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Abstract. We consider two-player zero-sum games on graphs. These games can
be classified on the basis of the information of the players and on the mode of
interaction between them. On the basis of information the classification is as fol-
lows: (a) partial-observation (both players have partial view of the game); (b)
one-sided complete-observation (one player has complete observation); and (c)
complete-observation (both players have complete view of the game). On the ba-
sis of mode of interaction we have the following classification: (a) concurrent
(players interact simultaneously); and (b) turn-based (players interact in turn).
The two sources of randomness in these games are randomness in transition func-
tion and randomness in strategies. In general, randomized strategies are more
powerful than deterministic strategies, and randomness intransitions gives more
general classes of games. We present a complete characterization for the classes
of games where randomness is not helpful in: (a) the transition function (proba-
bilistic transition can be simulated by deterministic transition); and (b) strategies
(pure strategies are as powerful as randomized strategies). As consequence of our
characterization we obtain new undecidability results forthese games.

1 Introduction

Games on graphs.Games played on graphs provide the mathematical framework to
analyze several important problems in computer science as well as mathematics. In par-
ticular, when the vertices and edges of a graph represent thestates and transitions of a
reactive system, then the synthesis problem (Church’s problem) asks for the construc-
tion of a winning strategy in a game played on a graph [5,17,16,14]. Game-theoretic
formulations have also proved useful for the verification [1], refinement [11], and com-
patibility checking [9] of reactive systems. Games played on graphs are dynamic games
that proceed for an infinite number of rounds. In each round, the players choose moves;
the moves, together with the current state, determine the successor state. An outcome
of the game, called aplay, consists of the infinite sequence of states that are visited.

Strategies and objectives.A strategy for a player is a recipe that describes how the
player chooses a move to extend a play. Strategies can be classified as follows:pure
strategies, which always deterministically choose a move to extend the play, vs.ran-
domizedstrategies, which may choose at a state a probability distribution over the avail-
able moves. Objectives are generally Borel measurable functions [13]: the objective for
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a player is a Borel setB in the Cantor topology onSω (whereS is the set of states), and
the player satisfies the objective iff the outcome of the gameis a member ofB. In verifi-
cation, objectives are usuallyω-regular languages. Theω-regular languages generalize
the classical regular languages to infinite strings; they occur in the low levels of the
Borel hierarchy (they lie inΣ3 ∩ Π3) and they form a robust and expressive language
for determining payoffs for commonly used specifications.

Classification of games.Games played on graphs can be classified according to the
knowledge of the players about the state of the game, and the way of choosing moves.
Accordingly, there are (a)partial-observationgames, where each player only has a
partial or incomplete view about the state and the moves of the other player; (b)one-
sided complete-observationgames, where one player has partial knowledge and the
other player has complete knowledge about the state and moves of the other player;
and (c)complete-observationgames, where each player has complete knowledge of the
game. According to the way of choosing moves, the games on graphs can be classi-
fied into turn-basedandconcurrentgames. In turn-based games, in any given round
only one player can choose among multiple moves; effectively, the set of states can be
partitioned into the states where it is player 1’s turn to play, and the states where it is
player 2’s turn. In concurrent games, both players may have multiple moves available
at each state, and the players choose their moves simultaneously and independently.

Sources of randomness.There are two sources of randomness in these games. First is
the randomness in the transition function: given a current state and moves of the players,
the transition function defines a probability distributionover the successor states. The
second source of randomness is the randomness in strategies(when the players play
randomized strategies). In this work we study when randomness can be obtained for
free; i.e., we study in which classes of games the probabilistic transition function can
be simulated by deterministic transition function, and theclasses of games where pure
strategies are as powerful as randomized strategies.

Motivation. The motivation to study this problem is as follows: (a) if fora class of
games it can be shown that randomness is free for transitions, then all future works
related to analysis of computational complexity, strategycomplexity, and algorithmic
solutions can focus on the simpler class with deterministictransitions (the randomness
in transition may be essential for modeling appropriate stochastic reactive systems, but
the analysis can focus on the deterministic subclass); (b) if for a class of games it can be
shown that randomness is free for strategies, then all future works related to correctness
results can focus on the simpler class of deterministic strategies, and the results would
follow for the more general class of randomized strategies;and (c) the characterization
of randomness for free will allow hardness results obtainedfor the more general class
of games (such as games with randomness in transitions) to becarried over to simpler
class of games (such as games with deterministic transitions).

Contribution. The contributions of this paper are as follows:

1. Randomness for free in transitions.We show that randomness in the transition func-
tion can be obtained for free for complete-observation concurrent games (and any
class that subsumes complete-observation concurrent games) and for one-sided
complete-observation turn-based games (and any class thatsubsumes this class).



The reduction is polynomial for complete-observation concurrent games, and ex-
ponential for one-sided complete-observation turn-basedgames. It is known that
for complete-observation turn-based games, a probabilistic transition function can-
not be simulated by deterministic transition function (seediscussion in Section 3.4
for details), and thus we present a complete characterization when randomness can
be obtained for free for the transition function.

2. Randomness for free in strategies.We show that randomness in strategies is free
for complete-observation turn-based games, and for one-player partial-observation
games (POMDPs). For all other classes of games randomized strategies are more
powerful than pure strategies. It follows from a result of Martin [13] that for
one-player complete-observation games with probabilistic transitions (MDPs) pure
strategies are as powerful as randomized strategies. We present a generalization of
this result to the case of one-player partial-observation games with probabilistic
transitions (POMDPs). Our proof is totally different from Martin’s proof and based
on a new derandomization technique of randomized strategies.

3. Concurrency for free in games.We show that concurrency is obtained for free
with partial-observation, both for one-sided complete-observation games as well as
for general partial-observation games (see Section 3.5). It follows that for partial-
observation games, future research can focus on the simplermodel of turn-based
games, and concurrency does not add anything in the presenceof partial observa-
tion.

4. New undecidability results.As a consequence of our characterization of random-
ness for free, we obtain new undecidability results. In particular, using our results
and results of Baier et al. [2] we show for one-sided complete-observation deter-
ministic games, the problem of almost-sure winning for coB¨uchi objectives and
positive winning for Büchi objectives are undecidable. Thus we obtain the first
undecidability result for qualitative analysis (almost-sure and positive winning) of
one-sided complete-observation deterministic games withω-regular objectives.

2 Definitions

In this section we present the definition of concurrent gamesof partial information and
their subclasses, and notions of strategies and objectives. Our model of game is equiva-
lent to the model of stochastic games with signals [15,3]. Aprobability distributionon
a finite setA is a functionκ : A → [0, 1] such that

∑

a∈A κ(a) = 1. We denote by
D(A) the set of probability distributions onA.

Concurrent games of partial observation.A concurrent game of partial observation
(or simply agame) is a tupleG = 〈S,A1, A2, δ,O1,O2〉 with the following compo-
nents:

1. (State space).S is a finite set of states;
2. (Actions).Ai (i = 1, 2) is a finite set of actions for playeri;
3. (Probabilistic transition function).δ : S × A1 × A2 → D(S) is a concurrent

probabilistic transition function that given a current state s, actionsa1 anda2 for
both players gives the transition probabilityδ(s, a1, a2)(s′) to the next states′;



4. (Observations).Oi ⊆ 2S (i = 1, 2) is a finite set of observations for playeri that
partition the state spaceS. These partitions uniquely define functionsobsi : S →
Oi (i = 1, 2) that map each state to its observation such thats ∈ obsi(s) for all
s ∈ S.

Special cases.We consider the following special cases of partial-observation concurrent
games, obtained either by restrictions in the observations, the mode of selection of
moves, the type of transition function, or the number of players:

– (Observation restriction).The games withone-sided complete-observationare the
special case of games whereO1 = {{s} | s ∈ S} (i.e., player 1 has com-
plete observation) orO2 = {{s} | s ∈ S} (player 2 has complete observa-
tion). The games of complete-observationare the special case of games where
O1 = O2 = {{s} | s ∈ S}, i.e., every state is visible to each player and hence both
players have complete observation. If a player has completeobservation we omit
the corresponding observation sets from the description ofthe game.

– (Mode of interaction restriction).A turn-based stateis a states such that either(i)
δ(s, a, b) = δ(s, a, b′) for all a ∈ A1 and allb, b′ ∈ A2 (i.e, the action of player 1
determines the transition function and hence it can be interpreted as player 1’s turn
to play), we refer tos as a player-1 state, and we use the notationδ(s, a,−); or
(ii) δ(s, a, b) = δ(s, a′, b) for all a, a′ ∈ A1 and allb ∈ A2. We refer tos as a
player-2 state, and we use the notationδ(s,−, b). A states which is both a player-1
state and a player-2 state is called aprobabilistic state(i.e., the transition function
is independent of the actions of the players). We write theδ(s,−,−) to denote the
transition function ins. Theturn-based gamesare the special case of games where
all states are turn-based.

– (Transition function restriction).The deterministic gamesare the special case of
games where for all statess ∈ S and actionsa ∈ A1 andb ∈ A2, there exists a state
s′ ∈ S such thatδ(s, a, b)(s′) = 1. We refer to such statess as deterministic states.
For deterministic games, it is often convenient to assume thatδ : S×A1×A2 → S.

– (Player restriction). The 11/2-player games, also calledpartially observable
Markov decision processes(or POMDP), are the special case of games where
the action setA1 or A2 is a singleton. Note that 11/2-player games are turn-based.
Games without player restriction are sometimes called 21/2-player games.

The 11/2-player games of complete-observation are Markov decisionprocesses (or
MDP), and 11/2-player deterministic games can be viewed as graphs (and areoften
called one-player games).

Classes of game graphs.We use the following abbreviations: we usePa for partial-
observation,Os for one-sided complete-observation,Co for complete-observation,
C for concurrent, andT for turn-based. For example,CoC will denote complete-
observation concurrent games, andOsT will denote one-sided complete-observation
turn-based games. ForC ∈ {Pa,Os,Co} × {C,T}, we denote byGC the set of allC
games. Note the following strict inclusions (see also Fig. 2): partial observation (Pa) is
more general than one-sided complete-observation (Os) andOs is more general than
complete-observation (Co), and concurrent (C) is more general than turn-based (T). We
will denote byGD the set of all games with deterministic transition function.



Plays.In a game structure, in each turn, player1 chooses an actiona ∈ A1, player2
chooses an action inb ∈ A2, and the successor of the current states is chosen according
to the probabilistic transition functionδ(s, a, b). A play in G is an infinite sequence
ρ = s0 a0b0 s1 a1b1 s2 . . . such thatδ(si, ai, bi, si+1) > 0 for all i ≥ 0. Theprefix up
to sn of the playρ is denoted byρ(n). The set of plays inG is denotedPlays(G), and
the set of corresponding finite prefixes is denotedPrefs(G). Theobservation sequence
of ρ for playeri (i = 1, 2) is the unique infinite sequenceobsi(ρ) = o0 c0 o1 c1 o2 . . .
such thatsj ∈ oj ∈ Oi, andcj = aj if i = 1, andcj = bj if i = 2 for all j ≥ 0.

Strategies.A pure strategyin G for player1 is a functionσ : Prefs(G) → A1. A
randomized strategyin G for player1 is a functionσ : Prefs(G) → D(A1). A (pure
or randomized) strategyσ for player1 is observation-basedif for all prefixesρ, ρ′ ∈
Prefs(G), if obs1(ρ) = obs1(ρ

′), thenσ(ρ) = σ(ρ′). We omit analogous definitions
of strategies for player2. We denote byΣG, ΣO

G , ΣP
G , ΠG, ΠO

G andΠP
G the set of all

player-1 strategies, the set of all observation-based player-1 strategies, the set of all pure
player-1 strategies, the set of all player-2 strategies inG, the set of all observation-based
player-2 strategies, and the set of all pure player-2 strategies, respectively. Note that if
player1 has complete observation, thenΣO

G = ΣG.

Objectives.An objectivefor player1 in G is a setφ ⊆ Sω of infinite sequences of
states. A playρ = s0 a0b0 s1 a1b1 s2 . . . ∈ Plays(G) satisfiesthe objectiveφ, denoted
ρ |= φ, if s0s1s2 . . . ∈ φ. Objectives are generally Borel measurable: a Borel objective
is a Borel set in the Cantor topology onSω [12]. We specifically considerω-regular
objectives specified as parity objectives (a canonical formto express allω-regular ob-
jectives [18]). For a sequencēs = s0s1s2 . . . we denote byInf(s̄) the set of states that
occur infinitely often ins̄, that is,Inf(s̄) = {s ∈ S | sj = s for infinitely manyj’s}.
Ford ∈ N, let p : S → {0, 1, . . . , d} be apriority function, which maps each state to a
nonnegative integer priority. Theparity objectiveParity(p) requires that the minimum
priority that occurs infinitely often be even. Formally,Parity(p) = {s̄ | min{p(s) |
s ∈ Inf(s̄)} is even}. The Büchi and coBüchi objectives are the special cases ofparity
objectives with two priorities,p : S → {0, 1} andp : S → {1, 2} respectively. We
say that an objectiveφ is visible for playeri if for all ρ, ρ′ ∈ Plays(G), if ρ |= φ and
obsi(ρ) = obsi(ρ

′), thenρ′ |= φ. For example if the priority function maps observa-
tions to priorities (i.e.,p : Oi → {0, 1, . . . , d}), then the parity objective is visible for
playeri.

Almost-sure winning, positive winning and value function.An eventis a measurable
subset ofSω, and given strategiesσ andπ for the two players, the probabilities of
events are uniquely defined [19]. For a Borel objectiveφ, we denote byPrσ,πs (φ) the
probability thatφ is satisfied by the play obtained from the starting states when the
strategiesσ andπ are used. Given a game structureG and a states, an observation-
based strategyσ for player1 is almost-sure winning (almost winning in short)(resp.
positive winning) for the objectiveφ from s if for all observation-based randomized
strategiesπ for player 2, we havePrσ,πs (φ) = 1 (resp.Prσ,πs (φ) > 0). The value
function〈〈1〉〉G

val
: S → R for player 1 and objectiveφ assigns to every state the maximal

probability with which player 1 can guarantee the satisfaction ofφ with an observation-
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Fig. 1.A game with one-sided complete observation.

based strategy, against all observation-based strategiesfor player 2. Formally we define

〈〈1〉〉Gval (φ)(s) = sup
σ∈ΣO

G

inf
π∈ΠO

G

Prσ,πs (φ).

For ε ≥ 0, an observation-based strategy isε-optimal for φ from s if we have
infπ∈ΠO

G

Prσ,πs (φ) ≥ 〈〈1〉〉G
val

(φ)(s) − ε. An optimalstrategy is a0-optimal strategy.

Example 1.Consider the game with one-sided complete observation (player2 has com-
plete information) shown in Fig. 1. Consider the Büchi objective defined by the states4
(i.e., states4 has priority0 and other states have priority1). Because player1 has partial
observation (given by the partitionOi = {{s1}, {s2, s

′
2}, {s3, s

′
3}, {s4}}), she cannot

distinguish betweens2 ands′2 and therefore has to play the same actions with same
probabilities ins2 ands′2 (while it would be easy to win by playinga2 in s2 anda1
in s′2, this is not possible). In fact, player1 cannot win using a pure observation-based
strategy. However, playinga1 anda2 uniformly at random in all states is almost-sure
winning. Every time the game visits observationo2, for any strategy of player2, the
game visitss3 ands′3 with probability 1

2 , and hence also reachess4 with probability
1
2 . It follows that against all player2 strategies the play eventually reachess4 with
probability 1, and then stays there.

3 Randomness for Free in Transition Function

In this section we present a precise characterization of theclasses of games where the
randomness in transition function can be obtained forfree: in other words, we present
the precise characterization of classes of games with probabilistic transition function
that can be reduced to the corresponding class with deterministic transition function.
We present our results as three reductions: (a) the first reduction allows us to sepa-
rate probability from the mode of interaction; (b) the second reduction shows how to
simulate probability in transition function withCoC (complete-observation concurrent)
deterministic transition; and (c) the final reduction showshow to simulate probability in
transition withOsT (one-sided complete-observation turn-based) deterministic transi-
tion. We then show that forCoT (complete-observation turn-based) games, randomness
in transitions cannot be obtained for free, and conclude with theconcurrency for free
result thatOsT andPaT games can simulateOsC andPaC games respectively.



Pa - partial observation

Os - one-sided complete observation

Co - complete observation

C - concurrent

T - turn-based

Th. 2
Th. 3

Fig. 2.The various classes of game graphs. The curves materialize the classes for which
randomness is for free in transition relation (Theorem 2 andTheorem 3). For21/2-player
games, randomness is not free only in complete-observationturn-based games.

A reductionfrom a classG of games to a classG′ is a mapping that, from a game
G ∈ G and an objectiveφ in G, returns a gameG′ ∈ G′ and an objectiveφ′ in G′,
and such that the state spaceS of G is (injectively) mapped to the state spaceS′ of G′.
In all our reductions we haveS ⊆ S′, and thus the state-space mapping is the identity
(onS). Then the mapping of objectives in our reductions is such that φ is the projec-
tion of φ′ on Sω. All our reductions arelocal: they consist of a gadget construction
and replacement locally at every state. Additional properties of interest for reductions
are as follows. A reduction is{positive-preserving, almost-sure-preserving} if for all
statess in G, if player 1 is almost-sure winning (resp., positive winning) inG from
s ∈ S, then player1 is almost-sure winning (resp., positive winning) inG′ from s.
A reduction isvalue-preservingif 〈〈1〉〉G

val
(φ)(s) = 〈〈1〉〉G

′

val
(φ′)(s) for all s ∈ S, and

threshold-preservingif for all ε ≥ 0 and statess ∈ S, if there exists anε-optimal
strategy forφ in G from s, then there exists anε-optimal strategy forφ′ in G′ from
s. Note that threshold-preserving implies positive-preserving, almost-sure-preserving,
and value-preserving. All reductions presented are threshold-preserving. We call a re-
ductionrestriction-preservingif whenG is one-sided complete-observation, then so is
G′, whenG is complete-observation, then so isG′, and whenG is turn-based, then so
is G′. We call a reductionobjective-preservingif when φ is a parity objective defined
with at mostd priorities, then so isφ′, and whenφ is an objective in thek-th level of the
Borel hierarchy, then so isφ′. We say that a reduction is inpolynomial time(resp., in
exponential time) if the gameG′ can be constructed in polynomial time (resp., in expo-
nential time) fromG (assuming a reasonable encoding of games, such as explicit lists of
binary-encoded states, observations, actions, and transitions, and rational probabilities
encoded in binary).

A visual overview of the class of games for which randomness is for free in the
transitions is given in Fig. 2.

3.1 Separation of probability and interaction

A concurrent probabilistic game of partial observationG satisfies theinteraction sep-
aration condition if the following restrictions are satisfied (see also Fig. 3): the state
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Fig. 3. Example of interaction separation forδ(s, a1, b1)(s1) = 1
3 and
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spaceS can be partitioned into(SA, SP ) such that (1)δ : SA × A1 × A2 → SP , and
(2) δ : SP × A1 × A2 → D(SA) such that for alls ∈ SP and alls′ ∈ SA, and for
all a1, a2, a′1, a

′
2 we haveδ(s, a1, a2)(s′) = δ(s, a′1, a

′
2)(s

′) = δ(s,−,−)(s′). In other
words, the choice of actions (or the interaction) of the players takes place at states inSA

and actions determine a unique successor state inSP , and the transition function atSP

is probabilistic and independent of the choice of the players. In this section, we reduce
a class of games to the corresponding class satisfying interaction separation.

Reduction to interaction separation.Let G = 〈S,A1, A2, δ,O1,O2〉 be a concurrent
game of partial observation with an objectiveφ. We obtain a concurrent game of partial
observationG′ = 〈SA ∪ SP , A1, A2, δ

′,O′
1,O

′
2〉 whereSA = S, SP = S ×A1 ×A2,

and:

– Observation.For i ∈ {1, 2}, if Oi = {{s} | s ∈ S}, thenO′
i = {{s′} | s′ ∈

SA ∪SP }; otherwiseO′
i contains the observationo∪ {(s, a1, a2) | s ∈ o} for each

o ∈ Oi.
– Transition function.The transition function is as follows:

1. We have the following three cases: (a) ifs is a player 1 turn-based state, then
pick an actiona∗2 and for alla2 let δ′(s, a1, a2) = (s, a1, a

∗
2); (b) if s is a

player 2 turn-based state, then pick an actiona∗1 and for alla1 let δ′(s, a1, a2) =
(s, a∗1, a2); and (c) otherwise,δ′(s, a1, a2) = (s, a1, a2);

2. for all (s, a1, a2) ∈ SP we haveδ′((s, a1, a2),−,−)(s′) = δ(s, a1, a2)(s
′).

– Objective mapping.Given the objectiveφ in G we obtain the objectiveφ′ =
{〈s0s

′
0s1s

′
1 . . .〉 | 〈s0s1 . . .〉 ∈ φ} in G′.

It is easy to map observation-based strategies of the gameG to observation-based strate-
gies inG′ and vice-versa that preserves satisfaction ofφ andφ′ in G andG′, respec-
tively. Then we have the following theorem.

Theorem 1. There exists a reduction from the class of partial-observation concurrent
games (PaC games) to the class ofPaC games with interaction separation such that
this reduction is
1. restriction-preserving and objective-preserving,
2. computable in polynomial time,
3. value-preserving, and threshold-preserving (and thus also positive- and almost-

sure-preserving).
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Fig. 4. An example showing why the uniform-binary reduction cannotbe used with
partial observation.

Since the reduction is restriction-preserving, we have a reduction that separates the
interaction and probabilistic transition maintaining therestriction of observation and
mode of interaction.

Uniform-n-ary concurrent probabilistic games.The class ofuniform-n-ary proba-
bilistic gamesare the special class of probabilistic games such that everystates ∈ SP

hasn successors and the transition probability to each successor is 1
n

. It follows from
the results of [20] that everyCoC probabilistic game with rational transition probabili-
ties can be reduced in polynomial time to an equivalent polynomial size uniform-binary
(i.e.,n = 2) CoC probabilistic game for all parity objectives. The reduction is achieved
by adding dummy states to simulate the probability, and the reduction extends to all
objectives (in the reduced game we need to consider the objective whose projection in
the original game gives the original objective).

In the case of partial information, the reduction to uniform-binary probabilistic
games of [20] does not work. To see this, consider Fig. 4 wheretwo probabilistic states
s1, s2 have the same observation (i.e.,obs1(s1) = obs1(s2)) and the outgoing proba-
bilities are〈14 ,

3
4 〉 from s1 and〈13 ,

2
3 〉 from s2. The corresponding uniform-binary game

(given in Fig. 4) is not equivalent to the original game because the number of steps
needed to simulate the probabilities is not always the same froms1 and froms2. From
s1 two steps are always sufficient, while froms2 more than two steps may be necessary
(with probability 1

4 ). Therefore with probability14 , player 1 observing more than 2 steps
would infer that the game was for sure ins2, thus artificially improving his knowledge
and increasing his value function.

Therefore in the case of partial-observation games, we present a reduction to a
uniform-n-ary probabilistic game withn = 1/r wherer is the greatest common di-



visor of all probabilities in the original game (a rationalr is a divisor of a rationalp if
p = q · r for some integerq). Note that the numbern = 1/r is an integer. We denote
by [n] the set{0, 1, . . . , n− 1}. For a probabilistic states ∈ SP , we define then-tuple
Succ(s) = 〈s′0, . . . , s

′
n−1〉 in which each states′ ∈ S occursn · δ(s,−,−)(s′) times.

Then, we can view the transition relationδ(s,−,−) as a function assigning the same
probabilityr = 1/n to each element ofSucc(s) (and then adding up the probabilities
of identical elements).

Note that the above reduction is worst-case exponential (because so can be the least
common multiple of all probability denominators). This is necessary to have the prop-
erty that all probabilistic states in the game have the same number of successors. This
property is crucial because it determines the number of actions available to player 1
in the reductions presented in Section 3.2 and 3.3, and the number of available actions
should not differ in states that have the same observation.

3.2 Simulating probability by complete-observation concurrent determinism

In this section, we show that probabilistic states can be simulated byCoC deterministic
gadgets (and hence also byOsC andPaC deterministic gadgets). By Theorem 1, we
focus on games that satisfy interaction separation. A probabilistic state with uniform
probability over the successors is simulated by a complete-observation concurrent de-
terministic state where the optimal strategy for both players is to play uniformly over
the set of available actions.

Theorem 2. Leta ∈ {Pa,Os,Co} andb ∈ {C,T}, and letC = ab andC′ = aC. There
exists a reduction from the class of gamesGC to the class of gamesGC′ ∩ GD (thus with
deterministic transition function) such that this reduction is
1. objective-preserving,
2. computable in polynomial time ifa = Co, and in exponential time ifa = Pa or

a = Os,
3. value-preserving and threshold-preserving (and thus also positive- and almost-

sure-preserving).

Proof. To prove the desired result we show how an uniform-n-ary probabilistic state
can be simulated by aCoC deterministic gadget. For simplicity we present the details
for the case whenn = 2, and the gadget for the general case is given in the Appendix.
Our reduction will be as follows: we consider a uniform-binary CoC probabilistic game
such that there is only one probabilistic state, and reduce it to a CoC deterministic
game. For uniform-binaryCoC probabilistic games with multiple probabilistic states
the reduction can be applied to each state one at a time and we would obtain the desired
reduction from uniform-binaryCoC probabilistic games toCoC deterministic games.
Hence we prove the following claim.

Claim. Consider a uniform-binaryCoC probabilistic gameG with a single proba-
bilistic states∗ with two successorss1 ands2. Consider theCoC deterministic game
G′ obtained fromG by transforming the states∗ to a concurrent deterministic state
as follows: the actions available for player 1 ats∗ are a1 and a2 and the actions
available for player 2 ats∗ are b1 and b2; and the transition function is as follows:
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Fig. 5.The reduction of uniform-binaryCoC probabilistic games.

δ(s∗, a1, b1) = δ(s∗, a2, b2) = s1 andδ(s∗, a1, b2) = δ(s∗, a2, b1) = s2. Then for all
objectivesφ, the following assertions hold.

1. For all s ∈ S there is an observation-based almost-sure (resp. positive) winning
strategy froms for φ in G iff there is an observation-based almost-sure (resp. posi-
tive) winning strategy forφ from s in G′.

2. For alls ∈ S we have〈〈1〉〉G
val

(φ)(s) = 〈〈1〉〉G
′

val
(φ)(s). For all s ∈ S there is an

observation-based optimal strategy forφ from s in G iff there is an observation-
based optimal strategy forφ from s in G′.

The reduction is illustrated in Figure 5. We prove the claim as follows. Let the value
for the objectiveφ player 1 at a states bev(s) andv′(s) in G andG′, respectively, and
let the value for player 2 bew(s) andw′(s) in G andG′, respectively. By determinacy
of CoC games [13] we havew(s) = 1 − v(s) andw′(s) = 1 − v′(s). We present two
inequalities to complete the proof.

1. Consider a strategyπ for player 2 inG and we construct a strategyπ′ for player 2
in G as follows: the strategyπ′ follows the strategyπ for all histories other than
when the current state iss∗; and if the current state iss∗, then strategyπ′ plays the
actionsb1 andb2 uniformly with probability1

2 . Given the strategyπ′, if the current
state iss∗, then for any probability distribution overa1 anda2, the successor states
ares1 ands2 with probability 1

2 (i.e., it plays exactly the role of states∗ in G). It
follows that the value for player 1 inG′ is no more than the value inG, i.e., for all
s we havev′(s) ≤ v(s).

2. Consider a strategyσ for player 1 inG and we construct a strategyσ′ for player 1 in
G′ as follows: the strategyσ′ follows the strategyσ for all histories other than when
the current state iss∗, and if the current state iss∗, then the strategyσ′ plays the
actionsa1 anda2 uniformly with probability1

2 . Given the strategyσ′, if the current
state iss∗, then for any probability distribution overb1 andb2, the successor states
ares1 ands2 with probability 1

2 (i.e., it plays exactly the role of states∗ in G). It
follows that the value for player 2 inG′ is no more than the value inG, i.e., for all
s we havew′(s) ≤ w(s).

It follows from above thatv(s) = v′(s) for all statess, and the desired result follows.
Observe that the reduction also ensures that from an optimalstrategy inG we can
construct an optimal strategy inG′ and vice-versa. Our proof shows how probabilistic
states can be simulated byCoC deterministic states, and it follows that probabilistic
states can be simulated byOsC deterministic states andPaC deterministic states. The
result follows.



3.3 Simulating probability by one-sided complete-observation turn-based
determinism

We show that probabilistic states can be simulated byOsT (one-sided complete-
observation turn-based) states, and by Theorem 1 we consider games that satisfy in-
teraction separation. The reduction is illustrated in Fig.6: each probabilistic states is
transformed into a player-2 state withn successor player-1 states (wheren is chosen
such that the probabilities froms are integer multiples of1/n, in the examplen = 3).
Because all successors ofs have the same observation, player1 has no advantage in
playing after player 2, and because by playing all actions uniformly at random each
player can unilaterally decide to simulate the probabilistic state, the value and proper-
ties of strategies of the game are preserved.

Theorem 3. Let a ∈ {Pa,Os,Co} and b ∈ {C,T}, and leta′ = Os if a = Co, and
a′ = a otherwise. LetC = ab andC′ = a′b. There exists a reduction from the class of
gamesGC to the class of gamesGC′ ∩ GD (thus with deterministic transition function)
such that this reduction is
1. objective-preserving,
2. computable in exponential time,
3. value-preserving and threshold-preserving (and thus also positive- and almost-

sure-preserving).

Proof. First, we present the proof fora 6= Pa, assuming that player2 has complete
observation. LetG = 〈SA ∪SP , A1, A2, δ,O1〉 and assume w.l.o.g. (according to The-
orem 1) thatG satisfies interaction separation (i.e., states inSA are deterministic states,
andSP are probabilistic states) andG is uniform-n-ary, i.e. all probabilities are equal
to 1

n
. For each probabilistic states ∈ SP , let Succ(s) = 〈s′0, . . . , s

′
n−1〉 be then-tuple

of states such thatδ(s,−,−)(s′i) =
1
n

for each1 ≤ i ≤ n.
We present a reduction that replaces the probabilistic states inG by a gadget with

player-1 and player-2 turn-based states. FromG, we construct the one-sided complete-
observation gameG′ where player-2 has complete observation. A similar construction
where player-1 instead of player-2 has complete observation is obtained symmetrically.
The gameG′ = 〈S′, A′

1, A
′
2, δ

′,O′
1〉 is defined as follows:S′ = S∪ (S× [n])∪{sink},

A′
1 = A1∪ [n],A′

2 = A2∪ [n], O′
1 = {o∪{(s, i) | s ∈ o} | o ∈ O1}, andδ′ is obtained

from δ by applying the following transformation for each states ∈ S:

1. if s is a deterministic state inG, thenδ′(s, a, b) = δ(s, a, b) for all a ∈ A1, b ∈ A2,
andδ′(s,−, j) = δ′(s, i,−) = sink for all i, j ∈ [n];

2. if s is a probabilistic state inG, thens is a player-2 state inG′ and for alli, j ∈ [n]
we defineδ′(s,−, i) = (s, i) andδ′((s, i), j,−) = s′k such thats′k is the element in
positionk in Succ(s)with k = i+j mod n (and letδ′(s,−, b) = δ′((s, i), a,−) =
δ′(sink,−,−) = sink for all a ∈ A1, b ∈ A2).

Note that turn-based states inG remain turn-based inG′ and the states(s, ·) are
player-1 states with the same observation ass. A sequence of statess0, . . . , sm in G
corresponds to the sequences0, s1, s1, s2, s3, s3, . . . , sm in G′ because deterministic
and probabilistic states alternate inG, and inG′, transitions from probabilistic states
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Fig. 6. For the probabilistic states (on the left), we haveSucc(s) = 〈s′0, s
′
1, s

′
1〉 and

n = 3 is the gcd of the probabilities denominators. Therefore, weapply the reduction
of Theorem 3 to obtain the turn-based game on the right, wheres is a player-2 states.

have intermediate states. The objectiveφ′ is defined as the set{s0, s1, s1, s2, s3, s3, . . . |
s0, s1, . . . ∈ φ}. Intuitively, each player inG′ has the possibility to force faithful sim-
ulation of the probabilistic states ofG by playing actions in[n] uniformly at random.
For instance, if player 1 does so, then irrespective of the (possibly randomized) choice
of player2 among the states(s, 1), . . . , (s, n), the states inSucc(s) are reached with
probability1/n, as inG. And the same holds if player2 plays in[n] uniformly at ran-
dom, no matter what player 1 does. Therefore, player1 can achieve the objectiveφ′ in
G′ with the same probability as forφ in G, but not more.

The above reduction can be easily adapted to the casea = Pa of games with partial
information for both players.

3.4 Impossibility Results

We have shown that forCoC games andOsT games, randomness is for free in tran-
sitions. We complete the picture by showing that forCoT (complete-observation turn-
based) games randomness in transition cannot be obtained for free.

Role of probabilistic transition in CoT games andPOMDPs. It follows from the
result of Martin [13] that for allCoT deterministic games and all objectives, the values
are either 1 or 0; however,MDPs with reachability objectives can have values in the
interval [0, 1] (not value 0 and 1 only). It follows that “randomness in transitions” can
be replaced by “randomness in strategies” is not true: inCoT deterministic games even
with randomized strategies the values are either 1 or 0 [13];whereasMDPs can have
values in the interval[0, 1]. For POMDPs, we show in Theorem 6 that pure strategies
are sufficient, and it follows that forPOMDPs with deterministic transition function the
values are 0 or 1, and sinceMDPs with reachability objectives can have values other
than 0 and 1 it follows that randomness in transition cannot be obtained for free for



21/2-player 11/2-player

complete one-sided partial MDP POMDP

turn-based not free free not not

concurrent free free free (NA) (NA)

Table 1. When randomness is for free in the transition function. In particular, proba-
bilities can be eliminated in all classes of 2-player games except complete-observation
turn-based games.

POMDPs. The probabilistic transition also plays an important role in the complexity
of solving games in case ofCoT games: for example,CoT deterministic games with
reachability objectives can be solved in linear time, but for probabilistic transition the
problem is in NP∩ coNP and no polynomial time algorithm is known. In contrast,
for CoC games we present a polynomial time reduction from probabilistic transition
to deterministic transition. Table 1 summarizes our results characterizing the classes of
games where randomness in transition can be obtained for free.

3.5 Concurrency for free

The idea of the reduction in Theorem 3 can be extended to provethat concurrency is for
free in one-sided complete-observation games, i.e., we present a polynomial reduction
of OsC games toOsT games, and fromPaC games toPaT games.

Theorem 4. There exists a reduction fromOsC games toOsT games, and fromPaC
games toPaT games, such that these reductions are objective-preserving, computable
in polynomial time, value-preserving, and threshold-preserving (thus also positive- and
almost-sure-preserving).

Proof. We present the reduction fromOsC games toOsT games, for the case where
player1 has perfect information. The reduction for one-sided gameswhere player2 has
perfect information is symmetric. Finally, the reduction fromPaC games toPaT games
is obtained analogously.

Let G = 〈S,A1, A2, δ,O2〉 be aOsC game, and we construct aOsT gameG′ =
〈S′, A1, A2, δ

′,O′
1〉 as follows:

1. S′ = S ∪ (S ×A1),
2. O′

2 = {o ∪ {(s, a) | s ∈ o ∧ a ∈ A1} | o ∈ O2}, and
3. δ′ is defined as follows, for each states ∈ S and actionsa ∈ A1, b ∈ A2:

δ′(s, a,−) = (s, a) andδ′((s, a),−, b) = δ(s, a, b).

Hence the transition relationδ′ let player1 play first an actiona, then player2 plays
an actionb, and the successor state ofs is chosen according to the transition relation
δ(s, a, b) from the original game. The objectiveφ′ in G′ requires that the projection
of a play onSω satisfiesφ: let φ′ = {s0(s0, a0)s1(s1, a1) · · · | s0s1 · · · ∈ φ ∧ ∀i ≥
0 : ai ∈ A1}. Since player1 plays first inG′, player1 can achieve the objectiveφ′ in



G′ with at most the same probability as forφ in G, and since for alls ∈ S and actions
a ∈ A1, the statess and(s, a) are indistinguishable for player2, player2 does not know
the last action chosen by player1 and therefore does not gain any advantage in playing
after player1 rather than concurrently. Therefore, player1 achieves the objectiveφ′ in
G′ with the same probability as forφ in G, and〈〈1〉〉G

val
(φ)(s) = 〈〈1〉〉G

′

val
(φ′)(s) for all

s ∈ S.

Role of concurrency in complete-observation games.We have shown that concur-
rency can be obtained for free in partial-observation games(OsT and PaT games).
In contrast, for complete-observation games, the value is irrational in general for con-
current games with deterministic transitions (CoC deterministic games) [7], while the
value is always rational in turn-based stochastic games with rational probabilities (CoT
stochastic games) [8]. This rules out any value-preservingreduction ofCoC (determin-
istic) games toCoT (stochastic) games with rational probabilities.

Finally, note that it can be expected that randomness would not be for free in both
the transitions and the strategies, and the results of this paper show that the classes of
games in which randomness is for free in the transitions (Table 1) are those in which
randomized strategies are more powerful than pure strategies (Table 2), i.e. randomness
is not for free in strategies when randomness is for free in transitions.

4 Randomness for Free in Strategies

It is known from the results of [10] that inCoC games randomized strategies are more
powerful than pure strategies; for example, values achieved by pure strategies are lower
than values achieved by randomized strategies and randomized almost-sure winning
strategies may exist whereas no pure almost-sure winning strategy exists. Similar results
also hold in the case ofOsT games (see [6] for an example). By contrast we show that
in one-player games, restricting the set of strategies to pure strategies does not decrease
the value nor affect the existence of almost-sure and positive winning strategies. We
first start with a lemma, then present a result that can be derived from Martin’s theorem
for Blackwell games [13], and finally present our results precisely in Theorem 6. In this
section, we relax the assumption that games have a finite state space, and we allow the
set of states to becountable. This is useful in the context of game solving, where after
fixing an arbitrary strategy for one of the player in a 21/2-player game, we get a POMDP
with countable state space.

Lemma 1. LetG be aPOMDP (with countable state spaceS) and lets∗ ∈ S be an
initial state, andφ ⊆ Sω be an objective. Then for every randomized observation-based
strategyσ ∈ ΣO there exists apureobservation-based strategyσP ∈ ΣP ∩ ΣO such
thatPrσs∗(φ) ≤ PrσP

s∗
(φ).

The main argument in the proof of Lemma 1 relies on showing that the valuePrσs (φ)
of any randomized observation-based strategyσ is equal to the average of the values
Prσi

s (φ) of (uncountably many) pure observation-based strategiesσi. Therefore, one of
the pure strategiesσi has to achieve at least the value of the randomized strategyσ. The
theory of integration and Fubini’s theorem make this argument precise.



Proof (of Lemma 1).Let G = 〈S,A1, δ,O1〉 be aPOMDP (remember thatA2 is a
singleton inPOMDPs and thereforeO2 is irrelevant), letσ : O∗

1 → D(A1) be a
randomized observation-based strategy, and fixs∗ ∈ S an initial state.

To simplify notations, we suppose thatA1 = {0, 1} contains only two actions, and
that given a states ∈ S and an actiona ∈ {0, 1} there are only two possible successors
L(s, a) ∈ S andR(s, a) ∈ S chosen with respective probabilitiesδ(s, a, L(s, a)) and
δ(s, a, R(s, a)) = 1 − δ(s, a, L(s, a)). The proof for an arbitrary finite set of actions
and more than two successors is essentially the same, with more complicated notations.

There is a natural way to “derandomize” the randomized strategyσ. Fix an infinite
sequencex = (xn)n∈N ∈ [0, 1]ω and define the deterministic strategyσx as follows.
For everyo0, o1, . . . , on ∈ O∗

1 ,

σx(o0, o1, . . . , on) =

{

0 if xn ≤ σ(o0, o1, . . . , on)(0)

1 otherwise.

Intuitively, the sequencex fixes in advance the sequence of results of coin tosses used
for playing withσ.

To prove the lemma, we show that[0, 1]ω can be equipped with a probability mea-
sureν such that the mappingx 7→ Prσx

s∗
(φ) from [0, 1]ω to [0, 1] is measurable, and:

Prσs∗(φ) =

∫

x∈[0,1]ω
Prσx

s∗
(φ) dν(x) . (1)

Suppose that (1) holds. Then there existsx ∈ [0, 1]ω (actually manyx’s) such that
Prσs∗(φ) ≤ Prσx

s∗
(φ) and since strategyσx is deterministic, this proves the lemma.

To complete the proof, it is thus enough to construct a probability measureν on
[0, 1]ω such that (1) holds.

We start with the definition of the probability measureν. The set[0, 1]ω is equipped
with theσ-field generated bysequence-cylinderswhich are defined as follows. For ev-
ery finite sequencex = x0, x1, . . . , xn ∈ [0, 1]∗ the sequence-cylinderC(x) is the sub-
set[0, x0]×[0, x1]×. . .×[0, xn]×[0, 1]ω ⊆ [0, 1]ω. According to Tulcea’s theorem [4],
there is a unique product probability measureν on [0, 1]ω such thatν(C(ǫ)) = 1 and
for every sequencex0, . . . , xn, xn+1 in [0, 1],

ν(C(x0, . . . , xn, xn+1)) = xn+1 · ν(C(x0, . . . , xn)) .

Now thatν is defined, it remains to prove that the mappingx 7→ Prσx

s∗
(φ) from

[0, 1]ω to [0, 1] is measurable and that (1) holds. For that, we introduce the following
mapping:

fs∗,σ : [0, 1]ω × [0, 1]ω → (SA1)
ω,

that associates with every pair of sequences((xn)n∈N, (yn)n∈N) the infinite history
h = s0 a1 s1 a2 . . . ∈ (SA1)

ω defined recursively as follows. Firsts0 = s∗, and for
everyn ∈ N,

an+1 =

{

0 if xn ≤ σ(obs1(s0 a1 s1 · · · sn))(0),

1 otherwise.



sn+1 =

{

L(sn, an+1) if yn ≤ δ(sn, an+1, L(sn, an+1)),

R(sn, an+1) otherwise.

Intuitively, (xn)n∈N fixes in advance the coin tosses used by the strategy, while
(yn)n∈N takes care of the coin tosses used by the probabilistic transitions, andfs∗,σ
produces the resulting description of the play. Thanks to the mappingfs∗,σ, randomness
related to the use of the randomized strategyσ is separated from randomness due to
transitions of the game, which allows to represent the randomized strategyσ by mean
of a probability measure over the set of pure strategies{σx | x ∈ [0, 1]ω}.

We equip both sets(SA1)
ω and[0, 1]ω × [0, 1]ω with σ-fields that makefs∗,σ mea-

surable. First,(SA1)
ω is equipped with theσ-field generated by cylinders, defined as

follows. An action-cylinderis a subsetC(h) ⊆ (SA1)
ω such thatC(h) = h(SA1)

ω

for someh ∈ (SA1)
∗. A state-cylinderis a subsetC(h) ⊆ (SA1)

ω such that
C(h) = h(A1S)

ω for someh ∈ (SA1)
∗S. The set ofcylindersis the union of the

sets of action-cylinders and state-cylinders. Second,[0, 1]ω × [0, 1]ω is equipped with
theσ-field generated by products of sequence-cylinders. Checking thatfs∗,σ is measur-
able is an elementary exercise.

Now we define two probability measuresµ andµ′ on (SA1)
ω and prove that they

coincide. On one hand, the measurable mappingfs∗,σ : [0, 1]ω × [0, 1]ω → (SA1)
ω

defines naturally a probability measureµ′ on (SA1)
ω. Equip the set[0, 1]ω × [0, 1]ω

with the product measureν × ν. Then for every measurable subsetB ⊆ (SA1)
ω ,

µ′(B) = (ν × ν)(f−1
s∗,σ

(B)) .

On the other hand, the strategyσ and the initial states∗ naturally define another prob-
ability measureµ on (SA1)

ω . According to Tulcea’s theorem [4], there exists a unique
product probability measureµ on (SA1)

ω such thatµ(C(s∗)) = 1, µ(C(s)) = 0 for
s ∈ S \ {s∗}, and forh = s0 a1 s1 a2 · · · sn ∈ (SA1)

∗S and(a, t) ∈ A1 × S,

µ(C(ha)) = µ(C(h)) · σ(obs1(s0 a1 s1 a2 · · · sn))(a)

µ(C(hat)) = µ(C(ha)) · δ(sn, a, t).

We have definedfs∗,σ in such a way thatµ andµ′ coincide. To prove thatµ andµ′

coincide, it is enough to prove thatµ andµ′ coincide on the set of cylinders, that is for
every cylinderC(h) ⊆ (SA1)

ω,

µ(C(h)) = (ν × ν)(f−1
s∗,σ

(C(h))) . (2)

This is obvious forh = s∗ andh = s ∈ S \ {s∗}. The general case goes by induction.
Let h = s0 a1 s1 a2 · · · sn ∈ (SA1)

∗S and (a, t) ∈ A1 × S. Let I = [0, 1]. Let
Ia = [0, σ(h)(a)] if a = 0 andIa = [σ(h)(a), 1] if a = 1. Let It = [0, δ(sn, a, t)] if



t = L(sn, a) andIt = [δ(sn, a, t), 1] if t = R(sn, a). Then:

µ(C(ha) | C(h)) = σ(h)(a)

= (ν × ν)((I × I)n(Ia × I)(I × I)ω)

= (ν × ν)(f−1
s∗,σ

(C(ha)) | f−1
s∗,σ

(C(h)))

µ(C(hat) | C(ha)) = δ(sn, a, t)

= (ν × ν)((I × I)n(I × It)(I × I)ω)

= (ν × ν)(f−1
s∗,σ

(C(hat)) | f−1
s∗,σ

(C(ha))) ,

which proves that (2) holds for every cylinderh.

Now all the tools needed to prove (1) have been introduced, and we can state the
main relation betweenfs∗,σ andPrσs∗(φ). Let φ′ ⊆ (SA1)

ω be the set of histories
s0 a1 s1 a2 . . . such thats0s1 · · · ∈ φ, and let1φ and1φ′ be the indicator functions of
φ andφ′. Then:

Prσs∗(φ) =

∫

p∈Sω

1φ(p) dPr
σ
s∗
(p) =

∫

p∈(SA1)ω
1φ′(p) dµ(p) =

∫

p∈(SA1)ω
1φ′(p) dµ′(p)

=

∫

(x,y)∈[0,1]ω×[0,1]ω
1φ′(fs∗,σ(x, y)) d(ν × ν)(x, y)

=

∫

x∈[0,1]ω

(

∫

y∈[0,1]ω
1φ′(fs∗,σ(x, y)) dν(y)

)

dν(x) , (3)

where the first and second equalities are by definition ofPrσs∗(φ), the third equality
holds becauseµ = µ′, the fourth equality is a basic property of image measures, and
the last equality holds by Fubini’s theorem [4] that we can use since1φ′ ◦ fs∗,σ is
positive.

To complete the proof, we show that for everyx ∈ [0, 1]ω,
∫

y∈[0,1]ω
1φ′(fs∗,σ(x, y)) dν(y) = Prσx

s (φ), (4)

Equation (3) holds for every observation-based strategyσ, hence in particular for strat-
egyσx. But strategyσx has the following property: for everyx′ ∈ ]0, 1[ω and every
y ∈ [0, 1]ω, fs∗,σx

(x′, y) = fs∗,σ(x, y). Together with (3), this gives (4). This com-
pletes the proof, since (3) and (4) immediately give (1).

Theorem 5 ([13]).Let G be aCoT stochastic game with initial states∗ and an ob-
jectiveφ ⊆ Sω. Then the following equalities hold:infπ∈ΠO

supσ∈ΣO
Prσ,πs∗

(φ) =
supσ∈ΣO

infπ∈ΠO
Prσ,πs∗

(φ) = supσ∈ΣO∩ΣP
infπ∈ΠO

Prσ,πs∗
(φ).

We obtain the following result as a consequence of Lemma 1.

Theorem 6. LetG be aPOMDP (with countable state spaceS) and lets∗ ∈ S be an
initial state, andφ ⊆ Sω be an objective. Then the following assertions hold:



21/2-player 11/2-player

complete one-sided partial MDP POMDP

turn-based ǫ > 0 not not ǫ ≥ 0 ǫ ≥ 0

concurrent not not not (NA) (NA)

Table 2.When pure (ǫ-optimal) strategies are as powerful as randomized strategies. The
caseǫ = 0 in complete-observation turn-based games is open.

1. supσ∈ΣO
Prσs∗(φ) = supσ∈ΣO∩ΣP

Prσs∗(φ).
2. If there is a randomized optimal (resp. almost-sure winning, positive winning) strat-

egy forφ from s∗, then there is a pure optimal (resp. almost-sure winning, positive
winning) strategy forφ from s∗.

Theorem 5 can be derived as a consequence of Martin’s proof ofdeterminacy of
Blackwell games [13]: the result states that forCoT stochastic games pure strategies
can achieve the same value as randomized strategies, and as aspecial case the result
also holds forMDPs. Theorem 6 shows that the result can be generalized toPOMDPs,
and a stronger result (item (2) of Theorem 6) can be proved forPOMDPs (andMDPs
as a special case). It remains open whether result similar toitem (2) of Theorem 6 can
be proved forCoT stochastic games. The results summarizing when randomnesscan
be obtained for free for strategies is shown in Table 2.

Undecidability result for POMDPs.The results of [2] shows that the emptiness prob-
lem for probabilistic coBüchi (resp. Büchi) automata under the almost-sure (resp. pos-
itive) semantics [2] is undecidable. As a consequence it follows that forPOMDPs the
problem of deciding if there is a pure observation-based almost-sure (resp. positive)
winning strategy for coBüchi (resp. Büchi) objectives isundecidable, and as a conse-
quence of Theorem 6 we obtain the same undecidability resultfor randomized strate-
gies. The undecidability result holds even if the coBüchi (resp. Büchi) objectives are
visible.

Corollary 1. Let G be aPOMDP with initial states∗ and letT ⊆ S be a subset of
states (or subset of observations). Whether there exists a pure or randomized almost-
sure winning strategy for player 1 froms in G for the objectivecoBuchi(T ) is unde-
cidable; and whether there exists a pure or randomized positive winning strategy for
player 1 froms in G for the objectiveBuchi(T ) is undecidable.

Undecidability result for one-sided complete-observation turn-based games.The
undecidability results of Corollary 1 also holds forOsT stochastic games (as they sub-
sumePOMDPs as a special case). It follows from Theorem 3 thatOsT stochastic games
can be reduced toOsT deterministic games. Thus we obtain the first undecidability re-
sult forOsT deterministic games (Corollary 2), solving the open question of [6].

Corollary 2. LetG be anOsT deterministic game with initial states∗ and letT ⊆ S
be a subset of states (or subset of observations). Whether there exists a pure or random-
ized almost-sure winning strategy for player 1 froms in G for the objectivecoBuchi(T )



is undecidable; and whether there exists a pure or randomized positive winning strategy
for player 1 froms in G for the objectiveBuchi(T ) is undecidable.

5 Conclusion

In this work we have presented a precise characterization for classes of games where
randomization can be obtained for free in transitions and instrategies. As a consequence
of our characterization we obtain new undecidability results. The other impact of our
characterization is as follows: for the class of games whererandomization is free in
transition, future algorithmic and complexity analysis can focus on the simpler class of
deterministic games; and for the class of games where randomization is free in strate-
gies, future analysis of such games can focus on the simpler class of pure strategies.
Thus our results will be useful tools for simpler analysis techniques in the study of
games.
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2. C. Baier, N. Bertrand, and M. Größer. On decision problems for probabilistic Büchi au-
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A Appendix

Gadget for uniform-n-ary probability reduction for Theorem 2. We now show how
to simulate a probabilistic states∗, with n successorss0, s1, . . . , sn−1 such that the
transition probability is1/n to each of the successor, by a concurrent deterministic state.
In the concurrent deterministic states∗ there aren actionsa0, a1, . . . , an−1 available for
player 1 andn actionsb0, b1, . . . , bn−1 available for player 2. The transition function
is as follows: for0 ≤ i < n and0 ≤ j < n we haveδ(s∗, ai, bj) = s(i+j) mod n.
Intuitively, the transition function matrix is obtained asfollows: the first row is filled
with statess0, s1, . . . , sn−1, and from a rowi, the rowi + 1 is obtained by moving
the state of the first column of rowi to the last column in rowi + 1 and left-shifting
by one position all the other states; the construction is illustrated on an example with
n = 4 successors in (5). The construction ensures that in every row and every column
each states0, s1, . . . , sn−1 appears exactly once. It follows that if player 1 plays all
actions uniformly at random, then against any probability distribution of player 2 the
successor states ares0, s1, . . . , sn−1 with probability 1/n each; and a similar result
holds if player 2 plays all actions uniformly at random. The correctness of the reduction
for uniform-n-ary probabilistic state is then exactly as the proof of Theorem 2.









s0 s1 s2 s3
s1 s2 s3 s0
s2 s3 s0 s1
s3 s0 s1 s2









(5)
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