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Abstract. Flood frequency analysis (FFA) aims at estimating
quantiles with large return periods for an extreme discharge
variable. Many FFA implementations are used in operational
practice in France. These implementations range from the
estimation of a pre-specified distribution to continuous sim-
ulation approaches using a rainfall simulator coupled with
a rainfall–runoff model. This diversity of approaches raises
questions regarding the limits of each implementation and
calls for a nation-wide comparison of their predictive perfor-
mances.

This paper presents the results of a national comparison of
the main FFA implementations used in France. More accu-
rately, eight implementations are considered, corresponding
to the local, regional and local-regional estimation of Gum-
bel and Generalized Extreme Value (GEV) distributions, as
well as the local and regional versions of a continuous simu-
lation approach. A data-based comparison framework is ap-
plied to these eight competitors to evaluate their predictive
performances in terms of reliability and stability, using daily
flow data from more than 1000 gauging stations in France.

Results from this comparative exercise suggest that two
implementations dominate their competitors in terms of pre-
dictive performances, namely the local version of the con-
tinuous simulation approach and the local-regional estima-
tion of a GEV distribution. More specific conclusions include
the following: (i) the Gumbel distribution is not suitable for
Mediterranean catchments, since this distribution demonstra-
bly leads to an underestimation of flood quantiles; (ii) the lo-
cal estimation of a GEV distribution is not recommended, be-
cause the difficulty in estimating the shape parameter results
in frequent predictive failures; (iii) all the purely regional

implementations evaluated in this study displayed a quite
poor reliability, suggesting that prediction in completely un-
gauged catchments remains a challenge.

1 Introduction

1.1 Diversity of flood frequency analysis approaches

The flood frequency analysis (FFA) is a central step in a hy-
drological risk assessment. In general the FFA aims at es-
timating “flood quantiles”, i.e., discharge values whose re-
turn period is large (usually> 10 years). It has many op-
erational applications, including design of civil engineering
structures (e.g., polders, bridges, levees, dam spillways, pro-
tection structures for nuclear power plants) or mapping of
flood-prone areas. Many FFA approaches exist in the liter-
ature. In France, two distinct families of approach are used
in practice. The first family comprises FFA implementations
that estimate the parameters of a given flood distribution (a
Gumbel or a Generalized Extreme Value (GEV) distribution
in most cases). The second family uses a continuous simu-
lation approach (Arnaud and Lavabre, 1999, 2002), where a
rainfall generator is coupled with a rainfall–runoff model to
generate long hydrological series from which extreme quan-
tiles can be inferred. Within both families, parameter es-
timation can be performed at the local scale using at-site
streamflow data only (e.g., Kuczera, 1999; Martins and Ste-
dinger, 2000), at the regional scale using streamflow data
from neighboring stations only (e.g., Stedinger and Tasker,
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1985, 1986; Hosking and Wallis, 1997), or combining local
and regional information (e.g., Ribatet et al., 2006).

Many countries prepared and issued national FFA guide-
lines to help practitioners in realizing their analyses with
best practice methods, e.g., (Reed et al., 1999; Institution of
Engineers Australia, 1987; Interagency Advisory Commit-
tee on Water Data, 1982; Stewart et al., 2008). This is not
the case in France, where no specific FFA implementation
is officially recommended, let alone prescribed by regula-
tion. While practitioner-oriented documents describing the
main approaches to FFA have been published (Lang et al.,
2007), an extensive comparison of the main FFA implemen-
tations used in operational practice in France remains to be
performed.

1.2 Challenges facing the evaluation and comparison of
FFA approaches

A large number of comparative studies of FFA implemen-
tations have been reported in the research literature (e.g.,
Hosking et al., 1985; Gunasekara and Cunnane, 1992; Kroll
and Stedinger, 1996; GREHYS, 1996; Ouarda et al., 2006;
Meshgi and Khalili, 2009; Sankarasubramanian and Srini-
vasan, 1999). The comparison framework varies from one
study to another, and can be based on Monte Carlo simula-
tions, statistical tests, graphical methods and so on. Bobee
et al. (1993) therefore advocated “a systematic approach to
comparing distributions used in flood frequency analysis”,
which is still not agreed upon to our best knowledge.

In the context of the present paper, where distinct FFA
families are to be compared, the comparison framework can
hardly be based on Monte Carlo simulations. Indeed, this
would require setting up a synthetic experiment to generate
“true” data that can be used by all FFA implementations. En-
suring a “fair” simulation setup that would not advantage a
particular FFA implementation is feasible when similar im-
plementations are considered (e.g., comparing several local
estimation methods for a given distribution). However, it is
more difficult when both local and regional estimation ap-
proaches are considered: how to realistically simulate spa-
tially dependent extremes on a river network? What is a re-
alistic misspecification of the regression model used in re-
gional approaches? Ensuring the fairness of the simulation
setup is even more challenging if continuous simulation ap-
proaches are considered (How to realistically simulate the
non-linearity of the rainfall–runoff relationship? How to sim-
ulate realistic structural errors for the rainfall simulator or the
hydrologic model?).

An alternative to Monte Carlo comparisons is to imple-
ment data-based predictive comparisons, where the estima-
tions from all competing FFA implementations are sim-
ply compared with validation data (Gunasekara and Cun-
nane, 1992; Interagency Advisory Committee on Water Data,
1982). Recently, Renard et al. (2013) proposed a data-based
comparison framework that could be applied to any FFA

implementation. This framework complements (but not re-
places) alternative comparison methods based, for instance,
on Monte Carlo simulations. Most important, this framework
enables the comparison of any FFA implementation belong-
ing to each family presented in Sect. 1.1.

1.3 Objectives of the paper

In this paper we present the results of a nation-wide compar-
ison of the predictive performances of FFA implementations
in order to find the limits of each implementation and, if pos-
sible, recommend the best FFA methodology for the French
rivers. By best methodology we mean best performance of a
particular implementation according to the indices described
later in Sect. 2.3.

The paper is organized as follows. Section 2 presents the
data and methods used in this paper, including the compet-
ing FFA implementations (Sect. 2.2), a summary of the com-
parison framework (Sect. 2.3) and the comparison data set
(Sect. 2.4). Section 3 describes the main results of the com-
parison, and Sect. 4 further discusses them. Conclusions are
drawn in Sect. 5.

2 Data and methods

2.1 Short description of the ExtraFlo project

By their nature and danger, the extreme floods cannot be ob-
served often and thoroughly enough to collect the sample ad-
equate for further statistical analysis. Instead, the probabilis-
tic study of extreme values relies on the analysis of a lim-
ited (in number and space) series of events in time, to infer a
probabilistic behavior of a particular case which is then ex-
trapolated to the whole population of floods. This procedure
encounter certain difficulties:

– How to extrapolate excessively short time series, when
information is generally available on more or less re-
cent events.

– How to set design values for the whole of the territory,
whereas the density of the measurement is inevitably
limited owing to the spatial variability of rainfall and
discharge data.

– How to update our knowledge of extreme events in a
non-stationary context.

The objective of the ExtraFlo project (Extreme Rainfall and
Floods) was to carry out an inter-comparison of the methods
for estimating extreme rainfall and floods used in France, to
obtain a better understanding of their respective fields of ap-
plication. FFA has a wide variety of applications in France:
small return periods (∼ 10 years) are sometimes sufficient for
secondary infrastructures or for disaster declarations. Haz-
ard mapping typically uses 100-year return periods, while
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some civil engineering structures (large dams, nuclear power
plants) may require 103–104 target return periods.

A particular emphasis was placed during the project on
compiling reference data sets (long at-site time series and re-
gional sets) to pinpoint the pros and cons of each approach
with their sensitivity to the increasing information. As a re-
sult of this work methods for estimating extreme values of
floods were developed and improved. Moreover, the project
placed a range of practical tools concerning the management
of flood risk that can be estimated not only according to the
hydrological characteristics of river basins but also on the
basis of available information.

2.2 Competing teams: FFA implementations

Eight implementations that are frequently used in France are
compared in this paper. Note that other approaches are also
used in operational practice, in particular the SCHADEX
semi-continuous simulation approach (Paquet et al., 2006) or
the SPEED method (Cayla, 1995). However they could not
be included in this comparative exercise because they could
not be fully automated and were therefore not suitable for
an application to thousands of sites (see Sect. 2.4). The eight
competing implementations are split according to their esti-
mation scale: purely local, purely regional or mixed local-
regional.

2.2.1 The local league: using at-site runoff data only

The local league contains the following three implementa-
tions:

1. Implementation LOC_GUM, corresponding to the es-
timation of a two-parameter Gumbel distribution us-
ing at-site annual maxima (see Sect. AA for details
on the Gumbel distribution). A Bayesian estimation is
performed, with flat priors (π(θ) ∝ 1) for both the lo-
cation and the scale parameters. Maximum-posterior
values are used as parameter estimates.

2. Implementation LOC_GEV, corresponding to the es-
timation of a three-parameter GEV distribution using
at-site annual maxima (see Sect. AA for details on the
GEV distribution). A Bayesian estimation is also per-
formed, with flat priors (π(θ) ∝ 1) for the location and
the scale parameters, and a Gaussian prior with mean
zero and standard deviation 0.25 for the shape param-
eter.

3. Implementation LOC_SHY is the local version of the
SHYREG method, a continuous simulation approach,
coupling a rainfall generator with a rainfall–runoff
model to estimate flood quantiles. A description of the
various versions of SHYREG can be found in Arnaud
and Lavabre (2002), Aubert (2013) and Organde et
al. (2013).

For the first two implementations, the Gumbel and GEV
distributions are chosen because they are the most widely
used methods in hydrological projects in France (despite
the fact that there is no prescribed distribution officially
recommended for FFA in France). Moreover, preliminary
analyses (not shown) indicated that they performed at least
equally well as other distributions, including Log-Normal,
Pearson III or Log-Pearson III distributions. The choice of
the Bayesian estimation approach is made to facilitate the use
of a unique estimation approach at local, regional and local-
regional scales. Preliminary analyses (Kochanek et al., 2012;
Renard et al., 2013) show that for a given record length, the
impact of the estimation approach (e.g., Bayesian, maximum
likelihood, moments, linear moments) is small compared to
the choice of the parent distribution or the choice of the esti-
mation scale (local, regional or local-regional). The analysis
was carried out for the same record length (N) for the com-
peting implementations (see Sect. 2.4 for details).

Regarding the third implementation, note that LOC_SHY
uses a regionalized version of the rainfall generator, but is
local with respect to discharge data in the sense that the
rainfall–runoff model is estimated with local data. The re-
gionalization of the rainfall generator is based on a data set
comprising 2812 daily rain gauges with at least 20 years of
data over the period 1977–2002 (Arnaud et al., 2008). Re-
gionalization is performed for the three parameters of the
rainfall generator, namely: the average number of storms, the
average storm intensity and the average storm duration. Re-
gionalized parameters are then available on a 1× 1 km grid.
The fact that these parameters represent averages over many
storms (average number, intensity and duration) induces a
much lesser sensitivity to sampling variability than more ex-
treme characteristics (see Carreau et al., 2013).

2.2.2 The regional league: estimation in ungauged
catchments

The regional league contains the following three implemen-
tations:

1. Implementation REG_GUM, corresponding to the re-
gional estimation of a Gumbel distribution by means
of regressions linking its parameters with catchment
characteristics.

2. Implementation REG_GEV, corresponding to the re-
gional estimation of a GEV distribution.

3. Implementation REG_SHY, the fully regionalized ver-
sion of the continuous simulation implementation
SHYREG (Aubert, 2013; Organde et al., 2013).

Section AA1 provides additional details on the regionaliza-
tion procedures for the first two implementations. Again, the
choice of these particular two implementations is based on
preliminary analyses (Cipriani et al., 2012) that are not fully
described here.
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The third implementation REG_SHY uses the same re-
gionalized rainfall generator as implementation LOC_SHY.
However, unlike LOC_SHY, it uses a regionalized version of
the rainfall–runoff model. The details of this regionalization
procedure are given by Organde et al. (2013). In the current
paper, the regionalization procedure is re-implemented based
on the runoff data set used to compare the FFA implementa-
tions (see Sect. 2.4). Since most of the runoff data set cov-
ers the period 1969–2011, the regionalization of the rainfall–
runoff model is based on a period that encompasses the pe-
riod used for regionalizing the rainfall generator (1977–2002,
see Sect. 2.2.1).

2.2.3 The local-regional league: combining at-site data
and regional information

The local-regional league contains the following two imple-
mentations:

1. Implementation L+R_GUM, corresponding to the
local-regional estimation of a Gumbel distribution, us-
ing both local and regional information.

2. Implementation L+R_GEV, corresponding to the
local-regional estimation of a GEV distribution.

The combination of local and regional information is
straightforward in the Bayesian context adopted here: re-
gional estimates are used to specify a prior distribution, while
local data are used to compute the likelihood function (see
Sect. A2 for additional details).

2.3 Referees: stability and reliability indices

The evaluation criteria are based on performance indices
quantifying the reliability and the stability of the FFA imple-
mentations. A complete description of the motivation behind
these performance indices is given in Renard et al. (2013). In
this paper we therefore restrict ourselves to a short presenta-
tion of these indices and their practical use to compare FFA
implementations.

2.3.1 Reliability indices

The reliability indices aim to evaluate the agreement between
the estimated distribution at sitei (whose cumulative distri-
bution function, CDF, is noted̂F (i)) and validation observa-

tions
(

d
(i)
k

)

k=1:n(i)
. Importantly, this requires splitting avail-

able data into calibration and validation subsamples. The
decomposition adopted in this paper will be described in
Sect. 2.4.

The first reliability index was used, e.g., by England et
al. (2003) and Garavaglia et al. (2011), and corresponds to
the CDF of the estimated distribution computed on the largest
validation data. For a given sitei, it is computed as follows:

FF (i) = F̂ (i)(d(i)
max). (1)

If the estimation is reliable (i.e.,̂F (i) = F (i), whereF (i)

denotes the unknown true CDF), it can be shown (Renard
et al., 2013) thatFF(i) is a realization from a Beta distribu-
tion with parameters (n(i); 1): FF(i) ∼ Beta(n(i); 1), whose
CDF FBeta can be written asFBeta(t) = tn

(i)
, 0≤ t ≤ 1. The

FF index focuses on the right tail of the estimated CDF by
using the largest element in the validation sample. The ade-
quacy betweenFF(i) values observed over all validation sites
and their theoretical Beta distributions under the reliability
hypothesis will be assessed using graphical diagnostics and
reliability scores that will be described in Secs. 2.3.3. and
2.3.4.

The second reliability index is based on the number of
exceedances (within the validation sample) of an estimated
T -year quantileq̂(i)

T (e.g., Interagency Advisory Committee
on Water Data, 1982; Gunasekara and Cunnane, 1992; Gar-
avaglia et al., 2011):

N
(i)
T =

n(i)
∑

k=1

1(
q̂

(i)
T ;+∞

)

(

d
(i)
k

)

, where 1A (x) =

{

1 if x ∈ A

0 otherwise
. (2)

Under the reliability assumption
(

q̂
(i)
T = q

(i)
T

)

, N
(i)
T is a

realization from the binomial distribution:

N
(i)
T ∼ Bin

(

n(i),1/T
)

(Renard et al., 2013). TheNT index focuses on reliability for
prescribedT -year quantiles. In this paper, we are going to
analyzeNT =10 andNT =100 values for 10-year and 100-year
floods, respectively.

2.3.2 Stability index

The stability of quantile estimates can be quantified by con-
trasting the values obtained with two different calibration
data setsc1 and c2. The decomposition into two calibra-
tion subsamples adopted in this paper will be described in
Sect. 2.4. We stress that the stability is only a secondary con-
sideration compared to reliability: indeed, a FFA implemen-
tation can be totally unreliable but perfectly stable. Conse-
quently, stability is seen as an additional quality used to fur-
ther discriminate FFA implementations that would have sim-
ilar reliability.

The index SPANT (Garavaglia et al., 2011) used in this
paper is a measure of the span of twoT -year quantiles esti-
mated with distinct calibration data sets. For a given sitei, it
is defined as follows:

SPAN(i)
T = 2

∣

∣

∣
q̂

(i)
T (c1) − q̂

(i)
T (c2)

∣

∣

∣

q̂
(i)
T (c1) + q̂

(i)
T (c2)

. (3)

The FFA implementation whose SPANT is closest to zero
is the most stable.
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Fig. 1.Reliability (FF , N10) and stability (SPAN10, SPAN100) indices for local implementations.

2.3.3 Graphical representations

Reliability

Graphical representation of reliability is based on the com-
parison between the calculated indices and their theoretical
distribution under the reliability assumption. Note that for
both reliability indices, this theoretical distribution depends
on the number of validation observationsn(i), that may vary
from site to site. To circumvent this problem, a probability-
probability plot (pp-plot) representation is adopted: raw in-
dices are transformed into probabilities by applying the
CDF of their theoretical distribution under the reliability hy-
pothesis. Under the reliability hypothesis, the probability-
transformed values are then uniformly distributed between
0 and 1, regardless of the sample sizen(i). It is therefore pos-
sible to plot the probability-transformed values for all sites
against empirical frequencies, yielding reliability pp-plots as
illustrated in Fig. 1. Curves closer to the diagonal correspond
to more reliable FFA implementations.

Note that for theNT index, the theoretical binomial distri-
bution is a discrete distribution. It is therefore necessary to
randomize its probability-transformed values in order to en-
sure that they are uniformly distributed. The randomization
procedure is described in Renard et al. (2013).

Stability

The comparison of stability between competing FFA imple-
mentations is based on comparing the distribution of SPAN(i)

T

over all sitesi = 1 : Nsites, as illustrated in Fig. 1. The FFA
implementation whose SPANT distribution remains the clos-
est to zero is the most stable.

2.3.4 Scores

The graphical representations can be further summarized into
numerical scores that will provide a more synthetic view of
the performances of FFA implementations over the various
performance indices.

For reliability indicesFF andNT , the score is based on
the area between the diagonal line and the reliability curve,
with a normalization ensuring that the score is varying be-
tween 0 (low reliability) and 1 (perfect reliability). For any
probability-transformed indexw, the score can be computed
as

score= 1− 2 · Area(curve,diagonal)=

= 1−
2

Nsite+ 1

Nsite
∑

i=1

∣

∣

∣

∣

w(i) −
i − 0.5

Nsite

∣

∣

∣

∣

. (4)

Analogically, a stability score can be derived based on the
area between they axis and the SPANT curve, normalized to
vary between 0 (low stability) and 1 (perfect stability):

score= 1− 0.5 · Area(curve,y axis)

= 1− 1
2Nsite

Nsite
∑

i=1
SPAN(i)

T .
(5)

2.4 Playground: daily runoff data set

2.4.1 Data set description

Daily runoff series from 1076 gauging stations located
throughout France are used (see Fig. 2). Catchment sizes
range from 10 to 2000 km2. All series have at least 20 years
of data (20–39 years: 535 stations (49.7 %); 40–59 years: 476
stations (44.2 %); 60 years and more: 65 stations (6.1 %)).
The quality-control procedures have been implemented to re-
move stations with measurement problems or stations cor-
responding to heavily regulated catchments. This data set
is therefore an extension of the data set used by Renard et
al. (2008), including updated series (until 2012) and many
more stations.

These 1076 gauging stations are representative of the main
hydrological and climate regimes found in mainland France.
For regime-specific analyses, it is useful to cluster these sta-
tions into homogenous regions. This is achieved by using
the hydroecoregions (HER) defined by Wasson et al. (2004),
as illustrated in Fig. 2. These regions are based on topo-
graphic, geological and climate (precipitations and temper-
ature) maps. Importantly, they do not directly use any runoff
data, and can therefore be defined independently from the
FFA analyses performed here.
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Fig. 2.Location of the gauging stations used in this study.

2.4.2 Reliability and stability decompositions

As explained in Sect. 2.3, the computation of reliability in-
dices requires decomposition of all data set time series into
calibration-validation subsamples. For stability the data sets
are also divided into two subsamples: calibration data set no.
1 (c1) and calibration data set no. 2 (c2). These decompo-
sitions are performed as follows: for reliability, the 593 se-
ries with 20 to 40 years of data are used to calibrate regional
implementations, or the regional part of local-regional im-
plementations. The remaining 483 series (with more than
40 years of data) are further decomposed:

– 20 years are randomly chosen (independently on each
site) to calibrate the local implementations, or the local
part of local-regional implementations.

– All remaining years (at least 20 years) are used as val-
idation data. Importantly, the validation data are there-
fore exactly the same for all implementations.

For stability, two distinct types of decompositions are imple-
mented:

– The type I decomposition focuses on stability with re-
spect to local data: for each of the 483 series with more
than 40 years, 20 years are randomly assigned to thec1
subsample, and 20 other years are randomly assigned
to thec2 subsample. Obviously, purely regional imple-
mentations are insensitive to this decomposition, since
they do not use local data.

– The type II decomposition focuses on stability with
respect to regional data: the 593 series with 20 to

40 years of data are randomly split into two subsam-
ples c1 and c2. Obviously, purely local implementa-
tions are insensitive to this decomposition, since they
do not use regional data.

3 Results

3.1 Comparison of quantile estimates

Before describing the comparison in terms of reliability and
stability, it is of interest to assess how different the various
competing implementations are. To this aim, Fig. 3 compares
the 100-year flood estimated by each implementation with
the one estimated by the implementation LOC_GUM, con-
sidered as the reference in this figure.

Both local implementations LOC_GEV and LOC_SHY
systematically yield larger quantiles in southeastern France
(sometimes exceeding+40 %). Elsewhere in the country,
smaller and larger quantiles are found with no clear spa-
tial pattern for implementation LOC_GEV, while LOC_SHY
quantiles tend to be systematically larger than LOC_GUM
ones.

The local-regional implementation L+R_GUM generally
yields small differences with the reference, suggesting that
for a Gumbel distribution, local and local-regional estima-
tions yield similar estimates. By contrast, the local-regional
implementation L+R_GEV yields markedly higher quantiles
in southeastern France.

All three regional implementations REG_GUM,
REG_GEV and REG_SHY yield marked differences
(both positive and negative) with the reference, but no
distinctive spatial pattern can be observed. This suggests
that the estimation scale (local or regional) has an important
impact on quantile estimates.

3.2 Results for the local league

Figure 1 shows reliability and stability indices for the local
implementations. Amongst them, LOC_SHY clearly outper-
forms its two opponents (LOC_GUM and LOC_GEV): it is
both more reliable (especially for extreme values, indexFF)
and more stable. The poor performance of the locally esti-
mated GEV distribution is worth noting: it is markedly unre-
liable and much less stable than other implementations (es-
pecially for high quantiles). The behavior of theFF curves
near the upper-right corner is noteworthy: it indicates that for
about 20 % of the stations, a flood observed during the valida-
tion period was deemed impossible by LOC_GEV (yielding
FF values equal to one). This is due to errors in estimating
the shape parameter of the GEV distribution, yielding an up-
per bound for the estimated GEV pdf that is exceeded dur-
ing the validation period. Note that this does not imply that
the GEV distribution should be avoided: the problem might
rather be due to its local estimation, as will be further dis-
cussed in Sect. 3.4.
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Fig. 3.Relative differences between 0.99 quantiles.

Fig. 4.Reliability indices for regional implementations.

3.3 Results for the regional league

Figure 4 shows reliability indices for regional implemen-
tations and shows that none of them reach an accept-
able reliability. The continuous simulation implementation
REG_SHY appears more reliable for indexFF, but still
yields unreliable predictions for the 10-year flood, as shown
by indexN10. More detailed analyses (not shown here) sug-
gest that the main reason for such poor performances is the
difficulty in setting up a regression with catchments’ charac-
teristics: the explanatory power of such regressions remains
quite low and result in unreliable predictions at ungauged
sites.

Note that we omitted the results in terms of stability for
the regional implementations. Indeed, as noted in Sect. 2.3.2,
stability is only a secondary consideration (compared with
reliability) and is used only to discriminate implementations
that would be comparably reliable. In this particular case,
reliability is poor for all implementations (see Fig. 4), so we
decided that stability was not worth considering (a stable but
non-reliable implementation being worthless).

3.4 Results for the local-regional league

Figure 5 shows reliability and stability indices for the two
local-regional implementations for Gumbel and GEV distri-
butions. Both implementations yield similar results: the re-
liability is acceptable and stabilities are similar. The use of
a GEV distribution yields slightly more reliable predictions
according to indexFF, at the cost of a slightly lower stability
with respect to regional information (type II). The differences
between the Gumbel and GEV distributions will be further
discussed in Sect. 3.5.

It is important to notice that the local-regional estimation
of a GEV distribution yields acceptable reliability and sta-
bility, which was not the case for purely local or regional
estimation approaches. This is illustrated in Fig. 6, which
compares those three estimation approaches. In terms of re-
liability, implementation L+R_GEV clearly outperforms its
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Fig. 6.Reliability (FF , N10) and stability (SPAN100 – type I, SPAN100 – type II) indices for local, regional and local-regional estimation of
a GEV distribution.

two opponents for both indicesFF andN10. In terms of sta-
bility, implementation L+R_GEV appears much more stable
than both its purely local counterpart (type I stability) and its
purely regional counterpart (Type II stability). These obser-
vations confirm that the GEV distribution is a sensible can-
didate for FFA, but that reliably estimating this distribution
requires using both local and regional information.

3.5 Stratification by region

The results were presented so far at the scale of the whole
country. However, Sect. 3.1 suggested that the differences
between some implementations followed specific regional
patterns. Figure 7 therefore shows reliability indices for
Mediterranean (top, corresponding to regions 6 and 8 in
Fig. 2) and Oceanic (bottom, regions 9, 10, 12 and 13 in
Fig. 2) catchments. For readability, only implementations
LOC_SHY, L+R_GUM and L+R_GEV (which appear to
be the most reliable ones) are presented.

For Mediterranean catchments, the use of a Gumbel distri-
bution (L+R_GUM) consistently yields below-diagonal re-
liability curves, denoting a tendency to underestimate quan-
tiles. On the other hand, both implementations LOC_SHY
and L+R_GEV yield acceptably similar reliability diagnos-
tics. A tendency to slightly over-estimate large quantiles (in-
dicesFF andN100) might be suspected for LOC_SHY.

For Oceanic catchments, all three implementations yield
similar results, suggesting that the evidence for rejecting the
Gumbel distribution is weak in this region. We note however

that using a GEV distribution does not deteriorate reliability
(as long as it is estimated with a local-regional approach),
and might therefore be preferred to the Gumbel distribution
for its larger flexibility.

Lastly, a note of caution is made for this figure regarding
the indicesN10 andN100. It might appear surprising at first
sight that curves are closer from the diagonal forN100 than
for N10. However, this does not suggest that estimates of the
100-year flood are more reliable than estimates of the 10-year
flood. Indeed, while comparing implementations for a given
reliability index makes complete sense, a comparison of reli-
ability indices for a given implementation is not meaningful,
because the power to detect non-reliability strongly varies
from index to index. In this particular case, curves appear
closer from the diagonal forN100 mostly because detecting
failures in the estimation of the 100-year flood is much more
challenging than for the 10-year flood, given the available
sample size.

3.6 Summary for all implementations

Results for all implementations can be summarized by means
of the reliability and stability scores described in Sect. 2.3.4.
Figure 8 shows these scores on a radar plot, which con-
firms that the best overall competitors are LOC_SHY and
L+R_GEV. LOC_SHY yields the highest stability scores,
and the highest reliability scores for indicesFF andN100.
L+R_GEV has a higher score for indexN10, and might
be slightly more reliable than LOC_SHY for Mediterranean
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Fig. 7.Reliability indices for Mediterranean (top) and Oceanic (bottom) catchments.
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Fig. 8. Summary of reliability and stability scores for all imple-
mentations.

catchments. Note that implementation L+R_GUM is not
considered as a finalist because, despite its excellent sta-
bility, it is systematically less reliable than LOC_SHY or
L+R_GEV, and has been shown to be inadequate in the
Mediterranean region (Sect. 3.5).

4 Discussion

4.1 Results for different local sample sizes

The results presented in this paper are conditional on the par-
ticular decompositions that were set up for stability and relia-
bility assessments, and more precisely, on the sample size of
20 years for local data. One may therefore question whether
the main findings of this study would still hold with different
sample sizes.

Figure 9 indicates that the performances of the local-
regional implementation L+R_GEV and of LOC_SHY are
not very sensitive to the local sample size. On the other hand,

the performances of the local implementation LOC_GEV
strongly deteriorate when the local sample size decreases.
This indicates that the general conclusions summarized in
Sect. 3.6 hold even more markedly with short samples.

Unfortunately, evaluating how performances evolve with
larger samples is more challenging within this data-based
comparison framework: indeed, the available series are not
long enough to implement insightful calibration-validation
decompositions with, e.g., 40 years used for calibration. The
performance of local implementations is likely to improve
with largest calibration samples. However, whether or not
this would suffice to bridge the gap with the best imple-
mentations (L+R_GEV and LOC_SHY) remains to be seen.
Monte Carlo experiments suggest that estimation errors can
remain quite large even with “long” series of 40–50 years
(not shown). This suggests that the benefit of complementing
local data with either regional information (L+R_GEV) or
information on the rainfall–runoff relationship (LOC_SHY),
as advocated by Merz and Blöschl (2008a, b) and Viglione et
al. (2013), may well remain significant with larger samples.

4.2 Comparison with literature results

Some results described in this paper have already been partly
reported in the literature. In particular, the difficulty to locally
estimate a GEV distribution with relatively short samples has
been demonstrated through Monte Carlo experiments (e.g.,
Martins and Stedinger, 2000). The data-based comparison
exercise described in this paper indicates that the resulting
estimation errors lead to poor predictive performances that
can also be demonstrated on real data.
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Fig. 9.Reliability (FF , N10) and stability (SPAN100 – type I, SPAN100 – type II) indices for three implementations, using 10 or 20 years of
local data for calibration.

The main original results brought by this study are related
to the comparison between distinct families of FFA imple-
mentations, including two distinct paradigms (estimation of a
pre-specified distribution vs. continuous simulation) and sev-
eral estimation scales (local, regional, local-regional). Such
between-family comparisons are much more scarce in the lit-
erature. As far as we know, there have been no studies that
reported Monte Carlo investigations to compare such distinct
families, which is most probably due to the difficulty in set-
ting up a fair Monte Carlo experiment, as explained in the
introduction. Some authors compared the estimates arising
from distinct families (e.g., Neppel et al., 2007), but they re-
stricted the description to the differences between families,
as opposed to ranking them according to their predictive per-
formances. The evaluation carried out in this paper moves
one step further by assessing and comparing predictive per-
formances, which is necessarily a data-based exercise. For
instance, the fact that the continuous simulation implemen-
tation LOC_SHY yields reliable predictions could not have
been convincingly demonstrated using Monte Carlo simula-
tions only (see discussion in Sect. 2.1).

Another result worth mentioning is the demonstrated inad-
equacy of the Gumbel distribution in Mediterranean catch-
ments. The choice between a light-tailed Gumbel distribu-
tion and a heavy-tailed GEV distribution has been the subject
of important debates in the literature: recently, global analy-
ses were performed by Papalexiou and Koutsoyiannis (2013)
and Serinaldi and Kilsby (2014) to assess this issue for ex-
treme daily precipitations. Overall, at-site estimation sug-
gests a preferentially heavy-tailed behavior of extreme rain-
fall at the global scale. The approach proposed in this pa-
per might complement these analyses by evaluating whether
using a light-tailed distribution leads to some demonstrable
predictive failure in some regions of the world. Moreover, a
joint assessment of the extremal behavior of both precipita-
tion and streamflow at the global scale would also be of great
interest.

4.3 Limitations of the comparison framework

While the comparison framework yielded valuable insights
on the relative merits of distinct implementations, it is still

affected by several limitations that are discussed here. Firstly,
the ability to detect predictive failures for large quantiles is
restricted by the length of available data. With the typical
sample sizes (40–100 years), demonstrating a prediction fail-
ure for a 1000- or 10 000-year quantile (which are of inter-
est for risky structures such as dams or nuclear plants, for
instance) is affected by huge uncertainty (see also Klemeš,
2000 and Serinaldi, 2013). In this paper, we focus on the 10
to 100-year range. We do not consider floods of larger re-
turn period (i.e.,> 100 years), since the data-based compar-
ison framework is not powerful enough to draw conclusions
for such large quantiles. It is therefore unclear whether the
good performances of some implementations (LOC_SHY
and L+R_GEV), as evaluated with limited sample sizes, still
hold for extreme quantiles. On the other hand, the implemen-
tations showing poor performances have no reason to become
highly capable when extrapolated to extreme quantiles, and
can, therefore, be discarded.

A second limitation is related to the graphical nature of the
comparison between implementations. It would be benefi-
cial to implement a more quantitative comparison, e.g., based
on hypothesis testing. For instance, it would be tempting to
add significance limits around the diagonal in reliability plots
(e.g., Fig. 4), as suggested by, e.g., Laio and Tamea (2007)
based on a Kolmogorov–Smirnov test. Unfortunately, this
cannot be done here because the test assumes independent
data, but the values taken by the reliability indices are not
fully independent from site to site (due to the spatial depen-
dence existing between series from nearby sites).

Another limitation is that the comparison framework only
produces global performance diagnostics, computed over a
large number of sites. As a consequence, one should keep
in mind that an implementation with excellent global perfor-
mance may still fail on one or a few particular sites, with-
out such isolated failures being detected by the global per-
formance diagnostics.

Lastly, we stress that the comparison described in this pa-
per was carried out with daily runoff (whose availability is
much better than runoff recorded at a shorter time step). The
good performance of some implementations (LOC_SHY and
L+R_GEV) remains to be confirmed for shorter time steps,
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which are also of primary interest in engineering practice
(e.g., flood peak estimation for flood design).

5 Conclusions

The objective of this paper was to report the results of a
national comparison of the main FFA approaches used in
France. This comparison was performed within a data-based
framework, which enabled a direct assessment of the predic-
tive performances of candidate FFA approaches. The main
conclusions that can be drawn from the work can be summa-
rized in the following points:

1. Two approaches, namely the local version of
SHYREG and the local-regional estimation of a GEV
distribution, seem to provide generally satisfactory re-
sults in terms of reliability and stability. The differ-
ences between the quantiles estimated by these two ap-
proaches are technically moderate.

2. In general, a local-regional estimation approach yields
at least as good performances as its purely local or re-
gional counterpart, and in some cases, it even clearly
outperforms both of them.

3. In the oceanic-influenced catchments, the use of a
Gumbel distribution seems acceptable. Local estimates
yield relatively good performance indices. However
the use of either the Gumbel or the GEV distribution
within the mixed local-regional estimation approach
results in similar or slightly improved reliability and
stability indices.

4. In the Mediterranean area, we would not recommend
using the Gumbel distribution, because it demonstra-
bly underestimates quantiles. However, the local es-
timation of a GEV distribution is not recommended
either, because the difficulty in estimating the shape
parameter results in a clear lack of reliability. There-
fore we recommend using LOC_SHY or local-regional
mixed procedure for estimating the GEV-based quan-
tiles in this area.

5. Estimation of flood quantiles in ungauged catchments
remains a genuine challenge: all competing regional
approaches evaluated in this work lead to a quite low
reliability.

These main results suggest several avenues for future work.
First, improving the purely regional FFA implementations
appears to be a priority, given their quite low reliability. This
requires improving the regression linking model parameters
with catchment descriptors. A first possibility to achieve this
improvement may be to include other descriptors. Alternative
strategies include moving from fixed regions to a region-of-
influence approach (e.g., Burn, 1990; Haddad and Rahman,

2012), or using specialized geostatistical methods to transfer
information along the hydrologic network (e.g., Gottschalk,
1993; Sauquet, 2006; Skøien et al., 2006; Laaha et al., 2014).

In addition, combining several implementations may also
yield further improvement. In particular, combining the best-
performing implementations LOC_SHY and L+R_GEV
would make use of both regional and rainfall information to
complement local discharge data. This would correspond to
the spatial and causal expansion of information recently ad-
vocated by Merz and Blöschl (2008a, b), and implemented in
a Bayesian framework by Viglione et al. (2013).

Appendix A

Local implementations

The PDF and CDF of the Gumbel distribution are

f (x) = 1
λ

exp
(

− x−µ
λ

− exp
(

− x−µ
λ

))

F(x) = exp
[

−exp
(

− x−µ
λ

)]

λ > 0,

(A1)

whereµ andλ are the location and the scale parameters.
The PDF and CDF of the GEV distribution are

f (x) = 1
λ

(

1− ξ(x−µ)
λ

)
1
ξ
−1

exp

(

−
(

1− ξ(x−µ)
λ

)
1
ξ

)

F(x) = exp

(

−
(

1− ξ(x−µ)
λ

)
1
ξ

)

λ > 0, ξ 6= 0, 1− ξ(x−µ)
λ

> 0,

(A2)

whereµ, λ andξ are the location, scale and shape parame-
ters.

Note that three families of distributions can be obtained
depending on the value of the shape distribution: the Frechet
family (ξ < 0, left-bounded distribution), the Weibull family
(ξ > 0, right-bounded distribution) and the Gumbel family
(ξ → 0, unbounded distribution).

A1 Regional implementations

The regional estimation of Gumbel and GEV distributions
uses a regression to link locally estimated parameters with
catchment characteristics. Letθi denote the locally estimated
location or scale parameter at sitei, σi denote its estima-
tion standard deviation (i.e., the posterior standard deviation
in this Bayesian context), andx(1)

i , . . . ,x
(Ncov)
i denote a set

of Ncov catchment characteristics used as covariates. The
regression model for location and scale parameters can be
written as follows:

log(θi) = β0 +

Ncov
∑

j=1

βjx
(j)
i + εi,εi ∼ N(0,

√

σ 2
ε + σ 2

i ). (A3)

For the GEV distribution, an additional regression is
required for the shape parameter. Since no significant

www.nat-hazards-earth-syst-sci.net/14/295/2014/ Nat. Hazards Earth Syst. Sci., 14, 295–308, 2014



306 K. Kochanek et al.: A data-based comparison of flood frequency analysis methods used in France

0 10 20

-0.5

0

0.5

HER 1

station

ξ

0 5

-0.5

0

0.5

HER 2

station

ξ

0 50

-0.5

0

0.5

HER 3

station

ξ

0 20 40

-0.5

0

0.5

HER 4

station

ξ

0 20 40

-0.5

0

0.5

HER 5

station

ξ

0 20

-0.5

0

0.5

HER 6

station

ξ

0 5 10

-0.5

0

0.5

HER 7

station

ξ

0 10 20

-0.5

0

0.5

HER 8

station

ξ

0 50 100

-0.5

0

0.5

HER 9

station

ξ

0 50

-0.5

0

0.5

HER 10

station
ξ

0 20 40

-0.5

0

0.5

HER 11

station

ξ

0 50

-0.5

0

0.5

HER 12

station

ξ

0 20

-0.5

0

0.5

HER 13

station

ξ

Local estimations
(95% intervals)

Regional estimation
(95% interval)

Fig. A1. Comparison of local and regional estimates of the shape parameter of a GEV distribution in each of the 13 hydroecoregions (HER).

relationship with catchment characteristics could be found,
a constant regression is specified as follows:

ξi = β0 + εi,εi ∼ N(0,

√

σ 2
ε + σ 2

i ). (A4)

Catchment characteristics are selected following Cipri-
ani et al. (2012): (i) catchment area; (ii) mean elevation;
(iii) mean 10-year rainfall (as given by Benichou and Le
Breton, 1987); (iv) mean IDPR index (Index of Develop-
ment and Persistence of the River networks (Mardhel et al.,
2004), used as a proxy for the infiltration capacity). More-
over, regressions are estimated separately for each of the hy-
droecoregions shown in Fig. 2. Note that all four predictors
are systematically used for all regions. A Bayesian estima-
tion is used (with flat priors on

(

β0, . . . ,βNcov, log(σε)
)

).
Note that Eq. (A4) effectively assumes that the shape pa-

rameter remains constant in each of the 13 hydroecoregions
shown in Fig. 2. Empirical investigations suggest that this as-
sumption is reasonable. As an illustration, Fig. A1 compares
the local and regional estimates of the shape parameter: given
estimation uncertainties, there is no strong evidence to reject
the hypothesis of a constant shape parameter.

A2 Local-regional implementations

In local-regional implementations, a regional estimation is
first applied to derive a prior distribution. At a given sitei,

the prior distribution of the location parameter is given by
log(µi) ∼ N(µ̂i, σ̂

(µ)
ε ). µ̂i is computed by applying the re-

gression in Eq. (A3), i.e.,̂µi = exp

(

β̂0 +
Ncov
∑

j=1
β̂jx

(j)
i

)

, and

σ̂
(µ)
ε is the estimated standard deviation of regression errors.

Similarly, priors for the scale and shape parameters are given
by

– Scale: log(λi) ∼ N(λ̂i, σ̂
(λ)
ε )

– GEV-only Shape:ξi ∼ N(ξ̂i, σ̂
(ξ)
ε )

At-site data are then used to compute the likelihood, and
the posterior distribution therefore combines local and re-
gional information.
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