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gital image correlation method able to detect and measure a contour or
e, with a sub-pixel precision. A virtual image that describes a simple contour
lar to the physical object to detect is created. The matching with the physical
performed based on digital image correlation. We look for the displacement

e physical image which is the closest to the virtual one. In order to keep a
n, this field is decomposed on a B-spline basis. The algorithm is close to the
ethod; an efficient implementation is proposed that makes use of levelsets.
ver both synthesized and real images, one of a star shaped toy and one on an
temperature metallic specimen on which no other boundary measurement

e of the arbitrary choice of the virtual image contour or silhouette arbitrary
ith respect to the precision of the method. This one is shown to be sub-pixel in
any case.
1. Introduction

Detection of contour or silhouette boundary is of interest in
various scientific domains, for example, map making, physics,
chemistry (detection of fronts), automotive engineering (computer
aided driving), production engineering (control), biology (mea-
surement of cell boundaries, filament behavior), reverse mechan-
ical engineering, etc.

Most of the existing methods focus on the capability to detect ill-
defined boundaries. Ridge enhancing filters [10,22,23], as well as
efficient phase congruency methods [12], emphasize points belonging
to a ridge. Numerous approaches of ridge detection are based on the
computation of the Hessian of the Gaussian filtered image [7,1,21]. The
minimal path methods apply for the detection of ridges in complex
images [4,20,5,14]. Finally, the beamlet theory [6] is particularly
efficient to identify ridges in noisy images. The precision of such
methods varies typically from 1 to 1/10 of the pixel size.

The present method applies for smooth, continuous and non-
branched curve detection. This strong hypothesis allows us to
obtain a better precision which has already been proven to be
close to 1/1000 pixel in [18] and is still relevant for numerous
applications (measurement of manufactured objects boundaries,
.fr,
univ-nantes.fr (M. François).
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regular fronts in physics or chemistry, etc.). The Virtual Image
Correlation (VIC) method consists in the creation of a virtual
image, roughly similar to the contour or silhouette present in
the physical image, which is deformed until it matches as best as
possible with the contour (or silhouette) present in the “physical”
image. The virtual image is based on a curve in the vicinity of
which the gray level evolves smoothly with the distance to the
curve, according to a bell-shaped function for the contour detec-
tion (or to a smooth step for the silhouette detection). In the
former version of the VIC [9,18] the curve is described by a
function series of the curvature (whose optimal weights are
researched). However, due to a computation at any point of the
(sub-pixel) grid associated to the curvilinear frame of the curve,
this method requires a large amount of CPU time.

In order to improve numerical efficiency, many improvements
have been made as follows:
�
 Levelsets are used to create a curvilinear co-ordinate system
within this narrowband of pixels. The first one corresponds to
the signed distance of the contour or silhouette and the second
one is proportional to the curvilinear abscissa along the curve.
The computation of the virtual image gray level, virtual image
gradient, and B-splines basis functions is straightforwardly
derived for these levelsets.
�
 The curve (of the virtual image) is obtained from a displace-
ment field applied (in the normal direction) to a simple initial
curve (a circle or segment).



�
 This displacement field is defined by a set of B-spline functions
[11] whose weights are the researched parameters. The local
effect of the variation of one of these parameters helps to the
convergence speed of the method.

This strategy leads to some similarity to the Digital Image
Correlation (DIC) technique as developed by [2,17,16] in which
an initial image is deformed towards a final one with respect to
some deformation field basis. However, major differences between
DIC and VIC exist: at first, the virtual image cannot exactly match
the physical one thus the optical flow conservation hypothesis
cannot be fulfilled; at second, the gradient of the virtual (theore-
tical) image is perfectly smooth and analytically defined; and, at
third, the virtual image is not defined over the full size of the
physical one but only exists in the vicinity of the contour or
silhouette of interest.

The paper starts by detailing the generation of virtual images.
Then the radial displacement field based on B-spline functions is
defined. The correlation method that is elaborated is then intro-
duced as well as its implementation based on levelsets. A perfor-
mance analysis is carried out to estimate the error and uncertainty
of the method on synthesised images. Last two examples based on
real images are proposed. The first example is aimed at demon-
strating the ability of the method to capture tortuous curves with a
high geometrical accuracy. It consists in detecting the contour of a
star shaped toy made of modeling clay. The second example shows
how the proposed technique can be used as an alternative to the
full field displacement measurements when this one cannot be
used. Indeed, in this high temperature testing, it was almost
impossible to apply a speckle texture onto the specimen surface
whereas it is usually easy to get images of the silhouette of the
specimen. Herein, the contour of the steel specimen under tension
loading at 900 1C is detected and its variations due to strain
localization and necking are estimated using the proposed
methodology.
Fig. 1. Example of “physical” image: a picture of a star shaped modeling clay
molding. The (closed) silhouette is researched.
2. The virtual image

Fig. 1 shows an example of a problem of contour detection. The
virtual image (Fig. 2) consists in a simple sketch of the contour or
silhouette to be identified. It is based on a parameterized curve
xðsÞ, where s is the curvilinear abscissa. This curve can be a circle in
case of closed contour or silhouette, or a straight segment in case
of opened contour or silhouette. With respect to the physical
image, this curve must be sized and placed in order to intersect the
shape of interest (on the physical image) at least one time.
Furthermore, other curves, closer to the shape of interest, can also
be used. The virtual image gray level g(r) depends upon the
distance r∈f�R;Rg from the current point X to the curve

Xðs; rÞ ¼ xðsÞ þ rνðsÞ ð1Þ
where ðτ; νÞ denote the local unit tangent and normal vectors of
the curve. The gray level function 0≤gðrÞ≤1 (in this study the gray
levels of the physical image are also ranging between 0 and 1) is
defined by a sinusoidal bell-shaped function for the contour
detection and by a sinusoidal smooth step for a silhouette detec-
tion:

gcðrÞ ¼ 1
2

1þ cos
πr
R

� �
ð2Þ

gsðrÞ ¼ 1
2

1� sin
πr
2R

� �
ð3Þ

where suffixes gc and gs denote respectively contour and silhou-
ette cases (see Fig. 2). The choice of these functions revealed to be
a good compromise between simplicity and efficiency, however,
2

others have been tested and can be used for example linear
variation or more complex ones such as Gaussian functions. It
will be shown in Section 7.2 that the best strategy (in terms of
precision) consists in beginning with a wide band (a large value of
R) and reducing it towards, at an ideal, the length of the dark to
light gray transition of the edge of the physical image (which can
be one pixel in case of perfectly sharp images).
3. The displacement field

The virtual image is deformed until it best matches the curve
(contour or silhouette) in the physical image. This is done by
finding the displacement field u which transforms the virtual
image as close as possible to the physical one. It will be seen in
Section 5 that the displacement field evolves along the gradient of
the virtual image. This imposes the direction of the displacement
field to be normal to the curve since the virtual image's gradient is
null along its tangent. Let uðxÞ be the displacement field of the
virtual curve, defined at any point x of the curve at the initial state:

uðxÞ ¼ uðsÞνðsÞ ð4Þ
where u(s) is the intensity of the displacement, s the curvilinear
abscissa and ν the normal vector to the curve. Fig. 3 shows an
example of such a field and corresponding deformed virtual
image.

For the correlation process, the displacement field needs to be
defined at every point of the virtual image. Since Eq. (4) only
defines it at the points which belong to the curve, this field is
extended to the neighborhood by considering that a current point
X has the same displacement as its projection x (Eq. (1)) onto the
curve, i.e. uðXÞ ¼ uðxÞ.

One can observe in Fig. 3b that such a radial transformation
does not keep either the width or the length constant. However, it
will be verified in Section 7 that this has a weak influence onto the
precision of the measurement.



Fig. 3. A displacement field between initial (circular) and final (bean-shaped)
shapes. (a) The field, (b) the circular virtual image of Fig. 2a deformed by this field.
4. The B-spline basis functions

The function u(s) represents the unknown of the problem
whose dimension is thus infinite. For this reason, the field is
decomposed over a field basis Pi,p which reduces the problem to
the determination of the n intensities Λi thus a finite dimensional
problem is as follows:

uðsÞ ¼ ∑
n

i ¼ 1
ΛiPi;pðsÞ ð5Þ

Among the large choice of possible basis (for example Fourier
series, polynomials, etc.), the B-spline functions have been
retained for their high level of continuity and their local support,
which will lead to band matrixes in the correlation calculus which
is shown in Section 5. These are classically obtained from the Cox–
De Boor recursive formula

Pi;qðsÞ ¼
s�si

siþq�si
Pi;q�1ðsÞ þ

siþqþ1�s
siþqþ1�siþ1

Piþ1;q�1ðsÞ; ð6Þ

Pi;0ðsÞ ¼
1 if si≤sosiþ1;

0 otherwise:

�
ð7Þ

in which si is the knot vector with i∈f1;2;…;nþ pþ 1g the knot
index and n is the number of basis functions Pi,p of order p.
Furthermore, for the sake of simplicity, the knot vector is chosen
uniformly: siþ1�si ¼ si�si�1. In this context, the maximum con-
tinuity Cp�1 is obtained and an element size which is the step
between two consecutive knots can be defined. The elements are
defined only over the “active” subset of the segment between the
knots i¼p+1 and i¼n+1 (those over which p+1 B-spline functions
can be computed). The number of elements is thus defined as
nel¼n�p. Conversely, the number of B-spline functions of degree p
defined over nel elements is n¼nel+p. Note that the maximum
continuity is Cp�1 when the first and last knots have unit multi-
plicity. The opposite configuration is when all the internal knot
have p multiplicity. In this case p-finite element functions (C0) are
constructed. The main advantages of using Cp�1 B-spline functions
are that they have high continuity and a low “refinement” cost.
Indeed, for Cp�1 functions, the number of degrees of freedom (the
number of B-spline functions) is nel+p, whereas it is nel�p+1 for
C0 functions, nel being the number of elements. As a consequence
increasing the degree from p to p+1 costs one degree of freedom
for Cp�1, whereas it costs nel degrees of freedom for C0. As the
optical flow equation used in the following for image correlation
leads to an ill-posed problem, the lower the number of degrees of
freedom the better the problem is constrained and the less
oscillations appear in the solution. Further, the support of B-
spline functions enlarges when the level of continuity is increased.
Thus, a larger amount of information (gray level gradient) is used
to solve the problem for each function.

Finally, joining Eqs. (4) and (5) gives a decomposition of the
displacement field at any point X of the domain of definition Ω of
Fig. 2. Typical virtual images in case of (a) closed contour (b) closed silhouette (c) op
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the virtual image over a basis ui:

uðX;ΛiÞ ¼ ∑
n

i ¼ 1
ΛiuiðsÞ ð8Þ

uiðsÞ ¼ Pi;pðsÞνðsÞ ð9Þ
5. The correlation method

The gray levels are denoted as f ðXÞ for the physical image and
gðXÞ for the virtual one. The best match between the two images is
searched by finding the displacement field u for which the sum of
the square difference,

Φ¼∬Ω½f ðX þ uÞ�gðXÞ�2 dX; ð10Þ
between them is minimum. In this expression, Ω denotes the
domain of definition of the virtual image, supposed to be fully
embedded in the physical one. From Eq. (5), this field and thus the
function Φ depends upon the researched parameters Λi. At this
step one can remark that, contrary to the DIC theory, this equation
does not accept, in general, zero as a solution since the virtual and
physical images are different (in contradiction to the optical flow
conservation considered in DIC), however, the problem still con-
sists in minimizing it. Hence, the computation is very similar to
the one presented by [2]. From Eq. (8), the equation can be
transformed into

ΦðVkÞ ¼∬Ω½f ðX þ ΛkukÞ�gðXÞ�2 dX; ð11Þ
in which, and since, the Einstein convention is used. We look for a
small variation ΔΛk of the field parameters for which this equation
becomes stationary. Thus it is linearized around the current
parameter value Λk:

ΦðΛk þ ΔΛkÞ ¼∬Ω½f ðX þ ΛkukÞ þ ΔΛj∇f ðX þ ΛkukÞ � uj�gðXÞ�2 dX ð12Þ
en contour (d) open silhouette. The virtual image is undefined in hatched region.



Fig. 6. Synthesized 8 bits, 512�512 pixel disc image.
where ∇ denotes the spacial derivation. This equation is stationary
as soon as the n derivatives ∂Φ=∂ΔΛi are null. This leads to a linear
matrix–vector system of dimension n�n:

MijΔΛj ¼ bi; ð13Þ

Mij ¼∬Ωð∇f ðX þ ΛkukÞ � uiÞð∇f ðX þ ΛkukÞ � ujÞ dX; ð14Þ

bi ¼∬Ω½gðXÞ�f ðX þ ΛkukÞ�∇f ðX þ ΛkukÞ � ui dX: ð15Þ
To preserve computational cost, ∇f ðX þ ΛkukÞ is substituted by
∇gðXÞ which is calculated once for all since g is the virtual image.
Furthermore, being analytically defined, ∇g is perfectly smooth.
The only term to be updated between two iterations is the field
f ðX þ ΛkukÞ. This computation is done only in the domain Ω, the
narrowband in the immediate neighborhood of the contour or
silhouette where the gradient of the virtual image is non-zero. In
practical computation, this band is only few pixel width, thus the
computation time remains very brief and the method is not
sensible to the presence of artifacts of any brightness which does
not intersect the curve of interest. Furthermore, the B-spline
functions Pi,p thus by Eq. (9) the fields ui are very localized: they
overlap (this means they are simultaneously non-zero) only the p
previous and following functions. As a consequence, the band
width of the matrix Mij is only 2p+1, where p is the order of the
B-spline, leading to fast resolution of the system in Eq. (13). Finally,
one can remark that the noise inherent to any imaging process
Fig. 4. Finite element description of levelsets for a line. (a) Finite element mesh of the
contour.

Fig. 5. Finite element description of levelsets for a closed contour. (a) Finite element me
virtual contour.
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(thermal noise of the camera sensor for example) leads to rough
gradients ∇f . This difficulty is often overcome by a filtering
operation on f which induces a loss of information. On the
contrary, the present method only deals with the “raw” informa-
tion contained in f.
narrowband. (b) Levelset r and virtual contour in black. (c) Levelset s and virtual

sh of the narrowband. (b) Levelset r and virtual contour in black. (c) Levelset s and



6. Levelset description

In the previous section, the displacement field has been shown
to depend upon the curvilinear abscissa s (Eq. (5)) and that the
gray level depends upon the distance r. One thus needs a curvi-
linear coordinate system (s,r) within Ω (the narrowband around
the virtual contour). Levelsets [19] provide an efficient way to
Fig. 8. Mean (left) and RMS (right) errors for the detection of the disc w

Fig. 9. Mean (left) and RMS (right) errors for the detection of the disc wi

Fig. 7. Mean (left) and RMS (right) errors for the detection of the d
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compute them. One is associated to r, its iso-0 contour being the
curve itself (in the virtual image), and the other is associated to s.
To preserve computational costs, a regular mesh with quadrangle
elements is built in the narrowband. The typical size of these
elements is set to 10 pixels and the levelset field is then
interpolated at the pixel location. However, this allows for a
reduction by a factor of about 100 of the numerical cost to
ith respect to the different curve width R¼Rf¼Rg and element size.

th respect to the different curve width ratios Rf/Rg and element size.

isc image for different element size and interpolation degree p.



compute the values of the levelsets from the initial virtual shape
geometry. The two levelsets are written as

sðXÞ ¼ ∑
k∈N band

skNkðXÞ ð16Þ

rðXÞ ¼ ∑
k∈N band

rkNkðXÞ; ð17Þ

where N band is the set of nodes in region within which the
levelsets are computed. This region has to include the narrowband
Ω. It is, however, extended slightly from the close vicinity of the
curve. Nk are finite element shape functions and rk and sk are the
corresponding degrees of freedom for r and s, respectively.

The nodal absolute values rk of r are given by the computation
of the minimum distance between the node of interest and any
point of the curve (which can be discretized at the pixel size or
finer, since it consists in an analytical curve). The sign of rk is the
one of the scalar product ν:ðX�xÞ, where in case of silhouette
detection, ν has to be chosen on the right or left hand (depending
whether the silhouette is black on white or the contrary).
Fig. 10. Average over the element size of the mean error for the detection of a disc
as a function of the curve width ratio Rf/Rg.

Fig. 11. The virtual image corresponding to the analysis of the star image (Fig. 1) at (a) in
finite element mesh. The smooth transition between black and white is not visible bec
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From this levelset r, s is computed so that its gradient (normal
to the iso-contour) is orthogonal to the gradient of r. A minimiza-
tion of

Ψ ¼
Z
Ω
∥∇s�∇r � ez∥2 dΩ; ð18Þ

is performed, where ez is the unit vector normal to the image
plane and � represents the cross product. Using Eqs. (16) and (17),
this minimum is attained when the partial derivatives of Ψ with
respect to the researched nodal values si are null and one obtains
Z
Ω
∇Ni � ∇Nj dΩ

� �
sj ¼ ∑

k∈N
rk

Z
Ω
ð∇Ni � ∇NkÞ � ez dΩ; ð19Þ

which is a linear matrix–vector system whose straightforward
resolution gives the values of sj. In addition to previous orthogon-
ality conditions, a boundary condition must supplement the
system. First, a node is chosen arbitrarily to have a 0 value. Then
the minimum value of s is subtracted to all the nodal values so that
s starts at 0. Fig. 4 shows the result obtained for a sinusoidal line.
Fig. 4(a) depicts the mesh that is constructed around the virtual
contour. Levelsets r and s are plotted on Figs. 4(b) and (c). For
closed contours, a discontinuity in s¼0 is expected. The finite
element decomposition of s is thus enriched using the eXtended
Finite Element Method [13]. The discretization of s enriched with
discontinuous functions reads as follows:

sðXÞ ¼ ∑
k∈N

skNðXÞ þ ∑
k∈N enr

skNðXÞðHðXÞ�HðXkÞÞ; ð20Þ

where N enr is the set of enriched nodes (those that have their
support cut by the discontinuity line), H the Heaviside function (it
values 1 on one side of the discontinuity line, 0 on the other side),
Xk the position of node k and sk its corresponding enriched degree
of freedom. The same methodology is applied as for the open
contour. The only difference is the numerical integration of the
enriched basis functions within the elements cut by the disconti-
nuity. One may refer e.g. to [3] or [13]. Fig. 5 shows the results for
the levelset description of the contour of a star. One can easily see
the discontinuity line in the bottom branch. After the two levelsets
have been initialized, the virtual image is computed from the
values r interpolated at the pixels from its nodal values rk using
Eq. (2) or (3). The displacement field basis is computed using s
evaluated at the pixels from the nodal values sk and Eq. (8).
itial and (b) final stages of optimization computed over the support of the levelsets
ause R¼5 pixels.



7. Performance analysis

In this section, in order to evaluate the metrological perfor-
mance of the method, a physical image is generated by the same
algorithm as used for the virtual image. Thus f is noiseless and its
dynamic ranges from 0 to 1. However, in order to take into account
the digitalization, the gray levels are converted to 8-bit integers.
The size of the image is 512�512 pixel. The test consists in
detecting the circular disk boundary of known theoretical dia-
meter from the image in Fig. 6.

The width of the narrowbands are denoted as Rf for f and Rg for
g. At each curvilinear abscissa s, the normal positioning discre-
pancy d(s) corresponds to the distance between the theoretical
circle used for the “physical” image f and the deformed curve
ðxþ uÞ of the virtual (recovered) image g, measured along the
normal ν. Retained indicators are its mean D, for the systematic
error, and Root Mean Square (RMS) sðdÞ, for the uncertainty
(i.e. the fluctuations of the positioning).

7.1. Compared influence of the element size and the degree
of interpolation

Using the Finite Element Method or B-splines functions, the
question of the element size arises. This one has been varied over
one decade. Among other parameters which may influence the
quality of the solution, the degree of interpolation p is chosen. The
latter has been varied from p¼1 to 5. Other parameters are fixed
in this study: narrowband width is set to Rg ¼ Rf ¼ 10 pixels. Fig. 7
shows the results of this study.

It is observed that the mean error does not depend either on
the element size or on the B-spline degree. The average mean
error is about 5.5�10�3 pixel. Concerning the RMS error, increas-
ing the element size decreases the uncertainty: the lower the
number of unknown the better the conditioning of the problem
and thus the lower the fluctuations of the solution. The interpola-
tion degree p has again no significant influence of the results.
Indeed, in Cp�1 B-spline functions, increasing the interpolation
degree from p to p+1 only costs1 degree of freedom thus it
deteriorates the conditioning of a really small amount. RMS error
between 1.0�10�3 to 4.0�10�4 pixel is obtained.
Fig. 12. Detected contour after 0, 10, 20, 30, 40 and 50 iterat
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7.2. Compared influence of the narrowband width
and finite element size

In a real picture the narrowband corresponds to the width of
the object image boundary. Due to the finite size of the pixels,
even if the image is perfectly neat, a pixel in which the boundary
passes through has an intermediate gray level. Furthermore, any
defocusing or other optical effect (diffraction for example) will
generate some shading and thus a wider narrowband. In this
section the ratio are varied between “physical” and virtual images
narrowband width (respectively Rg and Rf) in order to check the
influence of the arbitrary choice of Rg.

At first, the widths are varied simultaneously, i.e. Rg¼Rf, from
6 to 30 pixels. The interpolation degree is set to p¼3. Fig. 8 shows
the results. It is observed that the curve width does not modify the
behavior of the error when the element size is varying. The mean
error is nearly constant and the RMS error decreases. However, it is
difficult to conclude on the positive or negative influence of the
curve width as the evolution of the mean error and the RMS error
seems to have an erratic evolution when Rg¼Rf goes from 6 to 30
pixels.

At second, the ratio Rf/Rg is varied. The interpolation degree is
set to p¼3 and the curve width in the physical image is
set to Rf¼10 pixels. The results are shown in Fig. 9. The mean
error and the RMS error are plotted as functions of the element
size for different curve width ratios Rf/Rg. Again the tendency of
the error estimates is not changed by the studied parameter.
However, mean errors from 7.0�10�4 to 4.0�10�2 pixel are
obtained.

If one plots the averaged (over the element size) mean error as
a function of Rf/Rg relevant conclusions arise. Fig. 10 shows the
results. It is clearly concluded that there exists an optimal value for
the curve width ratio and obviously this optimal value is 1. The
RMS error is lower influenced by the curve width ratio, only a
factor of about 10 between the lower and the higher error level for
the same element size. Further, it appears that the lower the curve
width ratio the lower the RMS error. It is thus concluded that large
Rf/Rg ratios lead to higher systematic error and fluctuations
whereas lower Rf/Rg ratios give lower uncertainty and systematic
error of the same order of magnitude except for the optimal ratio
ions for scale 3 when the initial virtual shape is a circle.



of 1. Indeed, when the curve width ratio is large, i.e. the curve
width of the actual image Rf is large compared to the curve width
in the virtual image Rg, the position of the contour of the virtual
shape is not well constrained within the thickness of the physical
curve width. Conversely, low curve width ratio, i.e. when the curve
width in the virtual image is larger than the curve width in the
actual image, the boundary of the shape is constrained within the
actual curve width Rf thus leading to lower uncertainty levels.
Concerning the systematic error (the mean error) whether the
curve width ratio is lower or greater than 1 it always leads to
increasing errors (see Fig. 9). The averaged mean error evolution
plotted in Fig. 10 also appears to be of the same nature when Rf/Rg
is decreasing or increasing from 1. This result is of practical
importance as it shows that Rg can first be chosen larger than Rf
to obtain an estimation of the shape with low uncertainty levels.
Once this first estimation is obtained, the curve width Rg can be
decreased until it reaches approximately the value of Rf which is
not known in practice. This will allow to decrease the systematic
error whereas a low fluctuation level is preserved.
Fig. 13. Comparison at different places of the contour detected using the segment by seg
references to color in this figure caption, the reader is referred to the web version of th
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From this a priori performance analysis, the following conclu-
sions arise:
�

men
is a
As for usual Digital Image Correlation analysis, the larger the
number of degrees of freedom (or the smaller the window size)
the larger is the error measurement both in terms of systematic
error and in RMS error (see e.g. [8]).
�
 However, as mentioned in Section 5 and contrary to the usual
Digital Image Correlation method which are searching for a
vector displacement field, in the present formulation, only the
component of the displacement orthogonal to the shape is
tracked. This leads to a reduction of the number of unknown by
a factor of 2 and thus an increase of the performance in terms
of uncertainty.
�
 Using Cp�1 B-splines functions as a shape descriptor increases
the performance of the detection algorithm compared to other
polynomial functions [15,8]. The local influence of each degree
of freedom, but with large support than using e.g. higher order
C0 finite element functions, provides for higher robustness with
t initialization procedure (blue +) or a circle (red � ). (For interpretation of the
rticle.)



Fig.
(sev
con
respect to the local discrepancies. The low “cost” degree
increasing allows for improving the detection resolution (finer
details can be described but keeping the measurement uncer-
tainty almost constant). Indeed the performance analysis car-
ried out in this section shows that high order Cp�1 B-spline can
be used without increasing the measurement uncertainty.
�
 A methodology can be elaborated for practical use: the idea is
to use several “scales” for which the curve width increases and
the descriptor is coarsened. Then the coarse details of the
curve, (i.e. large wave length) are first captured and the ability
of the technique to describe finer details is progressively
restored from coarse “scales” to the finest “scale”.
14. Detected contours (blue lines) for the six images of the high temperature experi
en pairs of thin light gray lines) that were used to measure the temperature of the spe
tour is tracked out. (For interpretation of the references to color in this figure captio
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The advantages of the proposed method for detecting a curve
using the coarse to fine strategy above will be used in the next
section that is dedicated to actual examples.

8. Examples

In this section, the capabilities of the proposed technique
are illustrated through two examples with real digital images.
The first one is dedicated to the detection of a star shaped toy and
the second one to the analysis of a mechanical test at high
temperature.
ment. On the left side of the specimen, one can see the wires of the thermocouples
cimen. Note that these data are not used herein, only the evolution of the specimen
n, the reader is referred to the web version of this article.)



8.1. Contour of a star shaped toy

The modeling clay star image (Fig. 1) in JPEG format (1704�2272
pixels) was initially coded with 16-bit RGB encoding which then
converted into 8-bit grayscale format. Using the strategy elaborated
above, the analysis is performed at three “scales” which correspond
to the use of a decreasing width of the virtual image R¼20, 10,
5 pixels and, respectively, to the increase of the number of B-spline
elements with 25, 50, 100 elements (all of them of degree 3).
Finer details of the actual shape are thus progressively resolved.
The analysis was performed twice depending on the initial virtual
shape: first using a circle of radius 500 pixels and second using the
“segment by segment” initialization strategy proposed in [18]. Fig. 11
(a) shows the initial virtual image with this 500 pixels circle. Because
R is set to 5 pixels only, the gray level variations within the narrow
band are not clearly visible on the picture. Based on the finite
element description of the levelsets r and s, the white part of the
virtual image appears with a step shaped contour. When the initial
virtual shape is a circle the virtual image deforms intensively to reach
the actual shape. Fig. 12 shows how the latter analysis converges at
scale 3 (R¼20 pixels and 25 elements). The computed solution after
0, 10, 20, 30, 40 and 50 iterations (when convergence is obtained) is
depicted. The final virtual image is shown in Fig. 11(b). Using the
“segment by segment” initiation of [18] gave very similar identifica-
tion. This can be seen in Fig. 13 on which the contour detected when
using the two different initial conditions is plotted. However, it is
difficult to quantify the gap between the two solutions as the
curvilinear abscissa of the two analysis do not coincide.

8.2. Analysis of a high temperature experiment

Performing Digital Image Correlation displacement measure-
ment is not easy for high temperature experiments. First the
surface of the sample emits infrared light that must be filtered. If
the temperature varies strongly during the experiment different
wave lengths may be filtered depending on the actual temperature
of the specimen surface. Consequently, it is impossible to set an
infrared filter adapted to the entire experiment. Further when very
high temperatures are reached (about 1000 1C), it is also difficult
to find the appropriate technique to apply a speckle onto the
sample surface. However, it is almost always possible to have
images of the sample in white on a black background. In this
context, the Virtual Image Correlation technique proposed in the
paper allows to measure the shape of the sample edge thus giving
information on the specimen deformation during mechanical and/
or temperature loading.
Fig. 15. Comparison of the detected contours for the high temperature experiment.
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Here, a tension test on a cylindrical specimen of 16MND5 steel at
900 1C is analyzed. Fig. 14 shows six images of test over which we have
superimposed the contour detected for the specimen. A total of
50 elements of degree 5 are used as a shape descriptor and the
analysis is run using three scales. The initial virtual shape is a straight
line located on the right of the specimen. A very good agreement is
obtained and quantitative estimation of the sample section variation
is plotted in Fig. 15. It is observed that for steps 1 (which is the initial
geometry of the sample) to 4, the section variation is almost
homogeneous whereas for step 5 strain localization starts. For step
6, necking is well captured as a strong reduction of the specimen
section is measured. However, one may have to reduce the continuity
level at the necking point so that a discontinuity in the profile
tangent could be captured. This could have been obtained by
inserting multiple knots at the corresponding position in the knot
vector describing the curve. Improving the geometrical description of
the curve in such cases is one of the perspectives of this work.

Another perspective of this work consists in generating NURBS
meshes for iso-geometric analysis [11] directly from the image of an
object. Here, the two edges of the unloaded specimen are detected
using only one second order B-spline element. Based on the B-splines
description of the edges of the solid, a NURBS mesh is then generated
over the bulk. The mesh presented in Fig. 16 has been obtained for
NURBS function of degree 3 in the vertical direction degree 1 in the
horizontal direction. Further, it has been h-refined four times and
two times in the vertical and horizontal directions, respectively,
compared to the mesh used for the edges' detection.
9. Conclusions

In this paper, a curve detection/measurement technique is
proposed based on the matching between a real image and a
Fig. 16. NURBS mesh built from the contour of the specimen.



virtual one. Contrary to the existing methods usually focussing on
their ability to detect ill-defined boundaries, the proposed
approach can detect curve with sub-pixel accuracy and the
proposed algorithm is shown to have uncertainty measurement
as low as 10�3 pixel.

Finite element based levelsets are used for an efficient imple-
mentation of the method. The local influence of the shape
parameters due to the B-spline functions used as a basis for
displacements also acts for fast and robust computation, on the
contrary of former version of the VIC method [9,18] in which the
series used made each parameter have a global influence. Another
advantage of the B-spline basis is their high continuity order and
their support in terms of element compared to those of usual finite
element shape function which is larger. This leads to better
performances in the context of image matching as demonstrated
in [15,8].

Using the proposed method, it has been shown in the last
example that a NURBS mesh is generated directly from the image
of a solid. This opens a wide way for building NURBS meshes for
solids that cannot be modeled using CAD software. For example,
using IRM images of organs NURBS meshes could be designed
directly. Among the possible applications of the method, this is all
the more so interesting that its extension to 3D is straightforward.

Another possible development of the method itself consists in
the use of the B-spline curves (and not only the use of their basis
functions) as a shape descriptor, the control point of them being
the researched data. It will apply for the conversion of any existent
drawing in B-spline curves, again with sub-pixel precision.
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