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Abstract. We study turn-based quantitative multiplayer non zero-sum
games played on finite graphs with reachability objectives. In such games,
each player aims at reaching his own goal set of states as soon as possible.
A previous work on this model showed that Nash equilibria (resp. secure
equilibria) are guaranteed to exist in the multiplayer (resp. two-player)
case. The existence of secure equilibria in the multiplayer case remained
and is still an open problem. In this paper, we focus our study on the
concept of subgame perfect equilibrium, a refinement of Nash equilib-
rium well-suited in the framework of games played on graphs. We also
introduce the new concept of subgame perfect secure equilibrium. We
prove the existence of subgame perfect equilibria (resp. subgame perfect
secure equilibria) in multiplayer (resp. two-player) quantitative reacha-
bility games. Moreover, we provide an algorithm deciding the existence
of secure equilibria in the multiplayer case.

1 Introduction

General framework. The construction of correct and efficient computer systems
(hardware or software) is recognized as an extremely difficult task. To support
the design and verification of such systems, mathematical logic, automata the-
ory [16] and more recently model-checking [13] have been intensively studied.
The efficiency of the model-checking approach is widely recognized when ap-
plied to systems that can be accurately modeled as a finite-state automaton.
In contrast, the application of these techniques to more complex systems like
embedded systems or distributed systems has been less successful. This could be
partly explained by the following reasons: classical automata-based models do
not faithfully capture the complex behavior of modern computational systems
that are usually composed of several interacting components, also interacting
with an environment that is only partially under control. One recent trend to
improve the automata models used in the classical approach of verification is
to generalize these models with the more flexible and mathematically deeper
game-theoretic framework [23,24].

The first steps to extend computational models with concepts from game the-
ory were done with the so-called two-player zero-sum games played on graphs [14].
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Those games are adequate to model controller-environment interactions prob-
lems [27,28]. Moves of player 1 model actions of the controller whereas moves
of player 2 model the uncontrollable actions of the environment, and a winning
strategy for player 1 is an abstract form of a control program that enforces the
control objective. However, only purely antagonist interactions between a con-
troller and a hostile environment can be modeled in this framework. In order to
study more complex systems with more than two components and objectives that
are not necessarily antagonist, we need multiplayer non zero-sum games. More-
over, we do not look for winning strategies, but rather try to find relevant notions
of equilibria, like the famous notion of Nash equilibrium [23]. We also consider
the more recent concept of secure equilibrium [9] which is especially well-suited
for assume-guarantee synthesis [11,12]. On the other hand, only qualitative ob-
jectives have been considered so far to specify, for example, that a player must
be able to reach a target set of states in the underlying game graph. But, in line
with the previous point, we also want to express and solve games for quantitative
objectives where each player wants to force the play to reach a particular set of
states within a given time bound, or within a given energy consumption limit.
In summary, we need to study equilibria for multiplayer non zero-sum games
played on graphs with quantitative objectives. This article provides some new
results in this research direction, in particular it is another step in the quest for
solution concepts well-suited for the computer-aided synthesis and verification
of multi-agent systems.

Our contribution. We study turn-based multiplayer non zero-sum games played
on finite graphs with quantitative reachability objectives, continuing work initi-
ated in [6]. In this framework each player aims at reaching his own goal as soon
as possible. In [6], among other results, it has been proved that a finite-memory
Nash (resp. secure) equilibria always exists in multiplayer (resp. 2-player) games.

In this paper we consider alternative solution concepts to the classical notion
of Nash equilibria. In particular, in the present framework of games on graphs, it
is very natural to consider the notion of subgame perfect equilibrium [26]: a choice
of strategies is not only required to be optimal for the initial vertex but also for
every possible initial history of the game. Indeed if the initial state or the initial
history of the system is not known, then a robust controller should be subgame
perfect. We introduce a new and even stronger solution concept with the notion
of subgame perfect secure equilibrium, which gathers both the sequential na-
ture of subgame perfect equilibria and the verification-oriented aspects of secure
equilibria. These different notions of equilibria are precisely defined in Section 2.

In this paper, we address the following problems:

Problem 1 Given a multiplayer quantitative reachability game G, does there
exist a Nash (resp. secure, subgame perfect, subgame perfect secure) equilibrium
in G?

Problem 2 Given a Nash (resp. secure, subgame perfect, subgame perfect se-
cure) equilibrium in a multiplayer quantitative reachability game G, does there
exist such an equilibrium with finite memory?



These questions have been positively solved by some of the authors in [6]
for Nash equilibria in multiplayer games, and for secure equilibria in two-player
games. Notice that these problems and related ones have been investigated a lot
in the qualitative framework (see [15]).

Here we go a step further and establish the following results about subgame
perfect and secure equilibria:

– in every multiplayer quantitative reachability game, there exists a subgame
perfect equilibrium (Theorem 15),

– in every two-player quantitative reachability game, there exists a subgame
perfect secure equilibrium (Theorem 19),

– in every multiplayer quantitative reachability game, one can decide whether
there exists a secure equilibrium in ExpSpace (Theorem 20),

– if there exists a secure equilibrium in a multiplayer quantitative reachability
game, then there exists one that is finite-memory (Theorem 21).

Related work. Several recent papers have considered two-player zero-sum games
played on finite graphs with regular objectives enriched by some quantitative
aspects. Let us mention some of them: games with finitary objectives [10],
games with prioritized requirements [1], request-response games where the wait-
ing times between the requests and the responses are minimized [17,29], and
games whose winning conditions are expressed via quantitative languages [2].

Other work concerns qualitative non zero-sum games. In [9] where the notion
of secure equilibrium has been introduced, it is proved that a unique maximal
payoff profile of secure equilibria always exists for two-player non zero-sum games
with regular objectives. In [15], general criteria ensuring existence of Nash equi-
libria and subgame perfect equilibria (resp. secure equilibria) are provided for
multiplayer (resp. 2-player) games, as well as complexity results. In [4], the exis-
tence of Nash equilibria is studied for timed games with qualitative reachability
objectives. Complexity issues are discussed in [5] about Nash equilibria in mul-
tiplayer concurrent games with Büchi objectives.

Finally, let us mention work that combines both quantitative and non zero-
sum aspects. In [3], the authors study games played on graphs with terminal
vertices where quantitative payoffs are assigned to the players. These games may
have cycles but all the infinite plays form a single outcome (like in chess where
every infinite play is a draw). That paper gives criteria that ensure the existence
of Nash (and subgame perfect) equilibria in pure and memoryless strategies.
In [19], the studied games are played on priced graphs similar to the ones con-
sidered in this article, however in a concurrent way. In this concurrent framework,
Nash equilibria are not guaranteed to exist anymore. The authors provide an al-
gorithm to decide existence of Nash equilibria, thanks to a Büchi automaton
accepting all Nash equilibria outcomes. The complexity of some related decision
problems is also studied. In [25], the authors study Muller games on finite graphs
where players have a preference ordering on the sets of the Muller table. They
show that Nash equilibria always exist for such games, and that it is decidable
whether there exists a subgame perfect equilibrium. In both cases they give a
procedure to compute an equilibrium strategy profile (when it exists).



Organization of the paper. Section 2 is dedicated to definitions. We present
the kinds of games and equilibria that we study in this paper. In Section 3,
we positively solve Problem 1 for subgame perfect equilibria. In Section 4, this
problem is also positively solved for subgame perfect secure equilibria, but only
in the two-player case. Finally, in Section 5, we study Problems 1 and 2 in
the context of secure equilibria. We partially solve Problems 1 by providing an
algorithm that decides the existence of a secure equilibrium. And we positively
solve Problem 2 for secure equilibria.

These results have been published in [8]. In this paper, we provide their
complete proofs.

2 Preliminaries

2.1 Games, Strategy Profiles and Equilibria

We consider here quantitative games played on a graph where all the players have
reachability objectives. It means that, given a certain set of vertices Goali, each
player i wants to reach one of these vertices as soon as possible. We recall the
basic notions about these games and we introduce different kinds of equilibria,
like Nash equilibria. This section is inspired from [6].

Definition 1. An infinite turn-based multiplayer quantitative reachability game
is a tuple G = (Π,V, (Vi)i∈Π , v0, E, (Goali)i∈Π) where

• Π is a finite set of players,
• G = (V, (Vi)i∈Π , v0, E) is a finite directed graph where V is the set of vertices,
(Vi)i∈Π is a partition of V into the state sets of each player, v0 ∈ V is the
initial vertex, and E ⊆ V × V is the set of edges, and

• Goali ⊆ V is the non-empty goal set of player i.

From now on, we often use the term game to denote a multiplayer quantitative
reachability game according to Definition 1. Let us notice that in our definition,
such a game is inialized with a certain vertex v0.

We assume that each vertex has at least one outgoing edge. The game is
played as follows. A token is first placed on the vertex v0. Player i, such that
v0 ∈ Vi, has to choose one of the outgoing edges of v0 and put the token on the
vertex v1 reached when following this edge. Then, it is the turn of the player
who owns v1. And so on.

A play ρ ∈ V ω (resp. a history h ∈ V +) of G is an infinite (resp. a finite)
path through the graph G starting from vertex v0. Note that a history is always
non-empty because it starts with v0. The set H ⊆ V + is made up of all the
histories of G, and for i ∈ Π , the set Hi is the set of all histories h ∈ H whose
last vertex belongs to Vi.

For any play ρ = ρ0ρ1 . . . of G, we define Costi(ρ) the cost of player i as:

Costi(ρ) =

{

l if l is the least index such that ρl ∈ Goali,
+∞ otherwise.



We note Cost(ρ) = (Costi(ρ))i∈Π the cost profile for the play ρ. Each player i

aims to minimize the cost he has to pay, i.e. reach his goal set as soon as possible.
The cost profile for a history h is defined similarly.

A prefix (resp. proper prefix ) α of a history h = h0 . . . hk is a finite sequence
h0 . . . hl, with l ≤ k (resp. l < k), denoted by α ≤ h (resp. α < h). We similarly
consider a prefix α of a play ρ, denoted by α < ρ. The function Last returns,
given a history h = h0 . . . hk, the last vertex hk of h, and the length |h| of h
is the number k of its edges3. Given a play ρ = ρ0ρ1 . . ., we denote by ρ≤l the
prefix of ρ of length l, i.e. ρ≤l = ρ0ρ1 . . . ρl. Similarly, ρ<l = ρ0ρ1 . . . ρl−1.

We say that a play ρ = ρ0ρ1 . . . visits a set S ⊆ V (resp. a vertex v ∈ V )
if there exists l ∈ N such that ρl is in S (resp. ρl = v). The same terminology
also stands for a history h. More precisely, we say that ρ visits a set S at (resp.
before) depth d ∈ N if ρd is in S (resp. if there exists l ≤ d such that ρl is in S).
For any play ρ we denote by Visit(ρ) the set of players i ∈ Π such that ρ visits
Goali. The set Visit(h) for a history h is defined similarly.

A strategy of player i in G is a function σ : Hi → V assigning to each
history h ∈ Hi, a next vertex σ(h) such that (Last(h), σ(h)) belongs to E. We
say that a play ρ = ρ0ρ1 . . . of G is consistent with a strategy σ of player i if
ρk+1 = σ(ρ0 . . . ρk) for all k ∈ N such that ρk ∈ Vi. The same terminology is
used for a history h of G. A strategy profile of G is a tuple (σi)i∈Π where σi is
a strategy for player i. It determines a unique play of G consistent with each
strategy σi, called the outcome of (σi)i∈Π and denoted by 〈(σi)i∈Π〉. We write
σ−j for (σi)i∈Π\{j}, the set of strategies σi for all the players except for player j.

A strategy σ of player i is memoryless if σ depends only on the current
vertex, i.e. σ(h) = σ(Last(h)) for all h ∈ Hi. More generally, σ is a finite-memory
strategy if the equivalence relation ≈σ on H defined by h ≈σ h′ if σ(hδ) = σ(h′δ)
for all δ ∈ Hi has finite index. In other words, a finite-memory strategy is a
strategy that can be implemented by a finite automaton with output. A strategy
profile (σi)i∈Π is called memoryless or finite-memory if each σi is a memoryless
or a finite-memory strategy, respectively.

For a strategy profile (σi)i∈Π with outcome ρ and a strategy σ′
j of player j,

we say that player j deviates from ρ if there exists a prefix h of ρ, consistent
with σ′

j , such that h ∈ Hj and σ′
j(h) 6= σj(h).

We now introduce different notions of equilibria in the quantitative framework
and give several examples to make clear the presented concepts. We first begin
with the definition of Nash equilibrium.

Definition 2. A strategy profile (σi)i∈Π of a game G is a Nash equilibrium if
for all player j ∈ Π and for all strategy σ′

j of player j, we have:

Costj(ρ) ≤ Costj(ρ
′)

where ρ = 〈(σi)i∈Π〉 and ρ′ = 〈σ′
j , σ−j〉.

This definition means that for all j ∈ Π , player j has no incentive to deviate
since he cannot strictly decrease his cost when using σ′

j instead of σj . Keeping

3 Note that the length is not defined as the number of vertices.



notations of Definition 2 in mind, a strategy σ′
j such that Costj(ρ) > Costj(ρ

′)
is called a profitable deviation for player j w.r.t. (σi)i∈Π . In this case, either
player j pays an infinite cost for ρ and a finite cost for ρ′ (i.e. ρ′ visits Goalj , but
ρ does not), or player j pays a finite cost for ρ and a strictly lower cost for ρ′

(i.e. ρ′ visits Goalj for the first time earlier than ρ does).
We now define the concept of secure equilibrium4. We first need to asso-

ciate a binary relation ≺j on cost profiles with each player j. Given two cost
profiles (xi)i∈Π and (yi)i∈Π :

(xi)i∈Π ≺j (yi)i∈Π iff
(

xj > yj
)

∨
(

xj = yj ∧ (∀i ∈ Π xi ≤ yi) ∧ (∃i ∈ Π xi < yi)
)

.

We then say that player j prefers (yi)i∈Π to (xi)i∈Π . In other words, player j
prefers a cost profile to another one either if he has a strictly lower cost, or if he
keeps the same cost, the other players have a greater cost, and at least one has
a strictly greater cost.

Definition 3. A strategy profile (σi)i∈Π of a game G is a secure equilibrium if
for all player j ∈ Π, there does not exist any strategy σ′

j of player j such that:

Cost(ρ) ≺j Cost(ρ
′)

where ρ = 〈(σi)i∈Π〉 and ρ′ = 〈σ′
j , σ−j〉.

In other words, player j has no incentive to deviate w.r.t. relation ≺j. A strat-
egy σ′

j such that Cost(ρ) ≺j Cost(ρ′) is called a ≺j-profitable deviation for
player j w.r.t. (σi)i∈Π . Clearly, any secure equilibrium is a Nash equilibrium.

We now introduce a third type of equilibrium: the subgame perfect equilib-
rium. In this case, a strategy profile is not only required to be optimal for the
initial vertex, but also after every possible history of the game. Before giving the
definition, we introduce the concept of subgame and explain some notations.

Given a game G = (Π,V, (Vi)i∈Π , v0, E, (Goali)i∈Π) and a history hv of
G, with v ∈ V , the subgame G|h of G with history hv is the game G|h =
(Π,V, (Vi)i∈Π , v, E, (Goali)i∈Π), with initial vertex v. Given a strategy σi for
player i in G, we define the strategy σi|h in G|h by σi|h(h′) = σi(hh

′) for all
history h′ of G|h such that Last(h′) ∈ Vi. Let σ be the strategy profile (σi)i∈Π ,
we write σ|h for (σi|h)i∈Π , and h〈σ|h〉 for the play in G with prefix h that is
consistent with σ|h from v.

Then, we say that (σi|h)i∈Π is a Nash equilibrium in the subgame G|h with
history hv if for all player j ∈ Π and for all strategy σ′

j of player j, we have
that Costj(ρ) ≤ Costj(ρ

′), where ρ = h〈(σi|h)i∈Π〉 and ρ′ = h〈σ′
j |h, σ−j |h〉. Let

us stress on the fact that plays ρ and ρ′ both include the history h as their
prefix, and that the related costs Costj(ρ) and Costj(ρ

′) thus depend on h (the
goal set Goalj could have already been visited by h). The definition of a secure
equilibrium in G|h is given similarly.

4 Our definition naturally extends the notion of secure equilibrium proposed in [9] to
the quantitative framework.



A subgame perfect equilibrium is a strategy profile that is a Nash equilibrium
after every possible history of the game, i.e. in every subgame. In particular, a
subgame perfect equilibrium is also a Nash equilibrium.

Definition 4. A strategy profile (σi)i∈Π of a game G is a subgame perfect equi-
librium if for all history hv of G, (σi|h)i∈Π is a Nash equilibrium in the subgame
G|h with history hv.

We now introduce the last kind of equilibrium that we study. It is a new
notion that combines both concepts of subgame perfect equilibrium and secure
equilibrium in the following way.

Definition 5. A strategy profile (σi)i∈Π of a game G is a subgame perfect se-
cure equilibrium if for all history hv of G, (σi|h)i∈Π is a secure equilibrium in
the subgame G|h with history hv.

Notice that a subgame perfect secure equilibrium is a secure equilibrium, as well
as a subgame perfect equilibrium.

In order to understand the differences between the various notions of equi-
libria, we provide three simple examples of games limited to two players and to
finite trees.

Example 6. Let G = (V, V1, V2, A,E,Goal1,Goal2) be the two-player game de-
picted in Fig. 1. The vertices of player 1 (resp. 2) are represented by circles
(resp. squares), that is, V1 = {A,D,E, F} and V2 = {B,C}. The initial ver-
tex v0 is A. The vertices of Goal1 are shaded whereas the vertices of Goal2 are
doubly circled; thus Goal1 = {D,F} and Goal2 = {F}. The number 2 labeling
the edge (B,D) is a shortcut to indicate that there are two consecutive edges
from B to D (through one intermediate vertex). We will keep these conventions
throughout the article.

A

B C

D E F

2

Fig. 1. Game G.

A

B C

D E F

Fig. 2. Game G′.

A

B C

D E F

Fig. 3. Game G′′.

In the games G, G′ and G′′ of Fig. 1, 2 and 3 (played on the same graph), we
define two strategies σ1, σ

′
1 of player 1 and two stategies σ2, σ

′
2 of player 2 in

the following way: σ1(A) = B, σ′
1(A) = C, σ2(C) = E and σ′

2(C) = F .
In G, one can easily check that the strategy profile (σ1, σ2) is a secure equi-

librium (and thus a Nash equilibrium) with cost profile is (3,+∞). Such a secure
equilibrium exists because player 2 threatens player 1 to go to vertex E in the



case where vertex C is reached. This threat is not credible in this case since by
acting this way, player 2 gets an infinite cost instead of a cost of 2 (that he could
obtain by reaching F ). For this reason, (σ1, σ2) is not a subgame perfect equi-
librium (and thus not a subgame perfect secure equilibrium). However, one can
check that the strategy profile (σ′

1, σ
′
2) is a subgame perfect secure equilibrium.

Let us now consider the game G′ depicted in Fig. 2 (notice that the number 2
has disappeared from the edge (B,D)). One can verify that the strategy pro-
file (σ′

1, σ
′
2) is a subgame perfect equilibrium which is not a secure equilibrium

(and thus not a subgame perfect secure equilibrium). A subgame perfect secure
equilibrium for G′ is given by the strategy profile (σ1, σ

′
2).

Finally, for the game G′′ depicted in Fig. 3, one can check that the strategy
profile (σ1, σ

′
2) is both a subgame perfect equilibrium and a secure equilibrium.

However it is not a subgame perfect secure equilibrium. In particular, this shows
that being a subgame perfect secure equilibrium is not equivalent to be a sub-
game perfect equilibrium and a secure equilibrium. On the other hand, (σ1, σ2)
is a subgame perfect secure equilibrium in G′′.

The general philosophy of our work is to investigate interesting concepts of
equilibria in multiplayer quantitative reachability games. In these games, each
player aims at reaching his goal set as soon as possible. Having that in mind,
a play where a goal set is visited for the first time after cycles were no new
goal set is visited does not seem to be a desirable behavior (see the definition
of unnecessary cycle below). It appears thus reasonable to seek for concepts of
equilibrium whose outcome does not present this undesirable feature.

Definition 7. Given a play ρ = αβρ̃ in a game G, such that β is non-empty,
Last(α) = Last(αβ), Visit(α) = Visit(αβ) and Visit(α) 6= Visit(ρ), the cycle β is
called an unnecessary cycle.

Example 8. Let us exhibit an example of this phenomenon on the two-player
game G depicted in Fig. 4 (we use the same conventions as in Example 6). For
n > 0, let us consider the play AnBω. Along this play, the cycles An−1, for n > 1,
are unnecessary cycles. Indeed, once Goal1 is visited (in A), looping n times on
A just delays the apparition of Goal2 (in B). However, for each n > 0, one can
build a subgame perfect equilibrium (σn

1 , σ2) whose outcome is AnBω and cost
profile is (0, n), as follows:

σn
1 (h) =

{

A if h = Aj , with j < n,

B otherwise.

This allows us to conclude that the notion of subgame perfect equilibrium does
not prevent the existence of outcomes with unnecessary cycles. We can notice
that (σn

1 , σ2) is not a secure equilibrium, for all n > 0. However, we will see in
the next example that secure equilibria can also allow this kind of undesirable
behaviors.

Let us consider the game of Fig. 5. For n > 1, the cycles An−1 are unnec-
essary along the play AnBCω. However, for each n > 0, we can build a secure



A B

Fig. 4. Subgame perfect equilibrium with
outcome AnBω.

A B C

Fig. 5. Secure equilibrium with outcome
AnBCω.

equilibrium (σn
1 , σ

n
2 ) whose outcome is AnBCω and cost profile is (n+1, n+1),

as follows:

σn
1 (h) =

{

A if h = Aj , with j < n,

B otherwise.
; σn

2 (h) =

{

C if h = AnB,

A otherwise.

For each n > 0, the fact that (σn
1 , σ

n
2 ) is a secure equilibrium is based on the

following threat of player 2 against player 1: player 2 pretends that he will only
decide to visit vertex C if player 1 has visited vertex A exactly n times. This
behavior is not credible since player 2’s interest is to reach vertex C as soon
as possible. In other words, we have that (σn

1 , σ
n
2 ) is not a subgame perfect

equilibrium (and thus not a subgame perfect secure equilibrium).

Those examples motivate the introduction of the notion of subgame perfect
secure equilibrium. We believe that this notion can help in avoiding the unde-
sirable behaviors of unnecessary cycles. More generally, a deeper understanding
of the studied equilibria whose outcomes have unnecessary cycles could be very
useful. A more subtle example of a three-player game will be discussed in Ex-
ample 27.

In the sequel, we study and partially solve the following two problems:

Problem 1 Given a multiplayer quantitative reachability game G, does there
exist a Nash (resp. secure, subgame perfect, subgame perfect secure) equilibrium
in G?

Problem 2 Given a Nash (resp. secure, subgame perfect, subgame perfect se-
cure) equilibrium in a multiplayer quantitative reachability game G, does there
exist such an equilibrium with finite memory?

The next three sections contain useful material for the proofs of our results.

2.2 Qualitative Two-player Zero-sum Games

In this section we recall well-known properties of qualitative two-player zero-
sum games [28]. They will be useful for our proofs, especially in the context of
deviations of a player with respect to a strategy profile: we thus face a two-player
zero-sum game where the player who deviates plays against the coalition of the
other players.

We first recall the notion of weak parity game.



Definition 9. A qualitative two-player zero-sum weak parity game is a tuple
G = (V, V1, V2, E, c) where

• G = (V, V1, V2, E) is a finite directed graph where V is the set of ver-
tices, V1, V2 is a partition of V into the vertex sets of player 1 and player 2,
and E ⊆ V × V is the set of edges,

• c : V → N is the coloration function.

Player 1 (resp. player 2) wins a play ρ = ρ0ρ1 . . . ∈ V ω of the game G if the
maximum color in the sequence c(ρ0)c(ρ1)c(ρ2) . . . is even (resp. odd).

Given an initial vertex v0 ∈ V , the notions of play, history and strategy are the
same as the ones defined in Section 2.1. The game is said zero-sum because every
play is won by exactly one of the two players.

In zero-sum games, it is interesting to know if one of the players can play
in such a way that he is sure to win, however the other player plays. This is
formalized with the notion of winning strategy. A strategy σi for player i is a
winning strategy from an initial vertex v if all the plays of G starting from v

that are consistent with σi are won by player i. If player i has a winning strategy
in G from v, we say that player i wins the game G from v. We say that a game G
is determined if for all v ∈ V , one of the two players has a winning strategy
from v.

Martin showed [22] that every qualitative two-player zero-sum game with a
Borel type winning condition is determined. In particular, we have the following
proposition:

Proposition 10. [28, Theorem 5] Let G = (V, V1, V2, E, c) be a qualitative two-
player zero-sum weak parity game. Then for all v ∈ V , one of the two players
has a memoryless winning strategy from v (in particular, G is determined).

In the multiplayer games considered in our article, we apply Proposition 10
on particular two-player games Gj played on graph Gj = (V, Vj , V \Vj , E), where
player j plays against the coalition of all the other players. Player j plays on the
vertices from Vj and the coalition on V \ Vj . We need to consider three special
cases of the weak parity condition: reachability, safety, and reachability under
safety conditions. A qualitative two-player zero-sum reachability under safety
game is denoted

Gj = (Gj , R, S)

where R,S ⊆ V and R 6= ∅. We assume w.l.o.g. that R ⊆ S. In such a game,
player j wins a play ρ iff ρ visits R (i.e. ∃i ρi ∈ R) while staying in S (i.e.
∀i ρi ∈ S). The reachability under safety condition can be encoded with a weak
parity condition by defining the coloration function c as follows: c(v) = 3 if
v 6∈ S, c(v) = 2 if v ∈ R and c(v) = 1 otherwise. Reachability games (resp. safety
games) are special cases of reachability under safety games Gj = (Gj , R, S) where
S = V (resp. R = V ). We can now state a corollary of Proposition 10.



Corollary 11. Let Gj = (Gj , R, S) be a qualitative two-player zero-sum reacha-
bility under safety game associated with player j. Then the game Gj is determined
and player j has a memoryless strategy νj that enables him to reach R within
|V | − 1 edges, while staying in S, from each vertex v from which he wins the
game.

2.3 Unraveling

In the proofs of this article, it will be often useful to unravel the graph G =
(V, (Vi)i∈Π , v0, E) from the initial vertex v0, which ends up in an infinite tree,
denoted by T . This tree can be seen as a new graph where the set of vertices is
the set H of histories of G, the initial vertex is v0, and a pair (h, hv) ∈ H ×H is
an edge of T if (Last(h), v) ∈ E. A history h is a vertex of player i in T if h ∈ Hi,
and h belongs to the goal set of player i if Last(h) ∈ Goali.

We denote by T the related game. This game T played on the unraveling T

of G is equivalent to the game G that is played on G in the following sense. A
play (ρ0)(ρ0ρ1)(ρ0ρ1ρ2) . . . in T induces a unique play ρ = ρ0ρ1ρ2 . . . in G, and
conversely. Thus, we denote a play in T by the respective play in G. The bijection
between plays of G and plays of T allows us to use the same cost function Cost,
and to transform easily strategies in G to strategies in T (and conversely).

For practical reasons, we often consider equivalently T in our proofs instead of
G, and the equilibria defined in T are obviously equilibria in G. Moreover, figures
given in proofs to help the understanding roughly represent the unraveling T of
G and plays in game T .

We also need to study the tree T limited to a certain depth d ∈ N: we denote
by Truncd(T ) the truncated tree of T of depth d and Truncd(T ) the finite game
played on Truncd(T ). More precisely, the set of vertices of Truncd(T ) is the set
of histories h ∈ H of length ≤ d; the edges of Truncd(T ) are defined in the
same way as for T , except that for the histories h of length d, there exists no
edge (h, hv). A play ρ in Truncd(T ) corresponds to a history of G of length equal
to d. The notions of cost and strategy are defined exactly like in the game T , but
limited to the depth d. For instance, a player pays an infinite cost for a play ρ

(of length d) if his goal set is not visited by ρ.

2.4 Kuhn’s Theorem

This section is devoted to the classical Kuhn’s theorem [20]. It claims the ex-
istence of a subgame perfect equilibrium (resp. subgame perfect secure equilib-
rium) in multiplayer games played on finite trees.

A preference relation is a total, reflexive and transitive binary relation.

Theorem 12 (Kuhn’s theorem). Let Γ be a finite tree and G a game played
on Γ . For each player i ∈ Π, let -i be a preference relation on cost profiles.
Then there exists a strategy profile (σi)i∈Π such that for all history h of G, all
player j ∈ Π, and all strategy σ′

j of player j in G, we have

Cost(ρ′) -j Cost(ρ)



where ρ = h〈(σi|h)i∈Π〉 and ρ′ = h〈σ′
j |h, σ−j |h〉.

One can easily be convinced that the binary relation on cost profiles used to
define the notion of Nash equilibrium (see Definition 2) is total, reflexive and
transitive. We thus have the following corollary.

Corollary 13. Let G be a game and T be the unraveling of G. Let Truncd(T )
be the game played on the truncated tree of T of depth d ∈ N. Then there exists
a subgame perfect equilibrium in Truncd(T ).

Let �j be the relation defined by x �j y iff x ≺j y or x = y, where ≺j is the
relation used in Definition 3. We notice that in the two-player case, this relation
is total, reflexive and transitive. However when there are more than two players,
�j is no longer total. Nevertheless, it is proved in [21] that Kuhn’s theorem
remains true when �j is only transitive. So, the next corollary holds.

Corollary 14. Let G be a game and T be the unraveling of G. Let Truncd(T )
be the game played on the truncated tree of T of depth d ∈ N. Then there exists
a subgame perfect secure equilibrium in Truncd(T ).

3 Existence of a Subgame Perfect Equilibrium

In this section, we positively solve Problem 1 for subgame perfect equilibria.

Theorem 15. In every multiplayer quantitative reachability game, there exists
a subgame perfect equilibrium.

The proof uses techniques completely different from the ones given in [6,7]
for the existence of Nash equilibria, and secure equilibria in two-player games.

Let G be a game and T be the infinite game played on the unraveling T of G.
Kuhn’s theorem (and in particular Corollary 13) guarantees the existence of a
subgame perfect equilibrium in each finite game Truncn(T ) for all depth n ∈ N.
Given a sequence of such equilibria, the keypoint is to derive the existence of
a subgame perfect equilibrium in the infinite game T . This is possible by the
following lemma.

Lemma 16. Let (σn)n∈N be a sequence of strategy profiles such that for every
n ∈ N, σn is a strategy profile in the truncated game Truncn(T ). Then there
exists a strategy profile σ⋆ in the game T with the property:

∀d ∈ N, ∃n ≥ d, σ⋆ and σn coincide on histories of length up to d. (1)

Proof. This result is a direct consequence of the compacity of the set of infinite
trees with bounded outdegree [18]. An alternative proof is as follows. We give
a tree structure, denoted by Γ , to the set of all strategy profiles in the games
Truncn(T ), n ∈ N: the nodes of Γ are the strategy profiles, and we draw an edge
from a strategy profile σ in Truncn(T ) to a strategy profile σ′ in Truncn+1(T ) if
and only if σ is the restriction of σ′ to histories of length less than n. It means



that the nodes at depth d correspond to strategy profiles of Truncd(T ). We then
consider the tree Γ ′ derived from Γ where we only keep the nodes σn, n ∈ N, and
their ancestors. Since Γ ′ has finite outdegree, it has an infinite path by König’s
lemma. This path goes through infinitely many nodes that are ancestors of nodes
in the set {σn, n ∈ N}. Therefore there exists a strategy profile σ⋆ in the infinite
game T (given by the previous infinite path in Γ ′) with property (1). ⊓⊔

Proof (of Theorem 15). Let G = (Π,V, (Vi)i∈Π , v0, E, (Goali)i∈Π) be a multi-
player quantitative reachability game and T the game played on the unraveling
of G. For all n ∈ N, we consider the finite game Truncn(T ) and get a subgame
perfect equilibrium σn = (σn

i )i∈Π in this game by Corollary 13. According to
Lemma 16, there exists a strategy profile σ⋆ in the game T with property (1).

It remains to show that σ⋆ is a subgame perfect equilibrium in T , and thus
in G. Let hv ∈ H be a history of the game. We have to prove that σ⋆|h is a Nash
equilibrium in the subgame T |h with history hv. As a contradiction, suppose that
there exists a profitable deviation σ′

j for some player j ∈ Π w.r.t. σ⋆|h in T |h.
This means that Costj(ρ) > Costj(ρ

′) for ρ = h〈σ⋆|h〉 and ρ′ = h〈σ′
j |h, σ

⋆
−j |h〉,

that is, ρ′ visits Goalj for the first time at a certain depth d, such that |h| < d <

+∞, and ρ visits Goalj at a depth strictly greater than d (see Figure 6). Thus:

Costj(ρ) > Costj(ρ
′) = d.

T T |h

d

n

h

ρρ′

Goalj

π′ π

Fig. 6. The game T with its subgame T |h.

According to property (1), there exists n ≥ d such that σ⋆ coincide with σn on
histories of length up to d. It follows that for π = h〈σn|h〉 and π′ = h〈σ′

j |h, σ
n
−j |h〉,

we have that (see Figure 6)

Costj(π
′) = Costj(ρ

′) = d and Costj(π) > d,

as π′ and ρ′ coincide up to depth d. And so, σ′
j is a profitable deviation for

player j w.r.t. σn|h in Truncn(T )|h, which leads to a contradiction with the fact
that σn is a subgame perfect equilibrium in Truncn(T ) by hypothesis. ⊓⊔



As an extension, we consider multiplayer quantitative reachability games with
tuples of costs on edges (as in [7]). In these games, we assume that edges are
labelled with tuples of strictly positive costs (one cost for each player). Here we
do not only count the number of edges to reach the goal of a player, but we sum
up his costs along the path until his goal is reached. His aim is still to minimize
his global cost for a play. Let us give the formal definition.

Definition 17. A multiplayer quantitative reachability game with tuples of
costs on edges is a tuple G = (Π,V, (Vi)i∈Π , v0, E, (Costi)i∈Π , (Goali)i∈Π) where

• Π is a finite set of players,
• G = (V, (Vi)i∈Π , v0, E) is a finite directed graph where V is the set of vertices,
(Vi)i∈Π is a partition of V into the state sets of each player, v0 ∈ V is the
initial vertex, and E ⊆ V × V is the set of edges,

• Costi : E → R
>0 is the cost function of player i defined on the edges of the

graph,
• Goali ⊆ V is the non-empty goal set of player i.

In this context, we adapt the definition of Costi(ρ), the cost of player i for a
play ρ = ρ0ρ1 . . . :

Costi(ρ) =











l
∑

k=1

Costi((ρk−1, ρk)) if l is the least index such that ρl ∈ Goali,

+∞ otherwise.

In this framework, we also prove the existence of a subgame perfect equilib-
rium. The proof is similar to the one of Theorem 15, the only difference lies in
the choice of the considered depth d.

Theorem 18. In every multiplayer quantitative reachability game with tuples
of costs on edges, there exists a subgame perfect equilibrium.

Let us introduce some notations that will be useful for the proof of this theo-
rem.We define cmin := mini∈Π mine∈E Costi(e), cmax := maxi∈Π maxe∈E Costi(e)

and K :=
⌈

cmax

cmin

⌉

. It is clear that cmin, cmax > 0 and K ≥ 1.

Proof (of Theorem 18). Let G = (Π,V, (Vi)i∈Π , v0, E, (Costi)i∈Π , (Goali)i∈Π) be
a multiplayer quantitative reachability game with tuples of costs on edges and
T the game played on the unraveling of G. For all n ∈ N, we consider the finite
game Truncn(T ) and get a subgame perfect equilibrium σn = (σn

i )i∈Π in this
game by Corollary 13. According to Lemma 16, there exists a strategy profile
σ⋆ in the game T with property (1).

We then show that σ⋆ is a subgame perfect equilibrium in T , and thus in
G. Let hv ∈ H be a history of the game. We have to prove that σ⋆|h is a Nash
equilibrium in the subgame T |h with history hv. As a contradiction, suppose that
there exists a profitable deviation σ′

j for some player j ∈ Π w.r.t. σ⋆|h in T |h.
This means that Costj(ρ) > Costj(ρ

′) for ρ = h〈σ⋆|h〉 and ρ′ = h〈σ′
j |h, σ

⋆
−j |h〉.



Thus ρ′ visits Goalj for the first time at a certain depth d′, such that |h| < d′ <

+∞.
We define some depth d depending on the fact that ρ visits Goalj or not.

d =

{

max{d′, d′′} if ρ visits Goalj for the first time at depth d′′,
d′ · K if ρ does not visit Goalj .

According to property (1), there exists n ≥ d such that σ⋆ coincide with σn

on histories of length up to d. For π = h〈σn|h〉 and π′ = h〈σ′
j |h, σ

n
−j |h〉, since

d ≥ d′, it follows that:
Costj(π

′) = Costj(ρ
′).

If ρ visits Goalj , then it holds that Costj(π) = Costj(ρ) by definition of d, and
so Costj(π) > Costj(π

′). If ρ does not visit Goalj , then the following inequalities
hold:

Costj(π
′) ≤ d′ · cmax ≤ d · cmin < Costj(π).

The first inequality comes from the fact that π′ visits Goalj at depth d′, the
second one from the definition of d, and the last one from the fact that if π visits
Goalj , it must happen after depth d (as ρ does not visit Goalj).

In both cases Costj(π) > Costj(π
′), and we conclude that σ′

j is a profitable
deviation for player j w.r.t. σn|h in Truncn(T )|h, which leads to a contradiction
with the fact that σn is a subgame perfect equilibrium in Truncn(T ) by hypoth-
esis. ⊓⊔

4 Existence of a Subgame Perfect Secure Equilibrium

Regarding subgame perfect secure equilibria, we positively solve Problem 1 but
only in the case of two-player games.

Theorem 19. In every two-player quantitative reachability game, there exists a
subgame perfect secure equilibrium.

The main ideas of the proof are similar to the ones for Theorem 15.

Proof (of Theorem 19). Let G = (Π,V, V1, V2, v0, E,Goal1,Goal2) be a two-player
quantitative reachability game and T be the game played on the unraveling of
G. For every n ∈ N, we consider the finite game Truncn(T ) and get a subgame
perfect secure equilibrium σn = (σn

1 , σ
n
2 ) in this game by Corollary 14. According

to Lemma 16 there exists a strategy profile σ⋆ in the game T such that σ⋆ has
property (1).

We show that σ⋆ = (σ⋆
1 , σ

⋆
2) is a subgame perfect secure equilibrium in T .

Let hv ∈ H be a history of the game. We have to prove that σ⋆|h is a secure
equilibrium in the subgame T |h with history hv. As a contradiction, suppose
that there exists a ≺j-profitable deviation σ′

j for some player j ∈ {1, 2} w.r.t.
σ⋆|h in T |h. Let us assume w.l.o.g. that j = 1. As σ⋆|h is a Nash equilibrium in
T |h (see the proof of Theorem 15), we know that

Cost1(ρ) = Cost1(ρ
′) and Cost2(ρ) < Cost2(ρ

′) (2)



where ρ = h〈σ⋆
1 |h, σ

⋆
2 |h〉 and ρ′ = h〈σ′

1|h, σ
⋆
2 |h〉. Thus it implies that Cost2(ρ) is

finite. Let d be the maximum between Cost1(ρ) and Cost2(ρ) if Cost1(ρ) is finite,
or Cost2(ρ) otherwise. Remark that d > |h|. According to property (1), there
exists n ≥ d such that the strategy profiles σ⋆ and σn coincide on histories of
length up to d.

Let us show that σ′
1 would then be a ≺1-profitable deviation for player 1

w.r.t. σn|h in Truncn(T )|h. In this aim we first prove that

Cost2(π) < Cost2(π
′) (3)

where π = h〈σn
1 |h, σ

n
2 |h〉 and π′ = h〈σ′

1|h, σ
n
2 |h〉 are finite plays in Truncn(T )

(see Fig. 7). By definition of d and according to property (1), we have that
Cost2(π) = Cost2(ρ) ≤ d. If Cost2(ρ

′) = Cost2(π
′), Equation (2) implies that

Cost2(π) < Cost2(π
′). Otherwise, we have that Cost2(π

′) > d as ρ′ and π′ coincide
until depth d (by property (1)), and then Cost2(π) ≤ d < Cost2(π

′).

T T |h

d

n

h

ρ

Goal2

ρ′

π′ π

Fig. 7. The game T with its subgame T |h.

We now consider Cost1(π) and Cost1(π
′). Let us study the next two cases.

– If Cost1(ρ) < +∞, then we have that

Cost1(π) = Cost1(π
′) (4)

because Cost1(ρ
′) = Cost1(ρ) = Cost1(π) = Cost1(π

′) ≤ d by Equation (2),
property (1) and definition of d.

– If Cost1(ρ) = +∞, then we show that Cost1(π) = +∞, and as a consequence
we get that

Cost1(π) ≥ Cost1(π
′). (5)

As a contradiction suppose that Cost1(π) < +∞. Consider vertex ρd, the
first vertex of ρ that belongs to Goal2 (we recall that Cost2(ρ) = d). Suppose
that player 1 has a winning strategy to reach his goal from vertex ρd (thus
in the qualitative zero-sum game G1 = (G1,Goal1, V ) of Corollary 11). Then



this contradicts the fact that σ⋆ is a subgame perfect equilibrium in T (see
the proof of Theorem 15). Therefore player 2 has a winning strategy to
prevent player 1 from reaching Goal1. But in this case, this strategy is a
≺2-profitable deviation w.r.t. σn|h in Truncn(T ), because player 2 can keep
his cost while strictly increasing player 1’s cost. This is impossible as σn is a
subgame perfect secure equilibrium in Truncn(T ). Thus, we must have that
Cost1(π) = +∞.

In all possible situations, we proved that σ′
1 is a ≺1-profitable deviation for

player 1 w.r.t. σn|h in Truncn(T )|h because either Cost1(π) = Cost1(π
′) and

Cost2(π) < Cost2(π
′), or Cost1(π) > Cost1(π

′) (see (3-5)). So we get a contradic-
tion with the fact that σn is a subgame perfect secure equilibrium in Truncn(T )
by hypothesis. ⊓⊔

Unfortunately the proof does not seem to extend to the multiplayer case. In-
deed we face the same kind of problems encountered in [6,7], where the existence
of secure equilibria is proved for two-player games and left open for multiplayer
games.

5 Decidability of the Existence of a Secure Equilibrium

In this section, we study Problems 1 and 2 in the context of secure equilibria.
Both problems have been positively solved in [6] for two-player games only. To
the best of our knowledge, the existence of secure equilibria in the multiplayer
framework is still an open problem. We here provide an algorithm that decides
the existence of a secure equilibrium. We also show that if there exists a secure
equilibrium, then there exists one that is finite-memory.

Theorem 20. In every multiplayer quantitative reachability game, one can de-
cide whether there exists a secure equilibrium in ExpSpace.

Theorem 21. If there exists a secure equilibrium in a multiplayer quantitative
reachability game, then there exists one that is finite-memory.

The proof of Theorem 20 is inspired from ideas developed in [6,7]. The keypoint
is to show that the existence of a secure equilibrium in a game G is equivalent to
the existence of a secure equilibrium (with two additional properties) in the finite
game Truncd(T ) for a well-chosen depth d. The existence of the latter equilibrium
is decidable. Notice that by Corollary 14 a secure equilibrium always exists in
Truncd(T ); however we do not know if a secure equilibrium with the two required
additional properties always exists in Truncd(T ).

Let us formally introduce these two properties. The first one requires that the
secure equilibrium is goal-optimized, meaning that all the goal sets visited along
its outcome are visited for the first time before a certain given depth. For any
game G played on a graph with |V | vertices by |Π | players, we fix the following
constant: dgoal := 2 · |Π | · |V |.



Definition 22. Given a game G and a strategy profile (σi)i∈Π in G, with out-
come ρ, we say that (σi)i∈Π is goal-optimized if and only if for all i ∈ Π such
that Costi(ρ) < +∞, we have that Costi(ρ) < dgoal.

The second property asks for a secure equilibrium that is deviation-optimized,
meaning that whenever a player deviates from its outcome, he realizes within a
certain given number of steps that his deviation is not profitable for him.

Definition 23. Given a game G and a secure equilibrium (σi)i∈Π in G, with
outcome ρ, we say that (σi)i∈Π is deviation-optimized if and only if for all
player j ∈ Π, for all strategy σ′

j of player j, we have that

Cost(ρ<ddev
) 6≺j Cost(ρ

′
<ddev

),

where ddev = max{Costi(ρ) | Costi(ρ) < +∞}+ |V | and ρ′ = 〈σ′
j , σ−j〉.

Remark that Definitions 22 and 23 extend to games Truncd(T ) where d ≥ dgoal.
We can now state the key proposition for proving Theorems 20 and 21.

Proposition 24. Let G be a game, and d = dgoal + 3 · |V |.

(i) If there exists a goal-optimized and deviation-optimized secure equilibrium in
Truncd(T ), then there exists a secure equilibrium in G that is finite-memory.

(ii) If there exists a secure equilibrium in G, then there exists a goal-optimized
and deviation-optimized secure equilibrium in Truncd(T ).

At this stage, it is difficult to give some intuition about the choose of the values
dgoal, ddev and d = dgoal+3 · |V |. These values are linked to the proofs contained
in this section.

Proof (of Theorem 20). By Proposition 24, there exists a secure equilibrium in G
iff there exists a goal-optimized and deviation-optimized secure equilibrium in
Truncd(T ), with d = dgoal+3 · |V |. The latter property is decidable in NExpSpace

(in |V | and |Π |). Indeed, Truncd(T ) has an exponential size. Guessing a strategy
profile (σi)i∈Π in this tree also needs an exponential size. Then we can test in
exponential size whether (σi)i∈Π is a goal-optimized and deviation-optimized
secure equilibrium in Truncd(T ). By Savitch’s theorem, deciding the existence
of a secure equilibria is thus in ExpSpace. ⊓⊔

Proof (of Theorem 21). This theorem is a direct consequence of Proposition 24.
Indeed consider a secure equilibrium in a game G. We first apply Proposi-
tion 24 (Part (ii)) to this strategy profile to get a goal-optimized and deviation-
optimized secure equilibrium (σi)i∈Π in Truncd(T ), for d = dgoal + 3 · |V |. Then
we apply Proposition 24 (Part (i)) to the equilibrium (σi)i∈Π , to get a finite-
memory secure equilibrium back in G. ⊓⊔

Let us remark that in Theorem 21, the finite-memory secure equilibrium is
created from the one given by hypothesis and the construction is made in such
a way that the set of players whose goal set is visited along the outcome is the
same for both equilibria.

The proof of Proposition 24 is long and technical. The next two sections are
devoted to the two parts of this proposition.



5.1 Part (i) of Proposition 24

This section is devoted to the proof of Proposition 24, Part (i). We begin with
a useful characterisation of a deviation-optimized secure equilibrium.

Lemma 25. With the previous notations of Definition 23, a secure equilib-
rium (σi)i∈Π is deviation-optimized if and only if for all player j ∈ Π, for
all strategy σ′

j of player j, if

(i) Costj(ρ) = Costj(ρ
′),

(ii) ∀ i ∈ Π such that Costi(ρ) < +∞, we have that Costi(ρ) ≤ Costi(ρ
′),

(iii) ∃ i ∈ Π Costi(ρ) < Costi(ρ
′),

then there exists l ∈ N such that Costl(ρ) = +∞ and Costl(ρ
′) < ddev.

Proof. Let us first assume that (σi)i∈Π is a deviation-optimized secure equilib-
rium whose outcome is denoted by ρ. Given any player j ∈ Π , let σ′

j be a strategy
fulfilling the hypotheses of the lemma and ρ′ the outcome given by 〈σ′

j , σ−j〉. Let
us denote respectively by (xi)i∈Π and (yi)i∈Π the cost profiles of the histories
ρ<ddev

and ρ′<ddev
.

Notice that by definition of ddev, Costi(ρ) = xi for all i. For ρ′, we have
Costi(ρ

′) = yi provided Costi(ρ
′) < ddev. Otherwise, it may happen that yi =

+∞ and Costi(ρ
′) < +∞. So, it holds that Costi(ρ

′) ≤ yi for all i. These obser-
vations will be often used in the sequel of the proof.

Since (σi)i∈Π is deviation-optimized, we have Cost(ρ<ddev
) 6≺j Cost(ρ′<ddev

)
meaning that:

(

xj ≤ yj
)

∧
(

xj 6= yj ∨ (∃i ∈ Π xi > yi) ∨ (∀i ∈ Π xi ≥ yi)
)

. (6)

By hypothesis (i), xj = yj. By hypothesis (iii), we cannot have ∀i ∈ Π xi ≥
yi. Therefore to satisfy (6), there must exist a player i such that xi > yi. If
Costi(ρ) < +∞, then by definition of ddev, Costi(ρ) = xi > yi = Costi(ρ

′) in
contradiction with hypothesis (ii). Therefore Costi(ρ) = +∞. From xi > yi, it
follows that Costi(ρ

′) < ddev, which concludes the first implication of the proof.

For the converse, let us now assume that (σi)i∈Π is a secure equilibrium
that fulfills the property stated in Lemma 25. We will prove that it is deviation-
optimized, that is, for any player j ∈ Π , and any deviation σ′

j of player j, we
have that Cost(ρ<ddev

) 6≺j Cost(ρ′<ddev
), with ρ = 〈(σi)i∈Π〉 and ρ′ = 〈σ′

j , σ−j〉.
By denoting respectively by (xi)i∈Π and (yi)i∈Π the cost profiles of ρ<ddev

and
ρ′<ddev

, it is equivalent to prove (6).
Since (σi)i∈Π is a secure equilibrium, we know that σ′

j is not a ≺j-profitable
deviation. In particular, player j can not strictly decrease his cost along ρ′, and
thus xj ≤ yj . It remains to prove that the second conjunct of (6) is true. For
this, we first show that as soon as one of the hypotheses among (i), (ii) or (iii)
is not fulfilled, this conjunct is satisfied.

– If Costj(ρ) < Costj(ρ
′), by choice of ddev, we also have that xj < yj . More-

over, the case Costj(ρ) > Costj(ρ
′) is not possible as (σi)i∈Π is a secure

equilibrium.



– If there exists i ∈ Π such that Costi(ρ) < +∞ and Costi(ρ) > Costi(ρ
′),

then xi > yi.
– If for all i ∈ Π , Costi(ρ) ≥ Costi(ρ

′), we also have that xi ≥ yi, for all i.

Thus the remaining deviations to consider fulfill hypotheses (i), (ii) and (iii).
In this case, there exists l ∈ Π such that Costl(ρ) = +∞ and Costl(ρ

′) < ddev.
In particular we have that xl > yl, and the second conjunct of (6) is true. ⊓⊔

The ideas of the proof for Part (i) of Proposition 24 are as follows. Suppose
that there exists a goal-optimized and deviation-optimized secure equilibrium
(σi)i∈Π in Truncd(T ), for d = dgoal + 3 · |V |. To get from (σi)i∈Π a finite-
memory secure equilibrium in G, we inspire from a construction proposed in [7,
Proposition 25] where it is shown, in the context of two-player games, how to
extend a secure equilibrium in a finite truncation of G to a secure equilibrium in
G. The rough idea is as follows. Due to the hypotheses, the outcome π of (σi)i∈Π

has a prefix αβ such that all goal sets visited by π are already visited by α, and
such that β is a cycle. The required secure equilibrium is specified such that its
outcome is equal to αβω and any deviating player is punished by the coalition
of the other players in a way that this deviation is not profitable for him. This
secure equilibrium can be constructed in a way to be finite-memory.

Proof (of Proposition 24, Part (i)). Let us set Π = {1, . . . , n}. Let (τi)i∈Π

be a goal-optimized and deviation-optimized secure equilibrium in the game
Truncd(T ) and π its outcome. Since |π| = dgoal + 3 · |V |, we can write

π = αβγ with β non-empty

Last(α) = Last(αβ)

|α| ≥ dgoal + |V |

|αβ| ≤ dgoal + 2 · |V | .

We have that Visit(α) = Visit(αβγ) (no new goal set is visited after α) because
|α| ≥ dgoal and (τi)i∈Π is goal-optimized. This enables us to use [7, Lemma 15]
as follows. Let j ∈ Π be such that α does not visit Goalj , and suppose that
player j deviates from the history α. This lemma states that for all histories hv
consistent with τ−j and such that |hv| ≤ |αβ|, then the coalition formed with all
the players i ∈ Π \ {j} can play to prevent player j from reaching his goal set
Goalj from vertex v. We denote by νv−j this winning strategy of the coalition. It
is memoryless by Corollary 11. For each player i 6= j, let νvi,j be the memoryless
strategy of player i in G induced by νv−j .

We define a finite-memory secure equilibrium in the game T on the same
idea as in the proof of [7, Proposition 25]. The idea is to specify the required
secure equilibrium as follows: each player i plays according to αβω (which is the
outcome of this equilibrium) and punishes player j 6= i if he deviates from αβω ,
by playing according to τi until depth |α|, and after that, by playing arbitrarily
if α visits Goalj , and according to νvi,j otherwise (where v is the vertex visited
at depth |α| when deviating).



Formally we first need to specify a punishment function P . For the initial
vertex v0, we define P (v0) = ⊥ and for all history hv ∈ H such that h ∈ Hi, we
let:

P (hv) :=







⊥ if P (h) = ⊥ and hv < αβω ,
i if P (h) = ⊥ and hv 6< αβω ,
P (h) otherwise (P (h) 6= ⊥).

Then the definition of the secure equilibrium (σi)i∈Π in T is as follows. For all
i ∈ Π and h ∈ Hi,

σi(h) :=































v if P (h) = ⊥ (h < αβω); such that hv < αβω ,
arbitrary if P (h) = i,
τi(h) if P (h) 6= ⊥, i and |h| < |α|,
νv
i,P (h)(h) if P (h) 6= ⊥, i, |h| ≥ |α|, α does not visit GoalP (h);

such that ∃h′v ≤ h with |h′v| = |α|,
arbitrary otherwise (P (h) 6= ⊥, i, |h| ≥ |α| and α visits GoalP (h)),

where arbitrary means that the next vertex is chosen arbitrarily (in a memoryless
way). Clearly the outcome of (σi)i∈Π is the play αβω .

Let us show that (σi)i∈Π is a secure equilibrium in the game T . Assume by
contradiction that there exists a ≺j-profitable deviation σ′

j for player j w.r.t.
(σi)i∈Π in T . Let τ ′j be the strategy σ′

j restricted to Truncd(T ). We are going to
show that τ ′j is a ≺j-profitable deviation for player j w.r.t. (τi)i∈Π in Truncd(T ),
which is impossible by hypothesis. Here are some useful notations:

π = 〈(τi)i∈Π〉 of cost profile (x1, . . . , xn)
π′ = 〈τ ′j , τ−j〉 of cost profile (x′

1, . . . , x
′
n)

ρ = 〈(σi)i∈Π〉 of cost profile (y1, . . . , yn)
ρ′ = 〈σ′

j , σ−j〉 of cost profile (y′1, . . . , y
′
n).

Notice that the play π′ coincide with the play ρ′ at least until depth |α| (by
definition of τ ′j and σ−j); they can differ afterwards. Clearly π and ρ coincide at
least until depth |αβ|. The situation is depicted in Fig. 8.

As σ′
j is a ≺j-profitable deviation for player j w.r.t. (σi)i∈Π , we have that

(y1, . . . , yn) ≺j (y
′
1, . . . , y

′
n). (7)

Let us show that τ ′j is a ≺j-profitable deviation for player j w.r.t. (τi)i∈Π , i.e.,

(x1, . . . , xn) ≺j (x
′
1, . . . , x

′
n).

By (7), one of the next three cases stands.

(1) y′j < yj < +∞.

As ρ = αβω and Visit(α) = Visit(αβγ), it means that α visits Goalj , and
then yj = xj . Since y′j < |α|, we also have x′

j = y′j (as π′ and ρ′ coincide
until depth |α|). Therefore x′

j < xj , and (x1, . . . , xn) ≺j (x
′
1, . . . , x

′
n).
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ρ′

(y′
i)i∈Π

Fig. 8. Plays π and ρ, and their respective deviations π′ and ρ′.

(2) y′j < yj = +∞.

If y′j ≤ |α|, we have again x′
j = y′j . Since Visit(α) = Visit(π), it follows that

xj = yj = +∞. Thus x′
j < xj , and so (x1, . . . , xn) ≺j (x

′
1, . . . , x

′
n).

We show that the case y′j > |α| is impossible. By definition of σ−j , the play
ρ′ is consistent with τ−j until depth |α|, and then with νv−j from ρ′|α| (as

yj = +∞). The play ρ′ cannot visit Goalj after a depth > |α| by definition
of νv−j .

(3) yj = y′j, ∀i ∈ Π yi ≤ y′i and ∃ i ∈ Π yi < y′i.

The fact that yj = y′j implies yj = xj ≥ x′
j (as Visit(α) = Visit(π)). If

x′
j < xj , then (x1, . . . , xn) ≺j (x

′
1, . . . , x

′
n).

We show that the case x′
j = xj is impossible. We can show that for all i ∈ Π

such that xi < +∞, we have xi ≤ x′
i, and that there exists i ∈ Π such that

xi < x′
i. Since (τi)i∈Π is deviation-optimized, Lemma 25 implies that there

exists some l ∈ Π such that xl = +∞, and x′
l < ddev = max{xi | xi < +∞}+

|V |. As (τi)i∈Π is also goal-optimized, we have that ddev ≤ dgoal+ |V | ≤ |α|.
As ρ′ is consistent with τ−j until depth |α|, it follows that y′l = x′

l < yl =
xl = +∞. Thus case (3) is impossible.

Therefore, each case is either impossible or shows that (xi)i∈Π ≺j (x′
i)i∈Π .

This is in contradiction with (τi)i∈Π being a secure equilibrium in Truncd(T ),
and therefore, (σi)i∈Π is a secure equilibrium in T , thus in G.

It remains to show that (σi)i∈Π is a finite-memory strategy profile. This
proof is very similar to the proof of [7, Proposition 25] and thus is not given in
details. Roughly speaking, a finite amount of memory is enough to produce the
outcome αβω ; outside of this outcome it is enough to remember how (σi)i∈Π is



defined for histories up to length |α| (after depth |α|, memoryless strategies are
used). ⊓⊔

5.2 Part (ii) of Proposition 24

Part (ii) of Proposition 24 states that if there exists a secure equilibrium in a
game G, then there exists a goal-optimized and deviation-optimized secure equi-
librium in Truncd(T ), for d = dgoal +3 · |V |. The proof needs several steps. Sup-
pose that there exists a secure equilibrium (σi)i∈Π in G. The first step consists in
transforming (σi)i∈Π into a goal-optimized and deviation-optimized secure equi-
librium in G (Proposition 26); the second step in showing that its restriction to
Truncd(T ) with d = dgoal+3·|V | is still a goal-optimized and deviation-optimized
secure equilibrium in Truncd(T ).

Proposition 26. If there exists a secure equilibrium in a game G, then there
exists one in G which is goal-optimized and deviation-optimized.

To get a goal-optimized equilibrium, the idea is to eliminate some unneces-
sary cycles (see Definition 7). Such an idea has already been developed in [7,
Lemma 19] for Nash equilibria. Unfortunately, this lemma cannot be applied
for secure equilibria (as shown on Example 27). Adapting it to the context of
secure equilibria is not trivial, the underlying constructions are more involved:
we need to modify the strategies of the coalition against a deviating player. By
using specific punishing strategies for the coalitions, we are then able to get a
goal-optimized equilibrium that is also deviation-optimized, due to the particular
form of these strategies.

Example 27. Consider the three-player game of Fig. 9, where V1 = {A,C,D},
V2 = {B} and V3 = ∅, Goal1 = Goal2 = {A} and Goal3 = {D}. The strat-
egy profile (σ1, σ2, σ3) defined

5 below is a secure equilibrium whose outcome is
ABCBDω and cost profile (0, 0, 5):

σ1(h) =

{

B if h = A or ABC,

D otherwise.
; σ2(h) =

{

C if h = AB,

D otherwise.

In Example 8, we gave two equilibria whose outcome has unnecessary cycles.
Here, we also face such a situation, with the cycle BCB. If we modify (σ1, σ2, σ3)
in order to remove this cycle, as done in [7, Lemma 19] for Nash equilibria, the
resulting strategy profile is a Nash equilibrium with outcome ABDω and cost
profile (0, 0, 3), however it is no longer a secure equilibrium. Indeed player 1 has
a ≺1-profitable deviation by taking the edge (A,D) instead of (A,B), which
leads to a cost of 4 for player 3 (instead of 3). In the sequel we show how to
modify the approach of [7, Lemma 19] in a way to keep the property of secure
equilibrium.

5 The stategy σ3 of player 3 has not to be defined as V3 = ∅.
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Fig. 9. A three-player game with Goal1 = Goal2 = {A} and Goal3 = {D}.

In order to prove Proposition 26, we need three lemmas : Lemmas 29, 30
and 31. Given a secure equilibrium, Lemma 29 describes some particular memo-
ryless strategies for the coalition when a player deviates. Lemma 30 (counterpart
of [7, Lemma 19] for secure equilibria) states that we can remove a cycle from
the outcome of a secure equilibrium, but the strategies have to be somewhat
modified with these specific coalition strategies. This lemma is used in the proof
of Proposition 26 to get a goal-optimized secure equilibrium. Lemma 31 states
that we can also get a deviation-optimized secure equilibrium.

Memoryless coalition strategies. Given a secure equilibrium in a game G,
we here prove the existence of interesting memoryless strategies for the coalition
against a deviating player.

Let us first introduce the definition of a j-promising history for some devi-
ating player j. Intuitively player j deviates from a strategy profile (σi)i∈Π and
constructs a history h consistent with σ−j . This history h is called j-promising
w.r.t. (σi)i∈Π if player j does not know yet if this deviation will be ≺j-profitable
for him w.r.t. (σi)i∈Π , but he can still hope that it will be, without knowing
what he will play after h.

Definition 28. Let (σi)i∈Π be a strategy profile in a game G, with cost profile
(xi)i∈Π . Let us assume that Π = {1, . . . , n} and

x1 ≤ . . . ≤ xk < xk+1 ≤ . . . ≤ xn

where 0 ≤ k < n. Let h be a history of the game such that xk ≤ |h| < xk+1.
For any player j ∈ Π, we say that h is j-promising w.r.t. (σi)i∈Π if h is

consistent with σ−j and if

– in the case where xk+1 < +∞:
• if j ≤ k, we have that Costj(h) = xj and ∀ i ∈ Π Costi(h) ≥ xi,
• if j > k, we have that Costj(h) = +∞;

– in the case where xk+1 = +∞:
Costj(h) = xj, ∀ i ∈ Π Costi(h) ≥ xi and ∃ i ∈ Π Costi(h) > xi.

In the case where xk+1 < +∞ and j ≤ k, along h, player j has been able
to get the same cost as along ρ (Costj(h) = xj) and to not decrease the cost of
the other players (Costi(h) ≥ xi). After h, he hopes to be able to play such that



the resulting deviation hρ′ will satisfy (xi)i∈Π ≺j Cost(hρ′). In the case where
j > k, player j has not visited his goal set along h, so he does not know yet if
his deviation will be ≺j-profitable for him. However he hopes to visit it early
enough after h along hρ′, such that Costj(hρ

′) < xj , or to get the same cost while
increasing the cost of the other players in a way that (xi)i∈Π ≺j Cost(hρ

′).
In the case where xk+1 = +∞, the history ρ≤|h| has visited all the goal

sets Goali such that Costi(ρ) < +∞. Thus player j could have a ≺j-profitable
deviation hρ′ if he can avoid visiting the goal sets Goali, where i ≥ k+1 (i 6= j).

Given a j-promising history h of player j, the next lemma describes the
existence of interesting memoryless strategies of the coalition Π \ {j} from the
last vertex of h. This lemma uses the qualitative two-player zero-sum reachability
under safety game G−j associated with the coalition, as defined in Section 2.2
and used in Corollary 11.

Lemma 29. Let (σi)i∈Π be a secure equilibrium in a game G, with outcome ρ

and cost profile (xi)i∈Π . Let h be a j-promising history w.r.t. (σi)i∈Π for some
player j ∈ Π. Let us assume w.l.o.g. that Π = {1, . . . , n}. If

x1 ≤ . . . ≤ xk ≤ |h| < |h|+ |V | ≤ xk+1 ≤ . . . ≤ xl < xl+1 = . . . = xn = +∞,

where 0 ≤ k ≤ l ≤ n, then the coalition Π \ {j} has a memoryless winning
strategy µv

−j from v = Last(h) in the qualitative two-player zero-sum game
G−j = (G−j , R, S) where

– if j ≤ k, then R = ∪i>kGoali, and S = V ,
– if k < j ≤ l, then R = V , and S = V \ Goalj,
– if l < j and Cost(ρ≤|h|) �j Cost(h), then R = ∪i>k

i6=j

Goali, and S = V \Goalj,

– if l < j and Cost(ρ≤|h|) 6�j Cost(h), then R = V , and S = V \ Goalj.

In this lemma, either all goal sets are visited by ρ and l = n, or l < n and
the last visited goal set is Goall. Also notice that R 6= ∅ in all cases. Indeed,
k 6= n as h is j-promising, and then the set R in the case j ≤ k of this lemma
is not empty. In the third case, it is not empty either, otherwise we would have
k + 1 = l + 1 = n = j but such a situation is impossible because h is j-
promising w.r.t. (σi)i∈Π (see the last case of Definition 28) and (σi)i∈Π is a
secure equilibrium .

Proof (of Lemma 29). By contradiction assume that the coalition Π \{j} has no
winning strategy from v in the game G−j = (G−j , R, S), i.e. no winning strategy
from v to reach R while staying in S. By Corollary 11, it implies that player j has
a memoryless winning strategy µv

j from v to stay outside R or to reach V \S. Re-
call that h is consistent with σ−j as it is j-promising w.r.t. (σi)i∈Π . Let ρ′ be the
play with prefix h that is consistent with σ−j , and with µv

j from v (see Fig. 10).
In the four cases of the lemma, we then prove that (xi)i∈Π ≺j (Costi(ρ

′))i∈Π ,
meaning that player j has a ≺j-profitable deviation w.r.t. (σi)i∈Π , which is
impossible.
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Fig. 10. Play ρ and its deviation ρ′ with prefix h.

– j ≤ k.

The strategy µv
j enables to avoid all goal sets Goali where i > k. As h is

j-promising, we have that Costj(h) = xj and ∀i ∈ Π , Costi(h) ≥ xi. By
construction of ρ′ and as xk ≤ |h| < xk+1, we have that

Costj(ρ
′) = Costj(h) = xj ,

∀i ≤ k, Costi(ρ
′) ≥ xi,

∀i > k, Costi(ρ
′) = +∞.

Then for all i ∈ Π , we have that Costi(ρ
′) ≥ xi. It remains to show that

the cost of one player is strictly increased in ρ′ compared with ρ. In the case
where xk+1 < +∞, i.e. k < l, we have in particular that xl < +∞ and
Costl(ρ

′) = +∞. And in the case where xk+1 = +∞ (k = l), we have that
(xi)i∈Π ≺j Cost(h) (by definition of j-promising), i.e. there exists i ∈ Π such
that xi < Costi(h). Either Costi(h) = Costi(ρ

′) and then xi < Costi(ρ
′), or

Costi(h) = +∞ > Costi(ρ
′) and so xi ≤ |h| < Costi(ρ

′). In both cases, it
implies that (xi)i∈Π ≺j (Costi(ρ

′))i∈Π .

– k < j ≤ l.

As µv
j is memoryless, this strategy enables player j to reach his goal set Goalj

from v within |V | steps. Thus, we have that

Costj(ρ
′) < |h|+ |V | ≤ xk+1 ≤ xj

since k < j ≤ l, and so, (xi)i∈Π ≺j (Costi(ρ
′))i∈Π .

– l < j and Cost(ρ≤|h|) �j Cost(h).

The strategy µv
j enables to avoid all goal sets Goali where i > k and i 6= j,

or to visit the goal set Goalj . On one hand, if ρ′ visits Goalj , then

Costj(ρ
′) < +∞ = xj



as j > l, and so, (xi)i∈Π ≺j (Costi(ρ
′))i∈Π . On the other hand, if ρ′ does

not visit Goalj , then ρ′ does not visit either any Goali with i > k. Since
Cost(ρ≤|h|) �j Cost(h), the situation is quite similar to the first case, and
we can deduce that

Costj(ρ
′) = xj = +∞,

∀i ≤ k, Costi(ρ
′) ≥ xi,

∀i > k, Costi(ρ
′) = +∞.

Thus, for all i ∈ Π , we have that Costi(ρ
′) ≥ xi. Moreover, exactly like in

the case j ≤ k, we can show that there exists i ∈ Π such that xi < Costi(ρ
′).

Then it implies that (xi)i∈Π ≺j (Costi(ρ
′))i∈Π .

– l < j and Cost(ρ≤|h|) 6�j Cost(h).

Like in the second case, the strategy µv
j enables player j to reach his goal

set Goalj from v. Then we have that

Costj(ρ
′) < +∞ = xj

and so, (xi)i∈Π ≺j (Costi(ρ
′))i∈Π . ⊓⊔

Removing a cycle. The next lemma states that it is possible to modify the
strategy profile of a secure equilibrium in a way to eliminate an unnecessary
cycle in its outcome. In the notations of this lemma, notice that β is the elim-
inated cycle (condition Last(α) = Last(αβ)), notice also that a new goal set is
visited after αβγ (condition Visit(ρ) 6= Visit(α)). The elimination of the cycle is
possible by modifying the strategies of the coalitions into strategies as described
in Lemma 29.

Lemma 30. Let (σi)i∈Π be a secure equilibrium in a game G, with outcome ρ.
Suppose that ρ = αβγρ̃, with β non-empty and |γ| ≥ |V |, such that

Visit(α) = Visit(αβγ)

Visit(ρ) 6= Visit(α)

Last(α) = Last(αβ).

Then there exists a secure equilibrium (τi)i∈Π in G with outcome αγρ̃.

Proof. Let (xi)i∈Π be the cost profile of ρ. Let us assume w.l.o.g. that Π =
{1, . . . , n} and

x1 ≤ . . . ≤ xk ≤ |α| < |αβγ| ≤ xk+1 ≤ . . . ≤ xl < xl+1 = . . . = xn = +∞,

where 0 ≤ k < l ≤ n (remark that k < l as Visit(ρ) 6= Visit(α)).
Let us define the required strategy profile (τi)i∈Π with the aim to get the

outcome αγρ̃ by eliminating β in ρ. For all i ∈ Π and all history h ∈ Hi, we set

τi(h) :=























σi(αβδ) if h = αδ,
arbitrary if P (h) = i,
µv
i,P (h)(h) if α 6≤ h, P (h) 6= ⊥, i and ∃h′v that is P (h)-promising

w.r.t. (σi)i∈Π and verifies h′v ≤ h and |h′v| = |α|,
σi(h) otherwise,



In this definition, arbitrary means that the next vertex is chosen arbitrarily, and
the punishment function P is defined as in the proof of Proposition 24, Part (i)
(adapted to the play αγρ̃). Moreover, when a player j deviates, each player i 6= j

plays according to σi, except in the case of a j-promising history h of length
|α| from which he plays according to µv

−j , with v = Last(h) (see Lemma 29).
Notation µv

i,j means the memoryless strategy of player i induced by µv
−j .

We observe that the outcome of (τi)i∈Π is the play π = αγρ̃ (see Fig. 11
and 12). Let us write its cost profile as (y1, . . . , yn). It follows that for all i ∈ Π ,
yi ≤ xi. More precisely,

- if i ≤ k, then yi = xi; (8)

- if k < i ≤ l, then yi = xi − (|β| + 1); (9)

- if i > l, then yi = xi = +∞. (10)

ρ=〈(σi)i∈Π〉 ρ′2

α

β

γρ̃

Fig. 11. Play ρ.

π=〈(τi)i∈Π〉

π′
1

π′
2

α

γρ̃

Fig. 12. Play π and possible deviations.

Assume that there exists a ≺j-profitable deviation τ ′j for player j w.r.t.
(τi)i∈Π . Let π′ be the outcome of the strategy profile (τ ′j , τ−j), and (y′1, . . . , y

′
n)

its cost profile. Then we know that (y1, . . . , yn) ≺j (y′1, . . . , y
′
n). Two possible

situations occur according to where player j deviates from π. We show that the
first situation is impossible. In the second one, we construct a ≺j-profitable de-
viation σ′

j for player j w.r.t. (σi)i∈Π , and then get a contradiction with (σi)i∈Π

being a secure equilibrium.

(i) player j deviates from π strictly before depth |α| (see the play π′
1 in Fig. 12).

Let us consider the prefix h of π′ of length |α|. We first state that h cannot
visit Goalj in a way that Costj(h) < xj , because h is consistent with σ−j (by
definition of (τi)i∈Π), and (σi)i∈Π is a secure equilibrium. Therefore, h is a
j-promising history w.r.t. (σi)i∈Π , as τ ′j is a ≺j-profitable deviation w.r.t.



(τi)i∈Π . By definition of (τi)i∈Π , π′ is consistent with µv
−j from v = Last(h).

We consider the four possible cases of Lemma 29:

– j ≤ k.

We have that yj = y′j . The coalition Π \ {j} forces the play π′ to visit
Goali, for a certain i > k (let us recall that k < n), before depth |α|+ |V |
as µv

−j is memoryless. And so, y′i < |α| + |V | ≤ |α| + |γ| ≤ yk+1 ≤
yi (as |αβγ| ≤ xk+1 and by Eq. (9)). This contradicts the fact that
(y1, . . . , yn) ≺j (y

′
1, . . . , y

′
n).

– k < j ≤ l.

The coalition Π \ {j} prevents the play π′ from visiting Goalj , and so,
y′j = +∞. As yj < +∞, it cannot be the case that (y1, . . . , yn) ≺j

(y′1, . . . , y
′
n).

– l < j and Cost(ρ≤|h|) �j Cost(h).

The coalition Π \{j} forces the play π′ to visit Goali, for a certain i > k,
i 6= j, before depth |α| + |V |, while avoiding the visit of Goalj (then,
yj = y′j = +∞). As in the first case, this leads to a contradiction with
the fact that (y1, . . . , yn) ≺j (y

′
1, . . . , y

′
n).

– l < j and Cost(ρ≤|h|) 6�j Cost(h).

Like in the second case, the coalition Π \ {j} prevents the play π′

from visiting Goalj , and so, yj = y′j = +∞. Moreover, the hypothesis
Cost(ρ≤|h|) 6�j Cost(h) implies that (y1, . . . , yn) ≺j (y′1, . . . , y

′
n) cannot

be true.

(ii) player j deviates from π after depth |α| (π and π′ coincide at least on α, see
the play π′

2 in Fig. 12).

We define for all histories h ∈ Hj :

σ′
j(h) :=

{

σj(h) if αβ 6≤ h,
τ ′j(αδ) if h = αβδ.

Let us set ρ′ = 〈σ′
j , σ−j〉 of cost profile (x′

1, . . . , x
′
n). As player j deviates

after α with the strategy τ ′j , one can prove that

π′ = απ̃′ and ρ′ = αβπ̃′

by definition of (τi)i∈Π (see the play ρ′2 in Fig. 11). Since Visit(α) = Visit(αβ),
Equations (8), (9) and (10) also stand by replacing xi with x′

i and yi with
y′i (but the value of l might be different). Then

(x1, . . . , xn) ≺j (x
′
1, . . . , x

′
n) iff (y1, . . . , yn) ≺j (y

′
1, . . . , y

′
n),

which proves that σ′
j is a ≺j-profitable deviation for player j w.r.t. (σi)i∈Π ,

and this is a contradiction. ⊓⊔



Goal- and deviation-optimized secure equilibrium. The next lemma
uses the ideas developed in the proof of Lemma 30 to show that any secure
equilibrium can be transformed into one that is deviation-optimized. It is the
last step before proving Proposition 26, and finally Part (ii) of Proposition 24.

Lemma 31. Let (σi)i∈Π be a secure equilibrium in a game G, with outcome ρ.
Then there exists a deviation-optimized secure equilibrium (τi)i∈Π in G with
outcome ρ.

Proof. Let α be the prefix of ρ of length max{Costi(ρ) | Costi(ρ) < +∞}. It
follows that Visit(ρ) = Visit(α). Then we define the required strategy profile
(τi)i∈Π exactly like in the proof of Lemma 30. We only remove the first line of
the definition: τi(h) = σi(αβδ) if h = αδ. One can be convinced that (τi)i∈Π and
(σi)i∈Π have the same outcome ρ. We prove in the exact same way that (τi)i∈Π

is a secure equilibrium in G (here, k = l).
Let us now show that (τi)i∈Π is deviation-optimized thanks to Lemma 25.

Let τ ′j be a strategy of some player j such that the play ρ′ = 〈τ ′j , τ−j〉 verifies

(i) Costj(ρ) = Costj(ρ
′),

(ii) ∀ i ∈ Π such that Costi(ρ) < +∞, we have that Costi(ρ) ≤ Costi(ρ
′),

(iii) ∃ i ∈ Π Costi(ρ) < Costi(ρ
′).

We must prove that there exists l such that Costl(ρ) = +∞ and Costl(ρ
′) ≤

ddev = max{Costi(ρ) | Costi(ρ) < +∞}+ |V |. Notice that Cost(ρ) = Cost(α).
On one hand, suppose that Cost(α) 6≺j Cost(ρ

′
≤|α|). By (i), (ii) and (iii), the

only possibility is to have some l such that Costl(α) = +∞ and Costl(ρ
′
≤|α|) <

+∞, that is, Costl(ρ) = +∞ and Costl(ρ
′) ≤ |α| < ddev.

On the other hand, if Cost(α) ≺j Cost(ρ
′
≤|α|), then according to the last case

of Definition 28, ρ′≤|α| is j-promising w.r.t. (σi)i∈Π . Indeed, ρ′≤|α| is consistent

with σ−j , and there exists i ∈ Π such that Costi(ρ) = +∞ (otherwise it would
contradict the fact that (σi)i∈Π is a secure equilibrium). By definition of (τi)i∈Π ,
ρ′ is thus consistent with µv

−j from vertex v = ρ′|α|. Thus, by Lemma 29 (first

case or third case), there exists l such that Costl(ρ) = +∞ and Costl(ρ
′) <

|α|+ |V | = ddev (as µv
−j is memoryless).

In both cases, by Lemma 25, we proved that (τi)i∈Π is deviation-optimized.
⊓⊔

We are now able to prove Proposition 26, which states that if there exists a
secure equilibrium in a game G, then there exists one which is goal-optimized
and deviation-optimized.

Proof (of Proposition 26). Let (σi)i∈Π be a secure equilibrium in G with out-
come ρ = 〈(σi)i∈Π〉 and cost profile (xi)i∈Π . Let us assume w.l.o.g. that Π =
{1, . . . , n} and

x1 ≤ . . . ≤ xl < xl+1 = . . . = xn = +∞

where 0 ≤ l ≤ n. Let us set x0 = 0. For all k ∈ {0, 1, . . . , l − 1} such that
(xk+1−xk) ≥ 2·|V | and while it is still the case, we apply the following procedure
to get a goal-optimized secure equilibrium.



Consider such a k ∈ {0, 1, . . . , l − 1}. Then, we can write ρ = αβγρ̃, with β

non-empty, |γ| ≥ |V |, and such that

xk ≤ |αβγ| ≤ xk+1

Visit(α) = Visit(αβγ) = {1, . . . , k}

Last(α) = Last(αβ).

Let us remark that Visit(ρ) 6= Visit(α) as k < l. By Lemma 30 there exists a
secure equilibrium in G with outcome αγρ̃. Its cost profile (yi)i∈Π is such that

y1 = x1, . . . , yk = xk;

yk+1 < xk+1, . . . , yl < xl;

yl+1 = xl+1 = +∞, . . . , yn = xn = +∞.

By applying finitely many times this procedure, we can assume w.l.o.g. that
(σi)i∈Π is a secure equilibrium with a cost profile (x1, . . . , xn) such that

xi < i · 2 · |V | for i ≤ l

xi = +∞ for i > l,

meaning that (σi)i∈Π is a goal-optimized secure equilibrium.
Moreover, by Lemma 31, there exists a deviation-optimized secure equilib-

rium with the same outcome, i.e. a goal-optimized and deviation-optimized se-
cure equilibrium. And this concludes the proof. ⊓⊔

Finally, on the basis of Proposition 26, we are able to prove Part (ii) of Propo-
sition 24: given a game G, if there exists a secure equilibrium in G, then there
exists a goal-optimized and deviation-optimized secure equilibrium in Truncd(T ),
for d = dgoal + 3 · |V |.

Proof (of Proposition 24, Part (ii)). Let (σi)i∈Π be a secure equilibrium in G
with outcome ρ. By Proposition 26, we can suppose w.l.o.g. that (σi)i∈Π is goal-
optimized and deviation-optimized. Let us define the strategy profile (τi)i∈Π in
Truncd(T ) as the strategy profile (σi)i∈Π restricted to the finite tree Truncd(T ).
We prove that (τi)i∈Π is a secure equilibrium in Truncd(T ), which is clearly
goal-optimized (d > dgoal).

For a contradiction, assume that player j has a ≺j-profitable deviation τ ′j
w.r.t. (τi)i∈Π . Let us denote π = 〈(τi)i∈Π〉 and π′ = 〈τ ′j , τ−j〉 in Truncd(T ). We
extend arbitrarily τ ′j in T , into a strategy denoted σ′

j , and let ρ′ = 〈σ′
j , σ−j〉.

Let us remark that π (resp. π′) is a prefix of ρ (resp. ρ′) of length d > dgoal, and
thus, in particular Cost(ρ) = Cost(π). Moreover, it is impossible that Costj(π) >
Costj(π

′), otherwise we would have Costj(ρ) > Costj(ρ
′) and so, get a contra-

diction with the fact that (σi)i∈Π is a secure equilibrium in T . Then, player j
gets the same cost Costj(π) = Costj(π

′) and

∀i ∈ Π Costi(π) ≤ Costi(π
′) ∧ ∃i ∈ Π Costi(π) < Costi(π

′).



We now show that Costj(ρ) = Costj(ρ
′). In the case where Costj(π) =

Costj(π
′) = +∞ (= Costj(ρ)), we must have Costj(ρ

′) = +∞. Otherwise, it
would contradict the fact that (σi)i∈Π is a secure equilibrium in T . In the case
where Costj(π) = Costj(π

′) < +∞, then Costj(ρ) = Costj(ρ
′) (as π and π′ are

prefixes of ρ and ρ′ respectively). Moreover, since τ ′j is a ≺j-profitable deviation
w.r.t. (τi)i∈Π , it follows that for all i ∈ Π such that Costi(ρ) < +∞, we have that
Costi(ρ) ≤ Costi(ρ

′), and there exists i ∈ Π such that Costi(ρ) < Costi(ρ
′). As

(σi)i∈Π is deviation-optimized, Lemma 25 implies that there exists some l ∈ Π

such that Costl(ρ) = +∞ and Costl(ρ
′) < ddev = max{Costi(ρ) | Costi(ρ) <

+∞}+ |V |. As ddev ≤ dgoal + |V | < d, we have that Costl(π) = Costl(ρ) = +∞
and Costl(π

′) = Costl(ρ
′) < ddev. This gives a contradiction with the fact that

τ ′j is a ≺j-profitable deviation w.r.t. (τi)i∈Π in Truncd(T ). Therefore, (τi)i∈Π is
a secure equilibrium in this game. On the other hand, the previous argument
also shows that (τi)i∈Π is deviation-optimized. ⊓⊔

6 Conclusion and Perspectives

In this paper, we study the concept of subgame perfect equilibrium, a refinement
of Nash equilibrium well-suited in the framework of games played on graphs. We
also introduce the new concept of subgame perfect secure equilibrium. We prove
the existence of subgame perfect equilibria in multiplayer quantitative reacha-
bility games. We also prove the existence of subgame perfect secure equilibria,
but only in the two-player framework. Finally, we provide an algorithm deciding
in ExpSpace the existence of secure equilibria in the multiplayer case. On one
hand, the first two results have been obtained by topological techniques, that are
completely different from the techniques used in [6,7]. On the other hand, proofs
of the last result are strongly inspired by proofs developed in these references,
but have required new ideas about the coalition strategies.

There are several interesting directions for future research. We are currently
working on the model of quantitative game, enriched by allowing n-tuples of
positive weights on edges (see Theorem 18). We do believe that our results remain
true in this context. The case of Nash equilibria is already treated in [7]. Notice
that our results trivially generalize to the particular case where the weights of
the edges are of the form (c, . . . , c) with c ∈ N0. Indeed it is enough to replace
each such edge by a path of length c composed of c new edges (of cost 1).

To the best of our knowledge, the existence of secure equilibria in the multi-
player framework is still an open problem. We prove that the existence of a secure
equilibrium in an infinite game is equivalent to the existence of a goal-optimized
and deviation-optimized secure equilibrium in a finite game. This open problem
could be positively solved if Corollary 14 could be adapted in a way to get a
goal-optimized and deviation-optimized secure equilibrium in the finite game,
and then by applying Proposition 24. A deeper understanding of equilibria with
unnecessary cycles could also be helpful. For the moment, we are not able to
solve this problem with more than two players. The same kind of question is
also open for subgame perfect secure equilibria.



Another research direction concerns a deeper study of the memory needed
in the different kinds of equilibria. In the case of subgame perfect equilibria and
subgame perfect secure equilibria, the topological techniques give no results on
the memory needed. However, in the case of secure equilibria, we prove that we
can limit to finite-memory equilibria.
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