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ABSTRACT: The finite length of strain gauges may induce filtering effects when measuring impact events. In this study, we are interested

in quantifying these effects. Precisely, we determined the cut-off frequencies of strain gauges cemented on visco-elastic bars and measuring

impact-induced strain waves. This study shows that the cut-off frequencies increase with the bar’s wave velocity and decrease with the bar’s

diameter. The asymptotic value, corresponding to an infinite bar diameter, is reached rapidly (bar diameter � 15 mm). Moreover, we

showed that the mode cut-off frequencies are more severe (lower) than the gauge length cut-off frequencies for bar diameters greater than

8 mm.
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Introduction
The use of strain gauges is widespread in engineering appli-

cations. One of these fields is impact engineering [1]. For

instance, they are used to indirectly measure the force and

velocity [2–10], to measure the wave dispersion relation [11–

14] and to identify complex Young’s modulus [15–19]. Strain

gauges are also used to measure ballistic impact events [20,

21]. They furnish valuable data to validate numerical mod-

els. Generally, strain gauges are preferred to piezoelectric

sensors in shock events. This is motivated by the weightless

nature of the strain gauges. Indeed, the inertia of the piezo-

electric sensors can interfere with the real signals.

In impact engineering, the non-zero length of strain

gauges will obviously induce filtration of high frequencies.

This effect was studied previously, in the case of slender

elastic bars [22, 23]. In this study, we aim at studying the

gauges length cut-off frequencies in the more general cases

of three-dimensional elastic and visco-elastic bars. For

comparison purpose, the case of slender elastic bars is

reinvestigated.

Cut-off Frequency
Let us consider a long straight (visco)-elastic rod. The strain

at a point X0, eðX0; tÞ, is measured with a strain gauge.

However, this gauge has a length lg „ 0. Therefore, the

gauge signal rather corresponds to the mean value of the

strain on the interval X0 � lg
2 ;X0 þ lg

2

h i
and not the strain at

the point X0. In other terms, the strain measured by the

gauge is:

êðX0; tÞ ¼
1

lg

Z X0þ
lg
2

X0�
lg
2

eðX; tÞ dX: (1)

If only the first mode is considered, the Fourier transform

of the strain at a point X, is given by Equation (3):

~eðX;xÞ ¼ FðxÞe�inðxÞX þDðxÞeinðxÞX; (2)

where FðxÞ, DðxÞ and nðxÞ are the forward-going wave, the

downward-going wave and the complex wave number.

Thus, the Fourier transform of the strain gauge signal is

obtained by combining Equations (1) and (2):

~̂eðX0;xÞ ¼
1

lg

Z X0þ
lg
2

X0�
lg
2

FðxÞe�inðxÞX þDðxÞeinðxÞX
� �

dX: (3)

After calculating the integral, Equation (3) yields:

~̂e X0;xð Þ ¼
sin

nðxÞlg
2

� �
nðxÞlg

2

FðxÞe�inðxÞX0 þDðxÞeinðxÞX0

� �
; (4)

or equivalently,

~̂e X0;xð Þ ¼
sin

nðxÞlg
2

� �
nðxÞlg

2

~e X0;xð Þ; (5)

Then, the filtering ratio can be defined as:

RðxÞ ¼
sin

nðxÞlg
2

� �
nðxÞlg

2

: (6)

As expected, this ratio is independent of the gauge

position. Furthermore, at low frequencies, lim
x!0

nðxÞ ¼ 0.

Therefore,

lim
x!0

RðxÞ ¼ 1: (7)

Equation (7) means that there is almost no-filtering at

low frequencies. Indeed, the strain gauge length is insig-

nificant compared with the wave lengths at low frequen-

cies. Therefore, the strain is almost constant along the

strain gauge and the average strain given by the strain

gauge is almost equal to this constant value.

Let uc be the cut-off frequency at )3 db, that is, the cut-

off frequency such as 20 log10 R 2pucð Þj jð Þ ¼ �3. uc can then

be defined as the solution of the following equation:

R 2pucð Þj j2¼ 1

2
: (8)

To solve Equation (8), we introduce the following

mathematical map:

m : IR! IR
x 7! sin2 x

x2

: (9)
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From the definition of the filtering ratio R in Equation

(6), we have RðxÞj j2¼ m
nðxÞlg

2

� ���� ���. By considering Equation

(8), the cut-off frequency corresponds to m
nðxÞlg

2

� ���� ��� ¼ 1
2.

The equation mðxÞj j ¼ 1=2 has only one solution x0 for

positive x; precisely, x0 � 1.3916. Therefore, the cut-off

frequency is given by:

nc ¼ n 2pucð Þ ¼ 2x0

lg
; (10)

where nc is the wave number corresponding to the cut-off

frequency. From Equation (10), we can also conclude that

the cut-off frequency correspond to a critical wave length

kc which is equal to the gauge’s length multiplied by the

ratio p/x0, that is, kc ¼ plg=x0. The ratio is slightly greater

than 2; precisely p/x0 � 2.256. The cut-off frequency cor-

responds to a wave length which is 2.256 times as long as

the strain gauge.

From the properties of the mathematical map m, we have

mðxÞj j<1=2 for any x greater than x0. Hence,

8x > 2 puc; RðxÞj j2 <
1

2
: (11)

This means, that the length of gauges induces a low-pass

filter. Precisely, the strain gauge cuts all wave lengths

which are 2.256 times the gauge’s length or lower.

Typically, = nðxÞð Þj j<< < nðxÞð Þj j. Therefore, we can assume

that nð2pucÞ is real. Consequently, Equation (10) has only

one solution uc. In the following, the cut-off frequency will

be calculated for three cases: slender elastic, three-dimen-

sional elastic and three-dimensional visco-elastic bars.

Case of Slender Bars
In the case of slender bars, that is, nðxÞrj j<< 1 (r the bar

radius) [24], the wave number is reduced to:

nðxÞ ¼ x
c0
; (12)

where c0 is the wave velocity. Therefore, Equation (10)

yields:

uc ¼
c0x0

plg
¼ x0

plg

ffiffiffi
E

q

s
� u0; (13)

where u0 denotes the cut-off frequency of a slender bar,

and E and q are the material Young’s modulus and density,

respectively.

In Figure 1, the cut-off frequency u0 is depicted in terms

of the wave velocity for three different values of strain

gauge length: lg = 1, 3 and 5 mm. For the all considered

cases, the cut-off frequency is higher than 100 kHz. For an

aluminium or steel bar (wave velocity c0 � 5000 m s)1),

which are the most used bars in impact events, the cut-off

frequency is 2216, 738 and 443 kHz, for a strain gauge

length of 1, 3 and 5 mm, respectively. The typical length of

a strain gauge is about 3 mm. In this case, the lowest cut-off

frequency is 147 kHz for a bar wave velocity of 1000 m s)1.

Case of Three-Dimensional Bars

Elastic bars
The wave velocity in three-dimensional elastic bars is no

more constant with (angular) frequency. The wave number

nðxÞ is solution of the so called Pochhammer-Chree equa-

tion [25, 26]:

uðn;x;E; m; r; qÞ

¼ 2a
r

b2 þ n2
� �

J1 arð ÞJ1ðbrÞ � b2 � n2
� �2

J0ðarÞJ1ðbrÞ

�4abn2J1ðarÞJ0ðbrÞ ¼ 0: (14)

In Equation (14), m and JnðÞ hold for the Poisson ratio and

the first kind Bessel function of order n. Furthermore,

a2 ¼ qx2

kþ2l� n2 and b2 ¼ qx2

l � n2, where k ¼ Em
ð1þmÞð1�2mÞ and

l ¼ E
2ð1þmÞ are the Lamé coefficients.

Equation (14) is a non-linear implicit equation and can

be solved, for example, by the iterative formula of Newton

[27]. It has multiple solutions; each solution gives a mode

of propagation. For frequencies lower than a given fre-

quency U2, only the first solution is real, the other solu-

tions are pure complex. The first mode, corresponding to

the first solution, yields a wave propagating through the

bar. However, the other modes have no propagating term

(the real part of the wave number) and they are damped.

Their presence is limited to the neighbourhood of the bar

extremities. For frequencies between U2 and a second given

frequency U3 only the first and second mode solutions are

real. U2 and U3 are called the cut-off frequencies of the

second and third modes.

Now, we consider an aluminium bar (E = 70 GPa,

q = 2800 kg m)3, m = 0.34). Six values of the diameter are

also considered: 5, 10, 15, 20, 40 and 80 mm. The first

solution of the Pochhammer-Chree equation is computed

for the different values of the diameter. Only the case of

lg = 3 mm will be considered so forth. In Figure 2, we plot

ratio f ¼ nlg
2x0

in terms of the frequency. The cut-off fre-

quencies ec correspond to the frequencies where f = 1.

Subsequently, we show in Figure 3 the cut-off frequen-

cies for the different values of the bar diameter (black cir-

cles filled with grey). The zero diameter point corresponds

to the case of a slender bar. The cut-off frequency decreases

sharply from that point to reach an asymptotic value:

419 kHz. This is explained by the wave velocity–frequency

profile. Indeed, for three-dimensional elastic bars, the wave

velocity decreases with increasing frequency and reach anFigure 1: Cut-off frequencies of slender elastic bars
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asymptotic velocity which can be approximated by

c1 ¼
ffiffiffiffiffiffiffiffi
l=q

p
. The rate of velocity decreasing is higher for

important bar diameter. For bar diameters greater than

15 mm, the cut-off frequency is located in the asymptotic

part of the wave velocity–frequency profile. Therefore, the

angular cut-off frequency can be approximated by the

gauge length cut-off frequency of an infinite-diameter bar.

This cut-off frequency can be obtained by considering in

Equation (10) that wave velocity is equal to c1:

uc �
x0c1
plg
¼ x0

plg

ffiffiffi
l
q

r
� u1: (15)

Considering Equation (15), the cut-off frequency, for

important-diameter bars (>15 mm), can be calculated and

is equal to 451 kHz for the aluminium bar, which is not far

from the numerical value (419 kHz) obtained above with

the Pochhammer-Chree equation. The error is less than

7%. Equation (15) is established for an aluminium bar but

holds also for any elastic bar, as the velocity–frequency

profile is the same.

To assess the importance of the gauge-length cut-off

frequencies, they are compared with the cut-off frequencies

of the second and third modes, U2 and U3. To obtain last

two frequencies, Equation (14) is resolved for n = 0,

u0ðx;E; m; r; qÞ ¼ 2a0

r
b2

0J1ða0rÞJ1ðb0rÞ � b4
0J0ða0rÞJ1ðb0rÞ ¼ 0;

(16)

where a2
0 ¼

qx2

kþ2l and b2
0 ¼

qx2

l . Let x1 = 0 < x2 < x3

< � � � < xn < � � � be the solutions of Equation (16). The cut-

off frequency of the second and third modes can be

approximated by U2 � x2/2p and U3 � x3/2p. The varia-

tions of these frequencies in terms of the bar diameter are

also depicted in Figure 3. For very low diameters (<8 mm),

the gauge length cut-off frequency is lower than the mode

frequencies. Besides, for important diameters (>15 mm),

the mode cut-off frequencies are lower than the filtering

cut-off frequency induced by the gauge-length.

Visco-elastic bars
In a visco-elastic bar, waves not only change shape but

also attenuate while propagating. To consider these two

effects, the wave number is considered to be complex

number:

nðxÞ ¼ x
cðxÞ þ idðxÞ; (17)

where cðxÞ and dðxÞ are the variation of the wave velocity

and wave damping coefficient in terms of angular fre-

quency. This complex wave number is obtained by solv-

ing the generalised Pochhammer-Chree equation [25],

which is similar to Equation (14), except that the Young’s

modulus is also complex: EðxÞ ¼ E0ðxÞ þ i E00ðxÞ. Following

Zhao and Gary [27], the material visco-elastic behaviour is

described by a simple linear visco-elastic rheological

model in which a set of a spring (Young’s modulus E2)

and a dashpot (g) that are parallel, is in series with a

second spring (Young’s modulus E1). The complex

Young’s modulus then reads:

EðxÞ ¼ E1
E2 � igx

E1 þ E2 � igx
: (18)

Knowing the evolution of the complex Young’s modulus

in terms of angular frequency, the complex wave number is

determined by solving Equation (14) with the generalised

iterative formula of Newton as explained [25]. Subse-

quently, we calculate the square of the absolute value of

the filtering ratio R, which is defined in Equation (6). The

cut-off frequencies correspond to Rj j2¼ 1=2, as stated in

Equation (8).

In this study, a polymer-like material is considered

(E1 = 4 GPa, E2 = 5 GPa, g = 1 MPaÆs, m = 0.35 and q = 1200

kg m)3 [25]). The variation of Rj j2 in terms of the frequency

is depicted in Figure 4, for different values of the bar

diameter. Subsequently, the cut-off frequencies are shown

in Figure 5 in terms of the bar diameter. We obtain the

same tendency as in the case of three-dimensional elastic

bars. The cut-off frequency is decreasing with increasing

bar diameter. It decreases sharply for low diameters and

reaches rapidly an asymptotic value. This asymptotic value

can also be approximated by:

u1 �
x0c1
plg
� x0

plg

ffiffiffiffiffiffiffi
l1
q

r
¼ x0

plg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1

2qð1þ mÞ

s
¼ x0

plg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1

2qð1þ mÞ

s
;

(19)

Figure 2: Variation of the ratio f in terms of the frequency

Figure 3: Strain-gauge length, second mode, third mode cut-off
frequencies for a three-dimensional aluminium bar

3



where E1 � limx!þ1 EðxÞð Þ ¼ E1. In the case of our poly-

mer-like material, Equation (19) gives a cut-off frequency of

an infinite-diameter bar of /1 � 164 kHz which is not far

from 161 kHz obtained for the 80-mm diameter bar by

solving the generalised Pochhammer-chree equation.

The cut-off frequency of a slender visco-elastic bar can be

naturally approximated by:

u0 �
x0cr¼0
1

plg
; (20)

where cr¼0
1 is the wave velocity when the angular frequency

and bar radius (diameter) tend to infinity and zero,

respectively. This velocity is given by:

cr¼0
1 ¼

ffiffiffiffiffiffiffi
E1
q

s
¼

ffiffiffiffiffi
E1

q

s
; (21)

Equations (20) and (21) give /0 � 270 kHz which is not

far from the value obtained in Figure 5 (i.e. 284 kHz).

In Figure 5, the strain gauge length cut-off frequencies

are compared with the second and third mode cut-off fre-

quencies. Here also, we obtain similar results as for the

elastic case. Indeed, the imaginary part of the complex

wave number is very low compared with the real part

( =ðnðxÞÞj j<< <ðnðxÞÞj j) even in the case of visco-elastic bars.

Thus, the real part influences solely the results.

Discussion
In the previous sections, the strain gauge length cut-off

frequencies are calculated for the slender elastic, three-

dimensional elastic and three-dimensional visco-elastic

bars. For the last two cases, the influence of the bars

diameter is investigated. We establish that the cut-off fre-

quencies are mainly influenced by the bar wave propaga-

tion velocity. The higher the wave velocity, the higher are

the cut-off frequencies. Besides, the cut-off frequencies

decrease with increasing bar diameters. The rate of decrease

is very important for low-bar diameters as the cut-off fre-

quencies reach rapidly an asymptotic value.

Results of these sections can be synthesised as follows.

The cut-off frequency of an elastic or visco-elastic slender

bar is given by:

u0 �
x0

plg

ffiffiffiffiffiffiffi
E1
q

s
; (22)

We recall that E1 ¼ limx!þ1 EðxÞð Þ, x0 � 1.3916, lg is the

strain gauge length and q is the material density. For bar

diameters lower than 15 mm, the cut-off frequency de-

creases sharply with increasing diameter. It almost takes a

constant value thereafter. This asymptotic value corre-

sponds to the cut-off frequency of an infinite diameter bar

and reads:

u1 �
x0

plg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1

2qð1þ mÞ

s
: (23)

where m is the Poisson ratio. The ratio u1=u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2 1þ mð Þ

p
depends only on the Poisson’s ratio, which is an intuitive

result. It decreases with increasing Poisson’s ratio. It is

equal to 0.707, 0.62 and 0.577 for m = 0, 0.3 and 0.5,

respectively.

Compared with the second and third mode cut-off fre-

quencies, the gauge length cut-off frequency is more severe

(lower than) for bars with low diameters (<8 mm). For the

opposite case (bar diameters higher than 8 mm), the care

should be paid to mode cut-off frequency rather than that

induced by the strain gauge length. Let Dt be the wave

pulse duration, the above cut-off frequencies can be

ignored if:

1

Dt
<< min uc;U2ð Þ; (24)

where uc and U2 are the gauge length and second mode cut-

off frequency.

In Kolsky-Hopkinson bar machine applications,

Dt � emax=_e, where emax is the desired maximum strain in

the specimen and _e is the average strain rate. Consequently,

the gauge length and second mode cut-off frequency are

insignificant when

_e << emax:min uc;U2ð Þ: (25)

Conclusions
In several impact engineering applications, impact events

are measured by strain gauges. However, these gauges have

Figure 4: Variation of the Rj j2 in terms of the frequency

Figure 5: Strain-gauge length, second mode, third mode cut-off
frequencies for a three-dimensional polymer-like bar
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a non-zero length that induces a well-known, but non-

quantified filtering effect. In this study, we were interested

in the strain induced by an impact wave in elastic or visco-

elastic bars. We demonstrated that the strain gauge length

induces a low-pass filter and that the cut-off frequency

corresponds to wave lengths 2.256 times as long as the

gauge. As wave lengths depend upon the bar material and

diameter, we investigated the cases of three-dimensional

elastic and viscoelastic bars. We showed that the gauge cut-

off frequencies decrease with decreasing wave velocity and

increasing bar diameter. Besides, we compared these fre-

quencies with the second and third mode cut-off frequen-

cies. It comes that the gauge cut-off frequencies are more

restrictive for bar diameters lower than 8 mm. For bar

diameters higher than 8 mm, the mode cut-off frequencies

are more severe than the cut-off frequencies induced by the

gauge length.
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