

Coupling Moisture Diffusion and Internal Mechanical States in Polymers - A Thermodynamical Approach

Bun Eang Sar, Sylvain Fréour, Peter Davies, Frédéric Jacquemin

▶ To cite this version:

Bun Eang Sar, Sylvain Fréour, Peter Davies, Frédéric Jacquemin. Coupling Moisture Diffusion and Internal Mechanical States in Polymers - A Thermodynamical Approach. European Journal of Mechanics - A/Solids, 2012, 36, pp.38-43. 10.1016/j.euromechsol.2012.02.009 . hal-01006704

HAL Id: hal-01006704 https://hal.science/hal-01006704

Submitted on 27 Jan 2018 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Coupling moisture diffusion and internal mechanical states in polymers – A thermodynamical approach

B.E. Sar^a, S. Fréour^a, P. Davies^b, F. Jacquemin^{a,*}

^a Institut de Recherche en Génie Civil et Mécanique, UMR CNRS 6183, LUNAM Université, Université de Nantes, Ecole Centrale de Nantes, 37 Bd de l'Université, BP 406, 44602 Saint-Nazaire, France

^b Service Matériaux et Structures, IFREMER, Centre de Brest, B.P. 70, 29280 Plouzané, France

A thermodynamical approach, based on the definition of the chemical potential of water, is used in order to establish a model coupling the diffusion of moisture to the mechanical behaviour of a polymer. The model takes into account the evolution, occurring during the diffusion process, of both the density of the polymer and its maximum moisture absorption capacity. The approach developed is applied to symmetric loading cases, in terms of relative humidity and external pressure. The model, established in the present work, provides the water content profiles through the thickness of the polymer throughout the transient phase of the diffusion process. The numerical results obtained show the significant effect of an external pressure on the kinetics of moisture diffusion in polymers.

Keywords: Hygromechanical coupling, Moisture absorption, Thermodynamical approach

1. Introduction

Fiber reinforced organic matrix composites are being increasingly used for aircraft, marine and civil engineering structural applications. Such composite structures are often subjected to humid environments during their service life (Jedidi et al., 2005). Organic matrix composites do absorb significant amount of water when exposed to moisture. Many authors have reported that hygrothermal ageing could induce a loss of the mechanical stiffness and/ or strength of organic matrix composites (Patel et al., 2002). Moreover, the constituents of composite structures exhibit heterogeneous coefficients of moisture expansion (CME) and maximum moisture absorption capacity. As a consequence, multiscale mechanical behaviour profiles arise during the hygroscopic loading of organic matrix composites. According to the literature, the resulting mechanical states can eventually induce damage (Perreux and Suri, 1997; Weitsman and Elahi, 2000). Therefore, considerable research efforts have been made in order to develop analytical models to predict the multi-scale mechanical states occurring during both the transient stage and the permanent regime of the moisture diffusion process in organic matrix composites subjected to hygro-mechanical loads (Jacquemin and Vautrin, 2002; Fréour et al., 2005). In this field of research, the most recent investigations (Aboudi and Williams, 2000; Derrien

* Corresponding author. E-mail address: frederic.lacquemin@univ-nantes.fr (F. Jacquemin). and Gilormini, 2009; Youssef et al., 2009, 2011) focus upon taking into account, in the theoretical approaches, various features of hygro-mechanical coupling, observed during experimental studies, and in particular the dependence of both the moisture diffusion coefficient and the maximum moisture absorption capacity on the mechanical states (strains and stresses) (Marom and Broutman, 1981; Neumann and Marom, 1986, 1987). These models aim eventually to enable the prediction of the long-term durability of composite structures subjected to hygroscopic loads.

The purpose of this study is to establish a model coupling the diffusion of moisture to the mechanical states by a thermodynamical approach, based on the expression satisfied by the chemical potential of water. Moreover, the present study aims to consider additional factors that have not yet been taken into account in the pioneering works of Derrien and Gilormini (Derrien and Gilormini, 2009), such as the evolution of the polymer density as a function of the mechanical states, which occurs in practice during the moisture diffusion process.

2. Conservation of mass equation

The uncoupled law of Fick is classically used for modelling the diffusion of moisture in organic matrix composites. The adjective "uncoupled" refers to the fact that the model disregards any effect due to the mechanical states on the moisture diffusion process. However, the experimental investigation reported in Gilat and Broutman (1978) shows that an anomalous sorption process (i.e. it deviates from the classical Fickian behaviour) takes place in

practice. According to Weitsman (1990), the anomalies could be explained by coupled constitutive equations, based on the principles of continuum mechanics and irreversible thermodynamics.

In practice, the coupled method relates the flux of moisture to the chemical potential $\tilde{\mu}_w$:

$$J_i = -\frac{DC}{RT} \nabla \tilde{\mu}_{\mathsf{W}} \tag{1}$$

Where *D* is the diffusion coefficient in $[mm^2/s]$, *C* is the moisture content in [%], *R* is the ideal gas constant in [kJ/(mol K)], *T* is the temperature in [K].

The coupled diffusion equation which expresses the law of mass conservation is given by Larché and Cahn (1982):

$$\frac{\partial C}{\partial t} + J_{i,i} = 0 \tag{2}$$

3. Chemical potential

The chemical potential of water $\tilde{\mu}_{w}$ is defined as the partial derivative of free energy of Helmholtz, $F = F_0 + nf_w(C) + V_{\varepsilon}W$, with respect to the amount of water n_w . Where F_0 is the free energy of the dry stress-free polymer, $f_w(C)$ is the variation of the free energy per mole of dry polymer, due to the addition of water when the polymer is free to swell, n and V_{ε} are respectively the amount of polymer and its volume at any stage, whereas W denotes the hygroelastic strain energy (Derrien and Gilormini, 2009):

$$\tilde{\mu}_{w}(C) = \frac{\partial F}{\partial n_{w}} = \frac{\partial F}{\partial C} \frac{\partial C}{\partial n_{w}}$$
(3)

The moisture content in the polymer is calculated through $C = (n_w \omega_w)/n\omega$, where ω_w , ω stand for respectively the molar mass of water and polymer.

The hygro-elastic strain energy written as a function of both the bulk modulus *k* and shear modulus *G*, is defined by:

$$W = \frac{1}{2}\sigma: \varepsilon^{\text{el}} = \frac{k}{2}(\text{tr}\varepsilon - 3\eta C)^2 + Ge: e$$
(4)

Where ε^{el} is the elastic strain, ε being the total strain, e the deviatoric strain tensor. η denotes the coefficient of moisture expansion of the polymer.

Introducing $f'_w(C) = \partial [f_w(C)]/\partial C$, one obtains the following expression for the derivative of the Helmholtz free energy with respect to the moisture content:

$$\frac{\partial F}{\partial C} = \frac{\partial F_0}{\partial C} + n f'_{w}(C) + V_{\varepsilon} \frac{\partial W}{\partial C} + W \frac{\partial V_{\varepsilon}}{\partial C}$$
(5)

Let us assume that

- i). following the historical hypotheses accounted in Derrien and Gilormini (2009), the derivative of polymer volume with respect to moisture content is considered as negligible, i.e. $\partial V_{\epsilon}/\partial C = 0$,
- ii). the bulk modulus *k*, and the shear modulus *G*, do not depend on the moisture content $(\partial k/\partial C = \partial G/\partial C = 0)$ and
- iii). the derivative of the strain tensor trace by the moisture content is also negligible: $\partial (tr\varepsilon)/\partial C = 0$.

Accounting for above the approximations i) to $iii) in (8, 10) yields % \label{eq:countrol}$

$$\frac{\partial F}{\partial C} = nf'_{\mathsf{w}}(C) + V_{\varepsilon} \frac{\partial}{\partial C} \left[\frac{k(C)}{2} (\operatorname{tr} \varepsilon - 3\eta C)^2 + \operatorname{Ge} : e \right]$$
$$= nf'_{\mathsf{w}}(C) + V_{\varepsilon} k (\operatorname{tr} \varepsilon - 3\eta C) (-3\eta)$$
(6)

The chemical potential can finally be written as,

$$\tilde{\mu}_{\mathsf{w}}(\mathsf{C}) = \frac{\omega_{\mathsf{w}}}{\omega} f'_{\mathsf{w}}(\mathsf{C}) + k(\operatorname{tr}\varepsilon - 3\eta\mathsf{C})(-3\eta)\frac{\omega_{\mathsf{w}}}{\rho_{\varepsilon}}$$
(7)

Where $(\omega_w/\omega)f'_w(C) = \mu_0 + RT \ln(C/C_0)$. μ_0 denotes the chemical potential of water in the strain-free polymer, whereas the reference moisture content is given by C_0 .

During the moisture diffusion process, we take into account the evolution of the volume occupied by the polymer, and the resulting variation of its density, through

$$\frac{V_{\varepsilon}}{V_0} = \frac{\rho_0}{\rho_{\varepsilon}} = \operatorname{tr} \varepsilon + 1 \tag{8}$$

Where V_{ϵ} , V_0 , ρ_{ϵ} , ρ_0 stand respectively for the polymer volume and its density at present and initial states.

Assuming the mechanical properties of the polymer to be independent of both the mechanical states and the moisture content, the chemical potential can be written as,

$$\tilde{\mu}_{w}(C, \mathrm{tr}\varepsilon) = \mu_{0} + RT \ln \frac{C}{C_{0}} - \frac{3\eta\omega_{w}k}{\rho_{0}} (\mathrm{tr}\varepsilon - 3\eta C)(\mathrm{tr}\varepsilon + 1)$$
(9)

4. Hygroscopic pressure

The hygro-elastic Hooke's law is:

$$\varepsilon_{ij} = \frac{1+\nu}{E} \sigma_{ij} - \frac{\nu}{E} (\mathrm{tr}\sigma_{ij}) \delta_{ij} + \eta C \delta_{ij}$$
(10)

Where ν stands for Poisson's ratio, E for Young's modulus, and $\delta_{ij} = \{ \begin{array}{l} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{array} \}$.

$$(11)$$

$$1+\nu)\sigma_{ij,kk} + \sigma_{kk,ij} + E\eta\left(\frac{1+\nu}{1-\nu}\delta_{ij}C_{,kk} + C_{,ij}\right) = 0$$

Furthermore, introducing the Laplacian operator Δ , one can write:

$$\Delta\left(\mathrm{tr}\sigma_{ij}+2\eta\frac{E}{1-\nu}C\right) = 0 \tag{12}$$

In the present case, a hydrostatic external pressure Pex is assumed to be applied at the boundary of a cubic element, so that the total pressure is P = Pex + Pis where the hygroscopic pressure to be determined is denoted by Pis. As a result, $\text{tr}\sigma_{ii} = -3P$. Besides, $\Delta \text{Pex} = 0$.

As a consequence, the hygroscopic pressure depends on the moisture content through:

$$\Delta P is = \frac{\alpha}{A_0} \eta \Delta C \tag{13}$$

Where,

$$\frac{\alpha}{A_0} = \frac{2E}{3(1-\nu)} \tag{14}$$

$$A_0 = \frac{3\omega_{\rm W}}{RT\rho_0} \tag{15}$$

5. Equation of model

The constitutive equation is obtained by using the mass conservation Eq. (2) in which the chemical potential of water has been written as a function of the trace of the strains and the moisture content:

$$\frac{\partial C}{\partial t} = \frac{D}{RT} \operatorname{div} \left[C \left(\overrightarrow{\operatorname{grad}} \, \widetilde{\mu}_{\mathsf{w}}(C, \operatorname{tr} \varepsilon) \right) \right]$$
(16)

Since

$$\overrightarrow{\operatorname{grad}} \tilde{\mu}_{\mathsf{W}}(C, \operatorname{tr}\varepsilon) = \frac{\partial \tilde{\mu}_{\mathsf{W}}}{\partial C} \overrightarrow{\operatorname{grad}} C + \frac{\partial \tilde{\mu}_{\mathsf{W}}}{\partial \operatorname{tr}\varepsilon} \overrightarrow{\operatorname{grad}} \operatorname{tr}\varepsilon$$
(17)

$$\frac{\partial \tilde{\mu}_{\mathsf{W}}}{\partial C} = \frac{RT}{C} + \frac{9\eta^2 k \omega_{\mathsf{W}}}{\rho_0} (\mathrm{tr}\varepsilon + 1)$$
(18)

$$\frac{\partial \tilde{\mu}_{w}}{\partial \mathrm{tr}\varepsilon} = -\frac{3k\omega_{w}\eta}{\rho_{0}}(2\mathrm{tr}\varepsilon - 3\eta C + 1)$$
(19)

Therefore the Eq. (16) could be written as follows,

$$\frac{\partial C}{\partial t} = D \operatorname{div} \left[\overrightarrow{\operatorname{grad}} C + \frac{9\eta^2 k \omega_{\mathrm{W}}}{RT \rho_0} C(\operatorname{tr} \varepsilon + 1) \overrightarrow{\operatorname{grad}} C - \frac{3k \omega_{\mathrm{W}} \eta}{RT \rho_0} (2 \operatorname{tr} \varepsilon - 3\eta C + 1) C \ \overrightarrow{\operatorname{grad}} \operatorname{tr} \varepsilon \right]$$
(20)

This implies,

$$\frac{\partial C}{\partial t} = D \left[\Delta C + \frac{9\eta^2 k \omega_{\rm W}}{RT \rho_0} C(\mathrm{tr}\varepsilon + 1) \Delta C + \frac{9\eta^2 k \omega_{\rm W}}{RT \rho_0} \mathrm{grad} \left[C(\mathrm{tr}\varepsilon + 1) \right] \overrightarrow{\mathrm{grad}} C - \frac{3k \omega_{\rm W} \eta}{RT \rho_0} (2\mathrm{tr}\varepsilon - 3\eta C + 1) C \Delta \mathrm{tr}\varepsilon - \frac{3k \omega_{\rm W} \eta}{RT \rho_0} \mathrm{grad} \left[(2\mathrm{tr}\varepsilon - 3\eta C + 1)C \right] \overrightarrow{\mathrm{grad}} \mathrm{tr}\varepsilon \right]$$
(21)

Since the trace of the strain in term of the pressure load is given by,

$$\mathrm{tr}\varepsilon = -\frac{3(\mathrm{Pex} + \mathrm{Pis})}{3k} + 3\eta C \tag{22}$$

This implies the gradient of strain trace can be written as follows,

$$\overrightarrow{\text{grad}} \operatorname{tr} \varepsilon = -\frac{(\overrightarrow{\text{grad}} \operatorname{Pex} + \overrightarrow{\text{grad}} \operatorname{Pis})}{k} + 3\eta \, \overrightarrow{\text{grad}} C$$
(23)

Knowing that the gradient of external pressure is given by,

$$\operatorname{grad}\operatorname{Pex} = 0$$
 (24)

6. Towards an explicit solution: the case of an unidirectional moisture diffusion

In order to find an explicit solution to relation (21), an unidirectional moisture diffusion is assumed to occur along x axis. As a result, the solution of Eq. (13) satisfies,

$$Pis(x,t) = \frac{\alpha}{A_0} \eta C(x,t) + k_1(t)x + k_2(t)$$
(25)

The constants $k_1(t)$ and $k_2(t)$ are deduced from the equilibrium conditions in which *L* is the dimension along the *x* axis,

$$\int_{0}^{L} \operatorname{Pis}(x,t) \mathrm{d}x = 0 \tag{26}$$

$$\int_{0}^{L} \operatorname{Pis}(x,t) x \mathrm{d}x = 0 \tag{27}$$

The final form of Eq. (13) is given by:

$$\operatorname{Pis}(x,t) = \frac{\alpha}{A_0} \eta(C(x,t) - \overline{C(t)})$$
(28)

Where

$$\overline{C(t)} = \frac{1}{L} \int_{0}^{L} C(x, t) dx$$
(29)

As a result, the gradient of the hygroscopic pressure is given by,

$$\overrightarrow{\text{grad}} \operatorname{Pis} = \frac{\partial}{\partial x} \left(\frac{\alpha}{A_0} \eta(C(x,t) - \overline{C(t)}) \right) = \frac{\alpha}{A_0} \eta \frac{\partial C}{\partial x}$$
(30)

It should be noted that $\overline{C(t)}$ only depends on the time (i.e., it is independent of the position), thus its derivative with respect to the position is obviously zero: $\partial \overline{C(t)}/\partial x = 0$.

So, the strain trace gradient (23) can be written from (24, 30) as equal to

$$\overrightarrow{\text{grad}} \operatorname{tr} \varepsilon = \frac{3A_0k - \alpha}{A_0k} \eta \frac{\partial C}{\partial x}$$
(31)

Similarly, the Laplacian of the strain trace will be given by,

$$\Delta \mathrm{tr}\varepsilon = \mathrm{div}(\overrightarrow{\mathrm{grad}}\,\mathrm{tr}\varepsilon) = \mathrm{div}\left(\frac{3A_0k - \alpha}{A_0k}\eta\frac{\partial C}{\partial x}\right) = \frac{3A_0k - \alpha}{A_0k}\eta\Delta C \quad (32)$$

Introducing the relations (31) and (32) into the Eq. (26), enables the model's fundamental constitutive equation to be obtained:

$$\frac{\partial C}{\partial t} = D\left[\left(1 + V_1 \eta^2 C + V_2 \eta^3 C^2\right) \frac{\partial^2 C}{\partial x^2} + \eta^2 (V_3 + V_4 C) \left(\frac{\partial C}{\partial x}\right)^2\right] \quad (33)$$

Where:

ſ

$$V_1 = -3A_0kC\mathrm{tr}\varepsilon + 2\alpha\mathrm{tr}\varepsilon + \alpha \tag{34}$$

$$V_2 = 9A_0k - 3\alpha \tag{35}$$

$$V_3 = \alpha - 3A_0 k t \epsilon + 2\alpha t \epsilon$$
 (36)

$$V_4 = 9\eta A_0 k + 3\eta \alpha - \frac{2\eta \alpha^2}{A_0 k} \tag{37}$$

One should notice that the relation (33) merges with the constitutive law of the model, neglecting the volume change, proposed by Derrien and Gilormini (2006) which is recovered by taking $V_1 = V_3 = \alpha$ and $V_2 = V_4 = 0$.

7. Boundary condition

The boundary condition is obtained by equating the chemical potential of water in humid air, $\hat{\mu}_w = \hat{\mu}_0 + RT \ln(p_w/p_0)$ (where $\hat{\mu}_0$ is the chemical potential of water in humid air at the reference pressure p_0 , the partial pressure of water being p_w) with the generalized chemical potential of the polymer. The boundary condition is obviously only satisfied at the specific position x_b denoting the boundary between the ambient fluid and the polymer.

Let us denote by $P(x_b, t)$ the pressure experienced at the boundary, and $C(x_b, t)$ the corresponding moisture content. The chemical potential (9) written in terms of the pressure reads,

$$\tilde{\mu}_{w}(C) = \mu_{0} + RT \ln \frac{C(x_{b}, t)}{C_{0}} + \frac{3\eta\omega_{w}}{\rho_{0}} \left(\frac{P(x_{b}, t)}{k}\right) (-P(x_{b}, t) + 3\eta k C(x_{b}, t) + k)$$
(38)

So the equality of these two chemical potentials leads to

$$\hat{\mu}_{0} + RT \ln \frac{p_{w}}{p_{0}} = \mu_{0} + RT \ln \frac{C(x_{b}, t)}{C_{0}} + \frac{3\eta\omega_{w}}{\rho_{0}} \left(\frac{P(x_{b}, t)}{k}\right) (-P(x_{b}, t) + 3\eta k C(x_{b}, t) + k)$$
(39)

Then,

$$\frac{C(x_{\rm b},t)}{p_{\rm w}} = \frac{C_0}{p_0} e^{\frac{\hat{\mu}_0 - \mu_0}{kT}} e^{\frac{A_0 \eta}{k} \left(P(x_{\rm b},t)^2 - 3\eta k C(x_{\rm b},t) P(x_{\rm b},t) - k P(x_{\rm b},t) \right)}$$
(40)

Henry's law is introduced to define sorption isotherm: the moisture at saturation is given by $C_s = Sp_w$ where *S* is the solubility of water given by $S = (C_0/p_0)e^{(\hat{\mu}_0 - \mu_0)/RT}$.

Therefore,

$$C(x_{\rm b},t) = Sp_{\rm w} e^{\frac{A_0\eta}{k} \left(P(x_{\rm b},t)^2 - 3\eta k C(x_{\rm b},t) P(x_{\rm b},t) - k P(x_{\rm b},t) \right)}$$
(41)

To simplify in order to solve Eq. (41), the following assumption is considered to be satisfied: $|(A_0\eta/k)(P(x_b,t)^2 - 3\eta kC(x_b,t)P(x_b,t) - kP(x_b,t))| \rightarrow 0$

As a result, expression (41) simplifies as follows,

$$C(x_{\rm b},t) = Sp_{\rm w} \left(1 + \frac{A_0 \eta}{k} \left(P(x_{\rm b},t)^2 - 3\eta k C(x_{\rm b},t) P(x_{\rm b},t) - k P(x_{\rm b},t) \right) \right)$$
(42)

Through (42), we then get,

$$C(x_{\rm b},t) = Sp_{\rm w} \frac{1 + \frac{A_0\eta}{k} \left(P(x_{\rm b},t)^2 - kP(x_{\rm b},t) \right)}{1 + 3\eta^2 A_0 P(x_{\rm b},t) Sp_{\rm w}}$$
(43)

The total pressure at the boundary position x_b is given by,

$$P(x_{b},t) = \operatorname{Pis} + \operatorname{Pex} = \frac{\alpha}{A_{0}} \eta [C(x_{b},t) - \overline{C(t)}] + \operatorname{Pex}$$
(44)

Then,

$$C(x_{\rm b},t) = \overline{C(t)} + \frac{P(x_{\rm b},t) - \mathrm{Pex}}{\frac{\alpha}{A_0}\eta}$$
(45)

Substituting for (45) in (43) yields:

$$\frac{P(x_{\rm b},t) - \mathrm{Pex}}{\frac{\alpha}{A_{\rm o}}\eta} + \overline{C(t)} = Sp_{\rm w} \frac{1 + \frac{A_{\rm o}\eta}{k} \left(P(x_{\rm b},t)^2 - kP(x_{\rm b},t)\right)}{1 + 3\eta^2 A_{\rm o} P(x_{\rm b},t) Sp_{\rm w}}$$
(46)

The relation (46) above leads to the following equation as a function of the variable $P(x_{b}, t)$:

$$a_1 P(x_b, t)^2 + a_2 P(x_b, t) + a_3 = 0$$
(47)

Where

$$a_1 = Sp_e \eta^2 \left(3A_0 - \frac{\alpha}{k} \right) \tag{48}$$

$$a_2 = 1 - \left(3\eta^2 A_0 \operatorname{Pex} - 3\alpha\eta^3 \overline{C(t)} - \alpha\eta^2\right) Sp_{\mathsf{w}}$$
(49)

$$a_3 = \frac{\alpha}{A_0} \eta(\overline{C(t)} - Sp_w) - \text{Pex}$$
(50)

The single solution of Eq. (47) having a physical meaning is

$$P(x_{\rm b},t) = \frac{-a_2 + \sqrt{a_2^2 - 4a_1a_3}}{2a_1}$$
(51)

In expression (51), by replacing $P(x_b, t)$ with the form (44), we obtain,

$$C(x_{\rm b},t) = \frac{1}{\frac{\alpha}{A_0}\eta} \left(\frac{-a_2 + \sqrt{a_2^2 - 4a_1a_3}}{2a_1} - \text{Pex} \right) + \overline{C(t)}$$
$$= \frac{1}{\frac{\alpha}{A_0}\eta} \left(\frac{-a_2 + a_2\sqrt{1 - 4\frac{a_1a_3}{a_2^2}}}{2a_1} - \text{Pex} \right) + \overline{C(t)}$$
(52)

In the case of the amount $(a_1a_3)/a_2^2 \rightarrow 0$ the following approximation is considered to be satisfied

$$\sqrt{1 - 4\frac{a_1 a_3}{a_2^2}} = 1 - 2\frac{a_1 a_3}{a_2^2}$$
(53)

As a consequence, expression (52) reduces to:

$$C(\mathbf{x}_{\mathrm{b}},t) = \overline{C(t)} - \frac{A_0}{\alpha\eta} \left(\frac{a_3}{a_2} + \mathrm{Pex} \right)$$
(54)

Finally the boundary condition, in the case of a symmetrical hygro-mechanical loading, can be written as:

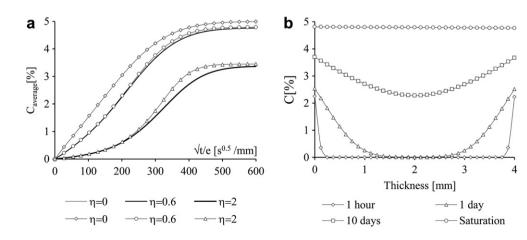


Fig. 1. a). Effect of CME on the average moisture content. The continuous lines (without marks) show the results predicted by Derrien and Gilormini (2006) model, whereas the continuous lines with marks correspond to the model developed in the present work. b). In-depth time-dependent moisture content profiles.

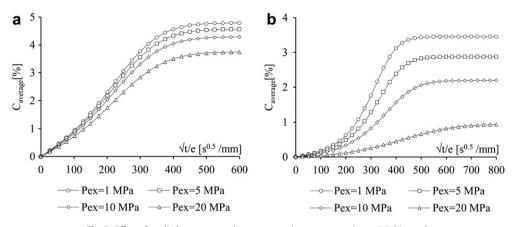


Fig. 2. Effect of applied pressure on the average moisture content a). $\eta = 0.6$, b). $\eta = 2$.

$$C(x_{\rm b},t) = Sp_{\rm w} \frac{1 + \left(\frac{A_0}{\alpha}\eta \operatorname{Pex} - \eta^2 \overline{C(t)}\right) (3A_0 \operatorname{Pex} - 3\alpha \eta \overline{C(t)} - \alpha)}{1 - (3A_0 \operatorname{Pex} - 3\alpha \eta \overline{C(t)} - \alpha) \eta^2 Sp_{\rm w}}$$
(55)

8. Numerical results

The numerical simulations correspond to a 4 mm thick plate made of epoxy resin whose Young modulus is 3.65 GPa and Poisson's ratio is 0.36. The polymer plate is subjected to moisture diffusion while experiencing a hydrostatic pressure load.

Fig. 1a shows the time-dependent evolution of the macroscopic (average) moisture content, as a function of the CME: $\eta = 0$; $\eta = 0.6$ or n = 2, at an imposed pressure of 1 MPa. Increasing CME reduces the maximum moisture absorption capacity of the polymer as indicated by the evolution of the average moisture content in the steady state. Besides, Fig. 1a displays a comparison between the results predicted according to the present work and the model previously proposed by Derrien and Gilormini (2006) throughout the diffusion process. According to Fig. 1a, the discrepancies between the models significantly increase with the coefficient of moisture expansion. In particular, in the steady state, the maximum absorption capacity deduced from the boundary conditions differs depending on the considered model. Eventually, both the predicted maximum moisture absorption capacity and the apparent moisture diffusion coefficient may vary whether the volume change is accounted for or neglected, instead.

The evolution of the moisture content profiles through the thickness of the plate during the transient stage of the diffusion

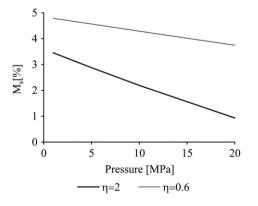


Fig. 3. Maximum steady state moisture absorption capacity, as a function of the applied external load.

process is shown on Fig. 1b for the case of a symmetrical pressure of 1 MPa and $\eta = 0.6$.

According to Fig. 1b, the moisture content at the boundary with humid air varies significantly throughout the transient regime. This means that the maximum moisture absorption capacity does not immediately reach its ultimate value. This effect comes from the dependence of the boundary condition on the mechanical strain experienced by the polymer, the magnitude of which changes considerably during the transient part of the diffusion process, due to the hygroscopic swelling. The results obtained are consistent with those published in reference (Youssef et al., 2009).

Fig. 2 shows the effect induced by the application of an external pressure, varying from 1 MPa to 20 MPa, on the time-dependent moisture content. The Coefficients of Moisture Expansion used in order to obtain the results depicted on Fig. 2a and b are respectively equal to 0.6 and 2. According to Fig. 2a, an increased applied pressure significantly reduces the diffusion of moisture at the boundary. Fig. 2b shows that this effect increases with the CME.

Fig. 3 shows that the maximum moisture absorption capacity reached in the steady state depends almost linearly on the applied pressure. The results are consistent with Cai and Weistman (1994).

9. Conclusion

The aim of the present work is to establish a model enabling the moisture diffusion within polymers under external load (symmetric moisture and pressure conditions) to be predicted. The moisture sorption results from coupled hygro-mechanical phenomena. The model developed here is the first enriched one, following many previous studies based on empirical approaches such as a the free-volume theory (Neumann and Marom, 1986; Youssef et al., 2009, 2011). In contrast with previous work based on the thermody-namical approach, such as (Derrien and Gilormini, 2009), the present model accounts for the dependence of the polymer density on the mechanical states, which was previously neglected. The simulations reproduce the expected evolutions, as a function of the applied external pressure, of the maximum moisture absorption capacity. These results are compatible with results from published experimental investigations (Wan et al., 2005).

In future works, realistic evolutions of the hygro-mechanical properties (i.e. the elastic moduli and coefficient of moisture expansion), occurring during the diffusion process, will be taken into account. Besides, sorption—desorption case showing a hysteresis effect is an interesting feature occurring in practice in epoxy resin and its composites (Henson and Weitsman, 1986). This field of research is under investigation by the authors: ongoing experimental studies should provide results to be compared with the numerical predictions. Finally, the model presented in this communication will be extended to the case of polymer matrix composites.

References

- Aboudi, J., Williams, T.O., 2000. A coupled micro-macromechanical analysis of hygrothermoelastic composites. International Journal of Solids and Structures 37, 4149–4179.
- Cai, L.-W., Weistman, Y., 1994. Non-fickian moisture diffusion in polymeric composite. Journal of Composite Materials 28, 130–154.
- Derrien, K., Gilormini, P., 2006. Interaction between stress and diffusion in polymers. Defect and Diffusion Forum 258–260, 447–452.
- Derrien, K., Gilormini, P., 2009. The effect of moisture-induced swelling on the absorption capacity of transversely isotropic elastic polymer-matrix composites. International Journal of Solids and Structures 46, 1547–1553.
- Fréour, S., Jacquemin, F., Guillén, R., 2005. On an analytical self-consistent model for internal stress prediction in fiber-reinforced composites submitted to hygroelastic load. Journal of Reinforced Plastics and Composites 24, 1365–1377.
- Gilat, O., Broutman, L.J., 1978. Effect of external stress on moisture diffusion and degradation in a graphite reinforced epoxy laminate. ASTM STP 658, 61–83.
- Henson, M.C., Weitsman, Y., 1986. Stress effects on moisture transport in an epoxy resin and its composites. In: Kawaba, K., et al. (Eds.), Composites' 86: Recent Advances in Japan and the United States, pp. 775–783.
- Jacquemin, F., Vautrin, A., 2002. A closed-form solution for the internal stresses in thick composite cylinders induced by cyclical environmental conditions. Composite Structures 58, 1–9.
- Jedidi, J., Jacquemin, F., Vautrin, A., 2005. Design of accelerated hygrothermal cycles on polymer matrix composites in the case of a supersonic aircraft. Composite Structures 68, 429–437.

- Larché, F.C., Cahn, J.W., 1982. The effect of self-stress on diffusion in solid. Acta-Metallurgica 30, 1835–1845.
- Marom, G., Broutman, L.J., 1981. Moisture penetration into composites under external stress. Polymer Composites 2, 132–136.
- Neumann, S., Marom, G., 1986. Free-volume dependent moisture diffusion under stress in composite materials. Journal of Materials Science 21, 26–30.
- Neumann, S., Marom, G., 1987. Prediction of moisture diffusion parameters in composite materials under stress. Journal of Composite Materials 21, 68–80.
- Patel, B.P., Ganapathi, M., Makhecha, D.P., 2002. Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory. Composite Structures 56, 25–34.
- Perreux, D., Suri, C., 1997. A study of the coupling between the phenomena of water absorption and damage in glass/epoxy composite pipes. Composites Science and Technology 57, 1403–1413.
- Wan, Y.Z., Wang, Y.L., Huang, Y., He, B.M., Han, K.Y., 2005. Hygrothermal aging behaviour of VARTMed three-dimensional braided carbon-epoxy composites under external stresses. Composites Part A 36, 1102–1109.
- Weitsman, Y.J., Elahi, M., 2000. Effects of fluids on the deformation, strength and durability of polymeric composites – an overview. Mechanics of Time-Dependent Materials 4, 107–126.
- Weitsman, Y.J., 1990. Moisture in composites: sorption and damage. In: Reifsnider, K.L. (Ed.), Fatigue of Composite Materials. Elsevier Science Publisher, pp. 385–429.
- Youssef, G., Fréour, S., Jacquemin, F., 2009. Stress-dependent moisture diffusion in composite materials. Journal of Composite Materials 43, 1621–1637.
- Youssef, G., Jacquemin, F., Fréour, S., 2011. Radial Pressure and thickness effects on the moisture diffusion in hollow composite cylinders. Polymer Composites 32 (6), 960–966.