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[1] The Tropical Warm Pool–International Cloud Experiment (TWP‐ICE) provided
extensive observational data sets designed to initialize, force, and constrain atmospheric
model simulations. In this first of a two‐part study, precipitation and cloud structures
within nine cloud‐resolving model simulations are compared with scanning radar
reflectivity and satellite infrared brightness temperature observations during an active
monsoon period from 19 to 25 January 2006. Seven of nine simulations overestimate
convective area by 20% or more leading to general overestimation of convective rainfall.
This is balanced by underestimation of stratiform rainfall by 5% to 50% despite
overestimation of stratiform area by up to 65% because of a preponderance of very low
stratiform rain rates in all simulations. All simulations fail to reproduce observed radar
reflectivity distributions above the melting level in convective regions and throughout the
troposphere in stratiform regions. Observed precipitation‐sized ice reaches higher altitudes
than simulated precipitation‐sized ice despite some simulations that predict lower than
observed top‐of‐atmosphere infrared brightness temperatures. For the simulations that
overestimate radar reflectivity aloft, graupel is the cause with one‐moment microphysics
schemes whereas snow is the cause with two‐moment microphysics schemes. Differences
in simulated radar reflectivity are more highly correlated with differences in mass
mean melted diameter (Dm) than differences in ice water content. Dm is largely dependent
on the mass‐dimension relationship and gamma size distribution parameters such as
size intercept (N0) and shape parameter (m). Having variable density, variable N0, or
m greater than zero produces radar reflectivities closest to those observed.
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1. Introduction

[2] Realistic modeling of tropical convection and its cli-
matic effects across a wide range of domain scales is a
foremost objective in current atmospheric research. Cloud‐
resolving models (CRMs) are critical to this objective as
they provide a wealth of information on in‐cloud processes
that cannot be directly measured and are therefore central to
improving parameterizations within larger scale operational

and general circulation models (GCMs). For CRM output to
be wholly utilized, it should be able to realistically repro-
duce statistical distributions of available observations. This
requires accurately simulating convective and mesoscale pre-
cipitation processes. The Tropical Warm Pool–International
Cloud Experiment (TWP‐ICE) [May et al., 2008], conducted
in and around Darwin, Australia in January and February of
2006, produced high quality model forcing and observational
data sets. Using these data, an objective of TWP‐ICE was to
allow comparisons of model simulations with observations
for the purpose of improving model representations of trop-
ical convection.
[3] During the monsoonal wet season, Darwin experiences

active and break periods generally characterized by westerly
oceanic and easterly continental winds, respectively. Active
period convective systems typically exhibit tropical oceanic
characteristics, whereas the break period systems exhibit
more continental characteristics [Keenan and Carbone, 1992;
May et al., 2008]. The TWP‐ICE campaignwas characterized
by active conditions from January 19 through January 25
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followed by an unusual suppressed westerly period through
February 2, a clear period through February 5, and then
break conditions for the rest of the experiment [May et al.,
2008]. The active monsoon is the focus of this study as
this is the regime closest to the tropical oceanic convective
regime that covers a large area of the tropics [Jakob and
Tselioudis, 2003; May et al., 2008].
[4] Past tropical convection studies have focused on

comparing observations such as radar and satellite data to
model simulation output. Such studies have also focused on
field campaigns such as the Tropical Rainfall Measuring
Mission Large‐Scale Biosphere–Atmosphere (TRMM LBA)
[Lang et al., 2007], the Kwajalein Experiment (KWAJEX)
[Blossey et al., 2007; Li et al., 2008;Matsui et al., 2009], and
the South China Sea Monsoon Experiment (SCSMEX)
[Matsui et al., 2009]. Most studies [Blossey et al., 2007; Lang
et al., 2007; Li et al., 2008; Matsui et al., 2009] agree that
simulated radar reflectivity in convective regions is too high
while simulated microwave brightness temperatures are too
low. This is generally attributed to one‐moment microphysics
schemes producing excessive amounts of graupel [Lang
et al., 2007; Li et al., 2008; Matsui et al., 2009] despite
reasonable vertical velocities [Lang et al., 2007; Li et al.,
2008] in convective regions. Less attention has been paid
to stratiform regions, although Blossey et al. [2007] point
out that unrealistically high convective precipitation effi-
ciency likely negatively affects stratiform region properties
in simulations.
[5] Whereas most of the foregoing studies have focused

on multiple simulations and sensitivity tests with a single
model [e.g., Blossey et al., 2007], model intercomparison
studies tend to focus on a small number of simulations per-
formed by many different models with different schemes.
Quite a few such model intercomparison studies have now
been performed through the Global Energy and Water‐Cycle
Experiment (GEWEX) Cloud Systems Study (GCSS) pro-
gram described by Randall et al. [2003]. These include single
column model (SCM) and CRM intercomparison studies
for the Tropical Oceans Global Atmosphere Coupled Ocean‐
AtmosphereResearchExperiment (TOGA‐COARE) [Moncrieff
et al., 1997; Redelsperger et al., 2000; Bechtold et al., 2000],
multiple studies over the Atmospheric Radiation Measure-
ment (ARM) Climate Research Facility (ACRF) Southern
Great Plains (SGP) site [Ghan et al., 2000;Xu et al., 2002;Xie
et al., 2002, 2005], and studies over tropical land [Grabowski
et al., 2006; Petch et al., 2007;Willett et al., 2008]. Although
there have been specific focus areas in each of these studies,
they share a common goal of improving climate prediction.
Since SCMs and CRMs are valuable tools in guiding rep-
resentation of tropical convection and its effects in GCMs,
climate modeling skill is improved when SCMs and CRMs
provide more realistic output.
[6] The TWP‐ICE CRM intercomparison study [Fridlind

et al., 2010] adds to this list of model intercomparison
studies and is one of four such TWP‐ICE studies; the others
use SCMs, limited‐area models (LAMs, with open boundary
conditions and nested domains), and GCMs run in opera-
tional forecasting mode. As with previous studies, the TWP‐
ICE intercomparison focuses on comparing domain wide
observed and simulated properties such as precipitation rate,
thermodynamic processes, and the radiation budget (A. M.
Fridlind et al., manuscript in preparation, 2011). Several

studies have already used TWP‐ICE data to evaluate various
SCM, CRM, and LAM simulations. Foci have included
updraft properties and entrainment rates [Wang and Liu,
2009; Wu et al., 2009; Zhang, 2009; Del Genio and Wu,
2010], ice microphysics [Wang et al., 2009], and precipita-
tion rates [Wapler et al., 2010].
[7] The focus of part 1 of this study is establishing dif-

ferences between simulated and observed precipitation and
cloud top structures. For precipitation, this analysis is per-
formed separately on convective and stratiform regions.
Dynamics are profoundly different in each region [Houze,
1997], associated with distinct differences in the micro-
physical growth processes [Houghton, 1968; Houze, 1997]
and vertical distribution of diabatic heating [Houze, 1982,
1989, 1997; Johnson, 1984] in each region. Part II of this
study compares additional simulated and observed dynam-
ical and microphysical properties with the goal of explaining
structural differences established within part I. Whereas part I
focuses on convective and stratiform regions independently,
part II will also examine the connection between them. It is
well established that stratiform regions in the tropics would
not exist without ice advection from convective regions [Smull
and Houze, 1985; Rutledge and Houze, 1987; Biggerstaff and
Houze, 1991]. Therefore, model biases in convective prop-
erties can easily lead to model biases in stratiform regions.
[8] While bin microphysics schemes have become more

commonplace for research applications, bulk schemes remain
the workhorse for most applications because their greater
computational efficiency allows simulations on larger spatial
scales and longer time scales. In this study, nine different
simulations from four different models employing bulk
schemes of varying complexity are compared with observa-
tions using 3‐hourly observations and output from the simu-
lations. By virtue of the use of several different dynamics
and microphysics schemes, a wide range of results is to be
expected, with differences between models and observations
dependent on the diagnostic being compared. Exploring
causes for these differences provides a pathway to improving
CRM parameterizations and the veracity of output used for
GCM parameterization development. It is widely known that
GCMs are hindered by inadequate representation of tropical
cloud systems, their thermodynamic and radiative impacts,
and their relationship to environmental properties [Del Genio
and Kovari, 2002; Neale and Slingo, 2003; Stephens, 2005;
Randall et al., 2007]. Consequently, it is pertinent to deter-
mine if CRM representation of tropical convective systems is
accurate. The remaining portion of the paper is separated into
five sections. Model simulations are described in section 2
and observations in section 3. Results are presented in
section 4 with discussion in section 5, and conclusions in
section 6.

2. Models

[9] The configurations of the nine model simulations (all
3D) are given in Table 1. The four dynamics models used are
the Distributed Hydrodynamic‐Aerosol‐Radiation Model
Application (DHARMA) [Stevens et al., 2002; Ackerman
et al., 2000], the UK Met Office Large Eddy Model (UKMO)
[Shutts and Gray, 1994; Petch and Gray, 2001], theMeso‐NH
Atmospheric Simulation System (MESONH) [Lafore et al.,
1998], and the System for Atmospheric Modeling (SAM)
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[Khairoutdinov and Randall, 2003]. Four of the nine simu-
lations use one‐moment microphysical schemes and the
others use different forms of two‐moment schemes. If the
number concentration of a hydrometeor species is predicted,
it is shown by a letter in parentheses in the Microphysics
column of Table 1. Two of the nine simulations are referred to
as sensitivity runs (ending in ‘‐S’) whereas the others are
referred to as baseline runs. A sensitivity simulation uses 6 h
nudging of domain‐averaged potential temperature and water
vapor at full strength above 1 km and at a strength that lin-
early decreases to zero at 0.5 km, whereas a baseline simu-
lation is nudged at full strength only above 16 km and at a
strength that linearly decreases to zero at 15 km. By nudging
the mean profile to observations, deviations from the mean
are preserved. The sensitivity simulations give an idea of
accumulating error associated with long‐term application of
the forcing.
[10] TwoDHARMA simulations, one baseline (DHARMA‐

B) and one sensitivity (DHARMA‐S), use a one‐moment
scheme that predicts the mass mixing ratios of four species:
cloud water, rain, graupel, and a mixed category of cloud ice
and snow [Grabowski, 1999]. Three UKMO baseline simu-
lations include a one‐moment run (UKMO‐1) and two different
two‐moment runs (UKMO‐2, UKMO‐2M). All simulations
predict the mass mixing ratios of cloud water, rain, graupel,
snow, and cloud ice. UKMO‐1 additionally predicts the
number concentration of cloud ice; however a separate
diagnostic concentration derived fromMeyers et al. [1992] is
used for calculations in this study. UKMO‐2 also predicts the
number concentrations of snow and graupel, and UKMO‐2M
predicts the number concentrations of cloud ice, snow,
graupel, and rain using the scheme of Morrison et al. [2009]
modified to use fixed cloud water concentration. The one‐
moment MESONH simulation (MESONH‐1) predicts the
mass mixing ratios of cloud water, rain, graupel, snow, and
cloud ice [Pinty and Jabouille, 1998], while the two‐moment
simulation (MESONH‐2) additionally predicts the number
concentrations of cloud ice and cloud water [Pinty, 2002].
Last, there is one baseline (SAM‐B) and one sensitivity
(SAM‐S) SAM simulation, both of which incorporate two‐
moment microphysics and predict the mass mixing ratio and
number concentration of cloud water, rain, cloud ice, graupel,
and snow [Morrison et al., 2009]. Each simulation is
represented by its own symbol in figures, with sensitivity
simulations having open symbols and baseline simulations
having filled symbols (see Table 1).

[11] Table 2 shows the advection, turbulence, surface flux,
and radiation schemes used for each model. All models
solve the anelastic equations and use advection schemes
shown in the ‘Advection’ column of Table 2. Turbulence
schemes use either a Smagorinsky‐Lilly model [Lilly, 1967;
Deardorff, 1970], a 1.5‐order closure [Cuxart et al., 2000],
or an option of the two. Surface flux schemes for DHARMA
and UKMO are based off of Monin‐Obukhov similarity
theory [Monin and Obukhov, 1954], whereas MESONH uses
bulk iterative Exchange Coefficients from Unified Multi-
Campaigns Estimates (ECUME) [Weill et al., 2003; Belamari,
2005] and SAM uses the scheme in the National Center for
Atmospheric ResearchCommunity ClimateModel version 3.5
[Collins et al., 1997]. Radiation schemes use fast radiative
transfer calculations by the methods shown in the Radiation
column of Table 2.
[12] The model specification is described in detail by

Fridlind et al. [2010]. All simulations are run for 16 days
starting at 0000 UT 18 January 2006 with 36 h allowed for
spin‐up. The pentagonal forcing domain defined by the
radiosonde launch locations during TWP‐ICE, shown in
Figure 1, is approximately equivalent to a 176 km by 176 km
square domain. As shown in Table 1, a few simulations have
larger domains, and where necessary, statistics from these
runs are normalized. Large‐scale forcing for the models is 3 h
domain‐mean profiles defined using a constrained variational
objective analysis on observational data, as described by Xie
et al. [2010]. This forcing is applied continuously at full
strength below 15 km and at a strength that linearly decreases
to zero at 16 km because the profiles are poorly constrained by
observations at higher altitudes [Fridlind et al., 2010]. Mean
horizontal winds are nudged to the observed mean continu-
ously with a 2 h time scale. Themodel horizontal resolution is
approximately 917 m for the DHARMA and UKMO simu-
lations and 1000 m for all other simulations. Vertical reso-
lution varies significantly between different simulations with
spacing as fine as 100 m and as coarse as 500 m with as many
as 102 levels (MESONH) and as few as 50 levels (UKMO).
All simulations have periodic lateral boundary conditions and
an oceanic lower boundary with a constant sea surface tem-
perature of 29°C. The lower boundary includes a surface
albedo that is fixed at 0.07, interactive surface fluxes, and
interactive diurnal radiation.
[13] Several variables such as radar reflectivity and 10.8 mm

satellite infrared (IR) brightness temperature (Tb) are cal-
culated from model output for comparison with observed

Table 1. The Configurations of the Nine Model Simulations Including the Symbols Used in the Figuresa

Simulation

Model Simulation Configurations

Symbol Domain Dx Dz Microphysics

DHARMA‐B Solid diamond (176 km)2 917 m 100–250 m one‐moment
DHARMA‐S Open diamond (176 km)2 917 m 100–250 m one‐moment
UKMO‐1 Right‐pointing triangle (177 km)2 917 m 225–500 m two‐moment (i)
UKMO‐2 Left‐pointing triangle (177 km)2 917 m 225–500 m two‐moment (i, g, s)
UKMO‐2M Square (177 km)2 917 m 225–500 m two‐moment (i, r, g, s)
MESONH‐1 Up‐pointing triangle (192 km)2 1000 m 100–250 m one‐moment
MESONH‐2 Down‐pointing triangle (192 km)2 1000 m 100–250 m two‐moment (i, w)
SAM‐B Solid circle (192 km)2 1000 m 100–400 m two‐moment (i, w, r, g, s)
SAM‐S Open circle (192 km)2 1000 m 100–400 m two‐moment (i, w, r, g, s)

aBaseline simulations are represented by filled symbols and sensitivity simulations are represented by open symbols. If a simulation has two‐moment
species, then they are indicated in parentheses: I, cloud ice; w, cloud water; r, rain; g, graupel; and s, snow.
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variables. Observations from a 5.5 cm C band radar are used
in this study, which puts precipitation‐sized particles for
oceanic tropical convection in the Rayleigh scattering
regime. Therefore, simulated radar reflectivity is calculated
by integrating the sixth moment of the hydrometeor melted
equivalent diameter size distributions. For cloud ice, snow,
and graupel, a dielectric factor of 0.208/0.93 is used [Smith,
1984]. Model rain rates are calculated at 2.5 km altitude by
multiplying rain water content by the mass‐weighted mean
terminal fall speed. Volumetric rainfall is then computed by
accumulating the rain rates over the domain at a given time
step.
[14] Satellite radiances are simulated with the Joint Center

for Satellite Data Assimilation (JCSDA) Community Radi-
ative Transfer Model (CRTM) [Weng et al., 2005; Han et al.,
2006] which takes profiles of temperature, water vapor,
hydrometeor effective radii, and hydrometeor water contents
as inputs. Other atmospheric constituents are defined with a
built in climatological tropical atmosphere and a sea surface
with constant temperature of 29°C is used. The CRTM
simulates IR and microwave brightness temperatures for
specific satellite sensors, including the 10.8 mm IR channel
of the Multifunctional Transport Satellite (MTSAT). This
radiative transfer model assumes a plane parallel atmosphere
and uses Mie lookup tables for hydrometeor scattering. The
radiative transfer equation is solved using advanced doubling
and adding [Liu and Weng, 2006]. Based on the location of
Darwin with respect to the geostationary satellite, a zenith
angle of 17.8° is used for all model grid points.
[15] Chen et al. [2008] showed that model error was

primarily attributed to uncertainty in observational input to
the CRTM, cloud inhomogeneity, and assumed ice crystal
habit. Clear sky bias was only 0.1 K and error attributable

to radiative transfer solver assumptions is very small. Our
study does not have errors associated with input and cloud
inhomogeneity because CRM output, not observations, is
used as input to the CRTM. This leaves uncertainty resulting
from assumed ice crystal habit.Huang et al. [2004] compared
infrared Tb differences between assumed hexagonal ice
crystals and assumed spherical ice crystals. The largest dif-
ferences of ∼2 K were found for small particle sizes (10 mm)

Table 2. Advection, Turbulence, Surface Flux, and Radiation Schemes Used in the Four Modelsa

Model

Model Schemes

Advection Turbulence Surface Flux Radiation

DHARMA Second‐order forward
in time with third‐order
upwinding advection

[Stevens and Bretherton, 1996]

Smagorinsky‐Lilly Monin‐Obukhov
similarity theory

Two‐stream
with equivalent spheres
[Toon et al., 1989]

MESONH Fourth‐order forward
in time with piecewise

parabolic method advection
[Colella and Woodward, 1984]

1.5‐order closure
[Cuxart et al., 2000]

Bulk iterative
Exchange Coefficients

from Unified MultiCampaigns
Estimates (ECUME)
[Belamari, 2005]

Rapid Radiative
Transfer Model

[Mlawer et al., 1997]
as used in the

European Centre for
Medium‐Range

Weather Forecasting
[Gregory et al., 2000]

UKMO Leapfrog scheme with
a Robert‐Asselin

time filter; momentum
advection is by

Piacsek and Williams [1970];
Monotonic scalar
advection is by

Leonard et al. [1993]

Smagorinsky‐Lilly Monin‐Obukhov
similarity theory

Edwards‐Slingo
[Edwards and Slingo, 1996]

SAM Third‐order
Adams‐Bashforth with
variable time stepping,
second‐order momentum
advection and monotonic

positive‐definite scalar advection
[Smolarkiewicz and Grabowski, 1990]

Smagorinsky‐type
or 1.5‐order

closure dependent on the
turbulent kinetic energy

NCAR Community
Climate Model version 3.5

[Collins et al., 1997]

NCAR Community
Climate Model (CCM3)
[Kiehl et al., 1998]

aAll models solve the equations of motion using the anelastic approximation.

Figure 1. The five sites shown with triangles define the
TWP‐ICE pentagonal domain. Each site took 3‐hourly
soundings. The location of the CPOL radar used for observed
radar reflectivity is also shown on the map as a black circle.
The 150 km CPOL range ring is shown with a dashed line.
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and low optical depths (0.5). The vast majority of CRM
columns have larger optical thicknesses and effective sizes
than 0.5 and 14 mm, respectively, and because of the large
sample size, simulated IR Tb errors should be within ±2 K.
[16] Additional error may be introduced into MESONH

simulated brightness temperatures due to inconsistencies
between CRM assumed snow properties and CRTM assumed
snow properties. The CRTM assumes generalized gamma
distributions with constant bulk densities for each hydrome-
teor species. The density of snow in MESONH varies greatly
with size. At diameters less than 200 mm, the density of snow
in MESONH is about 900 kg/m3, the same as cloud ice,
whereas the CRTM assumes 100 kg/m3. For this reason,
MESONH snowwater contents and effective radii are included
in the cloud ice input to the CRTM to minimize error.

3. Observations

[17] A central source of observational data is the C band
polarimetric scanning radar (CPOL) described in detail by
Keenan et al. [1998] and located at Gunn Point about 30 km
northeast of Darwin. CPOL provides three‐dimensional
radar reflectivity at 10 min resolution. The radar reflectivity
is interpolated onto a 2.5 km horizontal and 0.5 km vertical
grid. Reflectivity uncertainty is estimated to be 1 dBZ
(P. May, personal communication, 2010). Rain rates are
calculated using a Z‐R relationship for low rain rates, but
make use of differential reflectivity (ZDR) and specific dif-
ferential phase (KDP) for higher rain rates which brings down
the uncertainty at higher rain rates. Uncertainty ranges from
about 100% (e.g., 1 mm h−1 represents a range of 0.5 to 2 mm
h−1) for the lowest rain rates to 25% for rain rates of 10 mm
h−1 or more (P. May, personal communication, 2010). The
rain rates are calculated at a 2.5 km height due to radar beam
height restrictions at far ranges, and these are the rain rates
that went into the model forcing.
[18] Because the sensitivity of the CPOL radar is approx-

imately 0 dBZ at a 150 km range and clutter was found to be
an issue around 0 dBZ, comparisons with simulations are
limited to reflectivities of 5 dBZ or greater. Hence, much of
the nonprecipitating cloud information is not captured. The
10.8 mm channel on the MTSAT geostationary satellite pro-
vides complementary information on cloud structure revealed
by smaller particles, such as those classified as cloud ice in
the model microphysics schemes. Clouds interact with IR
radiation at this wavelength far more effectively than the rest
of the atmosphere, and for optically thick clouds, the 10.8 mm
brightness temperature (Tb) gives an approximation of cloud
top temperature. The effective resolution of theMTSAT pixel
level data is about 5.17 km in the TWP‐ICE domain. By
comparing simulated top‐of‐atmosphere 10.8 mm brightness
temperatures directly to observed top‐of‐atmosphere 10.8 mm
brightness temperatures, multistep retrieval algorithms that
introduce further errors are avoided.

4. Results

4.1. Approach

[19] Because the models in this study assume a lower
oceanic boundary, only the active and suppressed periods
were simulated. These are periods in which the air mass in
place was more oceanic in nature than continental as it is

during the break period. All statistical results compare
3‐hourly model output and observations for the 6 day active
monsoon period spanning 12Z January 19 to 12Z January 25.
For comparisons with both radar and satellite data, model
output was degraded in horizontal resolution to 2.5 km and
5.17 km, respectively, while conserving radar reflectivity
factor and IR Tb. In addition, because the models are forced
by a finite pentagonal domain defined by five sounding
stations, the observational data is limited to that domain for
comparisons.
[20] Model output and observations are compared for

convective and stratiform regions separately because of the
fundamentally different radar reflectivity structure in each
region [Houze, 1997] owing to distinctly different dynamical
and microphysical processes. This allows radar reflectivity
to be used as a separator of the two regions. The separation
is performed using a texture algorithm on 2.5 km altitude
horizontal radar reflectivity following Steiner et al. [1995].
Because CPOL sensitivity is limited to radar reflectivities
greater than approximately 0 dBZ, all grid points in both
models and observations that have a radar reflectivity less
than 0 dBZ are set to 0 dBZ for the application of Steiner
et al.’s [1995] algorithm. For comparisons between models
and observations, only radar reflectivities greater than or
equal to 5 dBZ are considered to filter out clutter. Every
compared variable except for IR Tb is separated into con-
vective and stratiform components.

4.2. Rainfall

[21] Table 3 shows that the models come very close to
reproducing the observed mean total volumetric rainfall, not
surprisingly since observed rainfall is an influential input to
model forcing (see Xie et al. [2010]). All simulations except
for MESONH‐2 and SAM‐S are within 10% of observa-
tions. This does not mean, however, that mean rain rates and
precipitating area are close to observed. In fact, as shown in
Tables 3 and 4, all baseline simulations underestimate mean
rain rate by more than 15% and overestimate the precipi-
tating area by 35% or greater. The sensitivity simulations are
closer to observed precipitating area and mean rain rates.
When rainfall is split into convective and stratiform com-
ponents, several common patterns emerge.
4.2.1. Convective Regions
[22] Figure 2b shows that the time series of convective

rainfall in most simulations follows observations closely.
Table 3 shows that most model results are either close to or
somewhat higher than the observed convective rainfall.
UKMO‐1, UKMO‐2, MESONH‐1, and SAM‐S all produce
convective rainfall within 10% of that observed. DHARMA‐B,
UKMO‐2M and SAM‐B overestimate convective rainfall by
twice that, although still within observational uncertainty.
There are two simulations beyond observational uncertainty.
MESONH‐2 underpredicts convective rainfall by 42% and
DHARMA‐S overpredicts it by 35%.
[23] Convective rainfall is equal to convective area multi-

plied by convective rain rate. Figure 2a shows that most
simulations reproduce the temporal variability of convective
area correctly but overestimate convective area during both
the peak and decay of precipitation events. Mean convective
area, expressed as a fraction of the domain, is shown in
Table 4. Five simulations (DHARMA‐B, DHARMA‐S,
UKMO‐2M, MESONH‐1, and SAM‐B) overestimate mean
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convective area by more than 50%. Only two simulations
(UKMO‐1 and MESONH‐2) are within 10% of observa-
tions. Table 5 shows that UKMO‐1 and UKMO‐2 pro-
duce mean convective rain rates within 10% of observed.
DHARMA‐B and DHARMA‐S underestimate mean con-
vective rain rate by 22% and 15%, respectively. The other
simulations underestimate mean convective rain rate by 25%
or less, with only MESONH‐2 well beyond the range of
observational uncertainty.
[24] The normalized cumulative distribution of rain rate is

shown in Figure 3a with the rain rate cumulative contribu-
tion to convective rainfall in Figure 3b. The median (50th
percentile) convective rain rate in observations is approxi-
mately 10 mm h−1 with a lower bound of 8.5 mm h−1

including observational uncertainty. The median ranges from
about 5.5 mm hr−1 for a few simulations to 9.5 mm h−1 for
UKMO‐1 and UKMO‐2. This excess of relatively small to
moderate convective rain rates in all but the UKMO‐1 and
UKMO‐2 simulations does not lead to underestimated con-
vective rainfall because of high convective area. Figure 3b
shows that these smaller rain rates contribute more to con-
vective rainfall than in observations, but so do very high rain

Table 3. The Mean Rainfall for All Precipitating Regions, Convective Regions, and Stratiform Regionsa

Volumetric Rainfall

All Convective Stratiform

Mean
Difference

(%) Mean
Difference

(%) Mean
Difference

(%)

Observed 33.36 (23.66–48.51) ‐ 20.68 (16.19–26.59) ‐ 12.68 (7.48–21.92) ‐
DHARMA‐B 35.66 +7 24.66 +19 11.00 −13
DHARMA‐S 35.95 +8 27.90 +35 8.05 −37
UKMO‐1 35.26 +6 23.20 +12 12.06 −5
UKMO‐2 36.65 +10 24.79 +20 11.85 −7
UKMO‐2M 34.92 +5 25.98 +26 8.93 −30
MESONH‐1 33.11 −1 23.79 +15 9.33 −26
MESONH‐2 20.52 −38 11.96 −42 8.55 −33
SAM‐B 35.50 +6 26.12 +26 9.37 −26
SAM‐S 27.41 −18 21.14 +2 6.27 −51

aPrecipitation is defined as any radar reflectivity echoes greater than or equal to 5 dBZ at a height of 2.5 km. All precipitation is defined as either
convective or stratiform following Steiner et al. [1995]. The percentage difference between each model simulation and observations is also shown.
The mean rainfalls in parentheses show the lower and upper bounds with observational error taken into account. Rainfall has units of 103 mm h−1 km2.

Table 4. TheMean Domain Fraction Covered by Any Precipitation,
Convective Precipitation, and Stratiform Precipitationa

Precipitating Area

All Convective Stratiform

Mean
Difference

(%) Mean
Difference

(%) Mean
Difference

(%)

Observed 0.363 ‐ 0.044 ‐ 0.319 ‐
DHARMA‐B 0.491 +35 0.068 +55 0.423 +33
DHARMA‐S 0.379 +2 0.071 +61 0.308 −3
UKMO‐1 0.507 +40 0.047 +7 0.460 +44
UKMO‐2 0.496 +37 0.053 +20 0.443 +39
UKMO‐2M 0.517 +42 0.073 +66 0.444 +39
MESONH‐1 0.521 +44 0.068 +55 0.453 +42
MESONH‐2 0.521 +44 0.042 −5 0.479 +50
SAM‐B 0.598 +65 0.072 +64 0.526 +65
SAM‐S 0.360 −1 0.057 +30 0.303 −5

aPrecipitation is defined as any radar reflectivity echoes greater than or
equal to 5 dBZ at a height of 2.5 km. All precipitation is defined as
either convective or stratiform following Steiner et al. [1995]. The per-
centage difference between each model simulation and observations is also
shown.

Figure 2. (a) The time series of convective area with model
lines in gray and symbols (see Table 1). The thick black line
represents observations derived from the CPOL radar.
(b) The time series of convective volumetric rainfall at 2.5 km
with units of 1 × 10−4 mm h−1 km2.
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rates. Therefore, a larger range of rain rates contributes
significantly to overall convective rainfall in simulations
than in observations.
4.2.2. Stratiform Regions
[25] In contrast to convective rainfall, all simulations

underestimate stratiform rainfall as shown in Figure 4b and
Table 3. Despite a reasonable representation of mesoscale
precipitation event timing, the time series clearly shows
every model underestimating the three largest peaks in strati-
form rainfall. When accumulated, DHARMA‐B, UKMO‐1,
and UKMO‐2 are closest to the observed stratiform rainfall of
12.68 × 103 mm h−1 km2 and are also the only simulations
within 15% of observations. All of the other simulations
underestimate stratiform rainfall by over 25%, but of those,
SAM‐S is the only one technically beyond observational
uncertainty.
[26] Despite the underestimation of stratiform rainfall, all

baseline simulations overestimatemean stratiform area by 33%
to 65%. This is pronounced in the time series in Figure 4a.
Only the sensitivity simulations are close to the observed

mean domain fraction of 0.312, as shown in Table 4. The
baseline simulations range from 0.423 (DHARMA‐B) to
0.526 (SAM‐B). Despite the overestimation of mean strati-
form area, mean stratiform rain rates shown in Table 5 are
far less than observed. Only DHARMA‐B, DHARMA‐S,
UKMO‐1, and UKMO‐2 are within observational uncer-
tainty, underestimating the mean stratiform rain rate by about
30–40%. All other simulations are about 50% or more below
the observed mean stratiform rain rate.
[27] The normalized cumulative distribution for stratiform

rain rates is shown in Figure 5a with the rain rate cumulative
contribution to stratiform rainfall in Figure 5b. The median
observed rain rate is 0.45 mm h−1. At this percentile, models
range from 0.15 mm h−1 for SAM‐B to 0.45 mm h−1 for the
DHARMA simulations. Figure 5b shows that these small
rain rates do not contribute much to the observed stratiform
rainfall. Half of observed stratiform rainfall comes from rain
rates higher than 3.2 mm h−1. For all simulations except for
UKMO‐1 and UKMO‐2, 25% or less of stratiform rainfall
comes from rain rates over 3.2 mm h−1. At higher percentiles,

Table 5. The Mean Rain Rate for All Precipitating Regions, Convective Regions, and Stratiform Regionsa

Rain Rate

All Convective Stratiform

Mean
Difference

(%) Mean
Difference

(%) Mean
Difference

(%)

Observed 2.95 (2.09–4.29) ‐ 15.14 (11.85–19.47) ‐ 1.27 (0.75–2.20) ‐
DHARMA‐B 2.37 −20 11.86 −22 0.85 −33
DHARMA‐S 3.10 +5 12.84 −15 0.85 −33
UKMO‐1 2.25 −24 15.98 +6 0.85 −33
UKMO‐2 2.39 −19 15.17 0 0.87 −31
UKMO‐2M 2.19 −26 11.57 −24 0.65 −49
MESONH‐1 2.10 −29 11.58 −24 0.68 −46
MESONH‐2 1.30 −56 9.46 −38 0.59 −54
SAM‐B 1.96 −34 11.99 −21 0.59 −54
SAM‐S 2.51 −15 12.15 −20 0.68 −46

aPrecipitation is defined as any radar reflectivity echoes greater than or equal to 5 dBZ at a height of 2.5 km. All precipitation is defined as either
convective or stratiform following Steiner et al. [1995]. The percentage difference between each model simulation and observations is also shown.
The mean rain rates in parentheses show the lower and upper bounds with observational error taken into account. Rain rate has units of mm h−1.

Figure 3. (a) The 2.5 km convective rain rate normalized cumulative distribution, with models repre-
sented by symbols (see Table 1) and observations represented by the thick black line. Thin black lines
show the observational error bounds. (b) The cumulative contribution of convective rain rates to total
convective rainfall. Observations are derived from the CPOL radar.
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observed stratiform rain rates are much higher than all sim-
ulated rain rates as most simulations fall below the lower
bound of observational uncertainty. Figures 4 and 5 together
indicate that underestimation of stratiform rainfall is due
to underestimation of stratiform rain rates rather than by
underestimation of stratiform area.

4.3. Radar Reflectivity Structure

[28] As shown in Figures 2 and 4, the active monsoon
period is characterized by several significant mesoscale
rainfall events separated by periods of little rainfall. Rep-
resentative horizontal plan views of the radar reflectivity
field for a typical monsoonal precipitation event at 0300 UTC
20 January 2006 are shown in Figures 6 and 7 at altitudes of
2.5 and 7.5 km, respectively, representing levels respec-
tively dominated by rain and ice. Structural differences
between the different model simulations and observations
are evident in the plan views.

[29] As will be shown in the comprehensive statistics that
follow, there are systematic differences in simulated radar
reflectivity and these are evident in the representative
2.5 km plan views. The three UKMO simulations have less
small scale variability than the other simulations. The two
SAM simulations have the broadest convective area with
strong stratiform echoes, while the MESONH simulations
produce less convective area than SAM with weaker trailing
stratiform regions. Last, the DHARMA simulations produce
more cellular convection embedded in weaker stratiform
precipitation. Differences between baseline and sensitivity
simulations are also noticeable as both sensitivity simula-
tions produce noticeably higher convective radar reflectivity
aloft and less stratiform area than their respective baseline
simulations. Different microphysics schemes within the same
model can produce very different results as well. For exam-
ple, MESONH‐2 has much less convective area relative to
MESONH‐1 and UKMO‐2M produces a stratiform region
with much higher radar reflectivity than the other two UKMO
simulations.
[30] Systematic differences between models are also evi-

dent above the melting level at 7.5 km in Figure 7. MESONH
is the only model with convective radar reflectivity low
enough to be close to that observed. UKMO‐2 is second
closest to observations. All other simulations produce con-
vective radar reflectivities aloft that are too high. Statistics
clearly show that these differences are representative of the
6 day monsoon period in the next section. DHARMA‐B,
UKMO‐1, and UKMO‐2M produce small convective cores
with high reflectivities, whereas DHARMA‐S and the SAM
simulations produce larger regions of high reflectivity. For
stratiform regions, UKMO‐2 is closest to observations. The
other UKMO simulations and SAM simulations overestimate
stratiform radar reflectivity. The SAM simulations produce
the largest areas over 30 dBZ, something that is rare in
observations at this level. The other two models, MESONH
and DHARMA, do not produce extensive stratiform echoes
that extend high enough. Differences evident in these snap-
shots are representative of differences throughout the
active monsoon period, as discussed next.
4.3.1. Convective Regions
[31] To compare radar reflectivity for the entire 6 day

active monsoon period, histograms at the 2.5 km and 7.5 km
height levels are shown in Figures 8 and 9, respectively.
These levels respectively represent the rain and ice regions
as characteristic temperature for 2.5 km is approximately
13°C and for 7.5 km it is −13°C. All models reproduce the
peak in samples between 35 and 40 dBZ at the 2.5 km
height level seen in Figure 8, although all but two of the
simulations (UKMO‐1 and MESONH‐2) have significantly
higher peaks and wider distributions than observed. Simu-
lations using the Morrison microphysics scheme (SAM‐B,
SAM‐S, and UKMO‐2M) also produce much higher peaks
than the other model simulations. That the simulations
reproduce the peaked distribution is not all that surprising
because all of the microphysics schemes assume exponential
distributions for rain. At 7.5 km (Figure 9a) the observed
peak in samples drops to 20 dBZ, whereas the models fail to
represent this distinct and almost symmetric peak. All simu-
lations produce too many samples at reflectivities greater than
30 dBZ. The simulations employing two‐moment schemes
have more overall samples and more peaked distributions

Figure 4. (a) The time series of stratiform area, with mod-
els represented by symbols (see Table 1). The thick black
line represents observations derived from the CPOL radar.
(b) The time series of stratiform volumetric rainfall at 2.5 km
with units of 1 × 10−4 mm h−1 km2.
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than the simulations employing one‐moment schemes. This
is due to differences in graupel and snow between the two
scheme types. The simulated radar reflectivity due to grau-
pel alone is shown in Figure 9b and due to snow alone in
Figure 9c. Figures 9b and 9c clearly show that graupel is the
primary cause of overestimation of radar reflectivity in the
one‐moment schemes. The distribution of radar reflectivity
due to snow is decidedly more peaked. The positioning of
the peak in snow radar reflectivity is different depending
on the simulation. It is clear that snow causes the exces-
sively high radar reflectivity in the three simulations that use
the Morrison two‐moment scheme.
[32] The vertical distribution of radar reflectivity is illus-

trated using normalized cumulative distributions of the
maximum height of radar reflectivity thresholds. Figure 10a
shows the maximum height of the 5 dBZ echo for all con-
vective columns that have a 25 dBZ echo at or above the
5.5 km height level. It shows that the majority of model
simulations do not produce enough deep convective
regions. The shallowest convective cores are found in the
MESONH‐2 simulation and the deepest in the SAM‐S
simulation. The SAM‐B simulation is unique in that close to
60% of 5 dBZ echo tops are found between 8 and 10 km.
The rest of the simulations are closer to observations, but are
offset to slightly lower echo tops. When the echo top
threshold is increased to 25 dBZ (Figure 10b), observations
have the lowest echo tops. The simulations closest to obser-
vations are MESONH‐2 and SAM‐B, although the 5 dBZ
echo tops of these simulations are far lower than observed.
An outlier in the other direction is the SAM‐S simulation,
with 25 dBZ echo tops up to 7 km higher than observations
at some percentiles. Subtracting the height of the 25 dBZ
echo top from the 5 dBZ echo top yields the cumulative
distribution in Figure 10c. This panel shows that, on aver-
age, the convective radar reflectivity decreases with height
more quickly near storm top in simulations than in observa-
tions. The median difference between the 25 dBZ and 5 dBZ
echo top is 6 km in observations but only 1–3 km in simu-
lations. This offset exists at all percentiles of the cumulative

distribution showing that there are clear differences in the
vertical distribution of hydrometeor properties in observa-
tions and models.
4.3.2. Stratiform Regions
[33] Compared with the convective regions, there is much

more spread between models and observations below the
melting level in stratiform regions. At 2.5 km (Figure 11)
observed radar reflectivity samples remain fairly constant
between 5 and 30 dBZ and quickly diminish to nothing by
40 dBZ. The model simulations have more peaked dis-
tributions with peaks anywhere from 10 to 20 dBZ. The
baseline simulations also have significantly more samples
than the observations consistent with the general overestima-
tion of stratiform area in those simulations. The UKMO‐2M
simulation is unique with many more samples at high
reflectivities and a lower flatter peak than other simulations
in better agreement with observations. This is interesting
because UKMO‐2M does not have the most stratiform
rainfall or highest stratiform rain rates. The sensitivity simu-
lations greatly reduce the number of samples and amplitude
of peaks relative to their respective baseline simulations,
suggesting that the overly high peaks at low reflectivities
and overly large stratiform area could be related to the
prescribed model forcing. That the simulations perform
worse in stratiform rain than convective rain may be due to
the exponential distribution not being representative of most
stratiform rain. At 7.5 km (Figure 12a) the simulations
exhibit a diverse spread in distributions with none particu-
larly close to the observed distribution, which maintains a
similar distribution to 2.5 km but shifted approximately
10 dBZ toward lower values. In contrast to observations,
most simulations still maintain peaks between 5 and 15 dBZ
and have gently decaying distributions with increasing
reflectivity. The overall number of samples, however, greatly
varies between simulations. The MESONH and DHARMA
simulations significantly underestimate the overall number
of samples, whereas the baseline Morrison microphysics
runs (SAM‐B and UKMO‐2M) greatly overestimate the
overall number of samples. It is clear from these plots that

Figure 5. (a) The 2.5 km stratiform rain rate normalized cumulative distribution, with models repre-
sented by symbols (see Table 1) and observations represented by the thick black line. Thin black lines
show the observational error bounds. (b) The cumulative contribution of stratiform rain rates to total
stratiform rainfall. Observations are derived from the CPOL radar.
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while model simulations are different from each other, none
resemble the observed distributions of stratiform reflectivity
aloft. As shown in Figures 12b and 12c, these distributions
are essentially distributions of snow radar reflectivity as

precipitation sized graupel is much more scarce in stratiform
regions. That there is any significant graupel at all is very
likely due to both the lack of a defined transition zone
between convective and stratiform regions and the limitation

Figure 6. Representative 2.5 km horizontal cross sections of radar reflectivity at 0300 UTC 20 January
2006: (a) CPOL, (b) UKMO‐1, (c) UKMO‐2, (d) UKMO‐2M, (e) MESONH‐1, (f) SAM‐B,
(g) DHARMA‐B, (h) MESONH‐2, (i) SAM‐S, and (j) DHARMA‐S. Convective regions are outlined in
thick black and stratiform regions in thin black.
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of only two hydrometeor categories for precipitation sized
ice.
[34] As in convective regions, Figure 13a shows that all

model simulations have shallower stratiform 5 dBZ echo

tops than observations when the distribution is normalized.
Only stratiform columns that have at least a 20 dBZ echo
present at 5.5 km or above are included to focus on well‐
developed stratiform regions and remove possible bright

Figure 7. Representative 7.5 km horizontal cross sections of radar reflectivity at 0300 UTC 20 January
2006: (a) CPOL, (b) UKMO‐1, (c) UKMO‐2, (d) UKMO‐2M, (e) MESONH‐1, (f) SAM‐B,
(g) DHARMA‐B, (h) MESONH‐2, (i) SAM‐S, and (j) DHARMA‐S. Convective regions are outlined
in thick black and stratiform regions in thin black.
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band effects in observations. About half of observed 5 dBZ
echo tops are greater than 12 km. Most simulations are
offset to lower heights by about 1–2 km. The order of these
simulations is very similar to the convective regions and the
uniform SAM‐B echo tops seen in the convective echoes are
present in stratiform echoes as well with 80% of 5 dBZ echo
tops between approximately 7 and 10 km. A major shift
occurs when increasing the echo top threshold to 20 dBZ,
also as in the convective regions. Observed 20 dBZ echo
tops are lower at all percentiles than in simulations with very
few observed 20 dBZ echo tops above 9 km. Simulations,
however, produce between 5% and 25% of 20 dBZ echo
tops above 8 km. Figure 13c shows that when the height of
the 20 dBZ echo top is subtracted from the height of the
5 dBZ echo top, the difference is much larger at all per-
centiles in observations. The offset between models and
observations is anywhere from 1.5 to 4 km depending on the
percentile and model. Because of the similarities between
convective and stratiform regions, it is clear that disparities
between these two regions are related, but it is unclear
the degree to which these problems can be attributed to
dynamics rather than microphysics.

4.4. Top‐of‐Atmosphere 10.8 mm Brightness
Temperature

[35] As was shown in the last two sections, despite total
simulated volumetric rainfall being fairly close to observa-
tions, radar reflectivities in mixed‐phase and ice regions
aloft are generally substantially different from observations.
Hence, cloud top heights and cloud coverage are also likely
to be substantially different. For optically thick clouds, such
as precipitating clouds, the 10.8 mm top‐of‐atmosphere Tb is
a useful proxy for cloud top height as discussed earlier.
[36] Representative plots of IR Tb at 0300 UT 20 January

are shown in Figure 14 for each model simulation and for
MTSAT measurements. Four of the nine model simulations

(MESONH‐1, MESONH‐2, SAM‐B, and UKMO‐2M) pro-
duce more persistent cold brightness temperatures that are
less variable than those observed. Of these, the coldest
brightness temperatures are produced by MESONH‐2. Other
simulations produce variability in Tb not unlike that observed.
Specifically, UKMO‐1, UKMO‐2, and the DHARMA simu-
lations produce spatial variability most resembling the
observations.
[37] The cumulative distribution of brightness tempera-

tures for the whole 6 day monsoon period shows a wide
spread in Figure 15. The estimated error of ±2 K primarily
results from ice crystal habit assumptions, as mentioned
earlier. The order of the model simulations with respect to

Figure 8. Histogram of observed and simulated convective
radar reflectivity at 2.5 km. Models are represented by sym-
bols (see Table 1), and the thick black line represents
observations from the CPOL radar.

Figure 9. Histograms of (a) 7.5 km observed and simulated
convective radar reflectivity, (b) 7.5 km simulated graupel
radar reflectivity, and (c) 7.5 km simulated snow radar reflec-
tivity. Models are represented by symbols (see Table 1), and
the thick black lines represent observations from the CPOL
radar.
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each other and observations is approximately the same no
matter whether the 6 day period is split into individual
precipitation events (not shown) or relatively quiet periods
with very little precipitation. The MESONH‐2 simulation
has almost continuous very cold brightness temperatures,

which differs from other model simulations. TheMESONH‐1,
UKMO‐2M, and SAM‐B simulations also produce exces-
sively cold brightness temperatures. Observations show that
approximately half of brightness temperatures are colder
than 235 K. For the MESONH‐2 simulation, the median Tb is
about 205 K, and for the MESONH‐1, UKMO‐2M, and
SAM‐B simulations, 225 K. The difference betweenMTSAT
and these four simulations increases at warmer brightness
temperatures, consistent with the simulations being too uni-
form. These results would not have been guessed from the
MESONH radar reflectivity results given that those simula-
tions have some of the weakest radar reflectivity echoes aloft
of all of the simulations. These results are, however, consis-
tent with the uniformity of radar reflectivity echo tops in
SAM‐B. Despite the overabundance of cold brightness tem-
peratures in these four simulations, all model simulations
except for the MESONH‐2 simulation have fewer samples
than observed at brightness temperatures less than 210 K. On
the other end of the spectrum, the UKMO‐2 and DHARMA‐S
simulations are offset to warmer than observed brightness
temperatures throughout the distribution. The DHARMA‐B
simulation is offset from observations at cold brightness
temperatures but approximately the same as observed at
temperatures warmer than 250 K. The median Tb for the
DHARMA‐B simulation and UKMO‐2 simulation is about
245K and for theDHARMA‐S simulation, 250K.The SAM‐S
simulation is fairly close to observations with a slightly larger
offset at very cold brightness temperatures. The simulation
closest to observations is UKMO‐1 despite having the coarsest
vertical resolution and one‐moment microphysics.

5. Discussion

[38] There are substantial differences betweenmost observed
and simulated precipitation and cloud structure properties
examined. Radar reflectivity differences can result from a

Figure 10. Observed and simulated convective radar reflec-
tivity echo top normalized cumulative distributions for
(a) 5 dBZ and (b) 25 dBZ. (c) The cumulative distributions
of the difference between 5 dBZ and 25 dBZ echo tops.
With the focus on deeper convective regions, samples are
limited to columns that have at least a 25 dBZ echo at
5.5 km or higher. Models are represented by symbols (see
Table 1), and the thick black lines represent observations
from the CPOL radar.

Figure 11. Histogram of observed and simulated stratiform
radar reflectivity at 2.5 km. Models are represented by sym-
bols (see Table 1), and the thick black line represents
observations from the CPOL radar.

VARBLE ET AL.: EVALUATING CRMS USING TWP‐ICE OBSERVATIONS D12206D12206

13 of 22



number of factors including hydrometeor water content and
the assumed density and size distribution of each hydro-
meteor species. Detailed analysis of interactive dynamical
and microphysical processes leading to such differences will
be the focus of part 2, but a comparison of several model
microphysical properties is provided here to explain several
of the radar reflectivity differences betweenmodels and guide
the more detailed analyses to come.
[39] Figure 16 shows normalized cumulative distributions

of simulated convective graupel radar reflectivity, ice water
content, number concentration, and mass mean melted diam-
eter for all grid points at which the graupel radar reflectivity
is at least 5 dBZ and the temperature is less than 0°C. The
DHARMA simulations produce the highest graupel radar

reflectivity at all percentiles, whereas the simulations
employing two‐moment schemes and the MESONH simula-
tions group together at lower reflectivity values. These dis-
tributions are clearly not highly correlated with the graupel ice

Figure 12. Histograms of (a) 7.5 km observed and simulated
stratiform radar reflectivity, (b) 7.5 km simulated graupel
radar reflectivity, and (c) 7.5 km simulated snow radar reflec-
tivity. Models are represented by symbols (see Table 1), and
the thick black lines represent observations from the CPOL
radar.

Figure 13. Observed and simulated stratiform radar reflectiv-
ity echo top normalized cumulative distributions for (a) 5 dBZ
and (b) 20 dBZ. (c) The cumulative distributions of the differ-
ence between 5 dBZ and 20 dBZ echo tops. With the focus on
well‐developed stratiform regions, samples are limited to col-
umns that have at least a 20 dBZ echo at 5.5 km or higher. This
also acts to eliminate possible bright band effects in observa-
tions. Models are represented by symbols (see Table 1), and
the thick black lines represent observations from the CPOL
radar.
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water content distributions shown in Figure 16b because of
very different assumptions in size distributions characteristics
between different microphysics schemes. The MESONH
simulations have the highest graupel ice water contents for
grid points with graupel radar reflectivity greater than 5 dBZ

despite having the lowest reflectivities of the one‐moment
schemes because MESONH has the highest number con-
centrations of any scheme in Figure 16c. Therefore, Figure 16d
shows that the mass mean melted diameters for MESONH
graupel are smallest. The other one‐moment schemes have

Figure 14. Representative plots of observed and simulated 10.8 mm IR brightness temperatures from the
MTSAT satellite at 0300 UTC 20 January 2006: (a) MTSAT, (b) UKMO‐1, (c) UKMO‐2, (d) UKMO‐
2M, (e) MESONH‐1, (f) SAM‐B, (g) DHARMA‐B, (h) MESONH‐2, (i) SAM‐S, and (j) DHARMA‐S.
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larger mass mean melted diameters consistent with lower
number concentrations rather than higher ice water con-
tents. Recall that MESONH does not grossly overestimate
convective radar reflectivity aloft like other one‐moment
simulations.
[40] All simulations assume a generalized gamma distri-

bution for graupel with the following form:

N Dð Þ ¼ N0D
�e��D;

where N0 is the intercept parameter, m is the shape param-
eter, and l is the slope parameter. Table 6 shows the graupel
size distribution parameters for each simulation. N0 is con-
stant for the Grabowski [1999] scheme used in DHARMA
and diagnostically determined as a function of l for all of
the one‐moment schemes. For two‐moment schemes,

N0 ¼ N��þ1

G �þ 1ð Þ ;

where N is the prognostic number concentration. In all
schemes, l is dependent on the prognostic mass mixing
ratio. UKMO‐1 is an outlier in both mass mean melted
diameter and number concentration because it uses a shape
factor (m) of 2.5. The only other simulation with a nonzero
shape factor is UKMO‐2, but number concentration is pre-
dicted in that simulation. The shape parameter is a measure
of the dispersion of the size distribution. Simply put,

Figure 15. Observed and simulated MTSAT 10.8 mm top‐
of‐atmosphere IR brightness temperature normalized cumu-
lative distributions. Models are represented by symbols (see
Table 1), and the thick black line represents observations
from MTSAT.

Figure 16. Normalized cumulative distributions of simulated convective graupel (a) radar reflectivity,
(b) ice water content, (c) number concentration, and (d) mass mean diameter. Results are filtered to only
include grid points at which the graupel radar reflectivity is at least 5 dBZ and the temperature is less than
0°C. Symbols are defined in Table 1.
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increasing shape parameter results in lower number con-
centrations of smaller particles and increased number con-
centrations of larger particles. This nonzero shape factor has
implications for snow as well. Table 7 shows snow size
distribution parameters for each simulation. The Grabowski
[1999] microphysics scheme used in the DHARMA simu-
lations is unique in that it has a lognormal distribution for
snow based on tropical cirrus observations of McFarquhar
and Heymsfield [1997], whereas all other schemes have
gamma distributions. MESONH is the only model that uses
variable density because of its assumption of nonspherical
particles.
[41] The simulations that use Morrison two‐moment

microphysics and the UKMO‐1 simulation have large peaks
in excessively high convective snow radar reflectivity, and
this shows in that those simulations have far more occur-
rences of high snow reflectivity in Figure 17a. Figures 17b,
17c, and 17d show normalized cumulative distributions of
convective snow ice water content, number concentration,
and mass mean melted diameter. As with graupel, the simu-
lations with high radar reflectivity also have the largest mass
mean melted diameters. The mass mean melted diameter
distributions for two‐moment schemes cover a larger range
of diameters due to the ability to predict number concen-
tration. This ability also allows a broader range of ice water
contents and number concentrations than the one‐moment
schemes used in MESONH and DHARMA. UKMO‐1 is the
only one‐moment simulation that covers a large range of ice
water contents and number concentrations due to a nonzero
shape parameter. This suggests that a diagnostically varying
shape parameter may be required to properly simulate the
range of ice water contents and number concentrations
associated with precipitation‐sized ice.
[42] In Figure 18, normalized cumulative distributions for

snow are again shown but for stratiform regions. The order
of distributions is very close to those for convective snow.
Relative to convective snow ice water content, the stratiform
snow ice water content for all two‐moment schemes and
UKMO‐1 significantly drops, whereas it only slightly drops
for MESONH and DHARMA. In fact, DHARMA has the
highest stratiform snow ice water contents but the lowest
stratiform snow radar reflectivity because of extremely high
number concentrations that limit the size of snow. UKMO‐1

again has the lowest number concentrations due to the high
shape parameter allowing for higher reflectivities closer to
observations. Whereas the nonspherical mass‐dimension
relationships used in MESONH aided those simulations with
respect to graupel radar reflectivity, they produce snow
reflectivities that are too low. This is clearly shown in
Figure 19, which shows radar reflectivity as a function of ice
water content for graupel and snow.
[43] One‐moment microphysics schemes produce single

lines in Figure 19 because each water content has but one
size distribution and hence one radar reflectivity in these
treatments (unlike more complex one‐moment schemes, with
diagnostic intercepts, such as Thompson et al.’s [2004]).
Two‐moment schemes, however, allow for different size
distributions for a given ice water content and hence, such
schemes are depicted by frequency distributions in which
the shading contours are logarithmically spaced. Figure 19
reaffirms the differences in size distribution assumptions.
For graupel in Figures 19a, 19b, and 19c, MESONH has the
lowest radar reflectivity for any given ice water content, but
the MESONH convective radar reflectivity agrees much
better with observations than the other simulations. For both
graupel and snow, the range of reflectivity possibilities for a
given ice water content is very large as shown in the shadings.
The slope and values of the relation for UKMO‐1 snow is
closest to the two‐moment schemes, but clearly aggregation
leads to a spread to higher reflectivities in the two‐moment
schemes that the one‐moment schemes cannot produce with
fixed shape parameters in the size distribution. In reality,
snow aggregates as it approaches the melting level [Houze
and Churchill, 1987; Heymsfield et al., 2002; Stith et al.,
2002] leading to small concentrations of large snow particles.
Microphysics schemes, such as two‐moment schemes, that
have the ability to predict a large spread of reflectivity values
for a given ice water content have the ability to better predict
the observed radar reflectivity distribution. However, simu-
lations with the two‐moment Morrison scheme generally
produce snow particles that are too large. This is not to say
that all two‐moment schemes have this problem as very large
snow particles are not nearly as common in the UKMO
two‐moment scheme (shaded in Figures 15c and 15f), which
has far fewer samples of high radar reflectivity at very low ice
water contents for both graupel and snow.

Table 6. The Parameters Necessary for the Gamma Distribution
Used for Graupel by All Simulationsa

Model

Graupel Size Distribution Parameters

Density m‐D N0 m l

DHARMA 400 kg/m3 m ¼ �
6 �gD

3 4e6 0 ��gN0G 4ð Þ
6�0qg

h i1
4

MESONH Variable m ¼ 19:6D2:8
max 5e5l0.5 0 19:6ð Þ 5e5ð ÞG 3:8ð Þ

�0qg

h i 1
3:3

UKMO‐1 500 kg/m3 m ¼ �
6 �gD

3 5e25l−4 2.5 ��g 5e25ð ÞG 6:5ð Þ
6�0qg

h i 1
10:5

UKMO‐2 500 kg/m3 m ¼ �
6 �gD

3 �0N�3:5

G 3:5ð Þ 2.5 ��gNG 6:5ð Þ
6qgG 3:5ð Þ

h i1
3

SAM/UKMO‐2M 400 kg/m3 m ¼ �
6 �gD

3 r0Nl 0 ��gNG 4ð Þ
6qg

h i1
3

aMass‐diameter (m‐D) relations are shown with the intercept parameter
(N0), the shape parameter (m), and the slope parameter (l). For MESONH,
particles are nonspherical and thus the m‐D relation is in terms of
maximum dimension. Notation: rg, graupel density; r0, air density; and
qg, graupel mass mixing ratio.

Table 7. The Parameters Necessary for the Gamma Distribution
Used for Snow by MESONH, UKMO, and SAMa

Model

Snow Size Distribution Parameters

Density m‐D N0 m l

DHARMA 100 kg/m3 m ¼ �
6 �sD

3 ‐ ‐ ‐
MESONH Variable m ¼ 0:02D1:9

max 5l2 0 0:02ð Þ 5ð ÞG 2:9ð Þ
�0qs

h i 1
0:9

UKMO‐1 100 kg/m3 m ¼ �
6 �sD

3 2e27l−3.5 2.5 ��s 2e27ð ÞG 6:5ð Þ
6�0qs

h i 1
10

UKMO‐2 100 kg/m3 m ¼ �
6 �sD

3 �0N�3:5

G 3:5ð Þ 2.5 ��sNG 6:5ð Þ
6qsG 3:5ð Þ

h i1
3

SAM/UKMO‐2M 100 kg/m3 m ¼ �
6 �sD

3 r0Nl 0 ��sNG 4ð Þ
6qs

h i1
3

aMass‐diameter (m‐D) relations are shownwith the intercept parameter (N0),
the shape parameter (m), and the slope parameter (l). For MESONH, particles
are nonspherical and thus the m‐D relation is in terms of maximum dimension.
For DHARMA, the distribution is lognormal and shown by McFarquhar and
Heymsfield [1997]. Notation: rs, snow density; r0, air density; qs, graupel mass
mixing ratio.
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[44] The same microphysics scheme can produce very
different hydrometeor water contents and size distributions
with different dynamics treatments as shown by the differ-
ence between SAM‐B and UKMO‐2M. UKMO‐2M pro-
duces far more graupel and less snow than SAM‐B. That said,
different microphysics schemes with the same dynamics
treatment can lead to very different water contents and size
distributions as seen in the UKMO‐1 and UKMO‐2 results.
UKMO‐2 produces far more graupel than UKMO‐1 and yet,
UKMO‐1 tends to have higher reflectivities aloft in both
convective and stratiform regions. This is but one example
that shows that although it is obvious that radar reflectivity
aloft depends on ice water content for any one simulation,
Figures 16–19 collectively show that differences in radar
reflectivity across nine simulations are more dependent on
differences in assumed size distribution properties, such as
intercept, shape, and slope parameter.

6. Conclusions

[45] An essential component to properly evaluating and
improving cloud‐resolving model simulations of tropical
convective precipitation systems is comparing precipitation
and cloud structure with observations at convective scales.
Whereas previous literature has strictly focused on con-
vective and stratiform structures in individual models or
larger‐scale properties in several models, this study uniquely
combines these two approaches. This first part of a two part

study focuses on establishing radar reflectivity and IR Tb
differences between models and observations while relating
these differences to hydrometeor properties and assumptions.
[46] Our study partially agrees with previous studies [e.g.,

Blossey et al., 2007; Lang et al., 2007; Li et al., 2008;
Matsui et al., 2009] that conclude that one‐moment micro-
physics schemes produce excessive amounts of large grau-
pel. This is certainly true of the DHARMA and UKMO‐1
simulations, but the MESONH simulations show that
assuming nonspherical particles with varying density and
altering the mass‐dimension relationship for graupel particles
can lead to convective radar reflectivities aloft that are much
closer to those observed. Simulations using the Morrison
two‐moment microphysics scheme show that snow rather
than graupel can also lead to excessively high radar reflectivity.
These excessively large snow particles exist in both convec-
tive and stratiform regions, although this is not a symptom of
all two‐moment schemes, as the UKMO‐2 produces much
lower reflectivity values for snow. All baseline simulations
produce expansive stratiform regions larger than those in
observations but such areal expanse cannot make up for a
preponderance of unrealistically low rain rates in all simula-
tions. Some studies [e.g., Morrison et al., 2009] have shown
that when two moments of the rain size distribution are pre-
dicted, higher stratiform rain rates are produced, but that was
not the case in this study. Simulated convective rainfall makes
up for the shortfall in stratiform rainfall through larger than
observed convective area.

Figure 17. Normalized cumulative distributions of simulated convective snow (a) radar reflectivity, (b) ice
water content, (c) number concentration, and (d) mass mean diameter. Results are filtered to only include
grid points at which the snow radar reflectivity is at least 5 dBZ and the temperature is less than 0°C. Sym-
bols are defined in Table 1.
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[47] Distributions of ice water content, number concen-
tration, and mass mean melted diameter for both graupel and
snow show that varying the intercept and shape parameters
of a gamma distribution has much larger effects on radar
reflectivity than varying the ice water content. There is
evidence that a shape parameter greater than 0 can reduce
the biases present in both one‐moment and two‐moment
schemes. This agrees with previous literature [Milbrandt
and Yau, 2005] that shows that a diagnostically varying
shape parameter (m) yields much better results because m
has a significant effect on sedimentation and instantaneous
growth rates of hydrometeors. Variable density and diag-
nostic relations between N0 and l also lead to very different
size distributions and radar reflectivity for given ice water
contents. Unfortunately, no combination of these variables
in this intercomparison leads to the observed decrease in
radar reflectivity with height aloft in convective and strati-
form regions.
[48] In addition to radar reflectivity structure, a compari-

son of simulated infrared brightness temperatures showed
that some simulations produced overly abundant cold tem-
peratures whereas others produced warmer than observed
temperatures. These results were not highly correlated with
the radar reflectivity echo top distributions as the 10.7 mm
brightness temperature is very sensitive to small ice parti-
cles, of which some simulations had expansive regions and
others did not. The degree to which the abundant cold
brightness temperatures are due to model forcing or due to

dynamical‐microphysical processes will be investigated in
part II. UKMO‐1 performs the best of all simulations by
almost exactly replicating the normalized cumulative distri-
bution of IR Tb. In fact, in rain rate statistics, radar reflectivity
statistics, and IR Tb statistics, there is not a clear superiority
of two‐moment schemes over one‐moment schemes in
reproducing observations. Two‐moment schemes tend to
have an entirely different set of problems, although their
potential ability to be superior is evident as shown in the large
ranges of ice water content, number concentration, and mass
mean melted diameter possible for precipitation sized ice.
[49] Nudged sensitivity simulations were performed to

investigate accumulation of error resulting from long‐term
application of forcing or possible inaccuracies associated
with applying forcing uniformly over a large area. The two
sensitivity simulations produce far less stratiform area than
all baseline simulations bringing them much closer to obser-
vations. This improvement also shows in higher frequency of
warm brightness temperatures compared to corresponding
baseline simulations. Differences are not limited to stratiform
regions as the sensitivity simulations have higher convective
radar reflectivity aloft with deeper convective and stratiform
regions compared to their baselines. These results suggest
that error due to the idealized forcing in the baseline simu-
lations may lead to excessive cloudiness, excessive strati-
form area, and potentially weaker convective updrafts.
[50] Convective and stratiform radar reflectivity char-

acteristics and IR Tb characteristics are often very similar for

Figure 18. Normalized cumulative distributions of simulated stratiform snow (a) radar reflectivity,
(b) ice water content, (c) number concentration, and (d) mass mean diameter. Results are filtered to only
include grid points at which the snow radar reflectivity is at least 5 dBZ and the temperature is less than 0°C.
Symbols are defined in Table 1.

VARBLE ET AL.: EVALUATING CRMS USING TWP‐ICE OBSERVATIONS D12206D12206

19 of 22



a given model (e.g., UKMO‐1 and UKMO‐2) or given
microphysics scheme (e.g., SAM‐B and UKMO‐2M), which
implicates the importance of both dynamics and microphys-
ics in the cloud and precipitation structural differences
found. To study these interactions, the evolution of con-
vective systems that develop stratiform regions will be
examined through higher temporal resolution simulations in
part 2. It should be kept in mind throughout, however, that
assumptions inherent to the model forcing and boundary
conditions also lead to systematic errors. This is currently
being investigated through detailed comparisons of these
CRM results with results obtained in the TWP‐ICE limited
area model (LAM) intercomparison study, which employs
open boundary conditions and nested domains.
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