled and we can say
that the avalanche size is 9[ At u � u�\ the critical equilibrium state is reached and a single
avalanche of size equal to the remaining number of bonds in the bundle is observed[ In the
thermodynamic limit\ N : �\ this avalanche has a size which diverges to in_nity[ We observe that
avalanches do reproduce the result of a standard stability analysis\ with a simple {binary| "9−�#
avalanche size distribution[ A crucial point is that this analysis is not entirely correct\ in the sense
that we have _rst considered the continuum limit for the force displacement curve\ and analysed
the avalanches on this mean response[ Most of the information which can be derived from the
concept of avalanches has been lost in this procedure[

Taking into account the full random and discrete nature of the model\ Hemmer and Hansen
"Hemmer and Hansen\ 0881 ^ Hansen and Hemmer\ 0883# succeeded in determining the analytical
solution of the probability distribution n of observing an avalanche of size D\ for any sti}ness k\
starting at any prescribed displacement u[ They found ]

n"D\ u\ k#
N

� D−2:1F 0
D
D�1 "7#

with

D��"u�"k#−u#−1 "8#

where F"x# is a scaling function which is constant for small arguments x ð 0\ and drops to zero
rapidly for x × 0[ D� is the maximum avalanche size[ Moreover\ the exponent −2:1 and −1
appearing in eqn "7# are universal\ in the sense that they do not depend on the chosen distribution

7



Fig[ 5[ The logÐlog graph of the probability distribution n of avalanche of size D at a given displacement u\ with u ð u�
ðeqn "7#Ł[

of threshold force p[ In simple terms\ they showed that n is a power!law distribution with an
exponent −2:1\ truncated at a maximum avalanche size\ D�\ which diverges as one approaches
the displacement u�"k# "Fig[ 5#[

Using the expression of n\ one deduces easily that the mean avalanche size behaves as the upper
distribution cut!o} D�\ i[e[

ðDŁ �"u�"k#−u#−1 "09#

Thus\ Hemmer and Hansen "0881# showed that the presence of the small amplitude ~uctuations
around the mean behaviour induced a well!de_ned statistical distribution of avalanches instead of
having the binary variation of the avalanche sizes "Fig[ 6#[

Fig[ 6[ The evolution of the avalanche mean size "D# vs the evolution of the displacement[ The line is the binary response
of the mean behaviour\ as the dotted curve is the discrete response ðeqn "09#Ł[
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This statistical distribution of avalanches can potentially be used as a precursor of the macro!
scopic failure point u�[ According to Hemmer and Hansen "0881# analysis and in the course of
loading the bundle\ we would observe a series of avalanches\ which can be referred to micro!
instabilities\ which progressively becomes larger and larger\ up to the point where they diverge and
become {macroscopic|[ This signals in particular that some care has to be taken when taking the
thermodynamic limit[ Taking _rst the continuous limit of the forceÐdisplacement response\ and
analysing its stability\ erases the progressive development of the avalanches\ and hence misses an
important feature of the model[

To demonstrate the utility of such an analysis\ we will analyse the ~uctuation in the global
failure displacement for a _nite size system[ Let us call du the distance to u�"k# where the _nal
avalanche is initiated[ du can be estimated by writing that the maximum avalanche size at this
displacement\ D�\ allows to increase the displacement u up to u�"k#[ Hence

D�
N

� du "00#

Using eqn "7#\ D�"du# � du−1\ we deduce the scaling

du � N−0:2 "01#

This estimate gives the typical ~uctuation of du\ i[e[ ðdu1Ł0:1 as N varies "Fig[ 7#[ It seems di.cult
if not impossible to derive this result without considering the notion of avalanches[

Finally\ let us also note as a side!remark that in the continuous limit\ the response of the system
is continuous but not di}erentiable[ In this case\ one can show that locally\ the ~uctuating part of
the forceÐdisplacement response becomes self!a.ne with a Hurst exponent of 0:1[ Thus it belongs
to the realm of C0:1 functions\ rather than C0 as would be needed to apply a criterion such as

Fig[ 7[ The scaling form of the ~uctuation[ The points are numerical results obtained for di}erent sizes N\ as the line
y � −1x:2 is a guide for the eyes[
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dF:du � −k[ This lack of regularity of the response can be seen as the origin of the statistical
avalanche distribution[

Because the displacement is constrained to be the same in each _bre\ the response tends to a
well!de_ned behaviour\ and thus _nite size e}ects play only a marginal role in the present example[
For instance\ the peak stress\ F\ tends to well de_ned value with ~uctuations of order 0:zN[
However\ other systems display a much more signi_cant size e}ect\ which can be tracked back to
the cumulative e}ect of the avalanches[ Hence\ in this case\ the concept of avalanches and of their
statistical distribution is unavoidable[

A principal ~aw of this simple model is the load redistribution when a _bre breaks ] the external
force is shared equally between all surviving _bres[ On the other hand\ when a micro!crack appears
in a quasi!brittle material\ the stress is redistributed mainly around it\ and the local interaction
decreases fast as the distance with the micro!crack increases "typically as a power law of the
distance#[ To take into account this e}ect\ we need to introduce this redistribution in the model[
Note that a simple local redistribution\ where the load of a failed _bre is redistributed equally on
the nearest surviving _bres\ has been already studied "see e[g[ Harlow and Phoenix\ 0880#[

2[ Continuous interface model with redistribution

2[0[ Presentation and properties

For the sake of simplicity\ we are going to focus on the situation where the band of strain
softening material is small with respect to the size of the elastic block modelled above by a spring
and a rigid bar[ Hence\ we will deal with a softening interface embedded in between a rigid and an
elastic substrate[ This description is suited to adhesion\ and can also be seen as a simpli_cation of
a 1!D medium since the redistribution process will be constrained to develop in the direction of
the interface[ Nevertheless\ this example contains the basic features involved in the transitional
behaviour between di}use and localised cracking[ At variance with the previously discussed case\
we would like to incorporate an elastic coupling between the _bres as mediated directly by the
elastic body\ i[e[ without the rigid bar which redistributed equally the displacement among the
surviving _bres[ In continuum mechanics\ this e}ect could be represented by the elastic Green
function of a semi!in_nite plane[ For the convenience of the analysis\ we resort to a di}erent choice
based on a hierarchical decomposition of the elastic body[ The structure is the following one ] a
block is split up in three sub!blocks "Fig[ 8#[ The two lower blocks are then subdivided in three\
and this recursively down to the lowest level chosen in the discretization[ Each block is described
using an elastic uniaxial behaviour[ Thus\ the elastic body can be seen as composed of springs\
connected in parallel and alternatively in series[ At the lowest level\ each _ner block is connected

Fig[ 8[ The two _rst decompositions of an elastic block[
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Fig[ 09[ A hierarchical system of generation 2\ with 09 _bres for each bundle[

to a _bre bundle of small size[ These bundles represent the interface[ A system of generation one
"number of level in the hierarchical decomposition# is thus similar to the previous model[

Figure 09 shows an example of a 2!generation model[ With 09 _bres for each bundle\ a system
of generation 01 is for instance made up of 09×101−0 � 19\379 _bres[ The simplicity of the
construction allows for the numerical simulation of extremely large sizes\ while still preserving the
long range nature of the elastic couplings[ In two dimensions\ all springs have the same sti}ness k
at all generations\ but their initial lengths is divided by two as the generation is decreased by one[
At the _rst generation\ however\ the aspect ratio of the element is twice that of all other generations\
and thus the _rst springs in contact with the interface have a sti}ness k:1[ This allows to obtain a
global sti}ness for the entire elastic system which is independent of the discretization level as
expected "see the Appendix#[ An important point which will be used later concerns the interaction
between an intermediate level "say index i#\ with the rest of the medium[ We can compute recursively
the sti}ness Li of this structure deprived from one subblock i\ if a force is applied at this level[ We
_nd that Li is exactly equal to k\ i[e[ just as if the subsystem was simply connected to the exterior
world by a single block "see the Appendix#[

As the generation increases it can be shown that the elastic coupling will be the same as for a
continuous model\ i[e[ with an in~uence function scaling with the same power!law as the Green
function in an elastic continuum[ In order to reach this result\ one needs to introduce a distance
suited to our discretization[ Considering two points along the interface\ we search from the smallest
block which contains both points[ If j is the block generation "which could take value between 0
and N\ which is the generation of the entire system#\ the distance is then de_ned as

d � 1j−0−0 "02#

This distance has the special feature of being ultrametric "i[e[ the same properties than an usual
distance\ except for the triangular inequality where d"A\ C# ¾ min"d"A\ B#\ d"B\C##[ With this
de_nition\ one can show that under an applied force F on a point of the interface\ the induced
displacement v of an other point is

v" j# �"N−" j−0##
F
k

¦v9 "03#
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where v9 is the initial displacement of the considered point\ and N−" j−0# is nothing but the
number of springs that separate the two points[ By introducing the distance d\ and for large j\ it
leads to ]

v"d# � A log 0
B
d1

F
k

¦v9 "04#

where A � 0:log 1 and B � 1N are constants[ It is exactly the same form that the Green function
of a semi!in_nite plane[ The only di}erence is that this in~uence function consists in constant
plateaus whose size increases in geometric series[ This is a residual e}ect of the two!fold splitting
of each level[

2[1[ Continuous interface

We now proceed by considering _rst the case where each _bre bundle is changed into a
damageable element\ with a behaviour law derived from the mean _bre!bundle response\ eqn "2#[
We use the hierarchical construction to relate the interface law to the global "interface plus elastic
body# response[

Let us construct a system at generation "n¦0#\ starting from two generation!n subsystems[
These last subsystems are supposed to be described by two forceÐdisplacement relations
F "n#

0 "U "n## and F "n#
1 "U "n##[ We wish to _nd the global F"n¦0# "U"n¦0## response[ The two subsystems

are subjected to the same displacement\ hence the force is

F "n¦0# � F "n#
0 "U "n##¦F "n#

1 "U "n## "05#

The same force also stretches a spring of sti}ness k in series with the blocks\ and thus the global
displacement is

U "n¦0# � U "n#¦
F "n#

0 "U "n##¦F "n#
1 "U "n##

k
"06#

These equations provide a parametric representation of the "n¦0#th generation system as a
function of the nth generation[

Let us _rst assume that the interface is homogeneous\ thus in the previous analysis F0 � F1[
Hence

U "n¦0# "F# � U "n# "F:1#¦F:k � U "0# "F:1n#¦"0−1−n#F:k "07#

The _nal equation simply relates the interface displacement to the global one u"F# � U"0#"F#[ We
note that as n increases\ the global behaviour is nothing but that of the elastic medium because the
displacement in the interface represents a vanishing contribution[ We can invert the previous
relation to obtain the homogeneous interface law from the global response[ This is a practical tool
to compute the equivalent homogeneous interface law when some inhomogeneity exists locally[

From the previous equation and because the interface response is continuous\ the tangent
"subscript tg# and secant "subscript sc# sti}nesses of the entire system at generation n can be
computed ]
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K "n#
tg � 0

0−10−n

k
¦

10−n

0−1u1
−0

K "n#
sc � 0

0−10−n

k
¦

10−n

0−u1
−0

"08#

where we have used the local interface displacement u to characterize the loading\ F � 1n−0u"0−u#\
assuming in this formula a homogeneous displacement all along the interface[

2[2[ Bifurcation analysis

For moderate displacements\ and in the absence of randomness in the interface\ every point of
the interface undergoes the same damage[ The system response however may cease to be unique
at a particular displacement for which the {global| displacement U"n# is maximum[

Let us _rst assume that one half of the interface is subjected to an increasing damage while the
other half is elastically unloaded[ Using eqn "06#\ we see that this bifurcation condition is reached
when

k¦K "n−0#
sc ¦K "n−0#

tg � 9 "19#

From the expression for the secant and tangent sti}nesses eqn "08#\ we obtain an equation for the
displacement\ u � u�0 at the interface level for which a _rst bifurcation is encountered ]

"2−1o#"0−1o#"0−u#"0−1u#¦1ko"1−1o#"1−2u#¦3k1o1 � 9 "10#

where o � 10−n[ Focusing on the large system size limit\ we can expand the solution in order of o

and obtain the solution as

u�0 �
0
1

¦
1
2

k
l0

¦0
09
8k

−
3
81

k1

l1
0

¦O"l−2
0 # "11#

where we have introduced the size of the interface where the damage localises\ l0 � 1n−0 � L:1\ to
express the result in physical terms[ L refers here to the number of damageable elements "or _bre
bundles in the discrete case#[

At this stage\ there is a bifurcation to three possible evolutions ] either damage remains inhomo!
geneous "but this solution is unstable# or only one of the two subsystems continues to be damaged
while the other is elastically unloaded[ Due to the symmetry of the system these two solutions are
identical[

For a large system size\ o : 9\ we note that u�0 tends to 0:1\ i[e[ the interface displacement at
peak force[ Bifurcation is however delayed to a larger displacement by a quantity proportional to
"k:L#[ The homogeneity in the latter expression can be restored if we consider that the sti}ness of
the interface _bres is not unity\ and that the interface is in fact a band of softening material of
width h[ The o}set of the _rst bifurcation point is then of order

u�0−upeak

upeak

�
Ebulk"0−ni−1n1

i #
Ei"0−ni#

h
L

"12#
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where Ebulk is the Young modulus of the elastic block\ and L its size\ Ei and ni are the Young
modulus and Poisson ratio of the band of width h[ The occurrence of ni comes from the antiplane
displacement in the layer[

In this analysis\ we have postulated that the _rst bifurcation mode appeared at the macroscopic
scale[ One can perform the same computation for any intermediate level 0¾ i ¾ n\ keeping the
boundary condition on U"n#[ The only variance with eqn "19# is that the sti}ness k has now to
incorporate all the intermediate levels from i to n[ The hierarchical structure allows to compute
this sti}ness which remains simply equal to k at all levels[ Therefore\ the localization at generation
i appears for a displacement un−i given by eqn "11# where ln−i � 1i � L:1n−i is to be substituted to
l0[

u�n−i �
0
1

¦
1
2

k
ln−i

¦0
09
8k

−
3
81

k1

l1
n−i

¦O"l−2
n−i# "13#

Thus\ these modes will occur much later than the _rst one l0 � 1n−0[ They will however be of
interest if we proceed along one of the two symmetric stable branches past the _rst bifurcation
point[ The nth generation subsystem where the damage continues to progress will encounter a
bifurcation point similar to the previous for u � u�1[ Past this local displacement\ the damage
concentrates on one quarter of the system while the rest will be elastically unloaded[ The same
analysis can be carried out to any stage down the cascade of bifurcation always concentrating on
a stable branch[ The local displacement of the interface on the active part of the interface at the
ith bifurcation is given by eqn "13#[

We thus obtain a simple physical picture of the post!localisation regime "localisation is under!
stood here as bifurcation# where the damage zone progressively condenses onto a smaller and
smaller "{active|# region\ while the rest of the structure is elastically unloaded[

2[3[ Post bifurcation response

An important feature which deserves a particular interest is the equivalent interface law which
can be measured past the _rst bifurcation point[ Indeed\ as soon as the damage is no longer
homogeneously distributed\ the equivalent homogeneous law is no longer similar to the one of any
of the constituents[ However\ if we were to perform the experiment\ without any a priori knowledge
of the cascade of bifurcations\ the equivalent homogeneous law is the one we would extract from
the loadÐdisplacement curve[

The easiest way to have access to such an equivalent law for a system at generation n is to use
the hierarchical nature of the decomposition of the elastic block[ Let us assume that we know this
equivalent law for a system of generation n−0\ and express the equivalent law at the next
generation[ As discussed above\ the _rst bifurcation point occurs _rst at the largest scale[ Past this
_rst point\ one half of the lattice is simply elastically unloaded[ The other half is described by the
homogeneous equivalent law[ Let "0:1¦x"n#

0 \ 0:3−y"n#
0 # be the displacementÐforce coordinate of

the _rst bifurcation point[ As observed above\ we know that the x"n#
0 form a geometric sequence of

ratio 0:1 ]

x"n#
0 � x"0#

0 1−n[ "14#
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For the y coordinate\ it su.ces to observe that the _rst bifurcation point lies on the homogeneous
characteristic\ and hence 0:3−y"n#

0 �"0:1¦x"n#
0 #"0:1−x"n#

0 # where we have used the speci_c parabolic
form of the {bare| interface law[ Thus\

y"n#
0 �"x"0#

0 #13−n[ "15#

Any point "0:1¦x\ 0:3−y# of the "n−0# generation equivalent homogeneous interface law is
transformed into "0:1¦x?\ 0:3−y?# such that

x?−x �
1n

k
"y?−y#

y?−y �
0
1 0

0
3

−y1−
0
1 0

0
3

−y"n#
0 1

0
1

¦x¦
1n

k 0
0
3

−y1
0
1

¦x"n#
0 ¦

1n

k 0
0
3

¦y"n#
0 1

"16#

We label the succession of bifurcation points by a subscript j whereas the superscript n refers to
the system generation[ Solving for the asymptotic "large n# behaviour of the "x\ y# variables
provides

x"n#
j � x"0#

0 1−nj

y"n#
j � "x"0#

0 #13−n 00
0
3

x"0#
0 −

0
07

k1 3j¦
1
2

kj−
3
8

k1 "17#

Figure "00# shows the sequence of bifurcation points for n � 6\ n � 8 and n � 00 computed exactly\
together with the asymptotic expression shown as a curve[ We observe that only the latest j ¼ n
points are not well described by the asymptotic behaviour[ However\ as n increases\ most of the
cascade is very accurately described[

To make the above result more explicit\ we note that past the _rst bifurcation point\ the forceÐ
displacement relation becomes size!dependent\ but it can be cast in a simple scaling form using the
system size L � 1n ]

0
y

y"0#
0 1� L−1 C 0L

x

x"0#
0 1 "18#

where the scaling function is just ]

C"z# � 0
0
3

x"0#
0 −

0
07

k1 3z¦
1
2

kz−
3
8

k "29#

One important point to be noted here is the di}erence of exponents of L which appears in x and
y[ As a consequence\ the equivalent homogeneous interface law shows a sudden decay of the force
at constant displacement past the peak force[

It is also of interest to consider the scaling of other physical quantities[ In particular\ if we come
back to the picture of the _bre bundle at the interface level\ we may introduce another variable
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Fig[ 00[ The sequence of the bifurcation points "xn
j \ yn

j #[ The continuous curve shows the asymptotic behaviour obtained
from the recurrence relation[ The dotted curves are the real sequence of bifurcation points for a 6!generation "crosses#\
8!generation "black point# and 00!generation "triangle# system[ Note that just the _rst points are well!described by this
relation\ and the snap!back part is not represented[

which is the number N of broken _bres[ The latter is simply related to the displacement as N � 1nu[
Therefore\ we conclude that two consecutive bifurcations are separated by a _xed number of
broken _bres[ In fact the displacement in the active region for the consecutive bifurcations increases
exponentially fast\ as 1j\ but simultaneously the active region shrinks also exponentially\ as 1−j\ so
that the product of these two terms which gives the number of failed _bres remains constant[

It is now a simple matter to express the variations of x or y as a function of the number of
broken _bres "past the peak force\ where N � Np � L:1# ] x is linear in "N−Np#\ whereas y grows
exponentially fast[ Simultaneously\ the size of the active region is L:1j\ decreasing exponentially
fast with j or equivalently "N−Np# or xj[

2[4[ From dama`e localization to crack nucleation

The physical picture which arises from this analytic solution is of particular interest\ since it is
one of the rare situations where some insight can be obtained past the _rst bifurcation[

We have seen that the interface degradation process consists in a progressive condensation of
the damaging region from the structure scale down to the basic constitutive unit[ At the end of
this _rst cascade\ exactly one of the smallest size interface element is totally broken[ This naturally
forms the initiation stage for a crack propagation regime[ Unfortunately\ following the crack
propagation is of little interest in our model\ which is then too much sensitive to the detail of the
hierarchical decomposition to pretend any possible comparison with reality[ However\ up to the
crack nucleation\ we believe that the hierarchical interface model is a faithful description of
continuum model\ yet simple enough to be amenable to an analytic solution[
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An interesting feature is to be noted at the crack nucleation stage ] the progressive condensation
of the damage can be read back from the damage pro_le along the interface[ Indeed\ the damage
D of the interface is a simple linear function of the maximum displacement ever encountered by a
homogeneous domain\ that varies between 9 and 0[ Tracing backward the damage in the active
region\ we obtain that the damage D at a distance d from the crack nucleation point is

D"d# �
0
1

¦
k
1d

"20#

where we have used the earlier de_ned distance ðeqn "02#Ł[
Thus\ the cascade of bifurcation leads to a rather unusual damage pro_le ahead of the crack[ If

we de_ne a {process zone| as a damage zone ahead of a crack\ we would conclude that the process
zone is of in_nite extent[ However\ this is important to note that the damage decreases very fast
with the distance\ i[e[ as an inverse law[ Then this process zone seems more similar than the classical
one\ that is a quasi!con_ned damage zone of _nite length ahead of a crack[

3[ Discrete interface model with redistribution

We have already underlined the importance of the notion of avalanches for a disordered _bre
bundle[ In the interface model\ basically the results of Hemmer and Hansen still hold[ The same
statistics is expected in this case[ The only variant comes from the boundary conditions[ We have
seen that an elastic coupling to the _bre bundle has the major e}ect of moving the interface
displacement ðde_ned in eqn "3#Ł at which the avalanche size diverges[ In the interface case\ the
elastic coupling is a little more complex\ and thus the point of divergence for avalanches requires
some discussion[

Let us consider a block at generation n[ This block is subjected to an imposed displacement
through a device of sti}ness k"n#[ The avalanches which are meaningful at this level are those which
are constructed from the global forceÐdisplacement characteristic at generation n with a slope −k[
We would like to relate those avalanches to the one computed at the previous generation[ We have
seen above how to relate the forceÐdisplacement relations from one generation to the next[ This
provides a simple equivalent sti}ness of the loading device k"n−0# to be considered at the "n−0#th
generation[

k"n−0# 0 H"k"n## �
k"n#

1"0−k"n#:k#
"21#

where the function H is shown in Fig[ 01[ Iterating the previous transformation allows to compute
the elastic coupling to be considered directly at the interface level[ The function H has two _xed
points\ k � 9 and k � k:1[ The _rst one is attractive\ whereas the second one is repulsive[

In order to better understand what is the practical measuring of the slope\ let us consider a
system consisting in a few elements[ If we are looking for the _rst bifurcation point\ that is
equivalent to the divergence of the avalanche sizes\ we have to consider avalanches with a sti}ness
equal to k � k:1 for just one bundle response[ Because we are far from the _xed points\ we use the
relation eqn "21# to obtain this slope[ Figure 02 illustrates this point for an 00!generation system[
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Fig[ 01[ The function H\ for k � 9[4[ The thin line is the equation y � x\ so the two intersections are the _xed points\
x � 9 and x � k:1[

Therefore\ for most values of kn\ the equivalent sti}ness to be considered at the interface level
k"0# tends to 9 as the system size tends to in_nity[ This means in practice that for most boundary
conditions\ the avalanches should be analysed at the interface level with an elastic coupling which
tends to 9\ i[e[ under a constant force condition[ This is precisely what has been shown in the
previous analysis\ where we considered k"n# : �\ i[e[ a constant displacement imposed on the
entire elastic domain\ and we have retrieved that the _rst bifurcation occurred for a displacement
at the interface level which approached the apex of the forceÐdisplacement curve "u � 0:1#[ The
slight delay in this displacement resulted from the last iterations of the function F[ Indeed\ for k :
9\ H"k# ¼ k:1\ and thus\ k"i−0# ¼ k"i#:1 for i ð n[ We observed that the _rst bifurcation in a
generation n system occurred at points u�"0# � 0:1¦B1−n where B is a constant\ and thus the
tangent sti}ness du:dF"u � u�"0## � B10−n is indeed a geometric series of ratio 0:1[

The existence of the unstable _xed point k � k:1 can also easily be understood ] if we invert the
relation eqn "21#\ we can relate the larger scale sti}ness to the lower one\ through the function
inverse of H[ In this case the _xed points remain obviously identical but their attractive or repulsive
character is turned to the opposite[ This means that the sti}ness of the entire system tends to k:1
as n increases to in_nity[ The k:1 is nothing but the sti}ness of the elastic body computed in the
preceding section[

This shows that the conditions for bifurcation become independent of the global boundary
conditions as the system size diverge[ It also underlines the fact that in order to observe the cascade
of bifurcation\ one should use an active control on the loading conditions\ with the ability to
decrease the loading fast compared to the typical time needed to fracture the _bres\ or to redistribute
the load to the _bres[ This imposes some severe constraints on the monitoring of the experiment[
A possible way to build this control might be to use the acoustic emission during loading[

Let us note that the notion of avalanche allows to understand naturally the cascading process[
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Fig[ 02[ The interface response of a 00!generation model[ The thin curve is the parabola\ and the line corresponds to
the slope of the _rst bifurcation point[ The dotted curve is the response of the equivalent homogeneous system[ Note
the good agreement with the bifurcation of the interface response from the parabola[

Indeed\ we have seen that for a subblock embedded inside the entire structure the e}ective sti}ness
of the surrounding medium amounts to k "instead of k:1 if all other subblocks of the same
generation are subjected to the same displacement#[ Therefore\ at the bifurcation point where the
damage is localized in a subblock of generation i\ the two subblocks at generation i−0 are still
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stable\ i[e[ the maximum avalanche size in each of these two blocks is _nite[ Hence the damage
will be shared between the two subblocks up to the next bifurcation point[

This argument also allows to estimate the validity of the cascade once the ~uctuations due to
the random nature of the _bre bundles are taken into account[ As the size of the active region\ l\
decreases\ the force ~uctuation increases as l−0:1\ and the proportion of broken _bres displays a
~uctuation of order l−0:2[ Comparisons of the level of ~uctuations with the increment of force\
displacement or number of broken bonds\ show that the late stage of the process "l small enough#
are dominated by the ~uctuations\ but in contrast\ the early stage is well de_ned[ Therefore\ we
anticipate that the _rst steps of the cascade may be correctly described by the above homogeneous
situation\ whereas the more mature stage may be scrambled by the presence of disorder[ A
representation of the location of the _bres that break under the loading gives a good physical idea
of the cascade phenomena "Fig[ 03#[

The bifurcation cascade observed during the failure is not the usual idea of the failure of a joint ]
such a failure generally occurs catastrophically\ and then the _rst idea is to think that it is due to
a critical ~aw[ It is important to note that our model follows the same catastrophic behaviour if
we consider the global loadÐdisplacement response[ Hence\ Fig[ 04 shows the global response of
the model for three di}erent generation systems[ As the generation increases\ the behaviour
becomes more and more elastic brittle\ as expected for a joint failure[ But if we consider just the
interface response\ we _nd e}ectively the previous behaviour with the bifurcation cascade[

Finally\ in spite of their di}erent description\ we see that the heterogeneous discrete system " for
large enough sizes# and the homogeneous one have the same post!peak behaviour ]

, The relation F vs u is similar until the apparition of the _rst crack[
, The onset of localisation appears at the same time "Fig[ 02#[
, The damage cascade is observed in both cases[

4[ Conclusion

For continuous models\ the localization is well!de_ned\ using some criteria based on the loss of
uniqueness or the study of the tangent sti}ness operator[ For discrete models\ the localization
could not be de_ned in such a manner[ The solution is always unique\ and no tangent could be
calculated on the response because of the ~uctuations that are superimposed[

In some well!known cases\ the loss of uniqueness coincides with the loss of stability\ where a
bifurcation point is encountered[ In the _rst part\ we show that the study of avalanche statistics
allows to detect this point[ Precisely\ the divergence of the avalanche sizes could be directly
compared to the loss of stability in a continuous model[

After de_ning this equivalence\ we propose\ as an application\ to study a damage interface
coupled with an elastic block[ For the sake of simplicity\ the interface is chosen to be thin\ then
the damage propagates only in the interface direction[ We are interested particularly in the unstable
path\ that is very di.cult to observe with continuous models[ The discrete model that we use is a
hierarchical model\ that has a good representation of the Green in~uence function in an elastic
continuum[ Our conclusions are the following ones ]
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Fig[ 03[ The representation of the condensation of the broken _bres for a 01!generation system\ with 09!_bre bundle[
The x!axis represents the _bre location " from 0Ð19\379#\ and the y!axis is the succession of the broken _bres under the
loading[ A scale is made from the _rst bifurcation to the initiation of the _rst crack[

, The divergence of the avalanche sizes coincides e}ectively with the _rst bifurcation point on a
continuous model[

, The damage in the interface is _rst homogeneous\ and then condensate progressively into a
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Fig[ 04[ The global forceÐdisplacement response for a 4!generation "dotted line#\ 6!generation "dashed line# and 8!
generation "continuous line# system[ The behaviour becomes elastic brittle as the generation increases[

Fig[ 05[ The variables of a hierarchical structure[

narrow region\ down to a single point[ Then a crack is initiated and propagates up to the total
failure[

, The bifurcation points that lead to the crack formation are well de_ned\ and are separated by a
constant number of broken bond[

, Just before the apparition of the crack\ the damage pro_le is obtained as an inverse power law\
and is spreading over all the inteface[
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Fig[ 06[ The representation of Li[

, The post!peak response could be accounted for by unusual scaling law "18# with a.ne transforms
on forceÐdisplacement relations[

Finally\ for heterogeneous systems\ we would like to emphasize the usefulness of the avalanche
statistics\ as a practical tool to cope with non!smooth responses[ We saw in the example studied
in this article\ that it constitutes a complementary approach to standard stability analyses and
provide additional information\ in particular through precursors of global loss of stability[ This
feature is certainly worth being further studied experimentally[

Appendix ] Value of stiffness in the hierarchical model

We _rst propose to establish the recurrence relation between the sti}ness of a i!generation
structure\ Ki\ and a "i¦0#!generation one\ Ki¦0[

Per de_nition of the sti}ness\ the external force F is ]

F � Ki¦0Ui¦0 "22#

We search the expression of Ki¦0\ as a function of Ki and k[ Using the hierarchical structure of the
block\ we can write

F � 1KiUi � F � k"Ui¦0−Ui# "23#

and thus\

F � k 0Ui¦0−
F

1Ki1�
1kKi

k¦Ki

Ui¦0 "24#

By identifying with eqn "22#\ we obtain the recurrence relation ]
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Ki¦0 �
1kKi

k¦1Ki

"25#

The stable _xed point of this recurrence relation is

Ki �
k
1

"26#

Then\ choosing the value K0 � k:1 "i[e[ the sti}ness of the _rst springs in contact with the interface#\
the global sti}ness of the hierarchical structure is independent of the discretization level as expected[

We now give the sti}ness Li of a n!generation structure deprived from one subblock i\ if a force
is applied at this level[ Again using the hierarchical structure of the block leads to a simple
recurrence ]

Li �
Li¦0k

Li¦0¦k
¦

k
1

"27#

The stable _xed point is thus

Li � k "28#
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