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Reaction fronts evolving in a porous medium exhibit a rich dynamical behaviour. In presence of
an adverse flow, experiments show that the front slows down and eventually gets pinned, displaying a
particular sawtooth shape. Extensive numerical simulations of the hydrodynamic equations confirm
the experimental observations. Here we propose a stylized model, predicting two possible outcomes
of the experiments for large adverse flow: either the front develops a sawtooth shape, or it acquires a
complicated structure with islands and overhangs. A simple criterion allows to distinguish between
the two scenarios and its validity is reproduced by direct hydrodynamical simulations. Our model
gives a better understanding of the transition and is relevant in a variety of domains, when the
pinning regime is strong and only relies on a small number of sites.

PACS numbers: 47.54.-r,82.33.Ln

In the systems separated in distinct phases, the dy-
namics is controlled by the behaviour of the propagat-
ing fronts. Those fronts pervade a broad variety of do-
mains in physics, ranging from chemotaxis [1] and plasma
physics [2] to flames front [3] or epidemics, therefore trig-
gering much activity in their modelling (for a recent re-
view, see [4]). One of the cornerstones in this field is
the celebrated Fisher-KPP theory, describing the front
propagation in reaction-diffusion systems [5]. However,
this approach was limited to systems with no advection,
i.e. not undergoing any fluid flow, despite its physical
importance. Coherent fluid-like motion strongly impacts
the dynamics of the fronts [6] and remains a challeng-
ing problem, whether because of the appearance of tur-
bulence [7], or because of the influence of a disordered
media [8, 9]. One natural disordered environment for
propagation fronts is a porous medium. Some examples
were investigated in the petrol industry and aeronautics
with attempts to address the evolution of a flame front
in a gas filter [10, 11]. Recently, experiments on self-
sustained chemical reactions have allowed a fine and con-
trolled examination of the propagation fronts in porous
medium, revealing some striking features by direct ob-
servation [12, 13].

The experimental setup employs an autocatalytic re-
action invading a cell filled with a solution of reactants.
To reproduce porosity, the cell also contains a mixture
of glass spheres of different sizes. The reaction starts at
the bottom of the cell and, in the absence of advection
flow, develops into an almost flat front propagating up-
wards with constant chemical speed |Vχ| =

√
Dmα/2 and

width `χ = Dm/|Vχ|, Dm being the molecular diffusion
constant and α the reaction rate. In presence of an ad-
verse flow injected from the top at speed U , the porosity
generates a fixed random velocity map of the fluid with
short range correlations of characteristic length `d. A
rich dynamical phase diagram is observed as a function
of the flow velocity U , the control parameter of the exper-
iment (see Fig.1). In particular, the self-sustained fronts
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FIG. 1. Average speed of the front Vf as a function of the
injection speed U (the convention chosen is U > 0 for an flow
from top to bottom of the cell). Depending on the sign of Vf ,
different regimes Up, S and D are defined. For U = USD,
we observe a transition between a static front (Vf = 0) and
a downstream front (Vf > 0). Bottom part: Hydrodynami-
cal simulations of the front, for U ∼ USD and for different
permeability distributions. Two scenarios are observed: a
regular saw-tooth shape (right) or a complicated shape with
overhangs (left).

can travel downstream along the flow (D), remain static
over a range of flow rate values (S) or move upstream
(Up). In all these phases, the heterogeneities make the
front rough and the dynamics proceed by random jumps
called avalanches displaying a free scale statistics.

Here we focus on the transition between the static and
the downstream regimes, occuring at the threshold USD

(see Fig.1). Hydrodynamical simulations show two dif-
ferent scenarios: either the invading chemical reaction is
completely washed away for U > USD, or some stagnant
chemicals remain trapped in the porous media for any
U . In the first case, approaching USD from below, the
front is largely deformed into a sawteeth structure (see
Fig.1 bottom right), while in the second case, the inter-
face adopts a very rough and complicated structure with
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overhangs (see Fig.1 bottom left). Experiments typically
correspond to the first scenario but the second one has
also been observed in very contaminated cells [12].

In this paper, we describe the front propagation with
a stylized model controlled by two parameters that can
be easily measured in experiments. This model gives a
simple criterion to discriminate between both scenarios,
depending only on the behaviour of the disorder distribu-
tion close to 0. The critical threshold USD and the shape
of the front can be characterised. Comparison with hy-
drodynamical ab initio simulations using the Darcy equa-
tion shows a perfect agreement with our results. Al-
though our approach addresses questions raised by the
experiments of [12], the results of this stylized model are
much more general and relevant to all systems where the
transition between a static and a moving regime is con-
trolled by a small number of pinning sites [14–17].

From first principle hydrodynamics to a simple statis-

tical model. The flow field ~U(~r) can be computed via the
Darcy-Brinkman equation:

~∇ · ~U(~r) = 0 (1)

~U(~r) = −K(~r)

η
~∇P +K(~r)∆~U (2)

where P (~r) is the pressure field, η the fluid viscosity and
K(~r) the local permeability. Due to the incompressibil-
ity, the mean fluid velocity is fixed to the injection rate U .
Once the hydrodynamic problem is solved, the concentra-
tion of the chemicals C(~r, t) obeys an advection-diffusion
equation (see [18]):

∂C

∂t
+ ~U.~∇C = Dm∆C + αC2(1− C) (3)

The effect of the disorder is incorporated in the perme-
ability K(~r), usually modelled as a random field, corre-
lated over a distance `d. Here we study the front geom-
etry for different permeability distributions: the log nor-
mal distribution, often employed to model permeability
[19], and the distributions belonging to the Weibull fam-
ily of parameter δ. On Fig.1 are displayed typical fronts
for both log-normal distributed (bottom left) and Weibull
distributed (bottom right, with δ = 0.8) permeability
fields. Those are generated using a standard method de-
tailed in the Appendix A. Both U(~r) and C(~r, t) were
solved using a Lattice Boltzmann scheme (see [20, 21]).
We ran the simulations on a square grid of size L = 512,
up to N = 2000 realisations.

In the experimental conditions `d � `χ, the front lays
in the so-called thin front Eikonal limit [22, 23]. In this
limit, at each point of the front, the normal component

of the interface velocity satisfies ~Vf (~r) · ~n = Vχ + ~U(~r) ·
~n + Dmκ, where ~n is the unit normal vector and κ the

curvature of the front. For U ∼ USD, ~U(~r) is mainly

directed along the y-axis ~U(~r) ∼ (0, U(~r)). It is natural
to assume that U(~r) is constant on patches of area `2d
and decorrelated between patches. The velocity of each
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FIG. 2. Sketch of the stylized model: in the thin Eikonal limit
`d � `χ, the system can be described as a propagating front.
Close to USD, the density of stagnant regions becomes small
and the interface adopts a sawtooth structure.

patch is an independent random variable of average U ,
distributed as:

PU (U) =
1

U
φ(U/U) (4)

where the scaling function φ(v) is independent of U .
When U ≤ USD the front is pinned by the very few stag-
nant sites where U(~r) < |Vχ|. Hence the distance, `∆
between them is much larger than `d. In the neighbour-
hood of a pinning site, the front has a sawtooth shape
of angle θ and the front displays sawtooth-like structure
(see Fig.2). θ can be computed observing that, in that
regime, κ ' 0, Vf (~r) = 0 and U(~r) ' U , thus the eikonal
equation becomes [12]:

Vχ + U sin(θ/2) = 0 (5)

Therefore the geometry of the frozen fronts is completely
determined by the velocity-dependent angle θ and by the
positions of the pinning sites. In particular the probabil-
ity that a given patch of area `2d is a pinning site is:

λ =

∫ |Vχ|
0

PU (U)dU =

∫ |Vχ|/U
0

φ(v)dv (6)

For large downstream injection rate U � |Vχ|, the value
of λ is controlled only by the behaviour of φ(v) for v
close to 0. In [12] it was observed that the fluid velocity
vanishes near the wall. To mimic that fact, we always
set the interface pinned at the points ~r = (0, 0) and ~r =
(L, 0). Therefore, if no stagnant patch inside the cell pins
the front, except at the walls, the interface acquires a V
shape that we call the depinned state.

A central quantity for our analysis is Q(y), the proba-
bility that, from y = 0 to y, no stagnant patch is encoun-
tered. Q(y) obeys to the differential equation:

Q(y + dy) =
(
1− λdy (L− 2 tan(θ/2) y) /`2d

)
Q(y) (7)
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FIG. 3. Probability distribution of the velocity threshold
USD. The histogram corresponds to the hydrodynamical sim-
ulations of N = 2000 samples with a log-normal permeabil-
ity, setting L = 512, Vχ = 0.0016, U = 0.0036 and `d = 5.0.
The dashed line corresponds to the prediction of the stylized
model (Eq.(9)) for a log-normal φ(v) with a scale parameter
σ = 0.315 (see main text). Inset: sketch of the algorithmic
recursive procedure.

because the probability that no pinning occurs between
y and y+dy is 1−λdy(L−2 tan(θ/2) y)/`2d in an interval
of size L− 2 tan(θ/2) y. Hence:

Q(y) = e−λ(Ly+ tan(θ/2) y2)/`2d (8)

This formula is valid up to yV = L
2 tan(θ/2) , value above

which the front is in the depinned state. This quan-
tity allows to introduce an efficient algorithm to gener-
ate the sites pinning the front: note ε a random number
uniformly distributed in (0, 1), if ε > Q(yV ) the algo-
rithm terminates with a V shape, while if ε < Q(yV ) the
height of the first pinning site is y1 = Q−1(ε) and its
position x1 is chosen at random in the segment of length
L−2 tan(θ/2)y1. This patch divides the segment into two
pieces (see inset of Fig.3) and we recursively apply the
algorithm on both pieces until no more stagnant patch is
found.

Moreover, Eq.(8) determines the statistics of the
threshold USD. The probability of being in the depinned
state for a certain injection rate U (y = yV ) is given by:

Qdep

U
= exp

− L2
∫ |Vχ|/U

0
φ(v)dv

`2d tan(arcsin(|Vχ|/U))

 (9)

We note that this probability goes to 0 quadratically in
L. More generally, in d dimensions, Q(yV ) would de-
cay as exp(−L−d). Hence the effect of the cell size on
the transition is very strong and explains why washing a
propagating front in disordered medium can be surpris-
ingly hard. With raising U , Eq.(9) exhibits two compet-
ing effects: the stagnant patches get decimated while the
reaction front stretches (namely θ → 0) and explores a
larger region. Assuming φ(v) ∼ vδ−1 when v → 0, we
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FIG. 4. Distribution of l∆ for the stylized model with parame-
ters λ = 0.5 and θ = π/2. The system size is L = 100 and the
simulation is performed over N = 3000 samples. The dashed
line corresponds to the asymptotic prediction of Eq.(15). In-
set: interface pinned between two adjacent stagnant patches
of coordinates x1 and x2.

get:

Qdep

U
= exp

(
−L

2

`2d

(
|Vχ|
U

)δ−1
)

when
|Vχ|
U
→ 0 (10)

The two scenarios pictured in Fig.1 now emerge nat-
urally: if δ > 1, the number of teeth decreases with U
and the interface always gets depinned, while if δ < 1,
pinning sites proliferate and the front becomes rougher
and rougher. The transition between the two regimes
occurs at a critical value δc = 1: in that marginal
case, the number of teeth remains constant. This pre-
diction is well supported by the hydrodynamical simu-
lations of the porous media for different PU (v), where
a clear transition towards roughening for δ < 1 is ob-
served. In the experiments, the measured velocity map
was fitted to a Log-normal distribution, decaying to 0
as v−1 exp(− log(v)2), faster than the critical case, but
not much. Hence, depinning indeed occurs. Note that
the threshold speed USD is itself random and depends
on the realisation of the disorder. Its probability distri-

bution P (USD) = ∂UQ
dep

U
|U=USD

depends on the scaled

velocity distribution φ(v). In Fig.3 we test the predic-
tion of our model against hydrodynamical simulations for
a log-normal permeability. We assumed that the veloc-
ity of the fluid displays as well a log-normal distribution

φ(v) = (
√

2πvσ)−1e−(log v)2/2σ2

with a scale parameter
σ = 0.315 obtained from direct fit of the velocity dis-
tribution close to zero. A very good agreement with no
adjusting parameter is observed.

To get a better grasp on the front roughness for U .
USD, we compute the distance l∆ between two adjacent
pinning sites. A scaling argument (that can be easily ex-
tended to various geometries) extracts the main depen-
dence in λ and θ of the typical distance between stag-
nant patches: let’s assume the interface pinned at some
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site and consider its right part (see Inset of Fig.4); the
probability of having another pinning is important when
the area S ∼ l2∆/ tan(θ/2) ∼ λ−1, leading to:

l∆ ∼
√

tan θ/2

λ
= `typ (11)

It turns out that it is possible to compute the whole prob-
ability distribution ρ(l∆) in the sawtooth geometry. It
obeys:

ρ(l∆) =

∫
D
P (x12)δ(l∆ − |x2 − x1|) (12)

D = {0 < xi < L, 0 < yi < min

(
xi

tan θ/2
,
L− xi
tan θ/2

)
}

with i ∈ {1, 2}. D simply parametrizes the area of the
interface in the depinned state. P (x12) is the probability
that the interface is pinned in x1 = (x1, y1) and x2 =
(x2, y2), with no other nucleation in between:

P (x12)dx1dx2 = λ2dx1dx2e
−λS(x1,x2,y1,y2)

S(x1, x2, y1, y2) =
tan(θ/2)

4

(
y1 + y2 +

x2 − x1

tan(θ/2)
)

)2

H (|y2 − y1| < |x2 − x1|/ tan(θ/2)) (13)

S being the triangular area depicted in the inset of Fig.4
and H a Heaviside function. Integration over the vari-
ables under the constraint that l∆ = |x2 − x1| leads, in
the limit L→∞, to:

ρ(l∆) =
1

`typ
ρ̂(r) with r = l∆/`typ (14)

ρ̂(r) =
2√
π

(
2
(
e−

r2

4 − e−r
2
)

+

√
πr
(

erf
(r

2

)
− 2erf(r) + 1

))
(15)

The maximum of ρ̂ is of order 1, recovering the scal-
ing argument given in Eq.11, and an excellent agree-
ment with the stylized model is observed (see Fig.4).
This distribution gives full information about the fluc-
tuations of the static front in the porous media and al-
lows for example to compute its lateral extension through
∆H ∼ l∆/(2 tan(θ/2)). Finer details about the statisti-
cal properties of the interface can be useful, for example
to study fluctuations of the critical currents of strongly
pinned vortex in superconductors [16].

In this Letter, we presented a general model of pinning
for interfaces in random media, when the pinning regime
is strong and only relies on a finite number of sites. This
in particular makes an approach through Poisson pro-
cesses possible, allowing at the same time efficient nu-
merical simulations and analytical results on the statisti-
cal properties of the interface. The essential experimen-
tal picture [13] is reproduced and we identified a clear

criterium that allows to discriminate between the pos-
sible scenarios shown in Fig.1. Supported by excellent
agreement with ab initio simulations used to model the
experiments [24], this validates the hypothesis that the
depinning transition is controlled by a limited number of
events, randomly spread over the medium.

The above model assumes the interfaces in its final
state. However, strong pinning phenomenons often ex-
hibit avalanches during transient phases, where some
stagnant patches temporarily pin the interface before get-
ting suddenly depleted. The temporal critical properties
of those systems are not well understood. As a perspec-
tive, it would hence be interesting to extend the present
work to transient states by introducing random life time
of the nucleation events. We are grateful to acknowledge
Severine Atis, Pierre Le Doussal and Dominique Salin for
useful discussions.

Appendix A: Generation of random fields

In this paper we solve Eq.(2) of the main text for a
random permeability field K(~r) correlated on a distance
`d. We denote the cumulative distribution by cdf. Two
distributions were employed:

• The log-normal, of cdf Π(K) =
1
2

[
1 + erf( logK−K̄√

2σ
)
]

where K̄ is the log-scale

and σ the shape.

• The Weibull, of cdf Π(K) = 1 − e−(K/λ)δ where λ
is the scale and δ controls the decay of Π(K) close
to zero : Π(K) ∼ (Kλ )δ

This random field is generated as follows:
Step 1. We first generate a Gaussian random field Z(~r)

correlated on a scale `d using the Fast Fourier Transform
method (FFT):

Z(~r) =
∑
~k 6=0

Z~ke
i~k·~r (A1)

Z~kZ~k′ = δ~k,−~k′e
−k2/k2d (A2)

where ~k = 2π
L ~n, ~n ∈ {−L/2 + 1, . . . , L/2− 1, L/2}2,

kd = π/`d is the cut-off for the correlation in the mo-
mentum space and Z~k a vector of uncorrelated normal

numbers. Therefore, the mean Z(~r) = 0 and the vari-

ance σ2
Z =

∑
~k e
−k2/k2d .

Step 2. We transform the Gaussian statistics into the
families of distributions detailed above by the Inverse
transform sampling method. We denote FG(x) the cdf
of the normal distribution of mean µ and variance σ2:

FG(x) =
1

2

[
1 + erf

(
x− µ√

2σ

)]
(A3)

Each component of the field FG(Z(~r)) is then uniformly
distribution over [0, 1]. It is possible to revert to a general
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random field X of cdf FX by applying F−1
X . For the

families considered in the main paper, this leads to:

• K(~r) = exp(Z(~r)) for the log-normal distribution.

• K(~r) = −λ
(

log(1/2(1− erf(Z(~r)−µ√
2σ

))
)1/δ

, for the

Weibull distribution.

Note that the correlations remain short range over a
length `d, although they are not of the form given in
Eq.(A2).
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