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a b s t r a c t

This paper presents an innovative homogenization sampling technique applied to multiscale modelling of

composite materials. The goal is to build efficiently statistical variability of mechanical properties at mes-

oscopic scale from the heterogeneous media analysis at microscopic scale. It is applied to the transverse

elastic properties of a unidirectional Long Fibres Reinforced Composite (LFRC). A large representative part

of the ply – the cell – is modelled from amicrography and studied at microscopic scale with the Finite Ele-

ment Analysis (FEA) under 2D plane strain hypothesis. The study consists in estimating the effective elastic

properties of subcells, subparts of the previous cell, thanks to a specifically developed numerical procedure.

A unique calculation is computed on the entire ply reduced to three basic loading cases is applied to the

cell. Subsamples taken into the simulation cell are homogenized at post-processing level of strain and

stress fields. A standardmechanics approachwas considered. Various subsampling schemes are performed

with various size and spatial distribution to generate variability functions of effective elastic properties at

mesoscopic scale. A statistical inference is highlighted: the variability parameters vary with the way of

sampling. Dispersion functions are finally obtained and discussed.

1. Introduction

1.1. Working context

The objective of this work is to develop an efficient way to

obtain and characterise the variability of the mechanical properties

at intermidiate scale between microscopic and mesoscopic scale

taking into account the variability of the mechanical properties

at od constituents; the microscopic to mesoscopic variability trans-

port, see Fig. 1(c), is particularly adressed in this paper. As explored

in [5], the approach can be transposed from the mesoscale to the

macroscale. Then, knowing the variability at different scale

through distributions functions, the authors are furtherly inter-

ested by performing reliable analysis. The present paper focuses

on investigations concerning linear elastic properties variability

with the view to work laterly on stresses, damage, failure singular-

ities and non linear behaviour. The starting point is a morphologi-

cal analysis realized on a micrography of a unidirectional long fibre

ply microstructure extracted from a stratified LFRC. A FE mesh of

the microstructure representative of a real material configuration

is then realised. A FEA is applied to compute strongly heteroge-

neous strain and stress fields.

Many authors developed homogenization techniques to get the

effective properties of heterogeneous materials. Most of the time,

the Representative Volume Element (RVE) concept is considered

[15,10,11]: studying a large enough part of the material gives a glo-

bal estimation of a given effective property. In [1], homogenization

is performed under RVE size and depicts variability of behaviour.

To get suitable elastic properties, two criteria have to be verified:

the inter scales energy equivalence depicted by the so-called Hill

lemma [7,17] and the convergence of effective properties depend-

ing on the size of homogenized volume. The energy criterion is ver-

ified for smaller volumes than these needed for properties

convergence [19]. Other authors [18,4] worked on cells smaller

that the RVE – that are called here subcells – and developed statis-

tical approaches to obtain global effective properties from the

effective properties of a large population of subcells.

The RVE or the statistical subcells are usually exploited with

FEM models [8,3,16]. Various homogenization techniques are

numerically performed to obtain bounds or statistical moments of

effective properties, at least average values. Kinematic Uniform

Boundary Conditions (KUBC), Stress Uniform Boundary Conditions

(SUBC) orMixed Boundary Conditions (MBC) are the easiest to com-

pute. Periodic Boundary Conditions give a better accuracy on the

effective properties and can advantageously be applied regardless

on the geometry of the medium but are not trivial to implement

in a FEA tool. All boundary conditions applied in works cited before

lead to energetically accurate estimation of effective properties; in
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case of non periodic loading conditions, some precautions have to

be taken to ensure the estimation validity.

In order to get the variability of elastic properties at mesoscopic

scale for a scale length inferior to the RVE size, a statistical

approach on subcells is realized. One FEM simulation is usually

performed on each subcell [4]. It leads to unreasonable computing

times as huge number of subcells is required to assess the first sta-

tistical moments. To reduce the amount of FEA calculations, a sam-

pling procedure performed at post-processing level and including

standard homogenization on non-periodic geometry is developed

in this work. It is inspired from morphological analysis of random

heterogeneous media [12,13] and has been performed in [1] with

only regular spatial repartition. Distribution functions of effective

elastic properties are obtained and discussed depending on the

subsampling scheme for a statistical inference issue, historically

explored in geostatistics [14].

1.2. Investigation method

The starting point is a micrography of a LFRC transverse section

ply. Under invariance hypothethis in fibre direction, the study can

be restricted to a 2D plane strain analysis. On this micrography, a

random organisation of carbon fibres in epoxy matrix is observed.

This micrography is considered representative of the material

microstructure. It is transformed into a FE mesh which defines

the so-called cell.

The final point is to obtain the statistical distributions describ-

ing the dispersion of the effective elastic properties of smaller

zones taken in the ply, the subcells, selected through a subsam-

pling procedure. Their size correspond to a predefined discretiza-

tion of the ply and consequently the cell, for example a

mesoscopic FE mesh as seen Fig. 1(c).

Themicrography is digitized and a threshold is peformed on grey

levels to generate a FEMmesh of the microstructure. Only three ba-

sic loading cases are performedunder 2Dplane strain hypothesis for

the whole work, Section 2. The subsampling procedure is achieved

at post processor level on FE strain and stress computed before. A

numerical nonperiodic homogenization is performed on subcells

following random or organized sampling schemes, Section 3.

Subsampling presents many advantages compared to studies

involving virtual material and Monte Carlo procedure. The poten-

tial number of subcells to be characterised is wide and directly

linked to the resolution of the starting micrography. Moreover sub-

cells don’t need to be virtually generated as they are various parts

of the meshed simulation cell: they are morphologically represen-

tative of the microstructure of the ply.

2. Hill-Mandell numerical homogenization on nonperiodic

geometry

2.1. Standard mechanics approach

The following formalism describes the standard mechanics to

obtain effective properties of an heterogeneous medium. It is

inspired from [10,9].

Considering a subcell X taken in the heterogeneous medium, an

average operator h�iX or �� is applied to any spatial function defined

on the domain, most particularly to stress and strain fields in

mechanical applications. Using the Voigt indices contraction con-

vention, stress r and strain � are written as column matrices and

behaviour operators C or S as square matrices. The goal is to esti-

mate the effective stiffness Ceff defined Eq. (1).

�rX ¼ CX
eff
��X ð1Þ

The strain and stress fields are decomposed in their average part

and a second part called here the perturbation field; for example

strain field is decomposed Eq. (2).

� ¼ ��X þ ~�X ð2Þ

A microstructure localization tensor MX is introduced Eq. (3) to

link the perturbation and average strain fields, adapted from liter-

ature [9].

~�X ¼ MX��X ð3Þ

The localization tensor is injected in the local behaviour equa-

tion. The average of behaviour relation gives an explicit expression

of the effective stiffness explained Eq. (4).

CX
eff ¼ hC þ CMXiX ð4Þ

It is highlighted that the localization tensor can present minor

symmetries Mijkl ¼ Mjikl ¼ Mijlk in agreement with Voigt conven-

tion, but not generally major symmetry Mijkl ¼ Mklij. Consequently,

the symmetry of behaviour tensor CX
eff can be affected as evoked in

[9], in conflict with the definition of thermodynamic potentials in

the elastic behaviour.

The same method being applied to stress fields, defining the

concentration operator LX, the effective compliance SXeff is

explained Eq. (5).

SXeff ¼ hSþ SLXiX ð5Þ

The effective properties tensor could be directly obtained from

average strain and stress fields, inverting the local behaviour rela-

tion. But the calculation of localization and concentration tensors

allows to compute the effective properties through various ways

and to verify the relevance of numerical results.

2.2. Energy balance: Hill lemma

The advantage of the general approach is that it can be applied

regardless of any hypothesis on fields’ properties or scale

decoupling, the effective operators depending on the average

values of fields. Both of them should conform to the scale energy

balance characterized by the Hill lemma explained in Eq. (6). Using

Voigt convention, the elastic strain energy volume density is half

the scalar product of strain and stress columns. The reference to

cell X is not used laterly to simplify mathematical notations.

hr � �i ¼ �r � �� ð6Þ

‘�’ defining the scalar product.

Fig. 1. (a) Laminate composite, (b) detail of a ply meshing at mesoscopic scale with homogeneous elements and (c) detail of heterogeneous microstructure with fibres and

matrix.



In our case, it is easily proved that the averages of perturbation

fields are equal to zero. The average energy on the cell is then

developed, simplified and expressed Eq. (7).

hr � �i ¼ �r � ��þ h~r � ~�i ð7Þ

In standard homogenization techniques, the average of pertur-

bation elastic strain energy is null, given the uniform or periodic

boundary conditions or fields analytical conformation. In our case,

there are no guaranties that it is true. The subsampling conditions

are investigated to verify the energy balance. An energy error indi-

cator is defined Eq. (8). It is simply the ratio between perturbations

product and averages product. The energy balance is considered

verified when the error energy is small enougth.

eR ¼
h~r � ~�i
�r � ��

ð8Þ

2.3. Numerical procedure

Basic triangle elements with linear interpolation are used for

the FEA. They are not very accurate for strain and stress field calcu-

lation but are consequently the easiest to develop our post-pro-

cessing tools. A mesh refinement naturally increases the quality

of FE analysis without penalizing the numerical procedure. The

FE simulations are realized under ~e1; ~e2ð Þ plane strain hypothesis

which suggest geometry invariance along the fibres direction.

Strain and stress tensors are 3 � 1 columns and stiffness, compli-

ance, localization and concentration tensors 3 � 3 matrices. For

example, the strain is given Eq. (9).

� ¼

�11
�22
�12
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¼

�1
�2
�6
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ð9Þ

For a given subcell X , the mesh is tested to identify the ele-

ments inside or intersecting the domain, as shown Fig. 2. Consider-

ing each selected element EXi , its intersected surface SXi ðE
X
i Þ is

calculated through basic geometric operations.

The average estimation on subcell X for any spatial functions is

expressed with a discrete weighted sum. For instance the average

strain is given Eq. (10) and contains only surfaces and integration

point values.

��x ¼
1

P

EX
i
SXi ðE

X
i Þ

X

EX
i

SXi ðE
X
i Þ�ðE

X
i Þ ð10Þ

Perturbation fields are then computed.

The effective stiffness tensor is assessed with a discrete sum on

cell X, as expressed in Eq. (11).

CX
eff ¼

1

jXj

X

X

CðEXi Þ þ CðEXi ÞM
X
i ð11Þ

With the samemethod applied to stress fields and concentration

tensors we obtain the effective compliance. In the two cases, we

need to know the local tensors to explain the effective properties.

Three unit loading cases subscripted I, II and III are applied to

the heterogeneous cell by kinematic conditions on the boundaries:

(i) traction along ~e1 direction with global strain EI , (ii) traction

along ~e2 with global strain EII and (iii) a plane shearing with global

strain EIII . These three cases constitute a complete basis of loadings

in the three dimensions loading linear space.

By convenience, a matrix representation of the local fields for

the three basic loading cases is adopted for further identification

processes. Local strain total matrix is given Eq. (12).

�½tot� ¼ �I �II �III
� �

¼

�I1 �II1 �III1
�I2 �II2 �III2
�I6 �II6 �III6

2

6

4

3

7

5
ð12Þ

Perturbation fields are concatenated this way and the localiza-

tion tensor is identified as explained in Eq. (13).

MX
i ¼ ~�iX½tot���

�1
½tot� ð13Þ

In order to validate the numerical performance of this proce-

dure, it is applied to a square periodic microstructure of fibres in

matrix submitted to periodic loading conditions. This configuration

is commonly used in multiscale modelling of composite materials.

In our case, the simulation cell contains four fibres as seen on Fig. 3

to sample various locations of the homogenization subcell. The mi-

cro/meso energy balance is systematically verified with periodic

fields, the average of perturbations product being equal to zero

[9]. This is one reason why most of homogenization approach

use periodic boundary conditions on RVEs.

The influence of mesh refinement parametrized by the number

of nodes on edges was investigated: three simulation cells were

build with 20, 50 and 100 nodes on edges as seen Fig. 3. The

homogenization subcells are squares, a quarter of the total cell

Fig. 2. Detail of heterogeneous meshing of fibres (green) and matrix (red) and

identification of intersecting elements with one single boundary (blue) or a corner

(purple). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Fig. 3. Mesh refinement of the periodic cell with four fibres, 20, 50 and 100 nodes

on boundaries and various homogenization subcells location (white squares).



square, each containing one entire or splitted fibre and random

locations were chosen.

As expected, for a given refinement, the effective stiffness is

independent of subcell location. Behaviour tensors are symmetric,

as shown in Table 1. There is still a small variability depending on

mesh refinement, inferior to 0.3% for Cii and 0.7% for Cij. The meth-

od was performed with localization and concentration tensors and

gave equal elastic properties.

The energy balance indicator is inferior to 1�3 for 20 nodes on

edges, 1�4 for 50 nodes and 5�5 for 100 nodes. It remains satisfac-

tory regardless to mesh refinement characteristics. The use of

linear interpolation elements is not a limiting point. The numerical

procedure is validated and can be confidently applied to sample

homogenization of random heterogeneous media.

3. Application to a LFRC with carbon fibres and epoxy matrix

3.1. Microscopic scale modelling of the heterogeneous ply

The FE modelling is based on a transverse micrography of a ply,

seen on Fig. 4(a). The contrast of the heterogeneities is balanced all

over the image to perform a threshold on grey levels. Fibre sec-

tions, whose shape are actually quite irregular probably due to fab-

rication process, are fitted by ellipses and their geometric

characteristics – centre, minor and major axes and orientation.

These data are computed in a specifically developed meshing pro-

cedure to produce the FE mesh, as shown on Fig. 4(c).

A large part of a ply’s heterogeneous microstructure, 0.073

� 0.171 mm2 equals 400 � 900 pp, is modelled. It is surrounded

with a band of Homogeneous Equivalent Medium (HEM) to reduce

edge effects on nearby fibres, as shown on Fig. 5 as in the Embed-

ded Cell Approach developed in [2] and applied in [19]. The aver-

age behaviour of the heterogeneous microstructure is estimated

though an iterative procedure based on the balance of average

stresses in the heterogeneous and homogeneous media.

Kinematic loading conditions are applied on the boundaries to

simulate the three basic loading cases described in Section 3.1, un-

der 2D plane strain hypothesis. Material properties correspond to a

carbon fibres and epoxy matrix composite transversely to the

fibers:

� fibres: Ef ¼ 390 GPa; mf ¼ 0:35,

� matrix: Em ¼ 4:5 GPa; mm ¼ 0:4,

� HEM: EHEM ¼ 15 GPa; mHEM ¼ 0:35,

Table 1

Influence of meshing refinement on the estimation of effective properties.

Nelts C11 C22 C12 C21 C66 [MPa]

20 12777 12778 7893 7893 2153

50 12839 12834 7871 7869 2174

100 12789 12789 7788 7788 2158

Fig. 4. Numerical model from a micrography: (a) micrography of a ply transverse section in a carbon fibre/ epoxy composite, (b) object analysis: elliptical sections of fibres,

(c) mesh of the ply microstructure: fibres and matrix.

Fig. 5. Simulation cell: microstructure of fibres and matrix surrounded by a band of

equivalent homogeneous medium and length scale in pixels.



3.2. Influence of subsampling size on energy accuracy

The first sampled set of subcells allows to investigate the influ-

ence of homogenization subcells size on the energy balance. As ex-

plained in [6], there is an intrinsic homogenization size under

which the general theory presented does not verify Hill’s energy

balance. This minimal length concept was investigated on periodic

homogenization and is assumed to be transposable to our work on

non periodic homogenization. Two locations are chosen to gener-

ate two sets of variable size concentric square subcells, as depicted

on Fig. 6.

The strong variations of subcells effective properties versus the

homogenization size are shown on Fig. 7. Stiffness increases from

small to medium subcells: smaller ones might be centred on a ma-

trix zone. It decreases from medium to high sizes: the biggest cells

contain a higher ratio of matrix as they approach the heteroge-

neous medium boundaries. As expected, the energy balance is bet-

ter on bigger cells, as shown on Fig. 8.

The negative values of the average of perturbations product are

pointed out. Indeed it is not a regular elastic strain energy which

would be positive. It can be seen as a energy offset between scales,

which can be either positive or negative – or zero. It is caused by

the existence of elements in which perturbation strain and stress

are of opposite signs.

For the following analyses the energy unbalance is supposed to

be acceptable for a subcell size larger than 100 p. With a given size

we can investigate the variability of effective properties and the

influence of sampling parameters on the statistical moments.

3.3. Statistical distributions of effective properties

Various spatial subsampling schames are performed to investi-

gate their effect on statistical characteristics of mechanical proper-

ties variability. It is indeed necessary to control the statistical

inference as the characterized distribution functions will be used

in mesoscopic simulations.

3.3.1. Regular pattern subsampling

Two realizations of subcells sampling with two different sizes

are presented: 200 p equals 0.036 mm – half the height of the

ply – and 300 p equals 0.056 mm. A regular spatial scheme is cho-

sen for both sampling sizes: the cells are repartitioned every ten

pixels in both ~e1 and ~e2 directions.

These sizes are larger than the limit size validated in the previ-

ous section to verify the inter scale energy equivalence. It is con-

firmed by the relative energy error indicator inferior to 1.5%. The

dispersion are presented in function of the fibre volume fraction

on Fig. 9(a) and (b). It shows an important variability of stiffness

for a given volume fraction, around 10% which is far higher than

th 1% value obtained in [4] with non-cutte fibres on edges. This re-

sult confirms those obtained in [1].

A linear regression using least square method gives approxima-

tions of C11 and C22 in function of fibre volumic fraction V f for

200 pp and 300 pp subcells Eqs. (14), (15).

200 pp : C11 ¼ 39577V f þ 4513; C22 ¼ 62354V f � 5880 ð14Þ

300 pp : C11 ¼ 36510V f þ 6141; C22 ¼ 61144V f � 5183 ð15Þ

Global effective properties can be evaluated applying the non-

periodic geometry homogenization procedure to the largest sub-

cells as possible taken in the ply, around 400 p wide. They are

listed Table 2. They fit correctly with Eqs. (14), (15) which can be

considered as apropriate estimations of average stiffnesses in re-

gard to the volume fraction.

In order to model the variability in FE meshes at meso scale, we

need to statistically characterise the dispersions. The identification

of normal distribution parameters (average l and standard devia-

tion r) for C11 stiffness resulted in:

� for 200 pp subsample: l ¼ 24986 and r ¼ 1261,

� for 300 pp subsample: l ¼ 25099 and r ¼ 742.

It clearly shows, as expected, that dispersions on volume fractions

and equivalent properties are smaller with the larger subcells. For

Fig. 6. Simulation cell: locations of two sets of variable size homogenization

sampling cells.
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Fig. 7. Variations of effective properties on the two sets versus cell size.



example, for a given volume fraction, dispersion of effective proper-

ties is wider for smaller subcells. It is also clear that microstructure

is unbalanced and the material is stiffer in direction ~e2.

3.3.2. Random subsampling

Several independent random subsamplings have been com-

puted varying the size of the sample Nsbsamp: 25 (three times), 50

(two times), 300 and 500; they constitute a whole global sample

of 975 subcells. A uniform distribution was used to generate the

positions ðx; yÞ of subcells center. Normal dispersion functions for

C11 stiffness have been identified, the average and standard devia-

tions are liste Table 3. The estimation of average l is accurate with

low size subsampling but not for standard deviation r.
To refine these results, the intern combinations in the 500 subs-

amples population has been explored in details. For a N elements

population, subpopulations of p elements (p 2 ½1;N�) can be ex-

tracted with a couting of An
p possibilities. It is possible to identify

p subpopulation with highest or lowest stiffness, which defines

bounds for average value l. For each p value, 15 combinations have

been randomed, their statistical parameters are given Fig. 10.

Low size subpopulation gives rapidly an accurate estimation of

average value l but standard deviation needs high size subsam-

pling. One can notice that standard deviation for highest or low-

est stiffness subpopulation are not bounds for random

subsampling.

3.3.3. Influence of sampling scheme: statistical inference

It appears from the two former paragraphs that the subsam-

pling scheme influences the statistical characterization of elastic

properties. To highlight this effet, normal variability functions are

identified on various subsamples:

� two times 10 subcells with 0% overlapping,

� 24 subcells with 50% overlapping,

� 396 subcells with 95% overlapping.

The distribution functions of stiffness C11 for various overlapping on

regular spatial schemes are presented on Fig. 11 for the

200 � 200 pp subcells. This effect is caused by the geostatistical

representativeness of subcells in various sampled identification

data sets. For example non overlapping subcells contain more ma-

trix as they touch boundaries than cells in the center of the micro-

structure. This effect underlines the issue of samples

representativeness and its implications on the parameters values

of the dispersion functions as it was also underlined in the previous

section for random subsampling. Applications of sampling have

been studied for geomorphological properties of heterogeneous

media.
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Fig. 8. Energy balance indicator on the two sets versus cell size, dotted lines at ±1%
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average stiffnesses for C11 and C22: (a) 200 � 200 pp subcells and (b) 300 � 300 pp
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The problem here for the non-overlapping sampling scheme is

the small numbers of subcells that can be extracted from the en-

tire population is not morphologically representative of the entire

ply and as a consequence the effective properties aren’t either.

For overlapping subcells, it appears that stiffness increases with

the overlapping rate. With a 90% rate, the proportion of subcells

with lower fibre volume fraction located on the edges of the

ply is higher in the entire population, it can explain the lower

values.

In comparison with Babuska’s work [1], high variability was ob-

tained as well for subcells. But it has been highlighted that spatial

regular pattern is limited as it is not representative enough of the

entire microstructure and introduces a high statistical bias in dis-

tribution function identification.

It is shown in previous section that a random spatial scheme

avoids a bad identification. Statistical average l is well identified

with low size subsamples, around 150, and standard deviation r
needs high size subsamples, around 400. It is supposed that over-

representation of subcells on border are responsible for bad iden-

tification on regular spatial schemes. The population of 500

subsamples has been split in two halfs with close to border and

central subcells. The dispersion for C11 are presented Fig. 12. Ex-

cept for very low fibre volume fraction subcells, dispersion seems

equal. Though, it shows that the use of the statistical distribution

functions needs to be completed with a morphological analysis,

for exemple at first order the volume fraction.

Table 2

C11 and C22 stiffnesses versus V f for very large subcells.

V f C11 C22 [MPa]

0.4827 23448 24417

0.4980 23931 25184

0.5067 24430 25559

0.5168 24811 26254

Table 3

Identification of normal distribution statistical moments.

Nss�ech 25 50 300 500 975

l 25296 25121 25394 25132 25202 25132 25234 25223

r 975 944 1234 1206 998 1115 1045 1072
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Fig. 10. Identification of statistical moments for subsamples of the 500 population;

parameters for the least or most stiff subsamples traced in black lines, dotted lines

stands for ±5% difference with average values.
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4. Conclusion and outlook

An original subsampling procedure has been developed at post-

processing level for numerical homogenization on non-periodic

geometry. It is applied to obtain the dispersion of LFRC effective

elastic properties at mesoscopic scale. The microstructure of a

transverse section ply of a LFRC is modeled and meshed to achieve

FEA simulations. Various samples of subcells of the heterogeneous

medium are homogenized to obtain effective properties.

A limit size to achieve the microscopic – mesoscopic energy bal-

ance with non periodic geometry an natural boundary conditions is

highlighted. For a valid subscells size, the dispersion functions of

stiffness at mesoscopic scale are identified. They depict a strong

variability for given fibre volume fractions. It is assumed to be a

consequence of the numerous random configurations of fibre cuts

on subcells’ boundaries.

This study also reveals the statistical inference induced by the

chosen sampling spatial scheme on the effective properties vari-

ability functions confronting various results obtained with regular

and random spatial scheme subsamplings. Complementary inves-

tigations could be carried out on this subject to improve reliability

and representativeness of samplings mainly with morphological

analysis of microsructure.

In further works, the statistical dispersions obtained here will

be used to randomly assign effective properties to homogeneous

subcells constituting a ply at mesoscale. This work will set for a

structural analysis at mesoscale taking into account variability in-

duced by microscale and will be presented in future publications.

Another research orientation consits in modelling damage and fail-

ures and investigate its dependance on the microstructure

properties.
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