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First-Body Versus Third-Body: Dialogue
Between an Experiment and a Combined Discrete
and Finite Element Approach
The present paper proposes to analyze relations between the behavior of two bodies in contact (local stress and vibration modes) and the 
rheology of third-body particles. Experiments are performed on a system composed of a polycarbonate disk in contact with a steel 
cylinder, where birefringent property of polycarbonate allows us to observe shear-stress isovalues. Multiscale numerical simulations 
involve the coupling between fi-nite elements and discrete elements to model simultaneously nonhomogeneous third-body flows within a 
confined contact and dynamical behavior of the bodies in contact. Compar-isons between experiments and simulations are performed on 
the dynamic response of the system, the stress distribution, as well as the evolution of third-body particles within the contact. Such 
comparisons exhibit not only qualitative results but also quantitative ones and suggest a new approach to study in deeper third-body 
rheology.
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1 Introduction

When two bodies in contact (called first bodies [1]) are submit-
ted to tribological conditions (contact pressure and shear velocity
simultaneously), several phenomena occur at the scale of the con-
tact interface: surface transformation [2], heat generation [3],
stress localization [4], third-body flows [5], etc. Moreover, the rel-
ative motion related to tribological conditions can lead to instabil-
ity states, such as modal dynamic instabilities, stick-slip, or stick-
slip-separation up to several kHz. Such phenomena, characterized
by large system vibrations, was studied analytically [6,7] as well
as numerically by using the finite element method (FEM) using,
for example, a constant Coulomb friction coefficient [8] possibly
coupled with regularization time, as in Prakash–Clifton law [9].

Nevertheless, such models do not account for the third-body
flow inside the contact and its interactions with contact dynamics.
On the other side, if previous third-body simulations have
occulted first-body behavior [10,11], nowadays it is possible to
couple FEM with discrete element method (DEM) to compensate
limitation of past models [12–14].

Based on such an approach, the purpose of the present work is
to exhibit quantitative numerical results accounting for both first-
body vibrations and third-body rheology. This system is able to
reproduce modal dynamic instabilities, induced by frictional
forces, giving origin to large harmonic system vibrations up to the
appearance of local sticking and detachment zones along the con-
tact interface. To exhibit quantitative results, an experimental
setup has been developed to obtain different levels of comparisons
(system vibrations, local stresses, and third-body rheology). After
a presentation of the experimental setup exposed in Sec. 2, the

headlines of the numerical approach used in this paper are pre-
sented in Sec. 3. Then, a discussion around experimental and nu-
merical results is performed in Sec. 4 before a final section
concluding the paper.

2 Experimental Approach

2.1 Setup. The experiment (cf. Fig. 1) has been developed in
order to track simultaneously first-body vibrations and third-body
rheology under frictional contact conditions. The apparatus is
composed of a polycarbonate holed disk tied on its outer circum-
ference and an expandable rotating cylinder made of stainless
steel. The contact pressure, denoted P, between the two main ele-
ments is controlled by a static radial expansion of the steel cylin-
der. When the wanted pressure is reached, the cylinder is put in
rotation by a motor with a constant angular velocity, denoted x.

As the disk is constituted of polycarbonate (a hard photoelastic
material) with birefringence properties, it is possible to perform a
photostress analysis of the isochromatics to obtain a dynamic vis-
ualization of the deviatoric stresses in the disk (i.e., jr1 � r2j) dur-
ing the friction process. This analysis depends on the Brewster
constant, which shows correlation between the optical path differ-
ence between vibrations along two perpendicular axes (with mini-
mal and maximal velocities) and stresses that gave rise to this
difference. The isochromatics can be directly compared to the
stresses computed in numerical simulations. To improve their
legibility, a monochromatic filter with a wavelength, k, equal to
546 nm has been used to select only the isochromatic proportional
to smax equal to 0:35 MPa (the black lines in Fig. 3). A thermocou-
ple has been added, close to the contact interface, to control tem-
perature variations. During the experimental tests presented in
Secs. 2.2, 2.3, and 2.4 the value of this temperature stays compa-
rable to the ambient one. Consequently, there is no thermal effect



when isochromatic is observed. Both material and geometrical
characteristics are summarized in Table 1.

To account for the high frequencies of the unstable vibrations
of such system, a high-speed video camera has been used with a
sampling rate compatible with the frequency of the instability
(i.e., 20,000 fps at 640� 480 pixels). In addition, both in-plane
(radial) and out-of-plane accelerations of the disk are recorded
with two piezoelectric accelerometers with a sensitivity of
10 mV=g and radially positioned at about 20 mm from the disk-
cylinder interface (cf. Fig. 1). The radial expansion of the steel
cylinder is monitored by two eddy current transducers, diametri-
cally opposite, with a sensitivity of 8 mV=lm.

Finally, the rotational velocity of the cylinder is imposed and
controlled by a brushless motor linked to an optical encoder. To
maintain a constant velocity all along the experiment, the engine
torque evolves automatically, thanks to a feedback loop linked to
a velocity encoder. Such evolution is directly linked to the reac-
tion torque of the contact interface. Data have been exploited
qualitatively to see the tendency of such evolution. The constant
of proportionality of the torque transmitted could not be measured
or computed easily. The constant of proportionality of the velocity
transmission between the motor and the axle has been computed
with the number of teeth of the pulley and is equal to a reduction
coefficient of 2.14.

2.2 Identification of Instability States. Relative motion
between solids in frictional contact can give origin of different
stable or unstable scenarios (continuous sliding, stick-slip, mode
coupling instability, etc.) as a function of the system and contact
parameters [15]. In this paper, the experimental and numerical
systems are set to give rise to mode-coupling instabilities due to
the unstable interaction between two system modes that are
coupled by the contact forces [15]. This kind of contact instability
is characterized by large harmonic vibrations of the system, at one
of the system natural frequencies, which increase exponentially
up to a limit cycle due to the rise of contact nonlinearities [15].

After a calibration of the experimental setup and a first para-
metrical analysis (radial expansion, rotational speed, and contact
surface properties) [16,17], an identification of the instability
states is performed, with or without creation of third-body, using
spectrogram of in-plane and/or out-of-plane acceleration.

Figure 2 shows the spectrogram of a first experiment performed
with a radial expansion of 30 lm and a rotation speed
x ¼ 0:1 m=s. The X-axis corresponds to the scale of frequency
and the Y-axis to the time evolution, while the color scale refers
to the intensity of acceleration. With such a graph, for a given fre-
quency, it is possible to see its evolution in time and, for a given
time, which frequencies are involved. During the duration of the
first experiment, the applied conditions do not still lead to the cre-
ation of third-body particles. The spectrogram (cf. Fig. 2(a)) is
characterized by a main frequency at 7:5 kHz with its super har-
monics. The harmonic behavior of the vibrations at a natural fre-
quency of the system is characteristic of autoexcited vibrations
due to modal coupling [15]. Note that the value of the main fre-
quency can have slight variations from one disc to another. Such
behavior is due to the sensitivity to both the boundary conditions
applied to the external side of the disc and the machining toler-
ance on the inner diameter of the disc lower than 5 lm diame-
trally. Then, the main frequency of the instability state reproduced
experimentally evolves in the range of 7:5 kHz61:5 kHz but with
a similar shape of the excited (unstable) mode.

After a period of running in with the same boundary conditions,
the creation of third-body particles starts (i.e., an increase of third-
body flow). A progressive competition takes place between the
instability states, occurring since the beginning of the experiment,
and the birth of third-body particles in the contact, occurring later
during the experiment. If the number and the size of third-body
particles are small enough, nothing happens on the spectrogram.
If the third-body particles reach a critical size, a transition
between an unstable state and a stable state occurs as highlighted
by Fig. 2(b), where the unstable vibrational frequency at 7:5 kHz
disappears during the test.

2.3 Local Stresses. Due to the property of birefringence
properties of the polycarbonate disk, a photostress analysis of the
isochromatics is performed to obtain the evolution of the devia-
toric stresses in the disk (i.e., jr1 � r2j) during the rotation of
dilated the steel cylinder (cf. Fig. 3).

Initially, the deviatoric stress (smax) is close to 0:7 MPa (two
fringes). When the instability state occurs, due to the contact
forces, oscillations of the stress distribution are observed. Conse-
quently, smax evolves in a range from 0:7 MPa (two fringes) to
1:4 MPa (four fringes) (cf. Fig. 3(a)).

Then, the instability state disappears and a large amount of
large third-body particles (up to 20 mm in length and 50 lm thick)
is observed in the contact (cf. Fig. 4). The presence of these

Fig. 1 Sketch of the (a) face and (b) lateral views of the experimental setup and (c) photograph of the experimental setup

Table 1 Material and geometrical characteristics of the main
elements of the experimental setup

Disk Cylinder

Young’s modulus (GPa) 2.3 205
Poisson ratio 0.38 0.3
Density (kg=m

3
) 1200 7800

Internal radius (mm) 20.5 —
External radius (mm) 92.5 20.5
Thickness (mm) 10 —
Brewster constant (Pa�1) 78� 10�12 —



Fig. 2 Spectrogram of instability states (a) during the increase of third-body flow and (b) with a
stable third-body flow for a radial expansion of 20 lm and a rotation speed x 5 0:2 m=s

Fig. 3 Evolution of isochromatics during the creation of third-body particles for a radial expan-
sion of 20 lm and a rotation speed x 5 0:2 m=s

Fig. 4 Zoom on third-body particles on the inner diameter disk with a binocular microscope



particles is directly highlighted thanks to the local increase of the
number of fringes (cf. Figs. 3(b) and 3(c)) on the isochromatics.
The rotation of the cylinder leads to the creation and the migration
of third-body particles within the contact. At the location point of
third-body particles, smax raises at values about 10 times higher
than its initial value (up to approximately 7 MPa).

2.4 Third-Body Particles. After a few seconds, the contact
instability disappears (no more squeal) and the rotation of the cyl-
inder is stopped. Using the video camera, it is possible to visualize
the history of the contact interface. With the rotation of the cylin-
der, third-body particles are created. When the amount of third-
body particles is large enough, contact instability vanishes. Conse-
quently, the inner diameter of the cylinder is observed with a
stereo microscope (cf. Fig. 4) in order to identify the shape of
third-body particles.

Third-body particles present different shapes and different
sizes. Two main kinds of particles are here distinguished: large
particles and small particles. The size of large particles is not neg-
ligible compared to the size of the contact: several millimeters
width, several tens or so millimeters length, and several tens or so
micrometers thickness. The size of “small particles” is equal to
about 100 micrometers, with a thickness of a few micrometers. As
these last ones are also observed during experiments when the
instability remains, large particles can be seen as the agglomera-
tion of small particles and are the cause of instability
disappearance.

3 Numerical Approach

3.1 Global Formulation. Several observations have been
performed thanks to the experimental setup: contact instabilities,
evolution of local stresses, and creation of third-body particles.
Such phenomena are deeply related and occur at different scales. In
order to use the same numerical approach to model the whole disk
and the third-body particles, the choice of a combined FEM-DEM
formulation has been done [13]: finite elements to model the polycar-
bonate disk and discrete elements to represent third-body particles.

The combined FEM-DEM approach relies on the nonsmooth
contact dynamics (NSCD) method developed by Moreau and Jean
[18,19]. Based on a robust mathematical framework, the approach
is able to represent, with the same formalism, the dynamical
behavior of large collections of rigid particles as well as deforma-
ble particles [13]. Only the headlines of the approach are pre-
sented here, and the reader could refer to dedicated papers for
more details [18,19].

When the evolution of a multicontact system is smooth, the
equation of dynamics can be written as

M€qþC _qþKq ¼ Fextðt; q; _qÞ þ R (1)

where M represents the mass matrix, C the damping matrix, K
the stiffness matrix, Fextðt;q; _qÞ the external forces, and R the
contact forces. Vector q represents the vector of generalized
degrees of freedom, while _q and €q denote the generalized velocity
and acceleration vectors, respectively. The Eq. (1) is written for
deformable as well as rigid bodies. In this last case, both C and K
vanish.

The NSCD approach uses an implicit time-discretized formula-
tion of the equation of motion in Eq. (1) written for a collection of
particles. Since the number of contacts is higher than the number
of particles (dense particle assemblies), the interaction between
particles is not considered at the scale of each individual particle
but at each contact scale. Consequently, one prefers to transform
the Eq. (1) in an equation where local variables are used.

Two linear mappings, H and H�, are defined to related varia-
bles expressed in the frame of particles (global frame) and varia-
bles expressed in the frame of contacts (local frame). In a contact
between two rigid particles (cf. Fig. 5(b)), information is
exchanged between the center of mass of each particle (black
points) and the contact point (gray point) while in a contact
between a rigid particle and a deformable structure, information is
exchanged between the center of mass of the particle and the
nodes of the closer segment (black points) and the contact point
(gray point). Thus, in both cases, the local contact force vector r
and the local relative velocity vector u are related to the global
body contact force vector R and the body velocity vector _q by

R ¼Hr

u ¼H� _q

(
(2)

Both mappings depend on local information, such as the local
frame defined at each contact point and the network connectivity
of each contact. The combination to the Eq. (1) and the equations
of system (2) allows us to write, at each time step, the system in
Eq. (3) contains equations of motion,

Wr� u ¼ b

lawa½ua; ra� ¼ true; a ¼ 1; nc

(
(3)

where matrix W is the Delassus operator, containing local infor-
mation (such as local frames and contact points), allowing us to
use it at the particles scale. Vectors u and r are, respectively, the
vectors containing the relative velocity and the mean contact
impulse for all the contact points of all particles. b represents the
free relative velocity calculated by taking into account the

Fig. 5 Definition of the list of first neighbors of particle i (dashed particles) (a) and of the local frame ðta;naÞ for a contact
between two particles (b) and between one particle and a deformable structure (c)



external forces only. The first equation of system in Eq. (3) repre-
sents, for a given time, the connection between the elements of
the mechanical system submitted to some external forces repre-
sented by b, while the second one explains how each couple of
particle (rigid or now) are related. The h method is used for time
discretization and a classical nonlinear Gauss–Seidel algorithm to
solve the system in Eq. (3) [19]. The approach benefits from a par-
allel version to ensure reasonable central processing unit times
[20].

3.2 Interaction Laws. To close the system in Eq. (3), one
should define the relation between u and r given by the interaction
law. This could represent a unilateral contact, an elastic contact, a
bilateral relation, or a more sophisticated relation. In our case, two
kinds of interaction laws should be defined.

The first one concerns the contact between the polycarbonate
disk and the steel cylinder. A classical unilateral contact law
coupled with a Coulomb friction model is used, involving only
the friction coefficient l as a parameter.

The second one concerns the contact between different discrete
elements, between discrete elements and the disk, and between
discrete elements and the cylinder. No information can be directly
obtained to fix such a law. Nevertheless, it is possible to interpret
the phenomena within the contact according to postmortem obser-
vation: Macroparticles are a collection of microparticles that also
can be represented as a collection of elementary rigid particles.
Using a kind of cohesive interaction law, it is possible to repro-
duce such phenomena as well as to allow for a deformation of
microparticles. Consequently, as proposed in previous works
[3,11,13], a cohesive unilateral contact law is used, involving the
cohesion force c as a parameter. This cohesive law can be com-
bined with the Coulomb friction to introduce tangential effects.

The system in Eq. (4) summarizes the previous laws,

ðrn þ cÞ � 0; un � 0; ðrn þ cÞ � un ¼ 0

If ut ¼ 0; then jrtj � lrn

else rt ¼ �signðutÞlrn

8><
>: (4)

where the indices n and t refer to the normal and tangential parts
of the considered vector.

3.3 Structural Damping. The role of the damping is crucial
to determine the dynamical response of a given system. For this
reason, it is necessary to account for the structural damping rather

than the artificial numerical one. A Rayleigh model [21] is chosen
to describe the structural damping. Such damping is related to the
damping matrix C, which can be represented as

C ¼ aRMþ bRK (5)

where aR and bR are the Rayleigh’s coefficients.
To obtain structural damping coherent values, dynamical tests

have been performed on a polycarbonate disk: The disk is excited
by an instrumented hammer and its dynamical response is meas-
ured with an accelerometer. Such an experiment, by fitting the
modal damping values obtained with the half-power method [17],
allows us to recover the corresponding values of the Rayleigh’s
coefficients: a ¼ 40 s�1 and b ¼ 4:5 e� 7s.

3.4 Numerical Model. To reproduce the experimental setup,
a two-dimensional numerical model is used. Due to contrast
between the Young’s modulus of the steel and the polycarbonate,
the inner cylinder is represented as a rigid disk. The polycarbonate
disk is represented by a mesh constituted of 15,400 elements Q4
(four linear integration points), where the length of a cell close to
the contact is equal to 0:58 mm. Material properties (Young’s
modulus, Poisson ratio, density, and radii) are the same as in the
experiment (cf. Table 1).

Two numerical third-body macroparticles are used in the com-
bined FEM-DEM model and located in the areas A and B pre-
sented in Fig. 6, corresponding to the areas observed
experimentally in Fig. 4. As mentioned above, small particles do
not affect contact instabilities. Consequently, only macroparticles
are taking into account in the numerical model. They are both
composed of rigid disks of diameter equal 20 lm. The initial
thickness of macroparticles (in the radial direction) is equal to
50 lm, i.e., two particles high approximately. The macroparticles
A and B are composed of 203 and 628 rigid particles, respec-
tively. The rigid disks contained in each macroparticle are related
by the cohesive unilateral contact law defined by the system in
Eq. (4). As such a cohesive law is reversible, macroparticles could
be split and recombined during the simulation process.

Like for the experimental tests, simulations are performed in
two steps. First, the internal rigid cylinder has a radius expansion
of 0:15 mm. Then, the expansion is stopped and the rotation of the
cylinder starts with an angular velocity x equal to 6:25 rad=s
equivalent to a linear velocity of 0:1 m=s at the contact interface.

To close this subsection, one should determine the value of con-
tact law parameters, i.e., the value of l and c in the different con-
tact configurations.

Fig. 6 Numerical model used for standalone FEM and the combined FEM-DEM simulations



In the literature [22,23], the friction value for a contact steel/
polycarbonate ranges from 0.3 to 0.7. Nevertheless, a previous nu-
merical study [24] shows that, for angular velocity equal to
6:25 rad=s, the value of l does not affect the instability regimes.
Consequently, a value of 0:3 is taken for l and is combined with a
dry contact law (i.e., c ¼ 0). The same parameters are chosen for
the contact between discrete elements and the steel cylinder.

Concerning the contact between discrete elements and between
discrete elements and the deformable disk, a value of 0:3 is taken
for l and is combined with four different cohesion values: 0, 0:1,
0:2, and 1:0 N. Such variation of the cohesion could characterize
implicitly some variation in the particle properties (surface energy
for example). The maximal value of 1 N is chosen to obtain an in-
ternal resistance of macroparticle equivalent to the traction resist-
ance value of the polycarbonate (close to 60 MPa) [23].

4 Result Discussion and Comparisons

4.1 Without Third-Body. During the simulation, when no
third-body particles are considered, the trajectory of a node
located in the area D is measured during the frictional process and
the spectrum of the signal is computed (cf. Fig. 7). The same

harmonic behavior of the system vibrations is recovered both
numerically and experimentally. The standalone FEM modeling
shows a frequency at about 9.5 kHz.

This value, higher than the experimental one, is due to the ideal
numerical boundary conditions (fixed support) and thus to higher
rigidity of the model with respect to the experimental setup. A 3D
numerical modal analysis of the whole setup has been performed
to verify that the numerical and experimental unstable modes
coincide [17]. In complement of such a value, the deviatoric stress
fields are observed and compared directly with experimental
observations (cf. Fig. 8).

There is a good correlation between the experimental and nu-
merical results. The shape of the excited mode is similar in simu-
lations and experiments: the contour levels of the deviatoric stress
fields have the same repartition and the same maximal value.

4.2 With Third-Body. In complement of Sec. 4.1, compari-
sons have also been realized between numerical and experimental
results in presence of third-body particles. As for the standalone
FEM model, the trajectory of a node located in the area D is meas-
ured during the frictional process and the frequency spectrum is
calculated (cf. Fig. 7). The combined FEM-DEM modeling shows
a frequency close to 9.7 kHz. Then, the deviatoric stress fields are
observed and compared directly with experimental observation
(cf. Fig. 9).

Once again, there is a good correlation between the experimen-
tal and numerical results. Even in presence of third-body particles,
the contour levels of the deviatoric stress fields of the disk have
the same maximal value. In Fig. 9, the circled numbers correspond
to the order of fringe of the photoelasticimetry analysis. By multi-
plying such number by 0.35 MPa (according to the properties of
the polycarbonate disc), the deviatoric stress is obtained and could
so be compared to the isostresses lines presented on the FEM
image. A quantitative agreement is found between experimental
results and numerical results at the scale of the disc.

Finally, in complement to the comparison between experimen-
tal and numerical results, the influence of third-body behavior on
its global evolution is investigated. To analyze third-body rheol-
ogy, the contact interface is divided in 220 angular sectors,
denoted Sk, each sector corresponding to a cell of the mesh.
Then, at each time step, particles are associated to a given sector
according to their current position. Finally, the average of
quantities, such as the velocity magnitude or equivalent deviatoric

Fig. 8 Comparison of the deviatoric stress values between the FEM-DEM model and experi-
mental results without third-body (cf. Fig. 3(a)).

Fig. 7 Frequency calculated on the standalone FEM model
and the combined FEM-DEM model during the frictional pro-
cess compared to the experimental result



stress [25], is computed. The velocity magnitude of a cell is
defined as

VðSkÞ ¼
1

nk

X
i2Sk

_qi (6)

where nk denotes the number of particles in the sector Sk.

The equivalent deviatoric stress is defined as

sðSkÞ ¼
X
i2Sk

si (7)

where si is the deviatoric part of the mean stress tensor ri of parti-
cle i computed as follows:

Fig. 9 Comparison of the deviatoric stress field between the FEM-DEM model and experimental results with third-body. The
numbers from 1 to 10 correspond to the number of fringes identified in the experiment.

Fig. 10 Visualization of the equivalent velocity field within a macroparticle during
the process for different cohesion values: (a) 0, (b) 0.1, (c) 0.2, and (d) 1.0



ri ¼
1

Ai

X
a2Li

ra 	 la (8)
values, the deviatoric stress reaches its maximal value at the limits
of the particle (the front and the end) during the whole frictional
process. For the higher cohesion value, this repartition starts to be
chaotic, especially for the front of the particle. In term of stress in-
tensity, the striking point is the fact that the mean computed value
within the particle is equal to the one computed in the continuous
model, which corresponds to the experimental one. Thus, there is
a really good agreement between the discrete, the continuous
models, and the experiment. One can observe in Fig. 11 deviatoric
stress values two times larger than the mean deviatoric stress
value. This points out a limit of a model constituted of only rigid
particles that can generate higher constraint values and suggests
the introduction of local fragmentation process in the simulation
to reduce such an artifact.

5 Conclusion

In the present work, a combined FEM-DEM approach is pro-
posed to account for both a good description of the bodies in con-
tact and the contact interface. Simulation results are not only
phenomenological but also qualitatively validated thanks to the
comparison with an experimental setup. The setup, dedicated to a
tribological model, has been developed to reproduce and measure
both instability states and third-body flows using a frictional con-
tact between a holed polycarbonate disc and an expanded inner
cylinder. From an experimental point of view, a competition
between instability states and third-body flows in the contact has
been highlighted. From a numerical point of view, local investiga-
tion can be performed on third-body particles to check the influ-
ence of internal parameters, such as the cohesion value.
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Fig. 11 Visualization of the equivalent deviatoric stress within a macroparticle
during the process for different cohesion values: (a) 0, (b) 0.1, (c) 0.2, and (d) 1.0

where Ai is the area of particle i and Li the contact list of particle i 
(dashed particles of Fig. 5(a)), while la is the vector connecting 
the center of mass of particle i and the contact point associated to 
the contact force ra.

Figure 10 proposes the visualization of the equivalent velocity 
field within a macroparticle during its motion induced by the rota-
tion of the inner cylinder for the different cohesion values.

It can be noted that the value of the cohesion does not affect the 
migration of the particle. In each case, the macroparticle occupies 
initially 26 angular sectors and 29 at the end of the simulation. 
Indeed, the velocity within the particle could be six times larger 
than the rotation speed. This observation underlines the fact that 
internal motion occurs within a macroparticle, even if its global 
shape does not evolve. Such motion could be related to a self-
reorganization or to a “vibration” induced by the wave propaga-
tion in the polycarbonate disk. The harmonic vibrations due to the 
modal instability cause large oscillations of the local sliding ve-
locity at the contact interface. In such a way, the dynamic 
response of the system affects the local behavior (kinematics) of 
the third-body particles. This is confirmed by the period of the 
jumps of the macroparticles, which coincide with the period of the 
harmonic system vibrations. Its variation is closer to an increasing 
oscillatory function rather than to a linear one. This last point 
underlines the strong impact of the dynamics of the first bodies on 
the rheology of the third-body. Moreover, the comparison between 
the three plots, obtained for different values of the cohesiveness, 
shows that its effect on this period is not relevant with respect to 
the effect of the system vibrations, which appears to be dominant.

To complete local kinematic observations, Fig. 11 presents the 
visualization of the equivalent deviatoric stress within a 
macroparticle.

As highlighted in the figures, only the higher cohesion value 
affects the stress repartition within the particle. For small cohesion



Simulations are performed with the LMGC90 open-source
platform.1

Nomenclature

b ¼ free local relative velocity
C ¼ damping matrix
dt ¼ time step
g ¼ gap between particles
i ¼ particle index
k ¼ angular sector index

K ¼ stiffness matrix
M ¼ mass matrix
nc ¼ contact number
P ¼ contact pressure
q ¼ configuration parameter
_q ¼ global velocity
€q ¼ global acceleration
r ¼ local contact force

R ¼ global contact force
S ¼ angular sector
u ¼ local relative velocity

W ¼ Delassus operator of the whole system
a ¼ contact index

aR;bR ¼ Rayleigh coefficients
c ¼ local cohesion force
l ¼ local friction coefficient
x ¼ angular relative velocity of the disk
r ¼ stress tensor

smax ¼ deviatoric stress
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