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Abstract:

In this paper, unsteady water quality modeling and the associated sensitivity equa-

tions are solved for Water Distribution Systems (WDS). A new solution algorithm is

proposed, designed for slow varying velocity and based on a time splitting method

to separate and solve efficiently each phenomenon such as advection and chemical

reaction. This numerical approach allows simultaneous solution of both the direct

problem and the sensitivity equations. Special attention is given to the treatment of

advection, which is handled with a Total Variation Diminishing (TVD) scheme. The

general model presented in this study permits global sensitivity analysis of the system

to be performed and its efficiency is illustrated on two pipe networks. The importance

of the sensitivity analysis is shown as part of the calibration process on a real network.
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Introduction

The quality of water supplied by a distribution network is usually assessed by vari-

ous indicators, such as residence times, source tracing and disinfectant concentration.

These indicators can be obtained by solving mathematical models that depend on es-

timates of physical parameters. Kinetic parameters characterizing disinfection (bulk

and wall) reactions are rarely known with any precision because of uncertainties.

To overcome this problem, parameter calibration is required and the sensitivity of

the solution to parameter variations in the model should be analyzed. Studies have

been carried out for hydraulic sensitivity purposes (Bargiela and Hainsworth, 1989;

Kapelan, 2002), for hydraulic calibration (Piller, 1995) and for hydraulic and water

quality sampling design/meter placement (Bush and Uber, 1998; Chesneau et al.,

2003; Piller et al., 1999).

Sensitivity analysis and calibration are important needs in water network engineering.

In most previous research, finite difference methods were used to compute sensitivity

gradients. These methods are only approximate and quite costly in computer process-

ing time. The sensitivity analysis is then less accurate compared to the approach to

be proposed, namely, the direct solution of sensitivity equations. The structure of the

latter is very close to the original problem, facilitating their simultaneous solution.

The vast majority of practitioners performing water quality studies have used either

EPANET or an EPANET -like approach. Thus, these users will be employing the

advection-reaction equation with assumed hydraulic conditions to predict concentra-

tions, source tracings and water ages in the network. However, velocity is a step

and piecewise function with regards to time in EPANET, using an extended period

simulation approach: only the equilibrium solution is sought for each step, not the

whole trajectory. The EPANET software is an efficient Lagrangian event-driven code:

nevertheless, accounting for continuously time-varying velocity in quality calculations

is inefficient. In EPANET only one variable is calculated for each simulation (e.g.

concentration and residence time).

In this work sensitivity equations are directly derived from the transport-reaction for-
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mulations. Then, a solving algorithm for the advection-reaction is specially designed

and adapted for a smooth and slowly varying input time-dependent velocity variable.

The velocities are computed using a rigid column technique that takes into account

the inertial and mass oscillatory characteristics. The new technique also allows si-

multaneous calculation of several quality indicators and derivatives.

A new time-splitting approach to solve the coupled hydraulic-quality problem is pre-

sented. This is a non-linear problem that is impossible to solve exactly, so the tech-

nique proposed in the paper is designed to reduce substantially the approximation

errors. The advantage of time-splitting is the use of a specific numerical solver for

each physical phenomenon (Sportisse, 2000). Each operator (advection, chemical re-

action) is considered separately, with special attention to the advection modeling.

Because the physical phenomenon is dominated by the advection and the chemistry,

the diffusive term is not considered in this work. Nevertheless, the technique easily

allows including diffusion for more complex case studies. This behavior was already

studied by (Islam and Chaudhry, 1998) who used a splitting method to compute the

constituent transport in unsteady flows, including diffusion, in pipes. They observed

that the differences in concentration profiles were insignificant between computations

with and without diffusion. Recently, many authors have used different techniques

like Eulerian (fixed grid), Lagrangian (deforming grid), or methods of characteristics

(MOC) to solve such problems. Rossman and Boulos (1996) concluded that Eulerian

methods are as accurate as Lagrangian ones except for sharp concentration fronts.

Based on this conclusion, we have developed an Eulerian Total Variation Diminish-

ing (TVD) scheme for water quality transport and sensitivity analysis (Gancel et al.,

2006). This approach is appropriate to take into account variations of concentration

fronts (smooth or sharp). The TVD techniques should also overcome the oscillations

of classical Eulerian schemes.

An important point that needed to be improved in WDS modeling, is the calibration

of the parameters for the quality assessment in the transport-reaction level described

by three categories: the lack of measurements, the difficulty to estimate accurately

the velocities (and therefore the transport) and the complexity of the reaction pro-
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cedure. In this study, using an efficient sensitivity analysis we are able to fit the

optimal locations for the measurement devices. The new model also takes into ac-

count the inertial terms and it is more efficient in considering the unsteady behavior

of the system. Finally, the derivatives for calibration are directly computed for the

reaction term, more accurately and faster than previous existing techniques that use

finite differences or simply don’t compute the derivatives (e.g. genetic algorithms).

All these three developments together contribute to improve the goodness-of-fit of the

direct model and facilitate the calibration process.

The paper is organized as follows: The physical transport-reaction problem in WDS

is first described. The proposed time splitting method, is then validated by a numer-

ical comparison with other approaches. Next, sensitivity equations are derived from

the original problem and the computational algorithms to solve the global model are

described. Finally, the model is applied to three illustrative network examples: a

simple network that allows the results to be easily checked, a benchmark example

from the EPANET 2 distribution (U.S. Environmental Protection Agency, 2002) and

at last a real network, showing the importance of sensitivity analysis for parameter

calibrations.

Water quality in WDS

Water quality modeling consists primarily of predicting disinfectant (chlorine) con-

centration, residence times and source tracing at network nodes. The propagation

of these constituents (quality indicators) in a WDS relies on solving an advection

equation in each pipe with a kinetic reaction mechanism and mixing at nodes.

Direct Problem

Assuming that the effect of longitudinal diffusion is negligible (Rossman and Boulos,

1996), the change in quality indicator constituent, C, due to transport through a

pipe can be described by a one-dimensional hyperbolic Partial Differential Equation

(PDE) of the form:
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



∂tC(t, x) + u(t)∂xC(t, x) + f(C) = 0,

C(0, x) = C0(x), ∀x ∈ R+,

C(t, 0) = Φ(t), ∀t ≥ 0.

(1)

A boundary condition at x = 0 is needed to solve Eq. (1) for a non-negative time-

varying, but spatially uniform, velocity field, determined from the network hydraulic

solution. This velocity is obtained using the rigid column equation for slowly varying

flows in pipe networks. f(C) is a reaction function describing the transformation of

each indicator. If C stands for a concentration, the reaction term is given by the

following:

f(C) = kCα(t, x) with α ≥ 1, (2)

where α is the order of reaction and k is the overall decay constant (Powell and West

2000). Then, the residence time and the water source can be tracked by specifying:

{
f(C) = −1, (3a)

f(C) = 0. (3b)

Residence time is obtained with Eq. (3a), while Eq. (3b) can be used for source iden-

tification which is very useful for tracing bacteria.

Junction and tank mixing

A WDS is mainly composed of pipes, tanks, reservoirs and junction nodes. Water

arriving at a junction in different pipes is commonly assumed to be mixed perfectly

and instantaneously. At each junction node n, the resulting water indicator con-

stituent, Cn(t), is therefore the flow-weighted average of the individual constituents

of the incoming flows:

5

Author-produced version of the article published in Journal of Hydraulic Engineering, 2010, 136(1), 34-44. 
The original publication is available at http://ascelibrary.org/journal/jhend8 

http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000138







Cn(t) =

∑
i∈Nin

qiCi(t)∑
i∈Nin

qi

,

Cn(0) = Cnt0
.

(4)

where Ci(t) is the considered quantity input at node n at time t from pipe i; Nin

is the set of pipes that are incident to node n and qi is the flow rate entering the

junction node from pipe i.

Again, a mass balance of water indicator constituent entering or leaving a variable-

level tank can be performed:





dCT

dt
=

∑
i∈Nin

qi(Ci − CT )

VT

+ f(CT )

CT (t = 0) = CTt0

VT (t = 0) = VTt0

(5)

where CT (t) is the water indicator constituent within tank T ; qi is the flow rate enter-

ing the tank from pipe i; f(CT ) is the reaction term given by Eq. (2) for concentration

and Eq. (3) for residence time and source tracing; finally VT is the water volume in

tank T .

To indicate a range for residence time we calculate not only the flow-weighted average

but also the minimal and maximum values with time.

To summarize, water quality modeling for a network consists of solving for each time

step Eq. (1) with the mixing relations: Equations (4) and (5), for each water quality

indicator using the appropriate f function. The minimal and maximum values at

mixing nodes are also worked out.

Numerical scheme

Various numerical methods for the water quality models have already been proposed

and their comparison has been performed by Rossman and Boulos (1996). Their main
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conclusion was that the Lagrangian methods are more efficient for simulating chemical

transport. EPANET which is the most widely used water quality simulator uses such

a Lagrangian time-based approach to track the fate of discrete parcels of water as

they move along pipes and mix together at junctions, between fixed-length time steps

(Rossman, 2000). It is difficult to extend the EPANET ’s model to variable-length

time steps to account for slow varying velocities in pipes. So, a new method using a

time splitting approach has been developed for this purpose and to solve sensitivity

equation with coupling approach.

Time splitting method

The advantage of this approach is the use of a specific numerical solver for each

physical phenomenon, here the advection and chemical reaction. This method is

particularly recommended in the case where evolution equations to be simulated are

stiff (Yee, 1988; Sportisse, 2000; Islam and Chaudhry, 1998) which is the case here

mainly due to chemical terms with several scales. It results in a better accuracy

and stability. Islam and Chaudhry who solved the waterborne substance transport-

reaction problem using a two step splitting method mentioned this technique is useful

to reduce the numerical diffusion. It can been demonstrated, thought, that two-step

(A-B) splitting introduces an error that can be limitative (of first-order) for two

linear operators that do not commute (see e.g.: Sportisse, 2000). This is confirmed

for advection (A) and pipe-dependent reaction (B) operators. In order to improve

the accuracy, the following second-order Strang’s (B-A-B) splitting scheme is applied

to Eq. (1):





∂tC
∗ + f (C∗) = 0, C∗(0) = C0, on

[
0,

δt

2

]
, (6a)

∂tC
∗∗ + u(t)∂xC

∗∗ = 0, C∗∗(0) = C∗
(

δt

2

)
, on [0, δt] , (6b)

∂tC
∗∗∗ + f (C∗∗∗) = 0, C∗∗∗(0) = C∗∗(δt), on

[
0,

δt

2

]
. (6c)
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where in sub-step 1, reaction terms are integrated over δt/2 by solving Eq. (6a); the

initial condition C0 is the final state C from the previous time step, and the solution

to Eq. (6a) is C∗(δt/2).

Next in sub-step 2, pure advection is integrated over δt by solving Eq. (6b); the initial

condition C∗∗(0) corresponds to the final state from the previous sub-step, C∗(δt/2),

and the solution to Eq. (6b) is C∗∗(δt).

Finally in sub-step 3, again reaction terms are integrated over δt/2; the initial con-

dition C∗∗∗(0) is the final state from the previous sub-step, C∗∗(δt), and the solution

to Eq. (6c) is C∗∗∗(δt/2), which in turn is the new final state C(δt).

If each of the three sub-steps in the above splitting procedure is solved accurately

(with at least second-order accuracy in time), the Strang splitting scheme is second-

order accurate in time (Ren, 2008). To benefit from the latter, the reaction parts

Eq. (6a) and Eq. (6c) are solved using a standard explicit fourth-order Runge Kutta

method and a novel TVD scheme is chosen for the advection sub-problem solving

Eq. (6b).

TVD Scheme

A new version of the TVD scheme that is well adapted to the present unsteady

advection problem is proposed. This four-point scheme which is similar to that of

Rasetarinera (1995), is L∞-stable and belongs to the family of Takacs schemes. The

main difference from the scheme of Rasetarinera arises from the presence of an un-

steady velocity, u(t), that depends only on time.

Let δx and δt be the space and time step respectively and Cn
i the approximate value

at the point (nδt, iδx). For time-independent velocities, the second or third order

Takacs upwind schemes are written as follows:

Cn+1
i = γ1C

n
i+1 + γ0C

n
i + γ−1C

n
i−1 + γ−2C

n
i−2, (7)

where the γk are chosen to obtain 2nd order formal accuracy.
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For an unsteady velocity:

Cn+1
i = C(t + δt, x) = C(t, x)− δt

∂C

∂x
(t, x)

[
u(t) +

δt

2

∂u

∂t
(t)]

+ u2(t)
δt2

2

∂2C

∂x2
(t, x) +O(δt3). (8)

The velocity derivative
∂u

∂t
in equation (8) is approximated to first order by:

∂u

∂t
= (u(t + δt)− u(t))/δt +O(δt2) and we denote u(t+δt/2) =

u(t + δt) + u(t)

2
.

such that:

Cn+1
i = C(t, x)− δt

∂C(t, x)

∂x
u(t+δt/2) + u2(t)

δt2

2

∂2C(t, x)

∂x2
+O(δt3). (9)

In the same way, the equations are also developed for Cn
i+1, Cn

i−1 and Cn
i−2.

Noting un ≈ u(t, x) and un+ 1
2 ≈ u(t + δt/2, x), the coefficients γi are determined as

γ1 =
λ(λunun − un+1/2)

2
−γ−2, γ−1 =

λ(λunun + un+1/2)

2
−3γ−2, γ0 = 1−λ2unun+3γ−2,

where λ =
δt

δx
and γ−2 is determined in order to get the exact solution for un+1 =

0, un = 0 and λun+1 = 1, λun = 1, that is:

γ−2 = γλ(λunun − un+1/2) with γ a non negative constant,

Now, Eq. (7) can be turned in a TVD and L∞-stable scheme (Rasetarinera, 1995) by

first re-ordering:

Cn+1
i = Cn

i − λun+1/2(Cn
i − Cn

i−1)−
λ(un+1/2 − λunun)

2
(Cn

i+1 − 2Cn
i + Cn

i−1)

− γλ(λunun − un+1/2)(Cn
i+1 − 3Cn

i + 3Cn
i−1 − Cn

i−2) (10)

and with ∆Cn
i+1/2 = Cn

i+1 − Cn
i and rn

i+1/2 = ∆Cn
i−1/2/∆Cn

i+1/2,
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Cn+1
i = Cn

i − λun+1/2∆Cn
i−1/2 −

λ(un+1/2 − λunun)

2
(∆Cn

i+1/2 −∆Cn
i−1/2)

− γλ(λunun − un+1/2)
(
(1− rn

i+1/2)∆Cn
i+1/2 − (1− rn

i−1/2)∆Cn
i−1/2

)
(11)

A TVD scheme is obtained by limiting the numerical flux of the initial Takacs scheme,

as with the Lax-Wendroff scheme (Sweby, 1984; Rasetarinera, 1995):

Cn+1
i = Cn

i − λun+1/2∆Cn
i−1/2

− λ

2
(un+1/2 − λunun)(φ(rn

i+1/2)∆Cn
i+1/2 − φ(rn

i−1/2)∆Cn
i−1/2), (12)

where φ(r) = 1 − 2γ(r)(1 − r). To have φ(r) in Sweby region we put: γn
i±1/2 =

min
( |1−rn

i±1/2
|

2
, 1

2|1−rn
i±1/2

|
)
.

The final TVD scheme can be given as:

Cn+1
i = Cn

i − λun+1/2∆Cn
i−1/2 −

λ

2
(un+1/2 − λunun)(∆Cn

i+1/2 −∆Cn
i−1/2) (13)

− λ(λunun − un+1/2)
(
γn

i+1/2(1− rn
i+1/2)∆Cn

i+1/2 − γn
i−1/2(1− rn

i−1/2)∆Cn
i−1/2

)
.

The scheme (13) is TVD and L∞-stable under the following CFL condition: λ ‖ u ‖∞≤ 1.

It is formally second-order, where the solution is smooth enough, except in a neighbor-

hood of critical points. The main advantage of using a TVD scheme is its capability

to deal gracefully with shocks or large spatial gradients.

Validation for advection reaction problem

The proposed numerical method is first compared to other Eulerian techniques for

a benchmark case. The compared methods are the Lax-Wendroff scheme, the θ-

scheme, the Holly-Preissman method, the Van Leer scheme and the hybrid method

used in the Porteau Software (Porteau, 2009). The Porteau Software, designed and
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commercialized in France by the Cemagref (Piller, 1996; Piller, 1997), combines the

method of characteristics and a θ-scheme in a two-step process hereafter referred to

as a hybrid scheme. First, the method of characteristics is applied on step ∆t ≤ δt

such as un+1/2∆t = δx. In the linear case (α = 1),

C
n+1/2
i = C(nδt + ∆t, iδx) = C(nδt, (i− 1)δx)e−k∆t (14)

the upstream θ-scheme is then applied for τ = δt−∆t:

Cn+1
i − C

n+1/2
i

τ
+ θun+1Cn+1

i − Cn+1
i−1

δx
+ (1− θ)un+1/2C

n+1/2
i − C

n+1/2
i−1

δx

+ kθCn+1
i + k(1− θ)C

n+1/2
i = 0 (15)

where θ = 1/2. The nonlinear case is more complex due to the approximation of the

non linearity; the following change of variable is used:

λ(t, x) = C1−α(t, x)+(1−α)kt ⇔ C(t, x) =
(
λ(t, x)−(1−α)kt

) 1
1−α

α 6= 1 (16)

(16) is also useful to take into account the nonlinear term for the classical numerical

methods like Lax-Wendroff and θ-scheme.

The benchmark problem is a single pipe of 500m length with a constant pipe velocity

of u = 0.5 m/s and a steady chlorine injection at the pipe inlet beginning at time t1

during a period T and then stopping, i.e.:





C(t, 0) = 1 if t ∈]t1, t1 + T ]

C(t, 0) = 0 otherwise
(17)

A comparison for the advection reaction solution in the linear case is given in Fig. 1,

where dimensionless δx = 0.01 (100 discretization points).

The Holly-Preissmann technique (Holly and Preissmann, 1977) that is often used

in WDS, uses an Hermite interpolation formula of the third-order, to interpolate
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the “characteristic foot”. This method is efficient but has two main drawbacks: its

CPU time and the use of a solution derivative which creates oscillations with a non

smooth solution (Fig. 1a). The Lax-Wendroff scheme Fig. 1b (second-order in time

and space, L2 stable) is efficient for continuous solutions but generates “overshooting”

and “undershooting” near singularities. The θ-scheme (Fig. 1c) suffers from substan-

tial numerical diffusion and a positivity condition which may be overly restrictive for

our problem. Fig. 1d shows the solution with the hybrid method which is very accu-

rate but can lead to high CPU time if used with an unsteady velocity that becomes

close to zero, because of its variable space discretization effort (see Fig. 2). Finally,

the Van Leer scheme (Van Leer, 1974) using the MUSCL approach with a Min-Mod

limiter leads to a second-order accuracy (Fig. 1e), but less accurate than the splitting

method (Fig. 1f), because it is more diffusive.

The two most accurate approximations are given by the proposed model (Fig. 1f) and

the hybrid method (Fig. 1d). Nevertheless, the hybrid method is designed for piece-

wise constant velocity function (extended period simulation) and ∆t must divide the

pipe transit time to benefit from the characteristic ascent step the best. This method

is cumbersome with continuously varying velocity close to zero as demonstrated with

the same boundary condition in a single pipe but with u(t) = cos(t) in Figure 2. The

substantially better performance of the Splitting-TVD method is evident especially

for small dimensionless δx.

Sensitivity and Uncertainty

Sensitivity analysis permits the identification of physical properties that can not be

precisely estimated. It gives the most sensitive nodes where it would be most prof-

itable to perform the necessary measures for calibration.

Three main approaches have been used for sensitivity analysis: finite differences,

automatic differentiation and sensitivity equations. The finite difference techniques
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that can be used with a large number of commercial software to approximate the

sensitivity are easy to implement but they suffer from a lack of accuracy. Automatic

differentiation (AD) is a family of techniques for computing the derivatives of a func-

tion defined by a computer program. Even though this method is accurate and fast,

it produces lengthy and complex computer codes. In this paper, sensitivity equations

are considered because they give the most accurate results (Kapelan, 2002).

They are derived from the direct problem. Let Na be the number of parameters and

aj the jth model parameter, the main problem is to find Caj
for each pipe such as:





∂tCaj
+ u(t)∂xCaj

+ ∂aj
(kCα) = 0,

Caj
(0, x) = 0, ∀x ∈ R+

Caj
(t, 0) = 0, ∀t ≥ 0,

(18)

where Caj
=

∂C

∂aj

is the derivative of C with respect to aj, C being the solution of the

original problem (Eq. (1)). The parameters considered in this paper are: the overall

decay coefficient k and the reaction order α.

Usually a constant k is assigned to the pipes made of the same material with the

same age and diameter. So, to decrease the dimension of the problem relative to k,

we group the decay coefficients, K = (K1, ..,Knc) with nc the number of class. To

simplify the presentation of the problem, the same order of reaction term is assumed

for all the pipes.

Thus, nc + 1 Eq. (18), one for each parameter, can be written as follows for pipe i:





∂tCKj
+ u(t)∂xCKj

+ KiαCα−1CKj
+ Cαδij = 0, j ≤ nc,

∂tCα + u(t)∂xCα + KiαCα−1Cα + KiC
α ln C = 0,

CKj
(0, x) = 0, Cα(0, x) = 0, ∀x ∈ R+,

CKj
(t, 0) = 0, Cα(t, 0) = 0, ∀t ≥ 0,

(19)

where CKj
=

∂C

∂Kj

and Cα =
∂C

∂α
are the sensitivity of the concentration with respect

to the class Kj and α respectively.
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The time splitting technique is applied to the sensitivity equations:





∂tCaj
(t, x) +

[
u(t)∂x + B

]
Caj

(t, x) + f(t, x) = 0,

Caj
(t, 0) = C0(t),

(20)

where f is a source term and B(t, x) a linear operator. An inhomogeneous, non

autonomous linear ODE with variable coefficients is to be solved. Let R denote the

solution of the homogeneous equations. To preserve second-order accuracy in the

general case, the Duhamel formula is written to provide the exact solution of (20):

Caj
(t + δt, .) = R(u(t)∂x + B, t + δt, t)Caj

(t, .) +

∫ t+δt

t

R(u(t)∂x + B, t + δt, s)f(s)ds.

Trapezoidal integration gives:

Caj
(t + δt, .) ≈ R(u(t)∂x + B, t + δt, t)Caj

(t, .) +
1

2
δt

[
R(u(t)∂x + B, t + δt, t)f(t) + f(t + δt)

]
,

≈ R(u(t)∂x + B, t + δt, t)
[
Caj

(t, .) +
1

2
δtf(t)

]
+

1

2
δtf(t + δt),

with a local error of O(δt3).

Application of Strang’s splitting formula (see Eq. 6) results in:

R(u(t)∂x + B, t + δt, t) = R(B, t +
δt

2
, t)R(u(t)∂x, t + δt, t)R(B, t +

δt

2
, t) +O(δt3).

Finally the solution is written as:

Caj
(t+δt, .) ≈ R(B, t+

δt

2
, t)R(u(t)∂x, t+δt, t)R(B, t+

δt

2
, t)

[
Caj

(t, .)+
1

2
δtf(t)

]
+

1

2
δtf(t+δt).

(21)

where the second-order accuracy has been maintained.
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Global scheme

The problem allowing the simultaneous solution of the water quality and the sensitiv-

ity equations on a network may now be formulated. With the time splitting method,

the solving over the interval of [0, δt] is performed in three steps.

First reaction and source terms equations are solved for a half time step:





∂tC
∗ + KiC

∗α = 0, C∗(0) = C0

∂tC
∗
Kj

+ KiαC∗α−1C∗
Kj

+ C∗αδij = 0 j ≤ Ncl, C∗
Kj

(0) = CKj
(0) + δt

2
f1(0, x)

∂tC
∗
α + KiαC∗α−1C∗

α + KiC
∗α ln C∗ = 0, C∗

α(0) = Cα(0) + δt
2
f2(0, x)

∂tA
∗ − 1 = 0, A∗(0) = A0

(22)

Then, the second step is devoted to the advection for a time step:





∂tC
• + u(t)∂xC

• = 0, C•(0) = C∗( δt
2
)

∂tC
•
Kj

+ u(t)∂xC
•
Kj

= 0, C•
Kj

(0) = C∗
Kj

( δt
2
)

∂tC
•
α + u(t)∂xC

•
α = 0, C•

α(0) = C∗
α( δt

2
)

∂tA
• + u(t)∂xA

• = 0, A•(0) = A∗( δt
2
)

∂tS + u(t)∂xS = 0, S(0) = S0

(23)

Taking part of the second step the improved reaction and source term equations are

solved again for a half time step:





∂tC
¦ + KiC

¦α = 0, C¦(0) = C•(δt)

∂tC
¦
Kj

+ KiαC¦α−1C¦
Kj

+ C¦αδij = 0 j ≤ Ncl, C¦
Kj

(0) = C•
k(δt)

∂tC
¦
α + KiαC¦α−1C¦

α + KiC
¦α ln C¦ = 0, C¦

α(0) = C•
α(δt)

∂tA
¦ − 1 = 0, A¦(0) = A•(δt)

(24)

with f1(t, x) = Cαδij; f2(t, x) = KiC
α ln C.

C¦(δt), CKj
¦(δt)+ δt

2
f1(δt, x), Cα

¦(δt)+ δt
2
f2(δt, x), S(δt), A¦(δt) are the final values for

the disinfectant concentration (C), the sensitivity coefficients (CKj
, Cα) with respect
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to Kj and α, the source tracing (S) and the residence time (A) respectively. In order

to take into account a network with several pipes, nodal mixing equations (Eq. 4 and

5) need to be solved for each variable of interest.

With this formulation the numerical implementation of the global scheme is simple.

Only two main functions are needed, one to solve the reaction and source terms with

an ODE solver and the other using the TDV scheme to handle the advection term.

Results and discussion

The applicability of the proposed time Splitting-TVD technique is tested in this

section, using three different pipe networks. First, a simple case study is considered

in which the sensitivity solutions are easily verifiable. Then, a comparison with a

commercial software is performed using the benchmark network in the EPANET 2

user’s manual. Finally, a validation study for a network in France is performed,

showing the impact and the benefit of sensitivity analysis.

A simple case study

The simple test network found in (Rossman and Boulos, 1996) and shown in figure 3

is first considered. It is possible to compute analytical solutions because of its sim-

plicity and this is a good test to check the ability to track sharp concentration fronts

accurately. It consists of six nodes (three reservoirs and three junction nodes) and six

links. The linear problem with first-order reaction is considered (α = 1) with a class

of constant reaction coefficient: k = K1 = 2.4d−1 (per day/unit). Reactive Chemi-

cal tracers as constituent concentrations of 200 mg/L, 300 mg/L and 100 mg/L are

assigned to reservoirs R1, R2, R3 respectively and hydraulic data are given in table

1. The time step is δt = 300s and δx, the space step is selected to meet the CFL

conditions. This study was originally tested in (Rossman and Boulos, 1996) for a

conservative tracer; in this work we assume a first-order reaction in order to calculate

the sensitivity to the reaction coefficient.

The results for C, the tracer concentration, (see Eq. 22, 23, 24) are compared with
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those obtained with Porteau (Porteau, 2009). Figure 4 shows no difference in con-

centration calculated by the proposed model and by the Porteau software at Node

1. The results for the sensitivities with respect to the overall decay constant Ck and

reaction order Cα (see Eq. 19) are shown in Fig. 5. Because of the large C concen-

tration value in R2, node 3 is the most sensitive node with respect to k and α. The

source concentration and transit time are very influential parameters in sensitivity

calculations. If the concentration for all the sources is equal to 100 mg/L and the

same k (2.4d−1) is applied, node 1 will be the most sensitive with respect to k and α.

To our knowledge the sensitivity is not calculated in any water modeling software.

So, this test is important as an analytical solution is available for this problem.

In the linear case, the sensitivity with respect to k at node 3 (Ck(node3)), is:

Ck(t, x) = −(t− t0)C(t0, 0)e−k(t−t0), (25)

where (t − t0) =
L

u
is the residence time (L and u the pipe length and velocity

respectively). Thus,

Ck(node3) ≈ −5482581 (26)

In the non-linear case, straight forward computations lead to (Gancel, 2006):

Cα(t, x) = C(t, x)
[ ln

(
C(t0, 0)1−α − (1− α) k (t− t0 )

)

(1− α)2 +

−C(t0, 0)1−α ln (C(t0, 0)) + k (t− t0 )

(1− α)
(
C(t0, 0)1−α − (1− α) k (t− t0 )

)
]
.

Thus,

lim
α→1

Cα(t, x) = (C(t0, 0)e−k(t−t0))
[
ln (C(t0, 0)) k (t0 − t) + 1/2 k2 (t− t0 )2

]
(27)

yields to

Cα(node3) ≈ −84.82.
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Ck(node3) and Cα(node3) verify exactly the result of the sensitivity given by figure 5.

Brushy Plains Network

The next considered network, the Brushy plain network (Fig 6) taken from the

EPANET2 manual, is more complex. In this section comparisons are made both

with Porteau and with EPANET 2. The network is composed of 41 pipes, 35 junc-

tion nodes, one storage tank and one pumping station. Chlorine transport is modeled

assuming a first-order decay (α = 1) and a constant decay coefficient: k = 2.4d−1.

The time step is chosen equal to δt = 1min, that is small enough to obtain an accurate

solution.

In figure 7, the concentration results obtained by the new Splitting-TVD solver are

compared to the values obtained by EPANET 2 and Porteau. Like the previous

example, no significant difference appears. Figure 8 shows the sensitivity for each

node. At each of them there is a sensitivity vector Ck(t) and Cα(t). To compare

them better, the relative L1 norm of each vector is plotted as follows:

C∗
k or α(N) = δt

∑
t

∣∣∣Ck or α(t)
∣∣∣

Ck or α(N) =
C∗

k or α(N)

max
N

C∗
k or α(N)

where N is the node number.

The two most sensitive nodes with respect to k are nodes 8 and 19 and with respect

to α are nodes 8 and the tank. The greatest impact of a small change in α or k

is located at these nodes. Thus, the important positions to measure concentrations,

describing the network behavior are nodes 8, 19 and the tank.

In this example, EPANET 2 requires 12s (for each parameter computation) with

δt = 30s compared to 1 min 27s for Splitting-TVD solver and 2 min 05s for Porteau.

However, the proposed model provides seven results at the same time: disinfectant

concentration (C), minimum, maximum and average residence time (A), the trace of

bacteria introduced to a node or source tracing (S), and two sensitivity results(Ck
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& Cα) with respect to α and k (Porteau gives also five results at the same time),

whereas EPANET 2 provides only three results that are given separately: disinfec-

tant concentration, average residence time, the trace of bacteria introduced to a node

or source tracing. The program needs to be run again separately to get any of these

results.

Sensitivity analysis impact on a real network

The main benefit of a sensitivity analysis lies in the parameter calibration. Our

method is the only one among the compared techniques, to be able to perform such

an analysis simultaneously. The knowledge of the sensitivity solution with respect to

the parameters is useful to determine where future measurements should be made.

The direct impact of the choice of measurements is emphasized; accurate data set

increases the conditioning of our fitting methods.

Figure 9 shows a real network in France composed of a tank, 63 nodes and 68 pipes.

A sensitivity analysis is performed and the three most sensitive nodes as well as the

three least sensitive ones are selected (Fig. 9). These nodes are used for the calibration

of kinetic parameters k and α.

The kinetic parameters are estimated from a least-squares fit to measurements.

Figure 10 shows the dimensionless objective function of this minimization problem:

with x̂ ∈ Rp / ∀x ∈ Rp, g(x̂) ≤ g(x) where

g(x) =
1

2

∣∣∣
∣∣∣C(x)− Cmes

∣∣∣
∣∣∣
2

2
, x = (K1, ...,Knc , α), (28)

where Cmes is the concentration measured in the network and p = nc + 1 the number

of unknown parameters.

The fitting of kinetic parameters with sensitive nodes converges to the solution with

12 iterations. For other nodes more than 100 iterations are necessary. The use of

less sensitive nodes has a direct impact on the Levenberg-Marquardt technique. This

descent method derives benefit from the Jacobian matrix (sensitivity matrix) or first-
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order information as derivatives. With insensitive nodes, the ill-conditioning of the

matrix decreases the convergence rate of the solution. Figure 10 shows that when the

convergence is more difficult, it needs many more iterations.

The impact is very important on this real simple network. On a more complex network

composed of valves, pumps or other hydraulic components, accurate measurements

are difficult, mainly due to the complex hydraulic flow. Large measurement errors

appear, leading to non-realistic solutions. Then measurement error importance with

exact sensitivity coefficients help to calculate confidence intervals to emphasize the

calibrated parameter precision; see developments in (Piller, 1995).

Conclusion

Constituent concentration, residence time and source tracking at network nodes of

a Water Distribution System are quality indicators that are usually predicted in

academic and commercial hydraulic modeling software. The main challenge is to de-

termine the model parameters that best match field data. In this paper, solutions

for exact sensitivities or derivatives of quality indicators are proposed with regards

to the reaction parameters in order to improve the inverse or calibration problem.

Sensitivity equations are derived from the direct transport-reaction problem. For

each pipe, the formulation is a one-dimensional hyperbolic Partial Differential Equa-

tion with a similar advection and reaction structure to the original problem. Solving

economies are therefore possible.

One extension of usual practice is to consider a pipe velocity that is continuously

time-dependant. For example in EPANET, that is a Lagrangian hydraulic code,

known and used worldwide, the velocity is a stepwise constant function. This novel

extension is a strong constraint that requires a new specific solving algorithm. The

method proposed here consists of separating the advection operator from the reaction

part and source term. A three-step splitting method of second-order is then used.

This method is more flexible with respect to the choice of the advection scheme and

is applied to both the sensitivity equations and the direct problem as these equations
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have the same structure. A Eulerian scheme, using the TVD technique, is chosen to

solve the advection process. Discontinuous solutions can be computed without oscil-

lations. Validation of the scheme and the numerical accuracy analysis is performed

and compared to several other standard techniques. An explicit fourth-order Runge-

Kutta scheme is used to achieve a good approximation of the reaction and source

terms.

Numerical results are presented on three networks. Firstly, for a simple case study, so-

lution accuracy is proven and compared with an analytical solution. A reactive tracer

is injected in three sources and both the constituent concentration and the associated

sensitivities with regards to reaction constant and order coefficients are analyzed at

two different nodal points. The predicted values perfectly match the exact solutions.

Secondly, a small but more complex network taken from the EPANET manual is sim-

ulated. These tests show that EPANET 2 Lagrangian code is the fastest compared

to both Eulerian methods and the Splitting-TVD scheme has a higher speed than

Porteau (Eulerian). Nevertheless, the proposed model provides seven results at the

same time, compared to five with Porteau and only one with EPANET 2. So, relative

CPU time for each quality indicator calculation is the same for EPANET 2 and the

new proposed method. Selection of potential chlorine concentration measurements is

also illustrated from the importance of relative sensitivity coefficients. Finally, the

actual importance and necessity of accurate sensitivity assessment are shown on a

real WDS through a calibration process. Selecting meters that are more sensitive

may drastically improve the conditioning of the calibration problem. If the solving

algorithm is a gradient type and uses exact derivatives or sensitivities, the number of

iterations is considerably reduced. Finally, confidence intervals for parameters may

be deduced from error measurement distribution and sensitivity assessments.

Future research is recommended to assess the possibility of simultaneous calibration

of hydraulic model parameters such as roughness and nodal demand.
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Notation

The following principal symbols are used in this paper:

C = constituent concentration in a pipe; C = C(t, x);

u = velocity in pipe; u = u(t);

f = reaction function; f(C)

k = overall coefficient of reaction;

α = order of reaction;

q = flow in the pipe; q = q(t);

Sci
= constant pipe area;

Nin = set of pipes that are incident to node n;

Nout = set of pipe taking water out of the tank;

CT = constituent concentration in the tank;

VT = water volume in the tank;

fT = reaction function in the tank;

Cn
i = approximate value at the point (nδt, iδx);

Kj = jth of class of decay coefficient;

CKj
= sensitivity of the concentration with respect to the class Kj;

Cα = sensitivity of the concentration with respect to α;

A = residence time; A = A(t, x);

S = source tracing; S = S(t, x);

g = objective function;
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Table. 1: Hydraulic data

Pipe Diameter, mm Length, m Roughness(HW coefficient) Velocity, m/s Flow
tank R1 to node 1 203 3050 116 1.75 56.54
node 1 to node 3 152 1830 116 -0.24 -4.31
node 1 to node 2 152 3660 116 -0.12 -2.25
tank R2 to node 3 203 3355 116 1.74 56.18
node 3 to node 2 152 6100 116 0.08 1.37
node 2 to tank R3 203 1525 116 -2.37 -76.69
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List of figure captions
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