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Abstract. We consider two-player zero-sum games on graphs. Thesesgane
be classified on the basis of the information of the playeds anthe mode of
interaction between them. On the basis of information thedification is as fol-
lows: (a) partial-observation (both players have partialwof the game); (b)
one-sided complete-observation (one player has completereation); and (c)
complete-observation (both players have complete vielweafiame). On the ba-
sis of mode of interaction we have the following classifioati(a) concurrent
(players interact simultaneously); and (b) turn-basedy@is interact in turn).
The two sources of randomness in these games are randommesssition func-
tion and randomness in strategies. In general, randomizategies are more
powerful than deterministic strategies, and randomnegssisitions gives more
general classes of games. We present a complete charatterifor the classes
of games where randomness is not helpful in: (a) the tramsftinction (proba-
bilistic transition can be simulated by deterministic 8ition); and (b) strategies
(pure strategies are as powerful as randomized strategiespnsequence of our
characterization we obtain new undecidability resultgliese games.

1 Introduction

Games on graphsGames played on graphs provide the mathematical framework t
analyze several important problems in computer scienceedssmathematics. In par-
ticular, when the vertices and edges of a graph represestdkes and transitions of a
reactive system, then the synthesis problem (Church’sl@mgbasks for the construc-
tion of a winning strategy in a game played on a graph [5,1/74]6 Game-theoretic
formulations have also proved useful for the verificat(dh [&éfinement[[111], and com-
patibility checking[[9] of reactive systems. Games playrdjmphs are dynamic games
that proceed for an infinite number of rounds. In each rourelptayers choose moves;
the moves, together with the current state, determine tbeessor state. An outcome
of the game, called play, consists of the infinite sequence of states that are visited

Strategies and objectivesA strategy for a player is a recipe that describes how the
player chooses a move to extend a play. Strategies can lsfieldsas follows:pure
strategies, which always deterministically choose a movextend the play, vgan-
domizedstrategies, which may choose at a state a probability ligtan over the avail-
able moves. Objectives are generally Borel measurableitumsc[13]: the objective for

* A preliminary version of this paper appeared in mceedings of the 35th International
Symposium on Mathematical Foundations of Computer SciéM&&ES), Lecture Notes in
Computer Science 6281, Springer, 2010, pp. 246-257.
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a player is a Borel sé® in the Cantor topology o8“ (wheresS is the set of states), and
the player satisfies the objective iff the outcome of the gsmaenember of3. In verifi-
cation, objectives are usuallyregular languagesThew-regular languages generalize
the classical regular languages to infinite strings; theguon the low levels of the
Borel hierarchy (they lie in¥3 N I13) and they form a robust and expressive language
for determining payoffs for commonly used specifications.

Classification of gamesGames played on graphs can be classified according to the
knowledge of the players about the state of the game, anddfiefichoosing moves.
Accordingly, there are (apartial-observationgames, where each player only has a
partial or incomplete view about the state and the movesebther player; (bpne-
sided complete-observatigzames, where one player has partial knowledge and the
other player has complete knowledge about the state andswduwbe other player;
and (c)complete-observatiogames, where each player has complete knowledge of the
game. According to the way of choosing moves, the games grhgrean be classi-
fied into turn-basedand concurrentgames. In turn-based games, in any given round
only one player can choose among multiple moves; effegtitle¢ set of states can be
partitioned into the states where it is player 1's turn toypénd the states where it is
player 2’s turn. In concurrent games, both players may haviéipte moves available

at each state, and the players choose their moves simultsigyemnd independently.

Sources of randomnessThere are two sources of randomness in these games. First is
the randomness in the transition function: given a curret¢®nd moves of the players,
the transition function defines a probability distributiover the successor states. The
second source of randomness is the randomness in straedies the players play
randomized strategies). In this work we study when rand@sican be obtained for
free i.e., we study in which classes of games the probabilistiogition function can

be simulated by deterministic transition function, andd¢tesses of games where pure
strategies are as powerful as randomized strategies.

Motivation. The motivation to study this problem is as follows: (a) if forclass of
games it can be shown that randomness is free for transitibes all future works
related to analysis of computational complexity, strategsnplexity, and algorithmic
solutions can focus on the simpler class with determintsdigsitions (the randomness
in transition may be essential for modeling appropriatetsistic reactive systems, but
the analysis can focus on the deterministic subclass)t {t) & class of games it can be
shown that randomness is free for strategies, then alldwtorks related to correctness
results can focus on the simpler class of deterministi¢egias, and the results would
follow for the more general class of randomized strategiasd;(c) the characterization
of randomness for free will allow hardness results obtafioedhe more general class
of games (such as games with randomness in transitions)¢arbed over to simpler
class of games (such as games with deterministic transjtion

Contribution. The contributions of this paper are as follows:

1. Randomness for free in transitionde show that randomness in the transition func-
tion can be obtained for free for complete-observation oomnt games (and any
class that subsumes complete-observation concurrentsjaame for one-sided
complete-observation turn-based games (and any classuhatimes this class).



The reduction is polynomial for complete-observation eonent games, and ex-
ponential for one-sided complete-observation turn-basedes. It is known that
for complete-observation turn-based games, a probabiiiansition function can-
not be simulated by deterministic transition function (degussion in Sectidn 3.4
for details), and thus we present a complete charactayizathen randomness can
be obtained for free for the transition function.

2. Randomness for free in strategié¥e show that randomness in strategies is free
for complete-observation turn-based games, and for oageppartial-observation
games (POMDPSs). For all other classes of games randomizdgies are more
powerful than pure strategies. It follows from a result of rkita [13] that for
one-player complete-observation games with probaldlistinsitions (MDPS) pure
strategies are as powerful as randomized strategies. \Werira generalization of
this result to the case of one-player partial-observatiames with probabilistic
transitions (POMDPs). Our proof is totally different fromalin’s proof and based
on a new derandomization technique of randomized strategie

3. Concurrency for free in game$Ve show that concurrency is obtained for free
with partial-observation, both for one-sided completseation games as well as
for general partial-observation games (see Sefidn 3.f)llows that for partial-
observation games, future research can focus on the simaleel of turn-based
games, and concurrency does not add anything in the presépeetial observa-
tion.

4. New undecidability resultsAs a consequence of our characterization of random-
ness for free, we obtain new undecidability results. Inipaldr, using our results
and results of Baier et al.][2] we show for one-sided compdétservation deter-
ministic games, the problem of almost-sure winning for eol“objectives and
positive winning for Biichi objectives are undecidableu$twe obtain the first
undecidability result for qualitative analysis (almostesand positive winning) of
one-sided complete-observation deterministic gameswwitbgular objectives.

2 Definitions

In this section we present the definition of concurrent gaofigartial information and
their subclasses, and notions of strategies and objecwganodel of game is equiva-
lent to the model of stochastic games with signal§[15,3pr@bability distributionon

a finite setA is a functions : A — [0,1] such thaty ", , x(a) = 1. We denote by
D(A) the set of probability distributions aA.

Concurrent games of partial observation.A concurrent game of partial observation
(or simply agamg is a tupleG = (S, A1, Az, 6,01, O2) with the following compo-
nents:

1. (State space)S is a finite set of states;

2. (Actions).A; (i = 1,2) is a finite set of actions for playey

3. (Probabilistic transition function)s : S x A; x A2 — D(S) is a concurrent
probabilistic transition function that given a currenttets, actionsa; andas for
both players gives the transition probabiliifs, a1, a2)(s’) to the next state’;



4. (Observations)O; C 2° (i = 1,2) is a finite set of observations for playethat
partition the state space These partitions uniquely define functiosis; : S —
O, (¢ = 1,2) that map each state to its observation such thatobs;(s) for all
seS.

Special casedNe consider the following special cases of partial-obs@wuaoncurrent
games, obtained either by restrictions in the observatithrssmode of selection of
moves, the type of transition function, or the number of play

— (Observation restriction)The games witlone-sided complete-observatiare the
special case of games whet®y = {{s} | s € S} (i.e., player 1 has com-
plete observation) 00> = {{s} | s € S} (player 2 has complete observa-
tion). The games of complete-observatiane the special case of games where
01 =0, ={{s} | s € S}, i.e., every state is visible to each player and hence both
players have complete observation. If a player has completervation we omit
the corresponding observation sets from the descriptidheofjame.

— (Mode of interaction restriction)A turn-based statés a states such that eithefi)
5(s,a,b) = d(s,a,b’) foralla € A; and allb, b’ € A; (i.e, the action of player 1
determines the transition function and hence it can bepnééed as player 1's turn
to play), we refer tos as a player-1 state, and we use the notatiGna, —); or
(1) 6(s,a,b) = d(s,a’,b) for all a,a’ € A; and allb € A,. We refer tos as a
player-2 state, and we use the notat¢s, —, b). A states which is both a player-1
state and a player-2 state is calledrababilistic state(i.e., the transition function
is independent of the actions of the players). We writedifse—, —) to denote the
transition function ins. Theturn-based gameare the special case of games where
all states are turn-based.

— (Transition function restriction)The deterministic gameare the special case of
games where for all statesc .S and actions € A; andb € A,, there exists a state
s’ € Ssuchthabt(s,a,b)(s’) = 1. We refer to such statesas deterministic states.
For deterministic games, it is often convenient to assuragithS x A; x A; — S.

— (Player restriction). The 1lh-player games also calledpartially observable
Markov decision processder POMDP), are the special case of games where
the action setd; or A is a singleton. Note thatk-player games are turn-based.
Games without player restriction are sometimes callédiayer games.

The 1h-player games of complete-observation are Markov decigionesses (or
MDP), and 1x-player deterministic games can be viewed as graphs (andftme
called one-player games).

Classes of game graph¥/e use the following abbreviations: we uBa for partial-
observation,0s for one-sided complete-observatio@p for complete-observation,
C for concurrent, andl for turn-based. For exampl&oC will denote complete-
observation concurrent games, a@dT will denote one-sided complete-observation
turn-based games. FGr € {Pa, Os, Co} x {C, T}, we denote byG. the set of allC
games. Note the following strict inclusions (see also[Bjgpartial observationKa) is
more general than one-sided complete-observa@m) &ndOs is more general than
complete-observatio), and concurrent) is more general than turn-basdd.(We
will denote byGp, the set of all games with deterministic transition function



Plays.In a game structure, in each turn, playechooses an actiom € A, player2
chooses an action ihe A, and the successor of the current staiechosen according
to the probabilistic transition functiody(s, a,b). A playin G is an infinite sequence
p = So apbg s1a1b1 82 .. such thaﬂ(si, ai, by, Si+1) > (O foralli > 0. Theprefix up
to s, of the playp is denoted by(n). The set of plays ii7 is denotedPlays(G), and
the set of corresponding finite prefixes is dendiesfs(G). Theobservation sequence
of p for playeri (i = 1,2) is the unique infinite sequene®s;(p) = 0pcoo1¢102. ..
such thats; € o; € Oy, ande; = a; if i = 1, andc; = b; if i = 2 forall j > 0.

StrategiesA pure strategyin G for player1 is a functiono : Prefs(G) — A;. A
randomized strategin G for playerl is a functiono : Prefs(G) — D(A1). A (pure
or randomized) strategy for player1 is observation-based for all prefixesp, p’ €
Prefs(G), if obsy(p) = obsi(p’), thena(p) = o(p’). We omit analogous definitions
of strategies for playe2. We denote by, X9, XF, I, I1Q andI1E the set of all
playerd strategies, the set of all observation-based playstrategies, the set of all pure
playerd strategies, the set of all play@istrategies irtz, the set of all observation-based
player2 strategies, and the set of all pure plagestrategies, respectively. Note that if
playerl has complete observation, th&if = 2.

Objectives An objectivefor playerl in G is a setp C S“ of infinite sequences of
states. A play = sg apbo s1 a1by s2 ... € Plays(G) satisfieghe objectivep, denoted

p E ¢, if sgs1s2... € ¢. Objectives are generally Borel measurable: a Borel olvect
is a Borel set in the Cantor topology &t [12]. We specifically considep-regular
objectives specified as parity objectives (a canonical farmxpress allo-regular ob-
jectives [18]). For a sequenge= sgps1s2 . .. we denote byinf(s) the set of states that
occur infinitely often ins, that is,Inf(s) = {s € S | s; = s for infinitely many;’s}.
Ford € N, letp: S — {0,1,...,d} be apriority function which maps each state to a
nonnegative integer priority. Thgarity objectiveParity(p) requires that the minimum
priority that occurs infinitely often be even. FormalBgrity(p) = {5 | min{p(s) |

s € Inf(3)} is ever}. The Buchi and coBuchi objectives are the special casparity
objectives with two prioritiesp : S — {0,1} andp : S — {1, 2} respectively. We
say that an objective is visible for playeri if for all p, p’ € Plays(G), if p = ¢ and
obs;(p) = obs;(p’), theny’ = ¢. For example if the priority function maps observa-
tions to priorities (i.e.p : O; — {0,1,...,d}), then the parity objective is visible for
playeri.

Almost-sure winning, positive winning and value functidn. eventis a measurable
subset ofS“, and given strategies and = for the two players, the probabilities of
events are uniquely defined [19]. For a Borel objectivave denote byPr?™(¢) the
probability thate is satisfied by the play obtained from the starting statehen the
strategiesr andr are used. Given a game structdreand a states, an observation-
based strategy for player1 is almost-sure winning (almost winning in sho(tesp.
positive winning for the objectivep from s if for all observation-based randomized
strategiesr for player2, we havePr?"(¢) = 1 (resp.Pr?"(¢) > 0). Thevalue
function((1)¢ , : S — R for player 1 and objective assigns to every state the maximal

val

probability with which player 1 can guarantee the satisfaodf ¢ with an observation-



Fig. 1. A game with one-sided complete observation.

based strategy, against all observation-based strategigkyer 2. Formally we define

(1)5u(#)(s) = sup inf PrI7(s).

0628 ”eﬂg

For ¢ > 0, an observation-based strategyci®ptimal for ¢ from s if we have
inf e 7o Pri7(¢) = (1)< (¢)(s) — . An optimalstrategy is @-optimal strategy.

val

Example 1.Consider the game with one-sided complete observatiopéptehas com-
plete information) shown in Fifl 1. Consider the Biichi atijee defined by the statg
(i.e., states, has priority0 and other states have priority. Because playerhas partial
observation (given by the partitia; = {{s1}, {s2, 55}, {s3, 4}, {s4}}), she cannot
distinguish between, and s/, and therefore has to play the same actions with same
probabilities insp and s, (while it would be easy to win by playing. in s; anda,

in s, this is not possible). In fact, playércannot win using a pure observation-based
strategy. However, playing; anda, uniformly at random in all states is almost-sure
winning. Every time the game visits observatioyn for any strategy of playe?, the
game visitss3 and s; with probability%, and hence also reaches with probability

%. It follows that against all playe? strategies the play eventually reachgswith
probability 1, and then stays there.

3 Randomness for Free in Transition Function

In this section we present a precise characterization ofldsses of games where the
randomness in transition function can be obtainedre in other words, we present
the precise characterization of classes of games with pilidtac transition function
that can be reduced to the corresponding class with detgstioitransition function.
We present our results as three reductions: (a) the firstctistuallows us to sepa-
rate probability from the mode of interaction; (b) the settoaduction shows how to
simulate probability in transition function witBoC (complete-observation concurrent)
deterministic transition; and (c) the final reduction shwmg to simulate probability in
transition withOsT (one-sided complete-observation turn-based) detertiurtiansi-
tion. We then show that faZoT (complete-observation turn-based) games, randomness
in transitions cannot be obtained for free, and concluda thie concurrency for free
result thatOsT andPaT games can simulat@sC andPaC games respectively.



Pa - partial observation
) ‘ ) C - concurrent
Os - one-sided complete observation ‘
|

! _ T - turn-based
Co - complete observation
Th.3

Th.[2

Fig. 2. The various classes of game graphs. The curves materiadizgasses for which
randomness is for free in transition relation (Theotém 2Emebreni B). Fo? 1 /2-player
games, randomness is not free only in complete-obsernvatinrbased games.

A reductionfrom a clasgj of games to a clasg’ is a mapping that, from a game
G € G and an objective in G, returns a gamé&’ € G’ and an objectivey’ in G,
and such that the state spaef G is (injectively) mapped to the state spageof G'.
In all our reductions we havé C S’, and thus the state-space mapping is the identity
(on S). Then the mapping of objectives in our reductions is suelh dhis the projec-
tion of ¢’ on S¥. All our reductions ardocal: they consist of a gadget construction
and replacement locally at every state. Additional prapsrof interest for reductions
are as follows. A reduction i§positive-preservingalmost-sure-preservingif for all
statess in G, if player 1 is almost-sure winning (resp., positive winning)@from
s € S, then playerl is almost-sure winning (resp., positive winning) @ from s.
A reduction isvalue-preservingf (1)% (¢)(s) = (1)S,(¢')(s) for all s € S, and
threshold-preservingf for all ¢ > 0 and states € S, if there exists are-optimal
strategy forg in G from s, then there exists asroptimal strategy for’ in G’ from
s. Note that threshold-preserving implies positive-presey, almost-sure-preserving,
and value-preserving. All reductions presented are tlotdgbreserving. We call a re-
ductionrestriction-preservingf when G is one-sided complete-observation, then so is
G’, whenG is complete-observation, then so(#%, and when’ is turn-based, then so
is G’. We call a reductiombjective-preserving when ¢ is a parity objective defined
with at mostd priorities, then so ig’, and whenp is an objective in thé-th level of the
Borel hierarchy, then so ig’. We say that a reduction is jpolynomial time(resp., in
exponential timgif the gameG’ can be constructed in polynomial time (resp., in expo-
nential time) fromG (assuming a reasonable encoding of games, such as expt&iif
binary-encoded states, observations, actions, and ticamsiand rational probabilities
encoded in binary).

A visual overview of the class of games for which randomneds®ii free in the
transitions is given in Fid.]2.

3.1 Separation of probability and interaction

A concurrent probabilistic game of partial observat@rsatisfies thenteraction sep-
aration condition if the following restrictions are satisfied (sdsoaFig.[3): the state



Fig.3. Example of interaction separation fob(s,a1,b1)(s1) = 5 and
5(8,0,1,1)1)(52) = %

spaceS can be partitioned int@S 4, Sp) such that (1) : Sa x A; x Ay — Sp, and
(2) 6 : Sp x A1 x A2 — D(S4) such that for alls € Sp and alls’ € S4, and for
all a1, as, ay, ah, we haved (s, ar,az)(s’) = d(s,al,dh)(s") = (s, —, —)(s’). In other
words, the choice of actions (or the interaction) of the ptayakes place at statesin
and actions determine a unique successor stafe jrand the transition function &p

is probabilistic and independent of the choice of the playkrthis section, we reduce
a class of games to the corresponding class satisfyingictten separation.

Reduction to interaction separation.Let G = (S, A1, Az, §, 01, O2) be a concurrent
game of partial observation with an objective\We obtain a concurrent game of partial
observatior’ = (S4 U Sp, A1, A3,0", 01, 04) whereS, =S, Sp =S x Ay x Aq,
and:

— ObservationFori € {1,2},if O; = {{s} | s € S}, thenO} = {{s'} | §' €
S4 U Sp}; otherwise?) contains the observatiaru {(s, a1, az2) | s € o} for each
o€ 0.

— Transition functionThe transition function is as follows:

1. We have the following three cases: (ayiis a player 1 turn-based state, then
pick an actiona} and for allay let §'(s,a1,a2) = (s,a1,a3); (b) if s is a
player 2 turn-based state, then pick an actipand for alla; letd’ (s, a1, az) =
(s,a¥,az2); and (c) otherwise (s, a1, a2) = (s, a1, az);

2. forall(s,a1,az2) € Sp we haved'((s, a1, a2), —, —)(s') = 0(s, a1, a2)(s).

— Objective mappingGiven the objectivep in G we obtain the objective) =
{(soshs18) .- .) | {sps1...) € p}inG.

Itis easy to map observation-based strategies of the gato®bservation-based strate-
gies inG’ and vice-versa that preserves satisfactio @ind¢’ in G andG’, respec-
tively. Then we have the following theorem.

Theorem 1. There exists a reduction from the class of partial-obseéoratoncurrent
games PaC games) to the class #&aC games with interaction separation such that
this reduction is
1. restriction-preserving and objective-preserving,
2. computable in polynomial time,
3. value-preserving, and threshold-preserving (and thise @ositive- and almost-
sure-preserving).
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Fig. 4. An example showing why the uniform-binary reduction canbetused with
partial observation.

Since the reduction is restriction-preserving, we havedacgon that separates the
interaction and probabilistic transition maintaining ttestriction of observation and
mode of interaction.

Uniform-n-ary concurrent probabilistic games. The class olniform--ary proba-
bilistic gamesare the special class of probabilistic games such that etatgs € Sp
hasn successors and the transition probability to each succés%o It follows from
the results of([20] that ever@oC probabilistic game with rational transition probabili-
ties can be reduced in polynomial time to an equivalent pmiyial size uniform-binary
(i.e.,n = 2) CoC probabilistic game for all parity objectives. The reduntis achieved
by adding dummy states to simulate the probability, and @uiction extends to all
objectives (in the reduced game we need to consider thetolgechose projection in
the original game gives the original objective).

In the case of partial information, the reduction to unifeomary probabilistic
games of{[20] does not work. To see this, consider[Big. 4 wiveserobabilistic states
s1, s2 have the same observation (i.ebs; (s1) = obs;(s2)) and the outgoing proba-
bilities are($, 3) from s; and(%, 2) from s,. The corresponding uniform-binary game
(given in Fig.[4) is not equivalent to the original game besgathe number of steps
needed to simulate the probabilities is not always the saom £, and froms,. From
s1 two steps are always sufficient, while frammore than two steps may be necessary
(with probability%). Therefore with probability, player 1 observing more than 2 steps
would infer that the game was for sureds, thus artificially improving his knowledge
and increasing his value function.

Therefore in the case of partial-observation games, weeptes reduction to a
uniform-n-ary probabilistic game witln = 1/r wherer is the greatest common di-



visor of all probabilities in the original game (a rationak a divisor of a rationap if
p = ¢ - r for some integeg). Note that the number = 1/r is an integer. We denote
by [n] the set{0, 1,...,n — 1}. For a probabilistic state € Sp, we define the:-tuple

Succ(s) = (s(,...,s),_;) in which each state’ € S occursn - §(s, —, —)(s’) times.
Then, we can view the transition relatiofis, —, —) as a function assigning the same

probabilityr = 1/n to each element Bucc(s) (and then adding up the probabilities
of identical elements).

Note that the above reduction is worst-case exponentiab(ise so can be the least
common multiple of all probability denominators). This iscessary to have the prop-
erty that all probabilistic states in the game have the sameber of successors. This
property is crucial because it determines the number obmastavailable to player 1
in the reductions presented in Section 3.2 [andl 3.3, and timbauof available actions
should not differ in states that have the same observation.

3.2 Simulating probability by complete-observation concarent determinism

In this section, we show that probabilistic states can bekitad byCoC deterministic
gadgets (and hence also ®&sC andPaC deterministic gadgets). By Theordr 1, we
focus on games that satisfy interaction separation. A goitibic state with uniform
probability over the successors is simulated by a commbgervation concurrent de-
terministic state where the optimal strategy for both ptaye to play uniformly over
the set of available actions.

Theorem 2. Leta € {Pa, Os, Co} andb € {C, T}, and letC = abandC’ = aC. There
exists a reduction from the class of gandesto the class of gamé&s:» N Gp (thus with
deterministic transition function) such that this redoctiis
1. objective-preserving,
2. computable in polynomial time if = Co, and in exponential time & = Pa or
a = Os,
3. value-preserving and threshold-preserving (and this® glositive- and almost-
sure-preserving).

Proof. To prove the desired result we show how an unifotrary probabilistic state
can be simulated by @oC deterministic gadget. For simplicity we present the dstalil
for the case when = 2, and the gadget for the general case is given in the Appendix.
Our reduction will be as follows: we consider a uniform-bin@oC probabilistic game
such that there is only one probabilistic state, and redute & CoC deterministic
game. For uniform-binarZoC probabilistic games with multiple probabilistic states
the reduction can be applied to each state one at a time anduld abtain the desired
reduction from uniform-binarZoC probabilistic games t€oC deterministic games.
Hence we prove the following claim.

Claim. Consider a uniform-binarfCoC probabilistic game& with a single proba-
bilistic states* with two successors; ands,. Consider theCoC deterministic game
G’ obtained fromG by transforming the state* to a concurrent deterministic state
as follows: the actions available for player 1 &t are a; and as and the actions
available for player 2 at* areb; andb,; and the transition function is as follows:
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Fig. 5. The reduction of uniform-binar€oC probabilistic games.

5(8*, ai, bl) = 5(8*, as, b2) = 51 andé(S*, ai, bg) = 5(8*, as, bl) = So. Then for all
objectivesp, the following assertions hold.

1. For alls € S there is an observation-based almost-sure (resp. pgsitivaing
strategy froms for ¢ in G iff there is an observation-based almost-sure (resp. posi-
tive) winning strategy for) from s in G'.

2. Foralls € S we have(1)S,,(#)(s) = (1), (#)(s). For alls € S there is an

observation-based optimal strategy fofrom s in G iff there is an observation-
based optimal strategy f@rfrom s in G.

The reduction is illustrated in Figufé 5. We prove the clasfalows. Let the value

for the objectivep player 1 at a state bev(s) andv’(s) in G andG’, respectively, and

let the value for player 2 be(s) andw’(s) in G andG’, respectively. By determinacy
of CoC games[[1B] we have/(s) = 1 — v(s) andw’(s) = 1 — v/(s). We present two

inequalities to complete the proof.

1. Consider a strategy for player 2 inG and we construct a strategy for player 2
in G as follows: the strategy’ follows the strategyr for all histories other than
when the current state ig; and if the current state is", then strategy:’ plays the
actionsb; andbs uniformly with probability%. Given the strategy’, if the current
state iss*, then for any probability distribution over andas, the successor states
ares; ands, with probability% (i.e., it plays exactly the role of staté in G). It
follows that the value for player 1 i@’ is no more than the value @, i.e., for all
s we havev'(s) < v(s).

2. Consider a strategyfor player 1 inG and we construct a strategyfor player 1 in
G’ as follows: the strategy’ follows the strategy for all histories other than when
the current state is*, and if the current state is", then the strategy’ plays the
actionsa; andas uniformly with probability%. Given the strategy’, if the current
state iss*, then for any probability distribution ové; andb., the successor states
ares; ands, with probability% (i.e., it plays exactly the role of staté in G). It
follows that the value for player 2 i@’ is no more than the value @, i.e., for all
s we havew’(s) < w(s).

It follows from above thab(s) = v’(s) for all statess, and the desired result follows.
Observe that the reduction also ensures that from an opstratiegy inG' we can
construct an optimal strategy &' and vice-versa. Our proof shows how probabilistic
states can be simulated BoC deterministic states, and it follows that probabilistic
states can be simulated BsC deterministic states arfaC deterministic states. The
result follows



3.3 Simulating probability by one-sided complete-obsent#on turn-based
determinism

We show that probabilistic states can be simulateddsf (one-sided complete-
observation turn-based) states, and by Theddem 1 we corgdees that satisfy in-
teraction separation. The reduction is illustrated in Bigeach probabilistic stateis
transformed into a playeX-state withn successor player-states (where is chosen
such that the probabilities fromare integer multiples of /n, in the example: = 3).
Because all successors ©have the same observation, playenas no advantage in
playing after player 2, and because by playing all actionfoumly at random each
player can unilaterally decide to simulate the probaliilistate, the value and proper-
ties of strategies of the game are preserved.

Theorem 3. Leta € {Pa,Os, Co} andb € {C, T}, and leta’ = Os if « = Co, and
a’ = a otherwise. Let = ab andC’ = a’b. There exists a reduction from the class of
gamegJc to the class of gaméag: N Gp (thus with deterministic transition function)
such that this reduction is

1. objective-preserving,

2. computable in exponential time,

3. value-preserving and threshold-preserving (and this® glositive- and almost-

sure-preserving).

Proof. First, we present the proof far # Pa, assuming that playe& has complete
observation. Le€d = (S, USp, A1, Az, d,01) and assume w.l.0.g. (according to The-
orem1) that& satisfies interaction separation (i.e., state$ jnare deterministic states,
andSp are probabilistic states) ar@ is uniform-n-ary, i.e. all probabilities are equal
to 1. For each probabilistic statec Sp, let Succ(s) = (s, ..., s,,_;) be then-tuple

of states such thai(s, —, —)(s]) = 1 for eachl < i < n.

We present a reduction that replaces the probabilistiesiat by a gadget with
player-1 and player-2 turn-based states. Ft@mve construct the one-sided complete-
observation gamé&’ where player-2 has complete observation. A similar coatityo
where player-1 instead of player-2 has complete observiiobtained symmetrically.
The game&y’ = (57, A, A}, ¢, O4) is defined as followsS” = SU (S x [n]) U {sink},

Al = A1 U[n], Ay = AsU[n], O] = {oU{(s,i) | s € 0} | 0 € O1}, andd’ is obtained
from o by applying the following transformation for each state S:

1. if s is a deterministic state i¥, thend’ (s, a,b) = §(s,a,b) foralla € Ay,b € As,
andd’(s,—,j) = ¢'(s,i,—) = sink forall i, j € [n];

2. if s is a probabilistic state i, thens is a player-2 state in¥’ and for alli, j € [n]
we defined’ (s, —, i) = (s,i) andd’((s,4), j, —) = s}, such that), is the elementin
positionk in Succ(s) with k = i+5 mod n (andlety’(s, —,b) = §'((s,i),a, —) =
§'(sink, —, —) = sink foralla € A1,b € Aj).

Note that turn-based states @ remain turn-based i’ and the stategs, -) are
player-1 states with the same observatiors.a8 sequence of stateg, ..., s,, in G
corresponds to the sequengg s1, s1, s2, 83, 53, . - ., S, IN G’ because deterministic
and probabilistic states alternate@) and inG’, transitions from probabilistic states



Fig. 6. For the probabilistic state (on the left), we hav&ucc(s) = (s{, s}, s;) and
n = 3 is the gcd of the probabilities denominators. Thereforeamely the reduction
of TheoreniB to obtain the turn-based game on the right, whisra player-2 states.

have intermediate states. The objectiVés defined as the s¢to, s1, s1, 52, 83, 83, - - - |
S0, 81, ... € ¢}. Intuitively, each player irG' has the possibility to force faithful sim-
ulation of the probabilistic states ¢ by playing actions irjn] uniformly at random.
For instance, if player 1 does so, then irrespective of tegjpbly randomized) choice
of player2 among the state&, 1), ..., (s, n), the states irbucc(s) are reached with
probability1/n, as inG. And the same holds if play@rplays in[n] uniformly at ran-
dom, no matter what player 1 does. Therefore, pldyean achieve the objectivé in
G’ with the same probability as fefin G, but not more.

The above reduction can be easily adapted to the«cas®a of games with partial
information for both playerd

3.4 Impossibility Results

We have shown that faEoC games and@sT games, randomness is for free in tran-
sitions. We complete the picture by showing that@mT (complete-observation turn-
based) games randomness in transition cannot be obtainfrdéo

Role of probabilistic transition in CoT games andPOMDPs. It follows from the
result of Martin [13] that for alCoT deterministic games and all objectives, the values
are either 1 or 0; howeveKIDPs with reachability objectives can have values in the
interval [0, 1] (not value 0 and 1 only). It follows that “randomness in tiioes” can

be replaced by “randomness in strategies” is not tru€dm deterministic games even
with randomized strategies the values are either 1 [ABEreadviDPs can have
values in the interval, 1]. For POMDPs, we show in Theorefl 6 that pure strategies
are sufficient, and it follows that fd#OMDPs with deterministic transition function the
values are 0 or 1, and siné4DPs with reachability objectives can have values other
than 0 and 1 it follows that randomness in transition canmobbtained for free for



21h-player 11k-player
complete| one-sided partial| MDP | POMDP
turn-based  not free free | not not

concurrent  free free free | (NA) | (NA)

Table 1. When randomness is for free in the transition function. Irtipalar, proba-
bilities can be eliminated in all classes of 2-player game&gpt complete-observation
turn-based games.

POMDPs. The probabilistic transition also plays an importanériol the complexity
of solving games in case @oT games: for exampleCoT deterministic games with
reachability objectives can be solved in linear time, butgmbabilistic transition the
problem is in NPN coNP and no polynomial time algorithm is known. In contrast,
for CoC games we present a polynomial time reduction from prolslultransition

to deterministic transition. Tablé 1 summarizes our restharacterizing the classes of
games where randomness in transition can be obtained far fre

3.5 Concurrency for free

The idea of the reduction in Theoréiin 3 can be extended to pnateoncurrency is for
free in one-sided complete-observation games, i.e., weepte polynomial reduction
of OsC games tdOsT games, and frorRaC games td®aT games.

Theorem 4. There exists a reduction fro@sC games tdOsT games, and fronRaC
games tdPaT games, such that these reductions are objective-presgreomputable
in polynomial time, value-preserving, and threshold-pregg (thus also positive- and
almost-sure-preserving).

Proof. We present the reduction fro@sC games tdOsT games, for the case where
playerl has perfect information. The reduction for one-sided gantesse playe@ has
perfectinformation is symmetric. Finally, the reductioorh PaC games td®aT games
is obtained analogously.

Let G = (S, A1, A2, 9, 02) be aOsC game, and we construct@sT gameG’ =
(87, A1, As, ', OF) as follows:

1. 8=SU(S x 4;),

2. 0, ={oU{(s,a) | s€coNac A} |oe Oz}, and

3. ¢ is defined as follows, for each statec S and actionsa € A;, b € As:
8 (s,a,—) = (s,a) andd’((s,a), —,b) = (s, a,b).

Hence the transition relatiafi let playerl play first an actiom, then playe plays
an actionb, and the successor state ©fs chosen according to the transition relation
4(s,a,b) from the original game. The objectivg in G’ requires that the projection
of a play onS¥ satisfiesy: let ¢ = {so(s0,a0)s1(s1,a1)--- | sos1--- € ¢ AVi >
0:a; € A;}. Since played plays first inG’, playerl can achieve the objectiv& in



G’ with at most the same probability as foiin G, and since for alk € S and actions

a € Ay, the states and(s, a) are indistinguishable for playér player2 does not know
the last action chosen by playeand therefore does not gain any advantage in playing
after playerl rather than concurrently. Therefore, playeachieves the objectiv@’ in

G’ with the same probability as farin G, and(1)S,(¢)(s) = (1)S,(¢)(s) for all
seS.h

Role of concurrency in complete-observation gamedie have shown that concur-
rency can be obtained for free in partial-observation ga@= and PaT games).
In contrast, for complete-observation games, the valugasional in general for con-
current games with deterministic transitiot®(C deterministic games)) [7], while the
value is always rational in turn-based stochastic gamésnaitonal probabilitiesCoT
stochastic games)[8]. This rules out any value-presemédgction ofCoC (determin-
istic) games taCoT (stochastic) games with rational probabilities.

Finally, note that it can be expected that randomness waatlthe for free in both
the transitions and the strategies, and the results of #psmpshow that the classes of
games in which randomness is for free in the transitionslél@pare those in which
randomized strategies are more powerful than pure stesté@ablé D), i.e. randomness
is not for free in strategies when randomness is for freeainditions.

4 Randomness for Free in Strategies

It is known from the results of [10] that i6oC games randomized strategies are more
powerful than pure strategies; for example, values acHibyegure strategies are lower
than values achieved by randomized strategies and randdmimost-sure winning
strategies may exist whereas no pure almost-sure winniatggy exists. Similar results
also hold in the case @sT games (seé [6] for an example). By contrast we show that
in one-player games, restricting the set of strategiestte stuategies does not decrease
the value nor affect the existence of almost-sure and pesitinning strategies. We
first start with a lemma, then present a result that can beetkfiom Martin’s theorem
for Blackwell games[13], and finally present our resultscisely in Theorerfil6. In this
section, we relax the assumption that games have a finieesate, and we allow the
set of states to beountable This is useful in the context of game solving, where after
fixing an arbitrary strategy for one of the player in &layer game, we get a POMDP
with countable state space.

Lemma 1. Let G be aPOMDP (with countable state spac®) and lets,. € S be an
initial state, andp C S“ be an objective. Then for every randomized observatiordbas
strategyo € Yo there exists gureobservation-based strategy> € X'p N Yo such
thatPr] (¢) < Pri”(¢).

The main argumentin the proof of Lemia 1 relies on showingtheavaluePr? (¢)
of any randomized observation-based strategy equal to the average of the values
Pr?i(¢) of (uncountably many) pure observation-based strategiegherefore, one of
the pure strategies; has to achieve at least the value of the randomized strateblye
theory of integration and Fubini’s theorem make this argoinpeecise.



Proof (of Lemmé&ll)Let G = (S, A;,d,O;) be aPOMDP (remember thatd, is a
singleton inPOMDPs and therefor&), is irrelevant), leto : Of — D(A;) be a
randomized observation-based strategy, and.fix S an initial state.

To simplify notations, we suppose that = {0, 1} contains only two actions, and
that given a state € S and an actiom € {0, 1} there are only two possible successors
L(s,a) € S andR(s,a) € S chosen with respective probabilitiéss, a, L(s, a)) and
0(s,a, R(s,a)) = 1 —4d(s,a, L(s,a)). The proof for an arbitrary finite set of actions
and more than two successors is essentially the same, withecomplicated notations.

There is a natural way to “derandomize” the randomizedegsat. Fix an infinite
sequence = (z,)nen € [0,1]* and define the deterministic strategy as follows.
For everyog, 01, ...,0, € OF,

(00,00 00) = {o i 2 < 000,01, 00)(0)
1 otherwise.
Intuitively, the sequence fixes in advance the sequence of results of coin tosses used
for playing witho.
To prove the lemma, we show thiat 1] can be equipped with a probability mea-
surev such that the mapping+— Pr7"(¢) from [0, 1]« to [0, 1] is measurable, and:

Pi% (¢) = / P19 () du(z) . 1)
z€[0,1]«

Suppose thaf{1) holds. Then there exists [0, 1]“ (actually manyz’s) such that
Pr] (¢) < Prl*(¢) and since strategy, is deterministic, this proves the lemma.

To complete the proof, it is thus enough to construct a pribbameasurer on
[0, 1]« such that[{lL) holds.

We start with the definition of the probability measwrélhe sef0, 1]* is equipped
with the o-field generated bgequence-cylindemshich are defined as follows. For ev-
ery finite sequence = zg, z1,. .., z, € [0,1]* the sequence-cylindé€fx) is the sub-
set[0, zo] x [0, z1] x ... x [0, z,] x [0, 1]* C [0, 1]“. According to Tulcea’s theorernl[4],
there is a unique product probability measuren [0, 1] such that/(C(¢)) = 1 and
for every sequencey, . .., x,, 41 in [0, 1],

V(0,1 0s1)) = T - v(C(@0, - 20)) -

Now thatv is defined, it remains to prove that the mapping- Pr”(¢) from
[0,1]* to [0, 1] is measurable and thdfl (1) holds. For that, we introducedtexfing
mapping:

fsuo 2 10,1]Y x [0,1]* — (SA1)“,
that associates with every pair of sequen@@s,).cn, (yn)nen) the infinite history
h = spai s1az ... € (SA;)“ defined recursively as follows. Firsg = s., and for
everyn € N,

0 if x, < o(obsi(sgaist---s,))0),
(07 - .
i 1 otherwise.



s _ L(sp,any1) i yn < 0(sn, any1, L(sn, ang1)),
") R(spy anst)  otherwise.

Intuitively, (x,)nen fixes in advance the coin tosses used by the strategy, while
(yn)nen takes care of the coin tosses used by the probabilisticitiams, andf;,
produces the resulting description of the play. Thankseaappingfs. ., randomness
related to the use of the randomized strategg separated from randomness due to
transitions of the game, which allows to represent the remzed strategyr by mean
of a probability measure over the set of pure stratefes| = € [0, 1]“}.

We equip both set&SA; )« and[0, 1] x [0, 1] with o-fields that make/, , mea-
surable. First(SA;)% is equipped with ther-field generated by cylinders, defined as
follows. An action-cylinderis a subset(h) C (SA;)“ such thaiC(h) = h(SA;)*
for someh € (SA;)*. A state-cylinderis a subseC(h) C (SA;)“ such that
C(h) = h(A,5)« for someh € (SA;)*S. The set ofcylindersis the union of the
sets of action-cylinders and state-cylinders. Secfihd]“ x [0, 1] is equipped with
theo-field generated by products of sequence-cylinders. Chgakatf;s, . is measur-
able is an elementary exercise.

Now we define two probability measurgsand .’ on (S A;)“ and prove that they
coincide. On one hand, the measurable mapging : [0,1]¥ x [0,1]* — (SA;)¥
defines naturally a probability measyteon (SA;)“. Equip the sefo, 1]« x [0, 1]
with the product measure x v. Then for every measurable subget- (SA4,),

W(B) = (vxv)(fl,(B)) .

On the other hand, the strategyand the initial state, naturally define another prob-
ability measure; on (SA;)“. According to Tulcea’s theorernl[4], there exists a unique
product probability measure on (SA;)“ such thatu(C(s.)) = 1, u(C(s)) = 0 for

s € S\ {s«},andforh = spay syas -+ s, € (SA1)*S and(a,t) € Ay x S,

w(C(ha)) = p(C(h)) - o(obsi(sp a1 s1az ---5,))(a)
u(C(hat)) = p(C(ha)) - 8(s,, a,1).

We have defined, . in such a way that andy’ coincide. To prove that andy’
coincide, it is enough to prove thatandy’ coincide on the set of cylinders, that is for
every cylindeiC(h) C (SA1)“,

p(C(h) = (v x v)(f 5 (C(h))) - (2)

This is obvious foih = s, andh = s € S\ {s.}. The general case goes by induction.
Leth = spaisias ---s, € (SA1)*S and(a,t) € Ay x S. LetI = [0,1]. Let
I, = [0,0(h)(a)] if a = 0andl, = [o(h)(a),1] if a = 1. LetI; = [0,3(sp,a,t)] if



t = L(sp,a)andly = [6(sn,a,t),1]if t = R(sp,a). Then:

1(C(ha) [ C(h)) = U(h)(a)
v x V) (I x 1)L, x I)(I x I)*)
= (v xv)(f;. 5 (C(ha)) | f;.1(C(h)))

u(Clhat) | C(ha)) = 5(sn,

v)(fi o (Clhat)) | f.1,(C(ha)))
which proves tha{{2) holds for every cylinder

Now all the tools needed to provel (1) have been introducediyacan state the
main relation betweerf,, , andPr] (¢). Let ¢’ C (SA;)” be the set of histories
spaisias ...suchthatsys; - - € ¢, and letl, and1y be the indicator functions of
¢ andg’. Then:

Pr? = 1 dPr? = 1, d = 1, du’
() /,, . +(p) dPr7_(p) /,, s ¢ (p) du(p) /p . o (p) di' (p)
:/ Lo (for o(@,y)) dv x ¥) ()
(z,y)€[0,1]* x[0,1]«

-/ (/ 1MﬁM@wDW@0dW@, 3)
z€[0,1]w y€e[0,1]«@

where the first and second equalities are by definitiodf (¢), the third equality
holds becausg = 1/, the fourth equality is a basic property of image measunes, a
the last equality holds by Fubini’s theorefi [4] that we car sBicely o fs, , IS
positive.

To complete the proof, we show that for ever¥ [0, 1]“,

/ 1y (for o (2,9)) dly) = Pe7* (6), (4)
y€e[0,1]«@

Equation[(B) holds for every observation-based stratedyence in particular for strat-
egy o.. But strategys, has the following property: for every’ €]0,1[% and every

€ (0,19, fs, 0. (2", y) = fs. o(x,y). Together with[(B), this give$¥4). This com-
pletes the proof, sinc€l(3) ard (4) immediately give §1).

Theorem 5 ([13]).Let G be aCoT stochastic game with initial state, and an ob-
jective ¢ C S“. Then the following equalities holdnf ¢, sup,¢ 5, Pri"(¢) =
SUPye 5, Infrerr, Pri"(¢) = sup,cspnyz, infrem, Pr ().

We obtain the following result as a consequence of Lefdma 1.

Theorem 6. Let G be aPOMDP (with countable state spac®) and lets. € S be an
initial state, andp C S“ be an objective. Then the following assertions hold:



21h-player 11k-player
complete| one-sided partial| MDP | POMDP
turn-based € >0 not not (e>0| e>0

concurrent  not not not | (NA) | (NA)

Table 2.When pure {-optimal) strategies are as powerful as randomized sieteghe
casec = 0 in complete-observation turn-based games is open.

1‘ supa’GE(_) Prg* (¢) :_Supdezg)ﬂﬂp PI‘:; (d)) . . . . .
2. Ifthere is arandomized optimal (resp. almost-sure wignpositive winning) strat-

egy for¢ from s,., then there is a pure optimal (resp. almost-sure winningitpee
winning) strategy for) from s.,.

Theoren{h can be derived as a consequence of Martin’s prodétefminacy of
Blackwell games[[13]: the result states that @uT stochastic games pure strategies
can achieve the same value as randomized strategies, anspasial case the result
also holds foMDPs. Theoreri6 shows that the result can be generalize®MDPs,
and a stronger result (item (2) of Theorem 6) can be proveB@wDPs (andMDPs
as a special case). It remains open whether result simiigerto(2) of Theorerfllé can
be proved forCoT stochastic games. The results summarizing when randonoaass
be obtained for free for strategies is shown in Table 2.

Undecidability result for POMDPs. The results of [2] shows that the emptiness prob-
lem for probabilistic coBiichi (resp. Buichi) automata enthe almost-sure (resp. pos-
itive) semantics[[2] is undecidable. As a consequencelivid that forPOMDPSs the
problem of deciding if there is a pure observation-basedatrsure (resp. positive)
winning strategy for coBuchi (resp. Biichi) objectivesiisdecidable, and as a conse-
quence of Theoreill 6 we obtain the same undecidability résuttndomized strate-
gies. The undecidability result holds even if the coBuchsp. Biichi) objectives are
visible.

Corollary 1. Let G be aPOMDP with initial state s, and let7 C S be a subset of
states (or subset of observations). Whether there existgeqgr randomized almost-
sure winning strategy for player 1 fromin G for the objectivecoBuchi(7) is unde-
cidable; and whether there exists a pure or randomized p@swinning strategy for
player 1 froms in G for the objectiveBuchi(7) is undecidable.

Undecidability result for one-sided complete-observatio turn-based games.The
undecidability results of Corollafy 1 also holds fosT stochastic games (as they sub-
sumePOMDPs as a special case). It follows from Theofdm 3 st stochastic games
can be reduced tOsT deterministic games. Thus we obtain the first undecidgviit
sult for OsT deterministic games (Corollaky 2), solving the open questif [6].

Corollary 2. LetG be anOsT deterministic game with initial state, and let7 C S
be a subset of states (or subset of observations). WhetrerdRists a pure or random-
ized almost-sure winning strategy for player 1 fremm G for the objectivecoBuchi(7)



is undecidable; and whether there exists a pure or randodpisitive winning strategy
for player 1 froms in G for the objectiveBuchi(7) is undecidable.

5 Conclusion

In this work we have presented a precise characterizatiooldsses of games where
randomization can be obtained for free in transitions arstrategies. As a consequence
of our characterization we obtain new undecidability ressulrhe other impact of our
characterization is as follows: for the class of games whanelomization is free in
transition, future algorithmic and complexity analysis éacus on the simpler class of
deterministic games; and for the class of games where raizdtion is free in strate-
gies, future analysis of such games can focus on the simlales of pure strategies.
Thus our results will be useful tools for simpler analysishigiques in the study of
games.
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A Appendix

Gadget for uniform-n-ary probability reduction for Theorem 2] We now show how
to simulate a probabilistic state’, with n successorsy, s1, ..., s,_1 such that the
transition probability i9 /» to each of the successor, by a concurrent deterministie. stat
In the concurrent deterministic statethere are: actionsug, a1, . . ., a,_1 available for
player 1 andh actionsbg, by, . .., b, 1 available for player 2. The transition function
is as follows: for0 < i < n and0 < j < n we haved(s*,a;,b;) = S(i+j) mod n-
Intuitively, the transition function matrix is obtained fmlows: the first row is filled
with statessg, s1,...,s,_1, and from a rowi, the rowi + 1 is obtained by moving
the state of the first column of rowto the last column in row + 1 and left-shifting
by one position all the other states; the construction issiteted on an example with
n = 4 successors inl5). The construction ensures that in everanal every column
each statesg, s1,...,5,_1 appears exactly once. It follows that if player 1 plays all
actions uniformly at random, then against any probabilisgribution of player 2 the
successor states asg, s1,. .., s,—1 With probability 1/n each; and a similar result
holds if player 2 plays all actions uniformly at random. Tleerectness of the reduction
for uniform-n-ary probabilistic state is then exactly as the proof of Tee®2.

S0 S1 S2 S3
S1 82 83 So
S2 83 S S1
S$3 50 S1 S2

()
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