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Abstract. We present an comparison between two recent approaches to
the harmonic similarity of musical chords sequences. In contrast to earlier
work, that mainly focuses on the similarity of musical scores or musical
audio, in this paper we specifically use on the symbolic chord descrip-
tion as the primary musical representation and the similarity between
sequences of these descriptions. In an experiment we compare a geomet-
rical and an alignment approach to harmonic similarity, and measure the
effects of chord description detail and a priori key information on retrieval
performance. For this experiment a large new chord sequence corpus is
assembled. The results show that a computational costly alignment ap-
proach significantly outperforms a much faster geometrical approach in
most cases, that a priori key information boosts retrieval performance,
and that using a triadic chord representation yields significantly better
results than using more simple or more complex chord representations.

Key words: MIR, Harmony, Chord Symbol, Similarity, Evaluation, Ground-
truth data.

1 Introduction

In the last decades Music Information Retrieval (MIR) has evolved into a broad
research area that aims in keeping large repositories of digital music maintain-
able and accessible. Within MIR two main directions can be discerned: symbolic
music retrieval and the retrieval of musical audio. The first direction traditionally
uses score-based representations to tackle typical retrieval problems. One of the
most important and most intensively studied of these is probably the problem
of determining the similarity of a specific musical feature, e.g. melody, rhythm,
etc. The second direction–musical audio retrieval–extracts features from the au-
dio signal and uses these features for estimating whether two pieces of music
share certain musical properties. In this paper we focus on a musical represen-
tation that is symbolic but can be estimated reasonably well from audio: chord
sequences.
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Only recently, partly motivated by the growing interest in audio chord find-
ing, MIR researchers have started using chords descriptions as principal rep-
resentation for modeling music similarity. Naturally, these representations are
specifically suitable for capturing the harmonic similarity of a musical piece.
However, determining the harmonic similarity of sequences of chords gives rise
to three questions. First, what is harmonic similarity? Second, why do we need
harmonic similarity? Last, do chord descriptions provide a valid and useful ab-
straction of the musical data for determining music similarity? The first two
questions we will address in this introduction; the third question we will an-
swer empirically in a retrieval experiment. In this experiment we will compare a
geometrical and an alignment based harmonic similarity measure.

The first question–what is harmonic similarity–is difficult to answer. We
strongly believe that if we want to model what makes two pieces of music similar,
we must not only look at the musical data, but especially at the human listener.
It is important to realize that music only becomes music in the mind of the
listener, and probably not all information needed for good similarity judgment
can be found in the data alone. Human listeners, musician or non-musician, have
extensive culture-dependent knowledge about music that needs to be taken into
account when judging music similarity.

In this light we consider the harmonic similarity of two chord sequences to
be the degree of agreement between structures of simultaneously sounding notes
and the agreement between global as well as local relations between these struc-
tures in both sequences as perceived by the human listener. With the agreement
between structures of simultaneously sounding notes we denote the similarity
that a listener perceives when comparing two chords in isolation and without
surrounding musical context. However, chords are rarely compared in isolation
and the relations between the global context–the key–of a piece and the rela-
tions to the local context play a very important role in the perception of tonal
harmony. The local relations can be considered the relations between functions
of chords within a limited time frame, for instance the preparation of a chord
with a dominant function with a sub-dominant. All these factors play a role in
the perception of tonal harmony and should be shared by two compared pieces
up to certain extent to if they are considered similar.

The second question about the usefulness of harmonic similarity is easier to
answer, since music retrieval based on harmony sequences offers various benefits.
It allows for finding different versions of the same song even when melodies vary.
This is often the case in cover songs or live performances, especially when these
performances contain improvisations. Moreover, playing the same harmony with
different melodies is an essential part of musical styles like jazz and blues. Also,
variations over standard basses in baroque instrumental music can be harmoni-
cally very related.

The application of harmony matching methods is broadened further by the
extensive work on chord label extraction from musical audio data within the MIR
community, e.g. [1, 2]. Chord labeling algorithms extract symbolic chord labels
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from musical audio: these labels can be matched directly using the algorithms
covered in this paper.

If you would ask a jazz musician to answer the third question–whether chord
descriptions are useful–he will probably agree that they are, since working with
chord labels is everyday practice in jazz. However, we will show in this paper that
they are also useful for retrieving pieces with a similar but not identical chord
sequence by performing a large experiment. In this experiment we compare two
harmonic similarity measures, the Tonal Pitch Step Distance (TPSD) [3] and the
Chord Sequence Alignment System (CSAS) [4], and test the influence of different
degrees of detail in the chord description and the knowledge of the global key of
a piece on retrieval performance.

The next section gives a brief overview of the current achievements in chord
sequence similarity matching and harmonic similarity in general, Section 3 de-
scribes the data used in the experiment and Section 4 presents the results.

Contribution. This paper presents an overview of chord sequence based har-
monic similarity and two harmonic similarity approaches are compared in an
experiment. For this experiment a new large corpus of 5028 chord sequences is
assembled and both algorithms are subjected to six tasks. All tasks use the same
dataset, but differ in the amount of chord detail and in the use of a priori key
information. The results show that a computational costly alignment approach
significantly outperforms a much faster geometrical approach in most cases, that
a priori key information boosts retrieval performance, and that using a triadic
chord representation yields significantly better results than using more simple
or more complex chord representations.

2 Background: Similarity Measures for Chord Sequences

The harmonic similarity of symbolic music has been investigated by many au-
thors, but the number of systems that focus solely on similarity chords sequences
is much smaller. Of course it is always possible to convert notes into chords and
vice versa, but this is not a trivial task. Nowadays, several algorithms can cor-
rectly segment and label approximately 80 percent of a symbolic dataset (see for
a review [5]). Within the audio domain hidden Markov Models are frequently
used for chord label assignment, e.g. [1, 2]. The algorithms considered in this
paper abstract from these labeling tasks and focus on the similarity between
chord progressions only. As a consequence, we assume that we have a sequence
of symbolic chord labels describing the chord progression in a piece of music.

The systems currently known to us that are designed to match these se-
quences of symbolic chord descriptions are: the TPSD [3], the CSAS [4] and a
harmony grammar approach [6]. The first two are quantitatively compared in
this paper and are introduced in the next two subsections, respectively. They
have been compared before, but all previous evaluations of TPSD and CSAS
were done with relatively small datasets (<600 songs) and the data in [4] did
not precisely match the one used in [3]. The harmony grammar approach could,



4 W. Bas de Haas et al.

All The Things You Are

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Beat

0

1

2

3

4

5

6

7

8

9

10

11

12

13

T
P

S
 S

c
o

re

Fig. 1. A plot demonstrating the comparison of two similar versions of All the Things

You Are using the TPSD. The total area between the two step functions, normalized
by the duration of the shortest song, represents the distance between both songs. A
minimal area is obtained by shifting one of the step functions cyclically.

at the time of writing, not compete in this experiment because in its current
state it is yet unable to parse all the songs in the used dataset. We expect this
issue to be resolved in the near future.

The next section introduces the TPSD and the improvements over the im-
plementation used for the experiment here and the implementation in [3]. Sec-
tion 2.2 highlights the different variants of the CSAS. The main focus of this
paper is on the similarity of sequences of chord labels, but there exist other
relevant harmony based retrieval methods: some of these are briefly reviewed in
Section 2.3.

2.1 Tonal Pitch Step Distance

The TPSD uses Lerdahl’s [7] Tonal Pitch Space (TPS) as its main musical
model. TPS is a model of tonality that fits musicological intuitions, correlates
well with empirical findings from music cognition [8] and can be used to calculate
a distance between two arbitrary chords. The TPS model can be seen as a scoring
mechanism that takes into account the number of steps on the circle of fifths
between the roots of the chords, and the amount of overlap between the chord
structures of the two chords and their relation to the global key.

The general idea behind the TPSD is to use the TPS to compare the change
of chordal distance to the tonic over time. For every chord the TPS distance
between the chord and the key of the sequence is calculated, which results in
a step function (see Figure 1). As a consequence, information about the key of
the piece is essential. Next, the distance between two chord sequences is defined
as the minimal area between the two step functions over all possible horizontal
circular shifts. To prevent that longer sequences yield larger distances, the score
is normalized by dividing it by the duration of the shortest song.
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The TPS is an elaborate model that allows to compare every arbitrary chord
in an arbitrary key to every other possible chord in any key. The TPSD does not
use the complete model and only utilizes the parts that facilitate the comparison
of two chords within the same key. In the current implementation of the TPSD
time is represented in beats, but generally any discrete representation could be
used.

The TPSD version used in this paper contains a few improvements com-
pared to the version used in [3]: by applying a different step function matching
algorithm from [9], and by exploiting the fact that we use discrete time units
that enable us to sort in linear time using counting sort [10], a running time
of O(nm) is achieved where n and m are the number of chord symbols in both
songs. Furthermore, to be able to use the TPSD in situations where a priori key
information is not available, the TPSD is extended with a key finding algorithm.

Key finding. The problem of finding the global key of piece of music is called
key finding and in the current case this is done on the basis of chord information
only. The rationale behind the key finding algorithm that we present here is the
following: we consider the key that minimizes the total TPS distance and best
matches the starting and ending chord, the key of the piece.

For minimizing the total TPS distance, the TPSD key finding uses TPS based
step functions as well. We assume that when a song matches a particular key, the
TPS distances between the chords and the tonic of the key are relatively small.
The general idea is to calculate 24 step functions for a single chord sequence, one
for each major and minor key. Subsequently, all these keys are ranked by sorting
them on the area between their TPS step function and the x-axis; the smaller
the total area, the better this key fits the piece, and the higher the rank. Often,
the key at the top rank is the correct key. However, among the false positives at
rank one, non-surprisingly, the IV, V and VI relative to the ground-truth key1

are found regularly. This makes sense because, when the total of TPS distances
of the chords to C is small, the distances to F, G and Am might be small as well.
Therefore, to increase performance, an additional scoring mechanism is designed
that takes into account the IV, V and VI relative to the ground-truth key. Of
all 24 keys, the candidate key that minimizes the following sum S is considered
the key of the piece.

S = αr(I)+r(IV )+r(V )+r(V I)+

{

β if the first chord matches the key
β if the last chord matches the key

(1)

Here r(.) denotes the rank of the candidate key, a parameter α determines
how important the tonic is compared to other frequently occurring scale degrees
and β controls the importance of the key matching first and last chord. The
parameters α and β were tuned by hand and an α of 2, and a β of 4 were

1 The roman numbers here represent the diatonic interval between the key in the
ground-truth and the predicted key.
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found to give good results. Clearly, this simple key-finding algorithm is biased
towards western diatonic music, but for the corpus used in this paper it performs
quite well. The algorithm scores 88.8 percent correct on a subset of 500 songs
of the corpus used in the experiment below for which we manually checked the
correctness of the ground-truth key. The above algorithm takes O(n) time, where
n is the number of chord symbols, because the number of keys is constant.

Root interval step functions. For the tasks where only the chord root is
used we use a different step function representation (See Section 4). In these
tasks the interval between the chord root and the root note of the key defines
the step height and the duration of the chord again defines the step length. This
matching method is very similar to the melody matching approach by Aloupis
et al. [11]. Note that the latter was never tested in practice. The matching and
key finding methods are not different from the other variants of the TPSD. Note
that in all TPSD variants chord inversions are ignored.

2.2 Chord Sequence Alignment System

The CSAS algorithm is based on local alignment and computes similarity scores
between sequences of symbols representing chords or distances between chords
and key. String matching techniques can be used to quantify the differences be-
tween two such sequences. Among several existing methods, Smith and Water-
man’s approach [12] detects similar areas in two sequences of abitrary symbols.
This local alignment or local similarity algorithm locates and extracts a pair of
regions, one from each of the two given strings, that exhibit high similarity. A
similarity score is calculated by performing elementary operations transforming
the one string into the other. The operations used to transform the sequences are
deletion, insertion or substitution of a symbol. The total transformation from the
one string into the other can be solved with a dynamic programming in quadratic
time.

The following example illustrates local alignment by computing a distance
between the first chords of two variants of the song All The Things You Are

considering only the root notes of the chords. The I, S and D denote Insertion,
Substitution, and Deletion of a symbol, respectively. An M represents a matching
symbol:

string 1 F B♭ E♭ A♭ D♭ D G C C
string 2 F F B♭ A A♭ A♭ D♭ D C C

operation I M M S M I M M D M M
score −1 +2 +2 −2 +2 −1 +2 +2 −1 +2 +2

Algorithms based on local alignment have been successfully adapted for
melodic similarity [13–15] and recently it has been used to determine harmonic
similarity [4] as well. Two steps are necessary to apply the alignment technique
to the comparison of chord progressions: the choice of the representation of a
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chord sequence, and costs of the elementary operations between symbols. To take
the durations of the chords into account, we represent the chords at every beat.
The algorithm has therefore a complexity of O(nm), where n and m are the sizes
of the compared songs in beats. The cost function can either be adapted to the
chosen representation or can simply be binary, i.e. the cost is positive (+2) if the
two chords described are identical, and negative (−2) otherwise. The insertion
or deletion cost is set to −1.

Absolute representation. One way of representing a chord sequence is to
simply represent the chord progression as a sequence of absolute root notes and in
that case prior knowledge of the key is not required. An absolute representation
of the chord progression of the 8 first bars of the song All The Things You Are

is then:

F,B♭,E♭,A♭,D♭,D,G,C,C

In this case, the substitution costs may be determined by considering the differ-
ence in semitones, the number of steps on the circle of fifths between the roots,
or by the consonance of the interval between the roots, as described in [14].
For instance, the cost of substituting a C with a G (fifth) is lower than the
substitution of a C with a D (Second). Taking into account the mode in the
representation can affect the cost function as well: a substitution of a C for a
Dm is different from a substitution of a C for a D, for example. If the two modes
are identical, one may slightly increase the similarity score, and decrease it oth-
erwise. Another possible representation of the chord progression is a sequence of
absolute pitch sets. In that case one can use musical distances between chords,
like Lerdahl’s TPS model [7] or the distance introduced by Paiement et al. [16],
as a cost function for substitution.

Key-relative representation. If key information is known beforehand, a chord
can be represented as a distance to this key. The distances can be expressed in
various ways: in semitones, or as the number of fifths between the roots of the
chords and the tonic of the key of the song, or with more complex musical models,
such as TPS. If in this case the key is A♭ and the chord is represented by the
difference in semitones, the representation of the chord progression of the first
eight bars of the song All The Things You Are will be:

3, 2, 5, 0, 5, 6, 1, 4, 4

If all the notes of the chords are taken into account, the TPS or Paiement
distances can be used between the chords and the triad of the key to construct
the representation. The representation is then a sequence of distances, and we use
an alignment between these distances instead of between the chords themselves.
This representation is very similar to the representation used in the TPSD. The
cost functions used to compare the resulting sequences can then be binary, or
linear in similarity regarding the difference observed in the values.
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Transposition invariance. In order to be robust to key changes, two iden-
tical chord progressions transposed in different keys have to be considered as
similar. The usual way to deal with this issue [17] is to choose a chord represen-
tation which is transposition invariant. A first option is to represent transitions
between successive chords, but this has been proven to be less accurate when
applied to alignment algorithms [14]. Another option is to consider a key rela-
tive representation, like the representation described above which is by definition
transposition invariant. However, this approach is not robust against local key
changes. With an absolute representation of chords, we use an adaptation of the
local alignment algorithm proposed in [18]. It allows to take into account an
unlimited number of local transpositions and can be applied to representations
of chord progressions to account for modulations.

According to the choice of the representation and the cost function, several
variants are possible in order to build an algorithm for harmonic similarity. In
Section 4 we explain the different representations and scoring functions used in
the different tasks of the experiment and their effects on retrieval performance.

2.3 Other Methods for Harmonic Similarity

The third harmonic similarity measure using chord descriptions is a generative
grammar approach [6]. The authors use a generative grammar of tonal harmony
to parse the chord sequences, which results in parse trees that represent har-
monic analyses of these sequences. Subsequently, a tree that contains all the
information shared by the two parse trees of two compared songs is constructed
and several properties of this tree can be analyzed yielding several similarity
measures. Currently a parser can reject a sequence of chords as being ungram-
matical. We expect this issue to be resolved in the near future by applying a
error-correcting parser [19].

Another interesting retrieval system based on harmonic similarity is the one
developed by Pickens and Crawford [20]. Instead of describing a musical segment
with one chord, they represent a musical segment as a vector describing the ‘fit’
between the segment and every major and minor triad. This system then uses
a Markov model to model the transition distributions between these vectors for
every piece. Subsequently, these Markov models are ranked using the Kullback-
Liebler (KL) divergence. It would be interesting to compare the performance of
these systems to the algorithms tested in here in the future.

Other interesting work has been done by Paiement et al. [16]. They define a
similarity measure for chords rather that for chord sequences. Their similarity
measure is based on the sum of the perceived strengths of the harmonics of the
pitch classes in a chord, resulting in a vector of twelve pitch classes for each
musical segment. Paiement et al. subsequently define the distance between two
chords as the euclidean distance between two of these vectors that correspond
to the chords. Next, they use a graphical model to model the hierarchical depen-
dencies within a chord progression. In this model they used their chord similarity
measure for the calculation of the substitution probabilities between chords.
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|Fm7 . . . |Bbm7 . . . |Eb7 . . . |AbMaj7 . . . |
|DbMaj7 . . . |Dm7b5 . G7b9 . |CMaj7 . . . |CMaj7 . . . |
|Cm7 . . . |Fm7 . . . |Bb7 . . . |Eb7 . . . |
|AbMaj7 . . . |Am7b5 . D7b9 . |GMaj7 . . . |GMaj7 . . . |
|A7 . . . |D7 . . . |GMaj7 . . . |GMaj7 . . . |
|Gbm7 . . . |B7 . . . |EMaj7 . . . |C+ . . . |
|Fm7 . . . |Bbm7 . . . |Eb7 . . . |AbMaj7 . . . |
|DbMaj7 . . . |Dbm7 . Gb7 . |Cm7 . . . |Bdim . . . |
|Bbm7 . . . |Eb7 . . . |AbMaj7 . . . |. . . . |

Table 1. A leadsheet of the song All The Things You Are. A dot represents a beat, a
bar represents a bar line, and the chord labels are presented as written in the Band-
in-a-Box file.

3 A Chord Sequence Corpus

The Chord Sequence Corpus used in the experiment consists of 5,028 unique
human-generated Band-in-a-Box files that are collected from the Internet. Band-
in-a-Box is a commercial software package [21] that is used to generate musical
accompaniment based on a lead sheet. A Band-in-a-Box file stores a sequence
of chords and a certain style, whereupon the program synthesizes and plays a
MIDI-based accompaniment. A Band-in-a-Box file therefore contains a sequence
of chords, a melody, a style description, a key description, and some information
about the form of the piece, i.e. the number of repetitions, intro, outro etc.
For extracting the chord label information from the Band-in-a-Box files we have
extended software developed by Simon Dixon and Matthias Mauch [22].

Throughout this paper we have been referring to chord labels or chord de-
scriptions. To rule out any possible vagueness, we adopt the following definition
of a chord: a chord always consist of a root, a chord type and an optional in-
version. The root note is the fundamental note upon which the chord is built,
usually as a series of ascending thirds. The chord type (or quality) is the set of
intervals relative to the root that make up the chord and the inversion is defined
as the degree of the chord that is played as bass note. One of the most distinctive
features of the chord type is its mode, which can either be major or minor.

Although a chord label always describes these three properties, root, chord
type and inversion, musicians and researchers use different syntactical systems
to describe them, and also Band-in-a-Box uses its own syntax to represent the
chords. Harte et al. [23] give an in depth overview of the problems related to
representing chords and suggests a unambiguous syntax for chord labels. An
example of a chord sequence as found in a Band-in-a-Box file describing the
chord sequence of All the Things You Are is given in Table 1.

All songs of the chord sequence corpus were collected from various Internet
sources. These songs were labeled and automatically checked for having a unique
chord sequence. All chord sequences describe complete songs and songs with
fewer than 3 chords or shorter than 16 beats were removed from the corpus in
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an earlier stage. The titles of the songs, which function as a ground-truth, as well
as the correctness of the key assignments, were checked and corrected manually.
The style of the songs is mainly jazz, latin and pop.

Class Size Frequency Percent

1 3,253 82.50
2 452 11.46
3 137 3.47
4 67 1.70
5 25 .63
6 7 .18
7 1 .03
8 1 .03
10 1 .03

Total 5028 100

Table 2. The distribution of the song class sizes in the Chord Sequence Corpus.

Within the collection, 1775 songs contain two or more similar versions, form-
ing 691 classes of songs. Within a song class, songs have the same title and share
a similar melody, but may differ in a number of ways. They may, for instance,
differ in key and form, they may differ in the number of repetitions, or have
a special introduction or ending. The richness of the chords descriptions may
also diverge, i.e. a C7♭9♭13 may be written instead of a C7, and common sub-
stitutions frequently occur. Examples of the latter are relative substitution, i.e.
Am instead of C, or tritone substitution, e.g. F#7 instead of C7. Having multi-
ple chord sequences describing the same song allows for setting up a cover-song

finding experiment. The the title of the song is used as ground-truth and the
retrieval challenge is to find the other chord sequences representing the same
song.

The distribution of the song class sizes is displayed in Table 2 and gives an
impression of the difficulty of the retrieval task. Generally, Table 2 shows that
the song classes are relatively small and that for the majority of the queries there
is only one relevant document to be found. It furthermore shows that 82.5% of
the songs is in the corpus for distraction only. The chord sequence corpus is
available to the research community on request.

4 Experiment: Comparing Retrieval Performance

We compared the TPSD and the CSAS in six retrieval tasks. For this experiment
we used the chord sequence corpus described above, which contains sequences
that clearly describe the same song. For each of these tasks the experimental
setup was identical: all songs that have two or more similar versions were used as
a query, yielding 1775 queries. For each query a ranking was created by sorting
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the other songs on their TPSD and CSAS scores and these rankings and the
runtimes of the compared algorithms were analyzed.

4.1 Tasks

Task nr. Chord Structure Key Information

1 Roots Key inferred
2 Roots + triad Key inferred
3 Complete Chord Key inferred
4 Roots Key as stored in the Band-in-a-Box file
5 Roots + triad Key as stored in the Band-in-a-Box file
6 Complete Chord Key as stored in the Band-in-a-Box file

Table 3. The TPSD and CSAS are compared in six different retrieval tasks.

The tasks, summarized in Table 3, differed in the level of chord information
used by the algorithms and in the usage of a priori global key information. In
tasks 1-3 no key information was presented to the algorithms and in the re-
maining 3 tasks we used the key information, which was manually checked for
correctness, as stored in the Band-in-a-Box files. The tasks 1-3 and 4-6 further-
more differed in the amount of chord detail that was presented to the algorithms:
in tasks 1 and 4 only the root note of the chord was available to the algorithms,
in tasks 2 and 5 the root and the triad were available and in tasks 3 and 6
the complete chord as stored in the Band-in-a-Box file was presented to the
algorithms.

The different tasks required specific variants of the tested algorithms. For
tasks 1-3 the TPSD used the TPS key finding algorithm as described in Sec-
tion 2.1. For the tasks 1 and 4, involving only chord roots, a simplified variant
of the TPSD was used, for the tasks 2, 3, 5 and 6 we used the regular TPSD, as
described in Section 2.1 and [3].

To measure the impact of the chord representation and substitution functions
on retrieval performance, different variants of the CSAS were built also. In some
cases the choices made did not yield the best possible results, but they allow the
reader to understand the effects of the parameters used on retrieval performance.
The CSAS algorithms in tasks 1-3 all used an absolute representation and the
algorithms in tasks 4-6 used a key relative representation. In tasks 4 and 5 the
chords were represented as the difference in semitones to the root of the key of
the piece and in task 6 as the Lerdahl’s TPS distance between the chord and the
triad from the key (as in the TPSD). The CSAS variants in tasks 1 and 2 used
a consonance based substitution function and algorithms in tasks 4-6 a binary
substitution function was used. In tasks 2 and 5 a binary substitution function
for the mode was used as well: if the mode of the substituted chords matched,
no penalty was given, if they did not match, a penalty was given.
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Fig. 2. The 11-point interpolated precision and recall charts for the TPSD and the
CSAS for tasks 1–3, on the left, and 4–6 on the right.

A last parameter that was varied was the use of local transpositions. The
CSAS variants applied in tasks 1 and 3 did not consider local transpositions, but
the CSAS algorithm used in task 2 did allow local transpositions (see Section 2.2
for details).

The TPSD was implemented in Java and the CSAS was implemented in
C++, but a small Java program was used to parallelize the matching process.
All runs were done on a Intel Xeon quad-core CPU at a frequency of 1.86 GHz.
and 4 Gb of RAM running 32 bit Linux. Both algorithms were parallelized to
optimally use the multiple cores of the CPUs.

4.2 Results

For each task and for each algorithm we analyzed the rankings of all 1775 queries
with 11-point precision recall curves and Mean Average Precision (MAP). Fig-
ure 2 displays the interpolated average precision and recall chart for the TPSD
and the CSAS for all tasks listed in Table 3. We calculated the interpolated
average precision as in [24] and probed it at 11 different recall levels. In all eval-
uations the query was excluded from the analyzed rankings. In tasks 2 and 4-6
the CSAS outperforms the TPSD and in tasks 1 and 3 the TPSD outperforms
the CSAS. The curves all have a very similar shape, this is probably due to
the specific sizes of the song classes and the fairly limited amount of large song
classes (see Table 2).

In Figure 3 we present the MAP and the runtimes of the algorithms on
two different axes. The MAP is displayed on the left axis and the runtimes
are shown on right axis that has an exponential scale doubling the amount
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Fig. 3. The MAP and Runtimes of the TPSD and the CSAS. The MAP is displayed on
the left axis and the runtimes are displayed on an exponential scale on the right axis.
On the left side of the chart the key inferred tasks are displayed and the key relative
tasks are displayed on the right side.

of time at every tick. The MAP is a single-figure measure, which measures the
precision at all recall levels and approximates the area under the (uninterpolated)
precision recall graph [24]. Having a single measure of retrieval quality makes it
easier to evaluate the significance of the differences between results. We tested
whether the differences in MAP were significant by performing a non-parametric
Friedman test, with a significance level of α = .05. We chose the Friedman test
because the underlying distribution of the data is unknown and in contrast to
an ANOVA the Friedman does not assume a specific distribution of variance.
There were significant differences between the runs, χ2(11, N = 1775) = 2, 618,
p < .0001. To determine which of the pairs of measurements differed significantly
we conducted a post hoc Tukey HSD test2. Opposed to a T-test the Tukey HSD
test can be safely used for comparing multiple means [25]. A summary of the
analyzed confidence intervals is given in Table 4. Significant and non-significant
differences are denoted with +’s and –’s, respectively.

The overall retrieval performance of all algorithms on all tasks can be con-
sidered good, but there are some large differences between tasks and between

2 All statistical tests were performed in Matlab 2009a.
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Key Inferred Key Information available
task1 task2 task3 task1 task2 task3 task4 task5 task6 task4 task5
TPSD TPSD TPSD CSAS CSAS CSAS TPSD TPSD TPSD CSAS CSAS

key task2 TPSD +
inferred task3 TPSD – +

task1 CSAS + + +
task2 CSAS + + + +
task3 CSAS + + + + +

key task4 TPSD + – + + + +
information task5 TPSD + + + + + + +
available task6 TPSD + – + + + + – +

task4 CSAS + + + + + + + – –
task5 CSAS + + + + + + + + + +
task6 CSAS + + + + – + + + + + –

Table 4. This table shows for each pair of runs if the mean average precision, as
displayed in Figure 3 differed significantly (+) or not (–).

algorithms, both in performance and in runtime. With a MAP of .70 the over-
all best performing setup was the CSAS using triadic chord descriptions and
a key relative representation (task 5). The TPSD also performs best on task
5 with an MAP of .58. In tasks 2 and 4-6 the CSAS significantly outperforms
the TPSD. On tasks 1 and 3 the TPSD outperforms the CSAS in runtime as
well as performance. For these two tasks, the results obtained by the CSAS are
significantly lower because local transpositions are not considered. These results
show that taking into account transpositions has a high impact on the quality
of the retrieval system, but also on the runtime.

The retrieval performance of the CSAS is good, but comes at a price. On
average over six of the twelve runs, the CSAS runs need about 136 times as
much time to complete as the TPSD. The TPSD takes about 30 minutes to 1.5
hours to match all 5028 pieces, while the CSAS takes about 2 to 9 days. Due to
the fact that the CSAS run in task 2 takes 206 hours to complete, there was not
enough time to perform a run on task 1 and 3 with the CSAS variant that takes
local transpositions into account.

In task 6 both algorithms represent the chord sequences as TPS distances to
the triad of the key. Nevertheless, the TPSD is outperformed by the CSAS. This
difference as well as other differences in performance might well be explained by
the insertion and deletion operations in the CSAS algorithm: if one takes two
identical pieces an inserts one arbitrary extra chord somewhere in the middle of
the piece, an asynchrony is created between the two step functions which has a
large effect on the estimated distance, while the CSAS distance only gains one
extra deletion score.

For the CSAS algorithm we did a few additional runs that are not reported
here. These runs showed that the difference in retrieval performance using dif-
ferent substitution costs (binary, consonance or semi-tones) is limited.

The runs in which a priori key information was available performed better,
regardless of the task or algorithm (compare tasks 1 and 4, 2 and 5, and 3 and
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6 for both algorithms in Table 4). This was to be expected because there are
always errors in the key finding, which hampers the retrieval performance.

The amount of detail in the chord description has a significant effect on the
retrieval performance of all algorithms. In almost all cases, using only the triadic
chord description for retrieval yields better results than using only the root or the
complex chord descriptions. Only the difference in CSAS performance between
using complex chords or triads is not significant in task 5 and 6. The differences
between using only the root or using the complete chord are smaller and not
always significant.

Thus, although colorful additions to chords may sound pleasant to the hu-
man ear, they are not always beneficial for determining the similarity between
the harmonic progressions they represent. We think there might be a simple
explanation for these differences. Using only the root of a chord already leads
to good retrieval results, but by removing good information about the mode
one looses information that can aid in boosting the retrieval performance. On
the other hand keeping all rich chord additional information seems to distract
the evaluated retrieval systems. Pruning the chord structure down to the triad
might be seen as a form of syntactical noise-reduction, since these additions, if
they do not have a voice leading function, have a rather arbitrary character and
can only add some harmonic spice.

5 Concluding Remarks

We performed a comparison of two different chord sequence similarity measures,
the TPSD and the CSAS, on a large newly assembled corpus of 5028 symbolic
chord sequences. The comparison consisted of six different tasks in which we
varied the amount of detail in the chord description and the availability of a
priori key information. The CSAS variants outperform the TPSD significantly
in most cases, but is in all cases far more costly to use. The use of a priori
key information improves performance and using only the triad of a chord for
similarity matching gives the best results for the tested algorithms. Nevertheless,
we can positively answer the third question that we have asked ourselves in
the introduction–do chord descriptions provided a useful and valid abstraction–
because the experiment presented in the previous section clearly shows that
chord descriptions can be used for retrieving harmonically related pieces.

The retrieval performance of both algorithms is good, especially if one con-
siders the size of the corpus and the relatively small class sizes (see Table 2),
but there is still room for improvement. Both algorithms cannot deal with large
structural changes, e.g. adding repetitions, a bridge, etc. A prior analysis of
the structure of the piece combined with partial matching could improve the
retrieval performance. Another important issue is that the compared systems
treat all chords as equally important. This is musicologically not plausible. Con-
sidering the musical function in the local as well as global structure of the chord
progression, like is done in [6] or with sequences of notes in [26], might improve
the retrieval results.
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With runtimes that are measured in days, the CSAS is a costly system. The
runtimes might be improved by using GPU programming [27], or with filtering
steps using algorithms such as BLAST [28].

The harmonic retrieval systems and experiments presented in this paper con-
sider a specific form of symbolic music only. Nevertheless, the application of the
methods here presented is not limited to symbolic music and audio applications
are currently investigated. Especially the recent developments in chord label
extraction are very promising because the output of these methods could be
matched directly with the systems here presented. The good performance of the
proposed algorithms lead us to believe that also in other musical domains, such
as audio, retrieval systems will benefit from chord sequence based matching in
the near future.
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