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Abstract

We present in our work a continuous time Capital Asset Pricing Model where the
volatilities of the market index and the stock are both stochastic. Using a singular
perturbation technique, we provide approximations for the prices of european options
on both the stock and the index. These approximations are functions of the model
parameters. We show then that existing estimators of the parameter beta, proposed
in the recent literature, are biased in our setting because they are all based on the
assumption that the idiosyncratic volatility of the stock is constant. We provide then
an unbiased estimator of the parameter beta using only implied volatility data. This
estimator is a forward measure of the parameter beta in the sense that it represents
the information contained in derivatives prices concerning the forward realization of
this parameter, we test then its capacity of prediction of forward beta and we draw a
conclusion concerning its predictive power.

∗sofiene.elaoud@ecp.fr
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1 Introduction

The notion of a stock’s β was first introduced in the theory of Capital Asset Pricing Model
by Sharpe. This model extended previous works Markowitz did on portfolio construction
theory (see [12] ). The CAPM model was considered to be original and innovative because it
introduced the concept of systematic and specific risk and facilitated then the understanding
of the equity market (see [5]). The parameter β, which is a key parameter in this model,
enables to separate the stock risk into two parts. The first part represents the systematic
risk implied by the market risk, while the second part is the idiosyncratic risk that reflects
the specific performance of the stock. The parameter β is of great use and its estimation is
crucial in the construction of stock portfolios (see [16], [1], [13] ). This parameter was tra-
ditionally estimated using historical data of daily returns of the stock and the market index
(see [18], [9]). In this approach, the estimator of the parameter is obtained as the slope of
the linear regression of stock returns on market index returns. This approach is backward-
looking as it estimates the realized value of the parameter in the past using historical data.
This characteristic can be considered as a weakness of the method. In fact, the value of the
realized beta in the future can be remarkably different from its realization in the past, so
the method lacks a predictive power.

In the recent literature, different authors have focused on the estimation of the β coeffi-
cient using options data. This methodology provides a different way to estimate the parame-
ter β. In fact, whereas classical methods allow an historical estimation of this parameter, the
method based on the use of options prices enables us to obtain a ”forward looking” measure
of this parameter. In fact, the obtained estimator represents the information contained in
derivatives prices and then summarizes the expectation of market participants for the for-
ward realization of this parameter.

In [4], Christoffersen, Jacobs and Vainberg provided an estimation of this parameter us-
ing the risk-neutral variance and skewness of the stock and the index. More recently, Fouque
and Kollman proposed in [6] a continuous-time CAPM model in which the market index has
a stochastic volatility driven by a fast mean-reverting process. Using a singular perturba-
tion method, they managed to obtain an approximation of the beta parameter depending
on the skews of implied volatilities of both the stock and the index. Fouque and Tashman
introduced also in [7] a ”Stressed-Beta model” in which the parameter β can take two values
depending on the market regime. Using this model, Fouque et al provided a method to price
options on index and stock. This method enables also to estimate the parameter β based on
options data. In [3], Carr and Madan used the CAPM model to price options on the stock
when options on the index are liquid. Their approach didn’t aim to estimate the parameter
beta using option prices, but to price options on the stock given the parameter beta and
options prices on the market index.

This work is inspired mainly from [6] and [10]. We look here into the estimation of the
coefficient β using options prices. The paper is organized as follows : in the first part, we
make a brief reminder of the results obtained in the recent literature mainly in [6]. In the
second part, we focus on the case where the index volatility and the stock’s idiosyncratic
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volatility are both stochastic. This model is more likely to reproduce the stylised facts ob-
served in the market and to capture realistic relations between the stock and the market
index. We provide an estimator for the beta coefficient by means of a singular perturbation
technique. In the third part, we make an empirical study in order to test the predictive
power of our estimator for the forward realized β.

2 Literature review

2.1 The model of Fouque et al

Fouque et al proposed in [6] a continuous time Capital Asset Pricing Model in a stochastic
volatility environment. They supposed that the volatility of the index is driven by a fast
mean-reverting Ornstein-Uhlenbeck process. Under the historic probability measure P , we
have :

dIt
It

= µIdt+ f(Yt)dW
(1)
t ,

dSt

St

= µSdt+ β
dIt
It

+ σdW
(2)
t ,

dYt =
1

ǫ
(m− Yt)dt+

ν
√
2√
ǫ
dW

(3)
t ,

where W
(3)
t = ρW

(1)
t +

√

1− ρ2W
(4)
t and W =





W (1)

W (2)

W (4)



 is a Wiener process under P

Let λt =





µI−r

f(Yt)
µS+r(β−1)

σ

γ(Yt)



, P ∗ be a probability measure equivalent to P defined as:

dP ∗

dP |Ft

= exp(−
∫ t

0

λ′
udWu −

1

2

∫ t

0

|λu|2du),

and W ∗ =





W ∗,(1)

W ∗,(2)

W ∗,(4)



 such that: W ∗
t = Wt +

∫ t

0
λudu. By Girsanov’s theorem, W ∗ is a

brownian motion under P ∗.

Under continuity and boundedness conditions on the function γ, P ∗ is a risk-neutral probability-
measure under which we have:

dIt
It

= rdt+ f(Yt)dW
∗,(1)
t ,

dSt

St

= rdt+ βf(Yt)dW
∗,(1)
t + σdW

∗,(2)
t ,

dYt = (
1

ǫ
(m− Yt)−

ν
√
2√
ǫ
χ(Yt))dt+

ν
√
2√
ǫ
dW

∗,(3)
t ,
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where χ(Yt) = ρµI−r

f(Yt)
+
√

1− ρ2γ(Yt) and W
∗,(3)
t = ρW

∗,(1)
t +

√

1− ρ2W
∗,(4)
t .

We can notice that there is an infinity of risk-neutral probability measures. The choice of
the function γ determines the risk-neutral probability under which we price options.

2.2 Calibration of implied beta

Using a singular perturbation method with respect to the small parameter ǫ, Fouque et
al managed to obtain an approximation P̃ I,ǫ(KI , T ) for the price of an european call on
the index with strike KI and maturity T , and an approximation P̃ S,ǫ(KS, T ) for the price
of an european call on the stock with strike KS and maturity T . Afterwards, by doing a
Taylor expansion in

√
ǫ for the implied volatility of the stock and the index, they managed

to approximate the shape of the implied volatility surfaces as follows:

ΣI(KI , T ) = bI + aI
ln( FI

KI
)

T
,

ΣS(KS, T ) = bS + aS
ln( FS

KS
)

T
,

where FI and FS are the forward prices for maturity T of the index and stock respectively.
The quantities bI , aI , bS, aS are functions of the model parameters. The parameter β can be
approximated by β̂ which is defined as :

β̂ = (
aS
aI

)
1
3
bS
bI
. (2.1)

2.3 Limits of the model

In the model described so far, Fouque et al made the assumption that the idiosyncratic
volatility of the stock is constant. This hypothesis is too simplistic. In fact, a stock has an
idiosyncratic volatility that varies significantly, especially when the market reacts to specific
news of the company (earning expectation, restructuring projects,...). The idiosyncratic
volatility has then its own dynamics (see [17], [2], [11], [15] ).
By way of example, we give here the graph of the idiosyncratic volatility σ of XLF when
projected on the SPX index, from 01/01/2008 to 31/12/2012. The parameter σ is obtained
here by computing the standard deviation of errors in the linear regression of stock’s returns
(XLF) on index returns (SPX) with a sliding window of 1 month.
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Figure 1: Evolution of the idiosyncratic volatility of XLF with respect to the SPX index

The inspection of the graph above shows that the parameter σ is not constant and then we
should take this characteristic into consideration.

3 Model with fast mean-reverting idiosyncratic volatil-

ity

In this section, we propose a new model in which the idyosyncratic volatility of the stock is
driven by a fast mean-reverting Ornstein-Uhlenbeck process. We explain then how we could
calibrate the parameter β using options prices.

3.1 Presentation of the model

Let us assume that under the historic probability measure P , the stock and the index have
the the following dynamics:

dIt
It

= µIdt+ f1(Yt)dW
(1)
t ,

dSt

St

= µSdt+ β
dIt
It

+ f2(Zt)dW
(2)
t ,

dYt =
1

ǫ
(mY − Yt)dt+

νY
√
2√
ǫ

dW
(3)
t ,

dZt =
α

ǫ
(mZ − Zt)dt+

νZ
√
2α√
ǫ

dW
(4)
t ,

where W
(3)
t = ρYW

(1)
t +

√

1− ρ2YW
(5)
t , W

(4)
t = ρZW

(2)
t +

√

1− ρ2ZW
(6)
t and W =









W (1)

W (2)

W (5)

W (6)









is a Wiener process under P .
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Let λt =











µI−r

f1(Yt)
µS+r(β−1)

f2(Zt)

γ1(Yt)
γ2(Zt)











and P ∗ a probability measure equivalent to P and defined such that:

dP ∗

dP
= exp(−

∫ t

0

λ′
udWu −

1

2

∫ t

0

|λu|2du).

Let us define W ∗ =









W ∗,(1)

W ∗,(2)

W ∗,(5)

W ∗,(6)









such that W ∗
t = Wt +

∫ t

0
λudu. Using Girsanov’s theorem,

W ∗ is a brownian motion under P ∗.

P ∗ is a risk-neutral probability measure under which we have:

dIt
It

= rdt+ f1(Yt)dW
∗,(1)
t ,

dSt

St

= rdt+ βf1(Yt)dW
∗,(1)
t + f2(Zt)dW

∗,(2)
t ,

dYt =
1

ǫ
(mY − Yt)dt−

νY
√
2√
ǫ

χ1(Yt)dt+
νY

√
2√
ǫ

dW
∗,(3)
t ,

dZt =
α

ǫ
(mZ − Zt)dt−

νZ
√
2α√
ǫ

χ2(Zt)dt+
νZ

√
2α√
ǫ

dW
∗,(4)
t ,

where: χ1(Yt) = ρY
µI−r

f1(Yt)
+
√

1− ρ2Y γ1(Yt) and χ2(Zt) = ρZ
µS+r(β−1)

f2(Zt)
+
√

1− ρ2Zγ2(Zt).

W ∗,(3) and W ∗,(4) are brownian motions under P ∗ such that:

W ∗,(3) = ρYW
∗,(1) +

√

1− ρ2YW
∗,(5),

W ∗,(4) = ρZW
∗,(2) +

√

1− ρ2ZW
∗,(6).

3.2 Pricing options on the index and the stock

3.2.1 Approximation formula for index option price

We call P I,ǫ(KI , T ) = EP ∗

(e−r(T−t)(IT −KI)
+|Ft) the price of an european call on the index

with strike KI and maturity T . We can easily see that the pricing of options on the index
remains the same as in Fouque’s model where the idiosyncratic volatility of the stock is
constant. This is due to the fact that the diffusion equations of the processes (I) and (Y )
are still the same.

By doing a singular perturbation method as in [6], Fouque et al obtained an approximation
P̃ I,ǫ(KI , T ) for the price P I,ǫ(KI , T ). For simplification purposes, we will use the notation
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P̃ I,ǫ instead of P̃ I,ǫ(KI , T ). The proof of the approximation result is given in [6] and also in
Appendix 1 for completeness. We just recall the result here.

P̃ I,ǫ = P̃ I,ǫ
0 − (T − t)V I,ǫ

3 It
∂

∂It
(I2t

∂2P̃ I,ǫ
0

∂I2t
), (3.1)

where the quantities P̃ I,ǫ
0 and V I,ǫ

3 are defined as:

P̃ I,ǫ
0 = P I

BS(σ̄
∗
I ) (3.2)

V I,ǫ
2 = −

√
ǫ√
2
νY < φ′

Iχ1 >1, (3.3)

V I,ǫ
3 =

√
ǫ√
2
ρY νY < φ′

If1 >1, (3.4)

(σ̄∗
I )

2 = < f 2
1 >1 −2V I,ǫ

2 . (3.5)

We should precise here that < . >1 is the average with respect to the invariant distribution
of the Ornstein-Uhlenbeck process (Y1) whose dynamics are described by :

dY1,t = (mY − Y1,t)dt+ νY
√
2dW

(3)
t .

φI is defined as the solution of the following Poisson equation :

LI
0φI(y) = f 2

1 (y)− < f 2
1 >1, (3.6)

where LI
0 is the infinitesimal generator of the process (Y1) :

LI
0 =

∂

∂y
(mY − y) + ν2

Y

∂2

∂y2
.

3.2.2 Approximation formula for stock option price

Let P S,ǫ
t (KS, T ) be the price at time t of an european call on the stock with strike KS and

maturity T :

P S,ǫ
t (KS, T ) = EP ∗

(e−r(T−t)(ST −KS)
+|Ft).

To simplify the notations, we will use the notation P S,ǫ
t instead of P S,ǫ

t (KS, T ).
Using a singular perturbation technique on the small parameter ǫ, we can obtain an approx-
imation P̃ S,ǫ for the option’s price P S,ǫ

t . This approximation can be detailed as follows:

Proposition 3.1

P̃ S,ǫ = P̃0
S,ǫ − (T − t)V S,ǫ

3 St

∂

∂St

(S2
t

∂2P̃ S,ǫ
0

∂S2
t

), (3.7)
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where the quantities P̃ S,ǫ
0 and V S,ǫ

3 are defined as:

P̃ S,ǫ
0 = P S

BS(t, St, σ̄
∗
S), (3.8)

(σ̄∗
S)

2 = σ̄2
S − 2V S,ǫ

2 , (3.9)

V S,ǫ
2 = −

√
ǫ√
2
(β2νY < φ′

Iχ1 > +νZ
√
α < φ′

Idiosχ2 >), (3.10)

V S,ǫ
3 =

√
ǫ√
2
(β3ρY νY < φ′

If1 > +ρZνZ
√
α < φ′

Idiosf2 >). (3.11)

Proof:

P S,ǫ
t = EP ∗

(e−r(T−t)(ST −KS)
+|St = x, Yt = y, Zt = z).

Using Itô’s Lemma, we have:

LSP S,ǫ
t = 0.

We then expand LS in powers of
√
ǫ, and obtain:

LS = LS
2 +

1√
ǫ
LS

1 +
1

ǫ
LS

0 ,

where:

LS
0 = (mY − y)

∂

∂y
+ ν2

Y

∂2

∂y2
+ α(mZ − z)

∂

∂z
+ αν2

Z

∂2

∂z2
,

LS
1 = −νY

√
2χ1(y)

∂

∂y
+ βStf1(y)

√
2ρY νY

∂2

∂S∂y
− νZ

√
2αχ2(z)

∂

∂z
+ Stf2(z)

√
2αρZνZ

∂2

∂S∂z
,

LS
2 =

∂

∂t
+ r(

∂

∂S
St − .) +

1

2

∂2

∂S2
t

S2
t (β

2f1(y)
2 + f2(z)

2).

We can note that LS
0 is the infinitesimal generator of the two-dimensional Ornstein-Uhlenbeck

process

(

Y1

Y2

)

having the following dynamics :

d

(

Y1,t

Y2,t

)

=

(

1 0
0 α

)

(

(

mY

mZ

)

−
(

Y1,t

Y2,t

)

)dt+
√
2

(

νY 0
0

√
ανZ

)

d

(

W
(3)
t

W
(4)
t

)

.

We define here:

• < . >1 denotes the averaging with respect to the invariant distribution of the process
(Y1,t)t.

• < . >2 denotes the averaging with respect to the invariant distribution of the process
(Y2,t)t.

• < . >1,2 denotes the averaging with respect to the invariant distribution of

(

Y1,t

Y2,t

)

t

.
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We formally expand P S,ǫ in powers of
√
ǫ:

P S,ǫ =
∞
∑

i=0

(
√
ǫ)iP S,ǫ

i ,

then, we expand the term LSP S,ǫ
t :

(LS
2 +

1√
ǫ
LS

1 +
1

ǫ
LS

0 )(
∞
∑

i=0

(
√
ǫ)iP S,ǫ

i ) = 0.

By classifying the terms of the last equation by powers of
√
ǫ, we obtain :

(0) : LS
2P

S,ǫ
0 + LS

1P
S,ǫ
1 + LS

0P
S,ǫ
2 = 0, (3.12)

(−1) : LS
1P

S,ǫ
0 + LS

0P
S,ǫ
1 = 0, (3.13)

(−2) : LS
0P

S,ǫ
0 = 0, (3.14)

(1) : LS
2P

S,ǫ
1 + LS

1P
S,ǫ
2 + LS

0P
S,ǫ
3 = 0, (3.15)

(2) : LS
2P

S,ǫ
2 + LS

1P
S,ǫ
3 + LS

0P
S,ǫ
4 = 0. (3.16)

The term of order (−2) in
√
ǫ states that LS

0P
S,ǫ
0 = 0. Given that LS

0 contains only deriva-
tives with respect to y and z, we can solve this equation by choosing P S,ǫ

0 = P S,ǫ
0 (t, St)

independent of Yt and Zt.

The term of order (−1) in
√
ǫ states that LS

1P
S,ǫ
0 +LS

0P
S,ǫ
1 = 0. LS

1 contains first and second
order derivatives with respect to y and z, then LS

1P
S,ǫ
0 = 0. The equation becomes then

LS
0P

S,ǫ
1 = 0. The equation is satisfied if P S,ǫ

1 = P S,ǫ
1 (t, St) independent of Yt and Zt.

Consequently, P S,ǫ
0 and P S,ǫ

1 are independent of Yt and Zt, and we have:

LS
0P

S,ǫ
0 = LS

1P
S,ǫ
0 = LS

0P
S,ǫ
1 = LS

1P
S,ǫ
1 = 0.

Given that LS
1P

S,ǫ
1 = 0, the term of order 0 in

√
ǫ becomes:

LS
2P

S,ǫ
0 + LS

0P
S,ǫ
2 = 0.

This is a Poisson equation for P S,ǫ
2 with respect to LS

0 . The solvability condition for this
equation is:

< LS
2P

S,ǫ
0 >1,2=< LS

2 >1,2 P
S,ǫ
0 = 0.

We can notice that the average < LS
2 > of the generator LS

2 is equal to :

< LS
2 >1,2 =

∂

∂t
+ r(

∂

∂St

St − .) +
1

2

∂2

∂S2
t

S2
t < β2f 2

1 (y) + f 2
2 (z) >1,2 .

Then, we can deduce that: < LS
2 >1,2= LS

BS(σ̄S) where σ̄2
S = β2 < f 2

1 >1,2 + < f 2
2 >1,2.
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Consequently, P S,ǫ
0 is the solution of the following problem :

LBS(σ̄S)P
S,ǫ
0 = 0,

P S,ǫ
0 (T, ST ) = h(ST ).

We deduce that P S,ǫ
0 is the Black-Scholes price of the option with implied volatility equal to

σ̄S, meaning that:

P S,ǫ
0 = P S

BS(t, St, σ̄S).

The term of order 1 in
√
ǫ is a Poisson equation for P S,ǫ

3 with respect to LS
0 . The solvability

condition for this equation is:

< LS
2 >1,2 P

S,ǫ
1 = − < LS

1P
S,ǫ
2 >1,2=< LS

1 (LS
0 )

−1(LS
2− < LS

2 >1,2) > P S,ǫ
0 . (3.17)

P S,ǫ
1 is the solution of the last equation with terminal condition P S,ǫ

1 (T, St) = 0.

Given that f1 is independent of z and f2 is independent of y, we have: < f 2
1 >1,2=< f 2

1 >1

and < f 2
2 >1,2=< f 2

2 >2. We recall here that φI , the solution of (3.6), doesn’t depend on z,
we deduce that:

LS
0φI(y) = LI

0φI(y) = f 2
1 (y)− < f 2

1 >1,2 .

Let φIdios the solution of the following equation:

LS
0φIdios(z) = f 2

2 (z)− < f 2
2 >1,2 . (3.18)

Given that φIdios doesn’t depend on y, we obtain that:

LS
0 (β

2φI(y) + φIdios(z)) = β2(f 2
1 (y)− < f 2

1 >1,2) + (f 2
2 (z)− < f 2

2 >1,2).

Then we deduce that:

LS
1 (LS

0 )
−1(LS

2− < LS
2 >1,2) = (β2LS

1φI(y) + LS
1φIdios(z))

1

2
S2
t

∂2

∂S2
t

.

By developing the right term in the previous equation, we obtain:

1

2
(β2 < LS

1φI(y) >1,2 + < LS
1φIdios(z) >1,2) = (

β3νY ρY√
2

< φ′
If1 >1,2 +

ρZνZ
√
α√

2
< φ′

Idiosf2 >1,2)St

∂

∂St

− (
β2νY√

2
< φ′

Iχ1 >1,2 +
νZ

√
α√
2

< φ′
Idiosχ2 >1,2)

In order to simplify the notations, we define the quantities V S,ǫ
2 and V S,ǫ

3 :

V S,ǫ
3 =

√
ǫ√
2
(β3νY ρY < φ′

If1 > +ρZνZ
√
α < φ′

Idiosf2 >),

V S,ǫ
2 = −

√
ǫ√
2
(β2νY < φ′

Iχ1 > +νZ
√
α < φ′

Idiosχ2 >).
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The equation (3.17) becomes then:

< LS
2 >1,2

√
ǫP S,ǫ

1 = V S,ǫ
2 S2

t

∂2P S,ǫ
0

∂S2
t

+ V S,ǫ
3 St

∂

∂St

(S2
t

∂2P S,ǫ
0

∂S2
t

). (3.19)

Consequently, P S,ǫ
1 is the solution of (3.19) with the final condition P S,ǫ

1 (T, ST ) = 0. Given
that < LS

2 >1,2= LS
BS(σ̄S) commits with the operators D1,S = St

∂
∂St

and D2,S = S2
t

∂2

∂S2
t
, and

that < LS
2 >1,2 P

S,ǫ
0 = 0, the solution to the last problem can be given explicitly by :

√
ǫP S,ǫ

1 = −(T − t)(V S,ǫ
2 S2

t

∂2P S,ǫ
0

∂S2
t

+ V S,ǫ
3 St

∂

∂St

(S2
t

∂2P S,ǫ
0

∂S2
t

)). (3.20)

In order to check the validity of the solution, we can easily make the following verification:

< LS
2 >1,2

√
ǫP S,ǫ

1 = (V S,ǫ
2 D2,SP

S,ǫ
0 + V S,ǫ

3 D1,SD2,SP
S,ǫ
0 ) < LS

2 >1,2 ((t− T ))

− (T − t)(V S,ǫ
2 D2,S < LS

2 >1,2 (P
S,ǫ
0 ) + V S,ǫ

3 D1,SD2,S < LS
2 >1,2 (P

S,ǫ
0 ))

= V S,ǫ
2 D2,SP

S,ǫ
0 + V S,ǫ

3 D1,SD2,SP
S,ǫ
0 .

By neglecting terms of order higher or equal to 1 in
√
ǫ, we can approximate the stock

option’s price by (P S,ǫ
0 +

√
ǫP S,ǫ

1 ). In order to reduce the number of the parameters in the
approximation, we prove that:

P S,ǫ
0 +

√
ǫP S,ǫ

1 = P̃ S,ǫ
0 +

√
ǫP̃ S,ǫ

1 + o(ǫ) ,

where P̃ S,ǫ
0 is defined as:

LBS(σ̄
∗
S)P̃0 = 0,

P̃ S,ǫ
0 (T, ST ) = (ST −KS)

+,

and LBS(σ̄
∗
S) is the Black-Scholes differential operator with volatility σ̄∗

S such that:

(σ̄∗
S)

2 = σ̄2
S − 2V S,ǫ

2 ,

which gives P̃ S,ǫ
0 = PBS(t, St, σ̄

∗
S). On the other hand, P̃ S,ǫ

1 is defined as:

LBS(σ̄
∗
S)
√
ǫP̃ S,ǫ

1 = V S,ǫ
3 St

∂

∂St

(S2
t

∂2

∂S2
t

P̃ S,ǫ
0 ),

P̃ S,ǫ
1 (T, ST ) = 0.

We can notice that:

LBS(σ̄
∗
S) = LBS(σ̄S)− V S,ǫ

2 S2
t

∂2

∂S2
t

.

We start by studying the term (P S,ǫ
0 − P̃ S,ǫ

0 ). Using (3.21), we can then easily prove that:

LBS(σ̄S)(P
S,ǫ
0 − P̃ S,ǫ

0 ) = −V S,ǫ
2 S2

t

∂2P̃ S,ǫ
0

∂S2
t

,

(P S,ǫ
0 − P̃ S,ǫ

0 )(T, ST ) = 0.

12



Since the source term is O(
√
ǫ) because of V S,ǫ

2 , then the difference term (P S,ǫ
0 − P̃ S,ǫ

0 ) is also
O(

√
ǫ). Next, we write:

|P S,ǫ − (P̃ S,ǫ
0 +

√
ǫP̃ S,ǫ

1 )| ≤ |P S,ǫ − (P S,ǫ
0 +

√
ǫP S,ǫ

1 )|+ |(P S,ǫ
0 +

√
ǫP S,ǫ

1 )− (P̃ S,ǫ
0 +

√
ǫP̃ S,ǫ

1 )|

The first term |P S,ǫ,δ − (P S,ǫ
0 +

√
ǫP S,ǫ

1 )| is already o(ǫ). We focus then on the second term.
To simplify the notations, we introduce the error term:

R = (P S,ǫ
0 +

√
ǫP S,ǫ

1 )− (P̃ S,ǫ
0 +

√
ǫP̃ S,ǫ

1 ),

and the differential operators:

Hǫ = V S,ǫ
2 D2,S + V S,ǫ

3 D1,SD2,S,

H∗
ǫ = V S,ǫ

3 D1,SD2,S.

We can then compute the term:

LBS(σ̄S)R = LBS(σ̄S)((P
S,ǫ
0 +

√
ǫP S,ǫ

1 )− (P̃ S,ǫ
0 +

√
ǫP̃ S,ǫ

1 )),

= HǫP
S,ǫ
0 − (LBS(σ̄

∗
S) + V S,ǫ

2 D2,S)(P̃
S,ǫ
0 +

√
ǫP̃ S,ǫ

1 ),

= HǫP
S,ǫ
0 −H∗

ǫ P̃
S,ǫ
0 − V S,ǫ

2 D2,S(P̃
S,ǫ
0 +

√
ǫP̃ S,ǫ

1 ),

= H∗
ǫ (P

S,ǫ
0 − P̃ S,ǫ

0 )− V S,ǫ
2 D2,S(P̃

S,ǫ
0 − P S,ǫ

0 +
√
ǫP̃ S,ǫ

1 ).

Knowing that:

• (P S,ǫ
0 − P̃ S,ǫ

0 ) is O(
√
ǫ).

• H∗
ǫ is O(

√
ǫ)

• V S,ǫ
2 D2,S is O(

√
ǫ)

• √
ǫP̃ S,ǫ

1 is O(
√
ǫ)

and additionally R(T ) = 0, then we can obtain that:

R = O(ǫ) .

This concludes the derivation of the following result:

P S,ǫ
0 +

√
ǫP S,ǫ

1 = P̃ S,ǫ
0 +

√
ǫP̃ S,ǫ

1 +O(ǫ) .

So up to order 1 in
√
ǫ, we can approximate the option price by P̃ S,ǫ which is defined as:

P̃ S,ǫ = P̃ S,ǫ
0 +

√
ǫP̃ S,ǫ

1 .

Fouque and al proved that the estimation error obtained, when approximating P S,ǫ by P̃ S,ǫ,
is at order 1 in ǫ. The reader can refer to Appendix 2 for a brief review of the proof.
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3.3 Calibration of implied beta using options prices

We have already given an approximation for the price of an european option on the index
in (3.1) and an approximation for the price of an european option on the stock in (3.7). In
this section, an estimator of the parameter β using options prices is provided.

3.3.1 Approximation formula of the implied volatility smile

We derive an approximation of the smile of implied volatility for both the stock and the
index in function of model parameters. As suggested in [6], we perform an expansion of the
implied volatility in powers of

√
ǫ. This enables us to approximate the shape of the implied

volatility surfaces for both the stock and the index and to obtain the following results:

Proposition 3.2 The implied volatility of an european call on the index with strike KI and

maturity T can be approximated, at order 1 in
√
ǫ, by ΣI(KI , T ) which can be given as:

ΣI(KI , T ) = bI + aI
ln( FI

KI
)

T
,

where bI = σ̄∗
I −

V
I,ǫ
3

2σ̄∗

I
, aI =

V
I,ǫ
3

(σ̄∗

I )
3 and FI = Ite

r(T−t).

On the other hand, the implied volatility of an european call on the stock with strike KS and

maturity T can be approximated, at order 1 in
√
ǫ, by ΣS(KS, T ) which is equal to:

ΣS(K,T ) = bS + aS
ln( FS

KS
)

T
,

where bS = σ̄∗
S − V

S,ǫ
3

2σ̄∗

S
, aS =

V
S,ǫ
3

(σ̄∗

S)
3 and FS = Ste

r(T−t) .

A derivation of this result is included here for the purpose of making this paper as self-
contained as possible.

Proof:

We use here A to denote either the stock S or the index I. We have :

PA,ǫ = P̃0
A,ǫ − (T − t)V A,ǫ

3 At

∂

∂At

(A2
t

∂2P̃0
A,ǫ

∂A2
t

) + o(ǫ) , (3.21)

where P̃0
A,ǫ

is defined as:

P̃0
A,ǫ

= PBS(t, At, σ̄
∗
A).

PA,ǫ could represent the price of the option on the index P I,ǫ if A = I or the price of the
option on the stock P S,ǫ in the case where A = S.
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Let IA be the implied volatility associated to the asset’s option price PA,ǫ, then we have
PA,ǫ = PBS(t, At, IA(KA, T )). We can do an expansion of IA(K,T ) around σ̄∗

A in powers of√
ǫ:

IA(KA, T ) = σ̄∗
A +

√
ǫI1(KA, T ) +O(ǫ) .

We have then:

PA,ǫ = PBS(t, At, σ̄
∗
A) +

∂PBS

∂σ |σ=σ̄∗

A

√
ǫI1 + o(ǫ) . (3.22)

If we combine the equations (3.21) and (3.22), we get:

∂PBS(t, At, σ̄
∗
A)

∂σ |σ=σ̄∗

A

√
ǫI1(K,T ) = −(T − t)V A,ǫ

3 At

∂

∂At

(A2
t

∂2P̃0

∂A2
t

). (3.23)

By performing simple computations on the derivatives of the Black-Scholes price, we can
obtain that:

D2,AP̃0 =
1

σ̄∗
A(T − t)

∂PBS

∂σ̄∗
A

(t, At, σ̄
∗
A).

We apply then the operator D1,A to the last equation:

D1,AD2,AP̃0 =
At

σ̄∗
A(T − t)

∂2PBS

∂At∂σ̄∗
A

(t, At, σ̄
∗
A).

Using closed-form formulas of Black-Scholes greeks, we can write that:

At

∂2PBS

∂At∂σ̄∗
A

(t, At, σ̄
∗
A) = − d2

σ̄∗
A

√
T − t

∂PBS

∂σ̄∗
A

(t, At, σ̄
∗
A).

The equation (3.23) can be written as:

√
ǫI1(KA, T ) = −V A,ǫ

3

σ̄∗
A

At
∂2P̃0

∂At∂σ̄
∗

A

∂P̃0

∂σ̄∗

A

.

Then, it is straightforward that:

√
ǫI1(KA, T ) =

V A,ǫ
3 d2(KA, T )

(σ̄∗
A)

2
√
T − t

,

where:

d2(KA, T ) =
log(Ate

r(T−t)

KA
)− (σ̄∗

A)2

2
(T − t)

σ̄∗
A

√
T − t

.
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We can then approximate the implied volatility by the following formula:

IA(KA, T ) = σ̄∗
A − V A,ǫ

3

2σ̄∗
A

+
V A,ǫ
3

(σ̄∗
A)

3

ln(FA(T )
KA

)

T − t
. (3.24)

Then, we obtain the following smile approximation expression:

IA(KA, T ) = bA + aA
ln(FA(T )

KA
)

T − t
,

with:

bA = σ̄∗
A − V A,ǫ

3

2σ̄∗
A

,

aA =
V A,ǫ
3

(σ̄∗
A)

3
.

3.3.2 Comparison with the model with constant idiosyncratic volatility

We use the approximations given previously in order to estimate the parameter β.
Based on the definitions of V S,ǫ

3 and V I,ǫ
3 , we can write that:

V S,ǫ
3 = β3V I,ǫ

3 +

√
ǫ√
2
ρZνZ

√
α < φ′

Idiosf2 >,

V S,ǫ
3

V I,ǫ
3

= β3 +
ρZνZ

√
α

ρY νY

< φ′
Idiof2 >

< φ′
If1 >

.

The estimator β̂ proposed in [6] and introduced also in (2.1) verifies:

β̂3 =
V S,ǫ
3

V I,ǫ
3

= β3 +
ρZνZ

√
α

ρY νY

< φ′
Idiof2 >

< φ′
If1 >

.

We deduce that in the case where the idiosyncratic volatility of the stock is stochastic, β̂ is
a biased estimator of the parameter β.

3.3.3 Alternative method for the estimation

We recall here that:

σ̄2
S = β2σ̄2

I+ < f 2
2 >1,2 .

We can then write that:

β2 =
(σ̄∗

S)
2− < f 2

2 >1,2

(σ̄∗
I )

2 + 2V I,ǫ
2

+
2V S,ǫ

2

(σ̄∗
I )

2 + 2V I,ǫ
2

.
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Given the values of V S,ǫ
2 and V I,ǫ

2 , we can then write β as following:

β =

√

(σ̄∗
S)

2− < f 2
2 >1,2

(σ̄∗
I )

2 + 2V I,ǫ
2

+
2V S,ǫ

2

(σ̄∗
I )

2 + 2V I,ǫ
2

. (3.25)

Using the smile approximation formula (3.24), we can write, for the asset A which denotes
either the stock S or the index I, the following relation:

bA = σ̄∗
A − 1

2
aA(σ̄

∗
A)

2.

This second order equation in σ̄∗
A has two admissible solutions x1 and x2 :

x1 =
1−

√
1− 2aAbA
aA

,

x2 =
1 +

√
1− 2aAbA
aA

.

Since V A,ǫ
2 and V A,ǫ

3 are of order 1 in
√
ǫ, then aA is of order 1 in

√
ǫ and bA = σ̄∗

A + o(
√
ǫ).

We can then deduce that the appropriate solution is x1. Consequently, we have:

σ̄∗
S =

1−
√
1− 2aSbS
aS

,

σ̄∗
I =

1−
√
1− 2aIbI
aI

.

Then, we can approximate β by β̃ which is given by:

β̃ =

√

√

√

√

(1−
√
1−2aSbS
aS

)2− < f 2
2 >1,2

(1−
√
1−2aIbI
aI

)2 + 2V I,ǫ
2

+
2V S,ǫ

2

(1−
√
1−2aIbI
aI

)2 + 2V I,ǫ
2

. (3.26)

In order to compute β̃, we follow the methodology given below:

• We approximate σ̄I and σ̄S by the historical volatilities of the market index and the
stock respectively using underlying log-returns.

• We calibrate an affine function in the composite variable called ”log-moneyness-to-
maturity ratio” to the implied volatility surfaces of the index and the stock across
different strikes and maturities. We get then the estimated slopes aS, aI and the
intercepts bS, bI .

• From the estimated slope aS, the intercept bS and the effective volatility σ̄S, we calcu-
late the following quantities:

– σ̄∗
S = 1−

√
1−2aSbS
aS

– V S,ǫ
2 =

σ̄2
S−(σ̄∗

S)
2

2
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– V S,ǫ
3 = aS(σ̄

∗
S)

3

• Likewise, from the estimated slope aI , the intercept bI and the effective volatility σ̄I ,
we calculate the following quantities:

– σ̄∗
I = 1−

√
1−2aIbI
aI

– V I,ǫ
2 =

σ̄2
I−(σ̄∗

I )
2

2

– V I,ǫ
3 = aI(σ̄

∗
I )

3

• We use the time series of the log-returns of the stock (S) and the index (I) in order
to deduce the time serie of the idiosyncratic volatility (f(Zt))t. We calibrate the
parameters mZ , νZ and ρZ on the time serie of (Zt)t. For this purpose, we use the
maximum likelihood estimation method suggested in [8]. We evaluate then the quantity
< f 2

2 >1,2. If we consider the case where f2 denotes the exponential function, then we
have:

< f 2
2 >1,2 =

∫ +∞

−∞
e2z

1√
2π

exp(−(z −mZ)
2

2ν2
Z

)dz = e2mZ+2ν2Z .

• We compute finally the value of β̃ using (3.26).

4 Empirical study

4.1 Numerical illustrations

In this section, we will estimate the parameter β according to the methods (2.1) and (3.26)
using real data. For this purpose, we use options prices whose maturities are equal to T = 0.5
and whose moneyness range from 80% to 120%.

Furthermore, we introduce a third estimator, the historical beta βH , which is used tradition-
ally as an estimator of the parameter β. βH is a backward measure of the realization of the
parameter β. It is obtained, at a given date t, as the slope of the linear regression of the
stock daily returns on the index daily returns between t−L and t. We intentionally fixed L,
the length of the backward window on which we perform the linear regression, to be equal
to the maturity of the options we use to compute β̃ and β̂. We have then L = T = 0.5

We use here spot and options data on a sample of SPX 500 stocks and ETF and the SPX
500 market index. The sample includes Financial Select Sector (XLF), Energy Select Sec-
tor (XLE), Materials Select Sector (XLB), Technology Select Sector (XLK), Industrial Se-
lect Sector (XLI), Goldman Sachs (GS), Microsoft (MSFT), General Electric (GE), Google
(GOOG), IBM (IBM), JP Morgan (JPM), Cisco Systems (CSCO), Bank Of America (BAC),
Intel Corporation (INTC), Chevron Corporation (CVX), Caterpillar Inc(CAT), Apple Inc
(AAPL), Alcoa Inc (AA). The data used for this empirical study range between 01/01/2008
and 31/12/2012.
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For every date t of the sample, we compute the estimators β̂(t) and β̃(t), according to (2.1)
and (3.26) respectively, by using options prices with maturity T = 6M and moneyness M
between 80% and 120%. We use also the linear regression method on a backward window
with size L equal to T in order to compute βH(t).

The graphs below represent the time series (β̂(t))t0≤t≤tN , (β̃(t))t0≤t≤tN and (βH(t))t0≤t≤tN ,
for t0 = 01/01/2008 and tN = 31/12/2012.
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Figure 2: Comparison between β̂, β̃ and βH
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Figure 3: Comparison between β̂, β̃ and βH
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Figure 4: Comparison between β̂, β̃ and βH
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We define the parameter βF as the forward realized beta. At a given date t, βF (t) is
defined as the slope of the linear regression of the stock log-returns on the index log-returns
between t and t + T . This means that βF (t) is a measure of the effective realization of the
parameter β on the forward window with length T .

We aim then to measure the prediction error relative to each of the estimators β̂, β̃ and βH .
We use here the bias and the root-mean-square error as measures of the estimation error.

Stock E(β̂ − βF ) E(β̃ − βF ) E(βH − βF )

XLF.US -0.148 -0.121 0.054
XLE.US -0.05 0.0094 -0.0313
XLB.US -0.0231 0.0002 -0.0345
XLK.US 0.0679 0.0542 -0.0158
XLI.US -0.0258 -0.0183 -0.0215

AAPL.US 0.2649 0.4073 0.0005
AA.US -0.1814 -0.0738 -0.0333
BAC.US -0.1414 -0.3557 0.0222
CAT.US -0.0453 -0.0574 -0.0512
CSCO.US 0.0854 0.0216 -0.0073
CVX.US 0.0252 0.0366 -0.0187
GE.US 0.0375 -0.0534 0.0016

GOOG.US 0.1693 0.1742 0.0193
GS.US 0.1306 -0.0962 0.0113
IBM.US 0.2063 0.1575 -0.0233
INTC.US 0.1462 0.1451 -0.0069
JPM.US -0.0415 -0.347 0.0383
MSFT.US 0.1717 0.1102 -0.0234

Table 1: Bias of the estimators β̂, β̃ and βH
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Stock
√

E(( β̂−βF

βF
)2)

√

E(( β̃−βF

βF
)2)

√

E((βH−βF

βF
)2)

XLF.US 0.143 0.138 0.195
XLE.US 0.183 0.207 0.128
XLB.US 0.196 0.209 0.116
XLK.US 0.132 0.124 0.095
XLI.US 0.128 0.112 0.108

AAPL.US 0.41 0.547 0.252
AA.US 0.187 0.188 0.181
BAC.US 0.234 0.407 0.337
CAT.US 0.118 0.123 0.149
CSCO.US 0.159 0.162 0.147
CVX.US 0.198 0.238 0.165
GE.US 0.154 0.189 0.158

GOOG.US 0.277 0.31 0.165
GS.US 0.341 0.292 0.303
IBM.US 0.369 0.348 0.134
INTC.US 0.279 0.294 0.244
JPM.US 0.158 0.292 0.265
MSFT.US 0.297 0.27 0.163

Table 2: RMSE of the estimators β̂, β̃ and βH

4.2 Conclusion

We can see through the tables above that the historical beta estimator βH is not biased
for all the tested stocks and has in average the lowest RMSE compared to the two other
estimators β̂ and β̃. On the other hand, the forward looking beta estimator β̃ has a positive
bias for the stocks AAPL, GOOG, IBM, INTC, MSFT and a negative bias for XLF and
BAC. For those same stocks, the RMSE of the estimator β̃ is consequently higher than the
one of βH . This means that for some stocks, the market is expecting a realization of the
parameter β which is consistenty shifted to the effective realized one. We can say that for
those stocks, the parameter β is misspecified under the risk-neutral distribution.
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5 Appendix

5.1 Appendix 1: Pricing options on the index

Let P I,ǫ
t = E(h(IT )|It = x, Yt = y) be the price of a european call on the index with strike

K and maturity T .

P I,ǫ
t = P I,ǫ(t, It, Yt).

By applying Itô’s lemma, we obtain:

LIP I,ǫ
t = 0.

We can then classify the elements of the generator LI by powers of
√
ǫ.

LI = LI
2 +

1√
ǫ
LI

1 +
1

ǫ
LI

0,

LI
0 =

∂

∂y
(mY − y) + ν2

Y

∂2

∂y2
,

LI
1 = −νY

√
2χ1(y)

∂

∂y
+
√
2ρY νY Itf1(y)

∂2

∂I∂y
,

LI
2 =

∂

∂t
+ r(

∂

∂It
It − .) +

1

2

∂2

∂I2t
I2t f1(y)

2.

We can notice here that LI
0 is the infinitesimal generator of the Ornstein-Uhlenbeck process

(Y1,t)t that diffuses according to the following SDE:

dY1,t = (mY − Y1,t)dt+ νY
√
2dWt.

We expand then P I,ǫ in powers of
√
ǫ:

P I,ǫ =
∞
∑

i=0

(
√
ǫ)iP I,ǫ

i .

We can now do the expansion of the term LIP I,ǫ
t = 0 and classify it by powers of

√
ǫ. We

give below the terms of orders 0,−1,−2, 1 respectively in
√
ǫ.

(0) : LI
2P

I,ǫ
0 + LI

1P
I,ǫ
1 + LI

0P
I,ǫ
2 = 0,

(−1) : LI
1P

I,ǫ
0 + LI

0P
I,ǫ
1 = 0,

(−2) : LI
0P

I,ǫ
0 = 0,

(1) : LI
2P

I,ǫ
1 + LI

1P
I,ǫ
2 + LI

0P
I,ǫ
3 = 0,

We have P I,ǫ
0 is a solution of LI

0P
I,ǫ
0 = 0 with final condition P I,ǫ

0 (T, IT , yT ) = h(IT ) (inde-
pendent of yT ). Then, by solving this equation, we find:

P0(t, It, yt) = C1(t, It)

∫ y

0

e
u2

2µ2
Y

−umY
µ2 du+ C2(t, It)
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If C1 is not the null function then the solution diverges when y → +∞. We know that, in
the case of a call option, we have 0 ≤ P (t, It) ≤ It. Then we will choose C1 to be null, and
then P0 is independent of y.
We have then LI

1P
I,ǫ
0 +LI

0P
I,ǫ
1 = 0 which reduces to LI

0P
I,ǫ
1 = 0 (since P0 doesn’t depend on

y). Using the same reasoning as before, we can prove that P I,ǫ
1 = P I,ǫ

1 (t, It) is independent
of y. Consequently, we have:

LI
0P

I,ǫ
0 = LI

1P
I,ǫ
0 = 0,

LI
0P

I,ǫ
1 = LI

1P
I,ǫ
1 = 0.

Consequently, the terms of order (−1) and (−2) in
√
ǫ are null. We focus now on the term

of order 0 in
√
ǫ. We have : LI

1P
I,ǫ
1 = 0, then this term becomes:

LI
0P

I,ǫ
2 + LI

2P
I,ǫ
0 = 0.

This equation is a Poisson equation for P I,ǫ
2 . The solvability condition for this equation is :

< LI
0P

I,ǫ
2 >1 + < LI

2P
I,ǫ
0 >1= 0.

< . >1 is then the average with respect to the invariant distribution N(mY , ν
2
Y ) of the

Ornstein-Uhlenbeck process (Y1,t)t.
Since LI

0 is the infinitesimal generator of the process (Y1), we can check easily that:

< LI
0P

I,ǫ
2 >1= 0.

Then, the solvability condition reduces to:

< LI
2 >1 P

I,ǫ
0 = 0. (5.1)

We can then compute the average of the operator LI
2:

< LI
2 >1=

∂

∂t
+ r(

∂

∂I
I − .) +

1

2

∂2

∂I2
I2 < f 2

1 >1 .

If we note σ̄2
I =< f 2

1 >1 then < LI
2 >1= LBS(σ̄I). We can then define P I,ǫ

0 as the solution to
the following problem :

LBS(σ̄I)P
I,ǫ
0 = 0,

P ǫ
0(T, IT ) = h(IT ).

We deduce then that P I,ǫ
0 = PBS(t, It, σ̄I) meaning that P I,ǫ

0 is the Black-Scholes price of the
index option with implied volatility equal to σ̄I .
We can then write P I,ǫ

2 as:

P I,ǫ
2 = −(LI

0)
−1(LI

2− < LI
2 >1)P

I,ǫ
0 .

The term of order 1 in
√
ǫ is a poisson equation for P I,ǫ

3 . The solvability condition for this
equation is :

< LI
2P

I,ǫ
1 >1 = − < LI

1P
I,ǫ
2 >1, (5.2)

< LI
2 >1 P

I,ǫ
1 = < LI

1(LI
0)

−1(LI
2− < LI

2 >1) > P I,ǫ
0 . (5.3)
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In order to solve the previous equation, we compute the difference between the operator LI
2

and its average:

LI
2− < LI

2 >1=
1

2
(f 2

1 (y)− < f 2
1 >1)I

2
t

∂2

∂I2t
.

Let φI the solution of:

L0φI(y) = f 2
1 (y)− < f 2

1 >1 . (5.4)

Using (5.4), we can write that:

(LI
0)

−1(L2− < L2 >1) =
1

2
φI(y)I

2
t

∂2

∂I2t
.

By applying the operator L1 to the last equation, we get:

LI
1(LI

0)
−1(L2− < L2 >1) = (−νY

√
2 < χ1φ

′
I >1 +

√
2ρY νY < f1φ

′
I >1 It

∂

∂It
)
1

2
I2t

∂2

∂I2t
.

In order to simplify the notation, we define V I,ǫ
2 and V I,ǫ

3 as below:

V I,ǫ
2 = −

√
ǫ√
2
νY < φ′

Iχ1 >1,

V I,ǫ
3 =

√
ǫ√
2
ρY νY < φ′

If >1 .

Using V I,ǫ
2 and V I,ǫ

3 , the equation (5.3) becomes:

< LI
2 >1

√
ǫP I,ǫ

1 = V I,ǫ
2 I2t

∂2P0

∂I2t
+ V I,ǫ

3 It
∂

∂It
(I2t

∂2P0

∂I2t
).

We can then deduce that P I,ǫ
1 is the solution for the following problem :

< LI
2 >1

√
ǫP I,ǫ

1 = V I,ǫ
2 I2t

∂2P0

∂I2t
+ V I,ǫ

3 It
∂

∂It
(I2t

∂2P0

∂I2t
), (5.5)

P I,ǫ
1 (T, IT ) = 0. (5.6)

We define the following operators:

D1,I = It
∂

∂It
,

D2,I = I2t
∂2

∂I2t
.

Given that < LI
2 >1= LBS(σ̄I) commits with D1,I and D2,I , and that < LI

2 >1 P0 = 0, the
solution to the last problem can be given explicitly by:

√
ǫP I,ǫ

1 = −(T − t)(V I,ǫ
2 I2t

∂2P0

∂I2t
+ V I,ǫ

3 It
∂

∂It
(I2t

∂2P0

∂I2t
)).
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If we neglect terms of order higher or equal to 2 in
√
ǫ, we can approximate the option’s price

by (P I,ǫ
0 +

√
ǫP I,ǫ

1 ). As it was proven by Fouque et Al in [6], we can carry out a parameter
reduction method and approximate P I,ǫ by the following formula:

P I,ǫ ∼ P̃0
I,ǫ

+
√
ǫP̃1

I,ǫ
,

such as:

P̃0
I,ǫ

= PBS(σ̄
∗
I ), (5.7)

(σ̄∗
I )

2 = σ̄2
I − 2V I,ǫ

2 , (5.8)

√
ǫP̃1

I,ǫ
= −(T − t)V I,ǫ

3 It
∂

∂It
(I2t

∂2P̃0

∂I2t
). (5.9)

5.2 Appendix 2: Accuracy of the approximation

We want to prove here that the approximation (P S,ǫ
0 +

√
ǫP S,ǫ

1 ) of the price P (t, St, Yt) is of
order 1 in ǫ meaning that:

|P (t, St, Yt)− (P S,ǫ
0 +

√
ǫP S,ǫ

1 )| ≤ Cǫ.

The proof of this property is given in [10] in the case where the payoff h is smooth. We will
give here a summary of this proof in order to make this paper self contained.

Let us introduce the quantity ZS,ǫ which verifies that:

P (t, St, Yt) = P S,ǫ
0 +

√
ǫP S,ǫ

1 + ǫP S,ǫ
2 + ǫ

3
2P S,ǫ

3 − ZS,ǫ.

Given that LSP (t, St, Yt) = 0, we have:

LSZS,ǫ = LS(P
S,ǫ
0 +

√
ǫP S,ǫ

1 + ǫP S,ǫ
2 + ǫ

3
2P S,ǫ

3 )

We recall that LS = LS
2 + 1√

ǫ
LS

1 + 1
ǫ
LS

0 . We can develop then LSZS,ǫ and regroup the terms

by orders of
√
ǫ:

LSZS,ǫ =
1

ǫ
LS

0P
S,ǫ
0 +

1√
ǫ
(LS

0P
S,ǫ
1 + LS

1P
S,ǫ
0 ) + (LS

0P
S,ǫ
2 + LS

1P
S,ǫ
1 + LS

2P
S,ǫ
0 )

+
√
ǫ(LS

0P
S,ǫ
3 + LS

1P
S,ǫ
2 + LS

2P
S,ǫ
1 ) + ǫ(LS

1P
S,ǫ
3 + LS

2P
S,ǫ
2 ) + ǫ

3
2LS

2P
S,ǫ
3 .

Since P S,ǫ
0 , P S,ǫ

1 and P S,ǫ
2 are chosen to nullify the first four terms in the previous equation.

Then we obtain:

LSZS,ǫ = ǫ(LS
1P

S,ǫ
3 + LS

2P
S,ǫ
2 ) + ǫ

3
2LS

2P
S,ǫ
3 ,

with the final condition:

ZS,ǫ(T, ST , YT , ZT ) = ǫP2(T, ST , YT , ZT ) + ǫ
3
2P3(T, ST , YT , ZT ).
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Using the Feynman-Kac theorem, we obtain:

ZS,ǫ(t, x, y, z) = ǫE(e−r(T−t)(P2(T, ST , YT , ZT ) + ǫ
1
2P3(T, ST , YT , ZT ))

−
∫ T

t

e−r(u−t)((LS
1P

S,ǫ
3 + LS

2P
S,ǫ
2 ) + ǫ

1
2LS

2P
S,ǫ
3 )(u, Su, Yu, Zu)du|St = x, Yt = y, Zt = z)

Under the following assumptions:

• The payoff function h is smooth.

• The functions f , χ1 and χ2 are bounded, so that the solutions of the poisson equation
are at most linearly growing in |y| and |z|

We can deduce that ZS,ǫ is at most linearly growing in |y| and |z| and bounded uniformly
in x, and we have:

ZS,ǫ(t, x, y, z) = O(ǫ) .

Consequently: P (t, St, Yt, Zt) = P S,ǫ
0 +

√
ǫP S,ǫ

1 +O(ǫ). In order to drop the condition on the
boundedness of the payoff function h, we should have ǫ independent estimates for moments
of Sǫ. This would be the case when the processes Y and Z have enougn time to fluctuate
in order to attain respectively their invariant distributions. Consequently, when the payoff
function is not bounded, the approximation P S,ǫ

0 +
√
ǫP S,ǫ

1 is of order 1 in ǫ when the maturity
of the option (of the payoff function h) is sufficiently larger than ǫ.

The demonstration of the accuracy of the approximation for a non smooth payoff h (as in
the case of a call option) is derived in [14].
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