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Blackwell-Optimal Strategies in Priority Mean-Payoff Games

Hugo Gimbert Wiestaw Zielonka
LaBRI, CNRS, Bordeaux, France LIAFA, Université Paris 7 Denis Diderot, Paris, France
hugo.gimbert@labri.fr wieslaw.zielonka@liafa. jussieu.fr

We examine perfect information stochastic mean-payoffemm a class of games containing as
special sub-classes the usual mean-payoff games and paritgs. We show that deterministic
memoryless strategies that are optimal for discounted gamite state-dependent discount factors
close to 1 are optimal for priority mean-payoff games esthbig a strong link between these two
classes.

1 Introduction

One of the recurring themes in the theory of stochastic gasribe interplay between discounted games
and mean-payoff games. This culminates in the seminal pafplertens and Neyman [12] showing
that mean-payoff games have a value and this value is thedirthie values of discounted games when
the discount factor tends to 1. Note however that optimategjies in both games are very different. As
shown by Shapley [13] discounted stochastic games admitaryéess optimal strategies. On the other
hand mean-payoff games do not have optimal strategies htineyonlye-optimal strategies and to play
optimally players need an unbounded memory.

The connections between discounted and mean-payoff gaeoesnie much tighter when we con-
sider perfect information stochastic games (games whaye® play in turns). As discovered by Black-
well [3], if the discount factor is close to 1 then optimal mayless deterministic strategies in discounted
games are also optimal for mean-payoff games (but not ther @thy round). Thus both games are re-
lated not only by their values but also through their optistedtegies. Blackwell’s result extends easily
to two-player perfect information stochastic games.

What happens if instead of mean-payoff games we considéy games — a class of games more
directly relevant to computer scienc¢e [9]? In particulae jparity games related to discounted games?

It is well known that deterministic mean-payoff games andtypgames are related, see [2]. The first
insight that there is some link between parity games anddiged games is due to de Alfaro at al. [1].
It turns out that parity games are related to multi-discedrjames with multiple discount factors that
depend on the state. This should be compared with discogateds with a unique, state independent,
discount factor which are used in the study of mean-payafiem

Like in the classical theory of stochastic games, we exanvim happens when the discount factors
tend to 1, the idea is that in the limit we want to obtain pagé&mes. Note that if we have several state
dependent discount factols, . .. A then there are two possibilities to approach 1.:

e we can study the iterated limit lij,; ... lim,, _,; when discount factors tend to 1 one after another
(i.e. first we go to 1 with the discount factdg associated with some group of states, when the
limit is reached then we go to 1 with the next discount fadior, etc.,

e another possibility it to examine a simultaneous limit wiadifactors go to 1 at the same time but
with different rates, this will be made precise in Secfion 4.
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The first approach is easier to handle than the second bati @ weaker results, in particular we lose
the links between optimal strategies in discounted gameé®patimal strategies in parity games.

We began our examinations of relations between discoumddparity games in_[4,]5] where we
limited ourselves to deterministic games. Already thidipri@ary work revealed that the natural frame-
work for such a study goes far beyond parity games. In faétypgames are related to a very particular
restricted class of discounted games and when we examineu#iitdiscounted games then at the limit
we obtain a new natural class of games — priority mean-pagasfies. This new class contains the usual
mean-payoff games and parity games as special subclasses.

The next natural step is to try to extends the results thal fml deterministic games to perfect
information stochastic games. In two papérs [7, 6] we okthisome partial results in this direction. In
[7] we considered a class of games that contains parity gaotedoes not contain mean-payoff games.
We showed that such games can be seen as an iterated limgooiudied games — a limit in a very
strong sense, not only the value of the discounted game®igew to the value of the parity game but
also optimal strategies in one class are inherited by thes @ games obtained in the limit. But these
results are not satisfactory for two reasons, the classmggdor which we were able to carry our study
is too restrictive. This class involves some technicalrigfins on discounted games, which are natural
for parity games, but not so natural for discounted games.sEgond problem comes from the fact that
[7] uses the iterated limit of discount factors and not theerioteresting simultaneous limit.

In the second pap€r][6] we considered priority mean-payanfiigs in full generality, with no artificial
restrictions, and we examined directly the limit with theatiunt factors tending to 1 with different rates
rather than the iterated limit. Howevér [6] deals only witleeplayer games and it examines only games
values, the paper does not provide any relation betweemapsitrategies in multi-discounted games and
optimal strategies in the priority mean-payoff games inlitmé.

In the present paper we remove all restrictions imposed,ib][7We consider the full class perfect
information stochastic priority mean-payoff games and inmsthat such games are a limit of discounted
games with discount factors tending to 1 with the rates déipgnon the priority. Not only at the limit
the value of the discounted game equals to the value of theitgrimean-payoff game but also optimal
deterministic memoryless strategies in discounted gaarasout to be optimal in the the corresponding
priority mean-payoff game.

The interest in such a result is threefold.

First we think that establishing a very strong link betwesa &pparently different classes of games
has its own intrinsic interest.

Discounted games were thoroughly studied in the past ancesult shows that algorithms for such
games can, in principle, be used to solve parity games (gelihyitall depends on how much the discount
factor should be close to 1 in order that two types of gamesrheclose enough, and this remains open).

Another point concerns the stability of solutions (optimaktegies and games values) under small
perturbations. When we examine stochastic games then theahguestion is where the transition
probabilities come from? If they come from an observati@ntthe values of transition probabilities are
not exact. On the other hand algorithms for stochastic gameonly rational transition probabilities
thus even if we know the exact probabilities we replace themldse rational values. What is the impact
of such approximations on solutions, are optimal strategfiable under small perturbations? Usually we
tacitly assume that this is the case but it would be betteetsure. Since Blackwell-optimal strategies
studied in Sectiohl4 are stable under small perturbationésobunt factors (because they do not depend
on the discount factor) this adds some credibility to thétlkat Blackwell optimal strategies are stable
for parity games.

And the last point. Blackwell invented Blackwell optimglibecause he was not satisfied with the
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notion of optimal strategies for mean-payoff Markov demisprocesses. However the same can be said
about parity games, we defer examples to the final section.

The paper is organized as follows. In Secfidn 2 we introdtmehastic games in general, we define
the notions of value and optimal strategies. Sedtion 3 wenme@discounted games. The main result in
this section shows that if discount factors are close to f tptimal strategies stabilize (Blackwell opti-
mality). In Sectiorl b we introduce the class of priority mgeayoff games — this is the principal class
of games examined in this paper. Parity games and meanfgayoks are just very special subclasses
of this class. In Section] 6 we prove the main result of the pataing that deterministic memoryless
strategies optimal for discounted games for discount factofficiently close to 1 are optimal in derived
priority mean-payoff games.

2 Stochastic Games with Perfect Information

Notation. In this paperN stands for the set of positive integef§ = NU {0}, andR is the set of
positive real numbers.

For each finite seX, & (X) is the set of probability distributions ov, i.e. it is the set of mappings
p: X —[0,1] such thaty ,.x p(x) = 1. The support op € Z (X) is the sef{x € X : p(x) > 0}.

2.1 Games and Arenas

Two players Max and Min are playing an infinite game on an ar@maarena is a tuple
o = (87 Sl\/|aX7 SMin >A7 (A(S))5637 6)7

where a finite set of stat&is partitioned in two sets, the s8{1ax Of states controlled by player Max and
the setSyi, of states controlled by player Min. For each state S there is a non-empty finite sAt(s)
of actions available i, A = Js.sA(S). Players Max and Min play or7 an infinite game. If at stage
i € Ng the game is in a statg € Sthen the player controlling chooses an action frol(s) and a new
states,; is chosen with probability specified by the transition magpd. Transition mappingd maps
each pair(s,a), wherese Sanda € A(s), to an element o7 (S). Intuitively, if in a statesand an action
ais executed thed(s,a)(t) gives the probability that at the next stage the game is te stdo simplify
the notation we shall writé(s,a,t) rather tham(s,a)(t).

Throughout the paper we assume that all arenas are finitthe sets of states and actions are finite.

An arena is said to be@ne-player arenaontrolled by player Max if, for every statcontrolled by
Min, the setA(s) is a singleton (in particular if all states are controlledNdgix then.e/ is a one-player
arena controlled by Max). One-player arenas controlledlaygy Min are defined similarly.

A finite (resp. infinite)play in the arena< is a non-empty finite (resp. infinite) sequence of states
and actions inSA)*S (resp. in(SA)®). In the sequel “play” without any attribute will be used as a
synonym of “infinite play”.

2.2 Payoffs

After an infinite play player Max receives a payoff from playin. The objectives of the players are
opposite, the goal of Max is to maximize the payoff while gaiin wants to minimize the payoff.

The payoff can be computed in various ways. For example in anrpayoff game each state is
labeled with a real number called the reward and after anitefplay the payoff of player Max is the
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limit of mean values of the sequence of rewards. In a paritpagaeach state is labeled with an integer
called a priority and player Max receives payoff 0 or 1 depegon the parity of the highest priority seen
infinitely often. In both examples, the way the payoffs armpated is independent from the transitions
rules of the game (the arena), it depends uniquely on the play

Thus formally a payoff function is a mapping

u:(SA)“ =R

from infinite plays to real numbers.

A game is a couplé = («7,u) made of an arena and a payoff function. Usually we consider no
a particular game but rather a class of games. In this casasae endowed with some additional
structure, usually some labeling of states or actions (farrgle rewards as in mean-payoff games or
priorities as in parity games) and this labeling is used findehe payoff for games in the given class.

2.3 Strategies

Playing a game the players use strategiesstrategyfor player Max is a mappin@ : (SA)*Suax —
2 (A) such that for every finite plap = spaps1a; - . . Sy with sy € Syax, the support obr(p) is a subset of
the actions available is,, i.e. for allac A, if a(p)(a) > 0 thena € A(sy).

Strategies for player Min are defined similarly and denated

Certain types of strategies are of particular interest. ratsgly isdeterministicif it chooses actions
in a deterministic way, and it isiemoryles# it does not have any memory, i.e. choices depend only on
the current state of the game, and not on the past historyddlyr

Definition 1. A strategyo of player i€ {Min,Max} is said to be:
e deterministidf, Vp € (SA)*S;, if o(p)(a) > 0theno(p)(a) =1,
e memorylessf, vt € S and pe (SA)*, a(pt) = o(t).

For any finite playp € (SA)*Sand an actiora € A we define the cone§(p) and'(pa) as the sets
consisting of all infinite plays with prefix p angarespectively.

In the sequel we assume that the set of infinite p(&A&)® is equipped with ther-field Z((SA)%)
generated by the collection of all coné¥p) and &'(pa). Elements of thiso-field are calledevents
Moreover, when there is no risk of confusion, the evefitp) and &'(pa) will be denoted simplyp and
pa

Suppose that players Max and Min are playing accordinglyradegieso andt. Then after a finite
play spa; . . . , the probability of choosing an actiong, ; is eithero(spa; . .. Sh) (an+1) Or T(Soas - - - Sh)(@n+1)
depending on whethesy, belongs tdSyax Or to Syin. Fixing the initial states € S these probabilities and
the transition probabilityd yield the following probabilities

oty )1 ifso=s
Ps (So)—{o s L)

is the probability of the con€'(sy),

O(soa1---S)(@nt1) If S € Suax

) 2)
T(Sa1...Sn)(an1) if sn € Swin

Pg"" (Soa1- - Snan+1 | Sodu - Sn) = {
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is the conditional probability of’(sa; ... Shan+1) given 0 (Spag ... ) and

P " (0@ - .- S$@nt+1Sn+1 | S0@1 - S$hdn+1) = O(Sn, @nt1,5n41) 3)

is the conditional probability of the con@(spa; . .. Shan+15+1) given the con&(spay ... Shan+1)-
lonescu Tulcea’s theorern [14] implies that there exists igusn probability measur®s" on the
measurable spadéSA)“, Z(SA)?) satisfying [1),[(2) and(3).

2.4 Optimal strategies

Let &7 = (S, Suax, Smin, A, (A(S))scs, 0) be an arena. In the sequel we assume that all payoff mappings
u: (SA)® — R are bounded and measurable (for measurability we assumEShg’ is equipped with
the o-field described in the preceding section & equipped with ther-field (R ) of Borel sets).

Given an initial states and strategiegr and 1 of Max and Min the expected value of the payaff
underP?"" is denotedES " [u].

A strategyo* for player Max is said to beptimalin a game(.«7, u) if for every states,

infEZ"T [u] = supinfEZ" [u] .
T o T

Dually a strategyt? of player Min isoptimalif sup, ES'" [u] = inf sup, EZ'* [u], for each state.
In general,
valy(u) := supinfEg"* [u] < infSupEg™* [u] := vals(u)
g g

but when these two quantities are equal then the stétesaid to have thealue vals(u) = val(u) =
vals(u), denoted also valu,.<7) whenever mentioning explicitly the arena is needed. Urlaeht/poth-
esis thatu is measurable and bounded, Martin’s theorem [11] guararites every state has a value.
Notice however that Martin’s theorem does not guaranteexistence of optimal strategies.

3 Discounted Games

Arenas for discounted games are equipped with two mappiefysedi on the ses of states. Theliscount

mapping
A:S—10,1)

associates with each state discount factod (s) € [0,1) and thereward mapping
r:S—=R 4)

maps each stateto a real valued rewand’s).
The payoff
Uy (SA)Y —R

for discounted games is calculated in the following way. €&eh playp = Ssaps1a1a; ... € (SA)®
U (p) = (1—A(s0))r(s0) +A(S0)(1—=A(s1))r(s1) +A(S0)A(s1)(1—-A(S2))r(2) +-..

:_i/\(so).../\(s,-1)(1—/\(3))r(s) . 5)
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Usually when discounted games are considered it is assuméthere is only one discount factor,
i.e. that there exist8 € [0,1) such thatA (s) = A for all se S. But for us it is essential that the discount
factor depends on the state.

Shapley[[13] proveEjthat

Theorem 2 (Shapley) Discounted game&e/, uy ) over finite arenas admit optimal deterministic mem-
oryless strategies for both players.

3.1 Interpretations of discounted games

The rather obscure formuld 5 can be interpreted in severgé.wahe usual economic interpretation
is the following. The reward(s) represents the payoff that player Max receives if the stasevis-
ited. But a given sum of money is worth more now than in therijtwisiting s at stagei is worth
A(s1)...A(s-1)r(s) rather tharr(s) (visiting s is worthr(s) only the first day). With this interpre-
tation 32 gA(so)...A(S—1)r(s) represents the accumulated total the payoff that player Megives
during an infinite play. However, with this interpretatidns difficult to assign a meaning to the factors
(1—A(s)) and such factors are essential when we consider the liroif @fith discount factors tending
to 1.

In his seminal papef [13] Shapley gives another intergoetaif (3) in termsstopping gamesSup-
pose that at a stagea states is visited. Then with probability + A (s) the nature can stop the game.
Since we have assumed thatQ\ (s) < 1 for all s€ S, the stopping probabilities are strictly positive
which implies that the game will eventually stop with prollipo 1 after a finite number of steps.

If the game stops ig; then player Max receives from player Min the paymefg) and this ends
the game. Thus here player Max receives the payoff only amben the game stops and the payoff is
determined by the last state.

If the game does not stop B then there is no payment at this stage and the player cangdhe
states chooses an action to execute.

Note thatA (59)...A(s-1)(1— A(s)) gives the probability that the game has not stopped in any of
the statess,...,5_1 but it does stop in the stat. Since this event results in the paymers), (5)
represents in this interpretation tphayoff expectatiorior an infinite playspagsiaisa ... during the
stopping game.

Another related interpretation making a direct link betwafiscounted games and mean-payoff
games is the following. We transform the discounted arehinto a new arenax* by attaching to
each stats € Sa new states. We setr(s*) =r(s), i.e. each new adjoined state has the same reward as
the corresponding original state.

In the new arenay™* we incorporate the discount factors directly into the titams probabilities.
Recall that, for each state= Sof the original arena?, d(s,a,s') was the probability of going to a state
s if an actionais executed irs. In the new arena’* this probability is set td*(s,a,5) =A(s)d(s,a,5).

On the other hand we set aldt(s,a,s*) = (1—A(s)), i.e. in./* with probability 1— A (s) the execution
of ain sleads tos* (note that for fixedh the probabilities sum up to 1).

Each new stats* is absorbing, there is only one action available in est¢hve note itx, and this

action leads with probability 1 back 8. This situation is illustrated by the following picture.

1in fact, Shapley considered a much larger class of stochgathes. For these games he proved that both players have
memoryless optimal strategies. For perfect informatiomeghis proof yields optimal strategies that are also detéstit.
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A* 510"'5’1
Gs)Qs\ . 6&

Ele i(s,a,8,) =1

We consider the mean-payoff game played«h, i.e. the game with the payotf (Sjaps1a1 . ..) =
IimsupKﬁ zik:or(s). Such a game played ow* ends with probability 1 in one of the starred states
s* and then the mean-payoff is simpl{s*) = r(s). Intuitively, stopping ins with the payoffr(s) in the
stopping game is the same as going't@nd looping there infinitely with the same mean-paydf).
Thus a discounted game can be seen as a mean-payoff game plfaga arena where with probability
1 we end in some absorbing state. If discount factors tendtbh@r this means that, intuitively, we cut
off the absorbing starred states.af.

4 Blackwell optimality

We will consider what happens if the discount factors tend.tdrhe novelty in comparison with the
traditional approach is that we consider the situation wltscount factors of different states tend to 1
with different rates.

A rational discount parametrizatiors a family of mappings\; = (A:(S))ses, such that for each state
S,

ot~ A(s)isa rationdd mapping oft,

e there exists 6< € < 1 such that\;(s) € [0,1) for all t € [1— ¢,1) (note that since the set of states
is finite we can choose the samaéor all states),

° Iimm)\t(s) =1.

A typical example of a rational parametrization is tt@nonical rational discount parametrization
defined in the following way. For each stateve fix a natural number(s) € N called the priority ofs
and a positive real numbev(s) € (0,) called the weight o6. Then the canonical parametrization is

defined as
A(s) =1—w(s)(1—-t)™, forse SiteR. (6)
We will consider discounted games where discount fact@giaen by a rational discount parametriza-
tion.

Theorem 3(Blackwell optimality) Let us fix an arenay of a discounted game and l&t be a rational
discount parametrization fae7. Letvals(u,, ) be the value of a statesSfor A; in the game(.7, uy, ).
Then there exist8 < € < 1 such that, for each state s,

(1) forte (1—¢,1), t+— vals(uy,) is arational function of t and

(2) if o* and ¥ are optimal deterministic memoryless strategies for somél— ¢, 1) theno* and r*
are optimal for allte (1—¢,1).

“Rational in the sense tha{(s) is a quotient of two polynomials @f
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In the sequel we call strategies andt* Blackwell optimal for a rational discount parametrization
A if of andt? are deterministic memoryless strategies satisfying @aof{ Theoreni B.

Let us note that Theoref 3 exhibits a curious property ofadisted games discovered by Black-
well [Bﬂﬁ. By Theoreni R we know that for each fixethe discounted game with payaff, has optimal
memoryless deterministic strategies, but obviously stictiegies depend an Theoreni B asserts that
fort € (1—¢,1) the situation stabilizes and optimal deterministic mertesy strategies do not depend
ont. Since Blackwell optimality is usually proved only for Markdecision processes with a unique dis-
count factor for all states, s€e [10] for example, we dectdddclude the complete proof of Theoréin 3.
Note however that our proof follows closely the one used farkdv decision processes.

The proof of Theoreml3 is based on the following lemma thaktleéluseful also in the next section.

Lemma 4. Let t— A; be a rational discount parametrization and let 7 be deterministic memoryless
strategies. Then, for each state s, and for t sufficientlgectol, E¢*' [u,, ] is a rational function of t.

Proof. The proof is standard but we give it for the sake of completen&he seRS*S of functions from
Sx Sinto real numbers can be seen as the set of square real vakteides with rows and columns
indexed byS. In particularRS*S is a vector space with natural matrix addition and scalatipligation.
However, matrix multiplication defines also a product®f<S, for M,N € RS<S, MN is an element
U of RS*S with entriesU[s,s"] = Ss.sM[S,gN[s,5"]. We endowRS*S with a norm, forM € RS*S,
[IM|| = maxycs S¢res|M[S, S]] It can be easily shown thMN|| < [|M|| - ||N|| for M,N € RS*S and
RS*S is a complete metric space for the metric induced by the norfh) see Section 3.2.1 df [15] for a
proof.

On the other hand, we consider also the vector sfiitef functions fromS into R, they can be
seen as column vectors indexed by states. Of courbedfRS*S andv € RS thenMv € RS, where
(MV)[§ = 35csM[sSJv[s] for se S.

We equipRS with a norm, forv € RS, ||V||» = Maxcs |V[g|. The norms oR>*S andRS are com-
patible in the sense that we ha\®IVv||. < [[M|| - ||V||e-

Let o,1 be deterministic memoryless strategies for players MaxMimand letA; be a rational
discount parametrization. We define

58— {g(ja@,s) 1S €S (1 ggcs

(¢,1(8),8") if S € Svax

Thusd defines transition probabilities of the Markov chain obeéginvhen we fix the strategiesandT.
In the sequeM will denote the element d&>*S defined in the following way

M[S,&] = A(£)3(<,S), ford,s es )

Let| € RS*S be the identity matrix, i.el[s,s"] is 1if § = s” and 0 otherwise.
We shall show that for close to 1 the matrixl — M) is invertible and

(I —M)lz_iMi. (8)

First we show that the series on the right-hand sidé]of (8Yeqyes.

3In fact Blackwell [3] considered only one-player games wita same discount factor for all states.
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Let Ay = maxes A (S). Then fort sufficiently close to 1 we havieM|| < Ay < 1 and, fork < I,
A|+l

HEkMH<2kHMH'<§kAM e

since, by the definitio_n of a rational discount parametitzatO < Ay < 1 for t sufficiently close to 1.
Thus the serie§ ;> M' satisfies the Cauchy condition and the convergence followa the complete-
ness of the norn - ||. Now it suffices to note that

k
-1 i k+1
YM—1=M
2

and||M<HL|| < ML < AfHL > O which yields[[B).
—»00

Let (S){ , be the stochastic process giving the state at Steafleen

BT[] =BT

_im(%)-'-At<s_1><1—At<s>>r<s>]

= I|m EJT

;At ~)A=A(S)r(S)| )

where the second equality follows from the Lebesgue doméhabnvergence theorem.
Letv be an element dkS defined as

V[s| = (1— A (s))r(s), forsesS.
An elementary induction onshows that, fos, s € S,
EST [M(S) - M(S-1)|S =55 =] =M'[s,5],

i.e. the entrys,s] of thei-th power ofM is the expectation ok (S) - - - A:(S_1) under the condition that
S =sandS§ = <. This yields

MV)[g = § Ms]-vs] = T EZT [A(S)-A(S IS =55 =] - (1-A(&))r(s) =

seS seS

Eg" [M(S)- - A(S-1)(1 - A(S))r(S)|S=9. (10)

Taking the sum fronmi = 0 to k on both sides of (10) and next the limit wikitending to infinity, using
(@) and [8), we obtain

ES" [u,] = (1 =M)")[s.

But the elements of the matrix— M are rational functions df, thus Cramer’s rule for matrix in-
version show thafl — M)~! has also rational elements, and since the elementsaoé also rational
functions we can see th&f"" [u,, ] is a rational function of.

O
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Proof of Theorerhl3 According to Lemm&l4, and since discounted games admit aptil@terministic
memoryless strategies, (1) is a consequence of (2).

We prove (2) as follows.

Let X be the set of all tuple&y, o, 1,0’,7'), whereq is a stateg, o’ are deterministic memoryless
strategies for player Max ard 1/ are deterministic memoryless strategies for player MinteNbat for
finite arenasX is finite. LetA; be a rational discount parametrization and let @ < 1 be such that
At () € (0,1) for all statessand allt € (1—¢,1).

For each(q,0,1,0’,7") € X we consider the functio®q g r o' : (1— €,1) — R defined by:

t— Pqor0r (t) = Eg’T [U)\ (t)] - Eg/J/ [U)\ (t)]

According to Lemmald®, s o r(t) is a rational function ot for t sufficiently close to 1. Since
a rational function can change the sign (crossxfais) only finitely many times there exists =
€1(q,0,1,0’, 1) > 0 such that the sign 6Py s 1 o r(t) does not change in the intervd — &1,1). Let
& =min{e}U{&(q,0,1,0',7):(q,0,1,0,7') € X}.

Since X is finite the minimum on the right is taken over a finite set oipee numbers and we
conclude that, > 0

Let us take any € (1— &,1). Let of, ¢ be optimal deterministic memoryless strategies in the
discounted gamé«/, uy, ) (TheoreniR). Then, in particular, we have

g™ [on] <BYT [in] < [ "

for all deterministic memoryless strategigst. We can rewrite[(11) a® ,: ;: 5 :(t) > 0 and

@y 0t 1.00.1: (1) = 0. However if these inequalities hold for some (1 — &,1) then we have seen that
they hold for allt € (1— &,,1). Therefore[(Ill) holds for alle (1— &,,1). Finally Theoreni R implies that
if (LI) holds for all deterministic memoryless strategiesind t (with fixed deterministic memoryless
ot andt?) then it holds for all strategies, . O

5 Priority mean-payoff games

In mean-payoff games the players try to optimize (maxinmieimize) the mean value of the payoff
received at each stage. In such gamegdheard mapping

r-S—=R (12)
gives, for each statg the payoff received by player Max wheiis visited. The payoff of an infinite play

is defined as the limit of the means of daily payments:

_ 1 kX
U (S08182...) = Ilmksupw1 i;r(s) , (13)

where we take limsup rather than the simple limit since tttedanay not exist.
We slightly generalize mean-payoff games by equippingasevith a new mapping

w:S— R, (14)

“4In other words, for discounted games being optimal in thesclsf memoryless deterministic strategies implies being
optimal in the class of all strategies.
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associating with each stasea strictly positivereal numbem(s), theweightof s. We can interpretv(s)
as the amount of time spent in statepon each visit ta. In this setting (s) should be seen as the payoff
by a time unit whers is visited, thus the weighted mean payoff received by pldjex is

SioW(s)r(s)
S owW(s)
Note that in the special case when the weights are all equalttee weighted mean value_{15) reduces

to (13).

As a final ingredient we add to the arenpréority mapping

Urw(S0S1S - ) = lim Sup (15)

mS—N (16)
assigning to each stasa positive integepriority 71(s).
We define theriority of a playp = Ssapsia1Sa . . . as thesmallestpriority appearing infinitely often
in the sequence(sy)71(s;) 71(s,) . . . of priorities visited inp:

n(p) = Iimiinf ns) . a7

For any prioritya, let1, : S— {0, 1} be the indicator function of the s€s € S| ri(s) = a }, i.e.

1o(s) = {1 if (s) =a (18)

0 otherwise

Then the priority mean-payoff of a plgy= ssagsia1Sa; . . . is defined as

Urwr(p) = |imsup2=(:0 17T(p)(54) “W(S)-r(s) .

19
P S Ly (3) - W(S) (19)

In other words, to calculate priority mean payuoffy »(p) we take weighted mean payoff but with the
weights of all states having priorities different framip) shrunk to 0. (Let us note that the denominator
Ko 1np)(s)-W(s) is different from O fork large enough, in fact it tends to infinity sindgp, (s) = 1
for infinitely manyi. For smallk the numerator and the denominator can be equal to 0 and thawid
all misunderstanding, it is convenient to assume that tiefinite value @0 is equal to—c.)

In the sequel the coupleav, 1) consisting of a weight mapping and a priority mapping willdadied
aweighted priority system

Let us note that priority mean-payoff games are a vast gératian of parity games. In fact parity
games correspond to a very particular case of priority npegioff games, we recover the usual parity
games when we set for each stater(s) = 1 andr(s) = 1 if 11(s) is even and (s) = 0 if 71(s) is odd.

Theorem 5. Priority mean-payoff games over finite arenas admit optichetierministic memoryless
strategies for both players.

Proof. The proof of Theorerfi]5 relies on the transfer theorem promgl@]i This theorem states the
following: if a payoff functionu admits optimal deterministic memoryless strategies iroa#-player
perfect information stochastic games over finite arenagppgd with payoffu or —u, then all two-player
perfect information stochastic games over finite arenak patyoff u have also optimal deterministic
memoryless strategies for both players.
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In [6], we proved that one-player games equipped with thefidynction u,,; have optimal de-
terministic memoryless strategy. It remains to prove thmeséor one-player games equipped with the
payoff function—uyy,r:

 fming ~ 2k (s) w(s) 1(s)
_urﬁwﬂ(soslsz...)_hmkmf &) WE) . (20)
Let us denote-r the reward mapping defined loy-r)(s) = —r(s). Then,
~ 5t ol (9 WS)-1(5) o

U rwnr(SoS1Se:-+) = IimEUp Sic 01 (S) w(s)

The expected values efur,; andu_,,; coincide on Markov chains, because in a Markov chain, the
limsup in [21) is almost-surely a limit, see the proof of Trexn 7, page 8 of [6]. Since for every play,
—Urwr(P) < U_rwr(p), this implies that in a one-player arena, every determiniemoryless strategy
optimal for the payoff functionu_, is optimal for the payoff function-u,w as well, and these two
games have the same values and the same deterministic niessaoptimal strategies. This completes
the proof. O

6 From rationally parametrized discounted games to priority mean-payoff
games

6.1 Priority mean-payoff derived from rational discount parametrization

The aim of this short subsection is to show how a rationaladist parametrization induces in a canonical
way a weighted priority system.

Let A; be a rational discount parametrization. The fact thatith — A¢(s)) = O implies that for
each state, the functiont — 1 — A(s) factorizes ags(t)(1—t)™ wherern(s) € N is a positive integer
constant and— gs(t) is a rational function such that(1) # 0. Moreover since ¥ A;(s) is positive for

€ (1—¢,1), gs(t) is also positive in the same interval and by continuitysif), gs(1) > 0.

Now, for each stats, takeri(s) defined above as the priority sndw(s) := gs(1) as the weight os.
We say tha{w, 1) defined in this way is theveighted priority systerderived from the rational discount
parametrization\;.

6.2 Limit of a discounted game

The following theorem establishes a remarkable link betwaiscounted games and weighted priority
mean-payoff games. Roughly speaking it shows that ther latee the limit of discounted games, the
limit not only in the sense of game values (part (a)) but asodptimality of strategies is preserved in
the limit.

Theorem 6. Let .« be a fixed arena and lett A; be a rational discount parametrization fey. Let
(w, M) be the weighted priority system derived framFinally let o* and % be deterministic memoryless
Blackwell optimal strategies for the discounted gamé uy, ).

Then

(a) for each state dimy vals(uy, ) = vals(Urw ), Wherevals(uy, ) is the value of the gamg#, u,, ) and
vals(Urw,r) is the value of the gam@”, Uy ), and
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(b) if o and t* are Blackwell optimal memoryless deterministic stratedier the discounted game
(«7,uy,) then o* and 1* are optimal for the priority mean-payoff ganie”, ur v )

Let us note that part (a) of Theordh 6 was proved|[ih [6] but doityone-player gams(Markov
decision processes).

However, in [6] we were unable to establish any result ligkoptimal strategies for discounted
games with optimal strategies of weighted priority gamebusTthe main achievement of the present
paper is part (b) of Theoreim 6.

The following result was proved inl[6] (Theorem 7 in [6]):

Lemma 7. Let A; be a rational discount parametrization and [gt, 1) be the derived weighted priority
system. Then for each state s and for all deterministic mgless strategies, T:

Itlgll EST [U)\ (t)] =E " [Urwn]-

Proof of Theorerhl6 We begin with part (b). Let*, 1% be Blackwell optimal deterministic memoryless
strategies foi;. Let o andt be any deterministic memoryless strategies of players Max\in. Then

# f #f
EST [un] <EST [up ] <EST [uy ]
Taking the limit witht 1 1 we get by Lemmg]7
Eg’rt [Urwr] < Egt"rn [Urwr] < Esaﬁ,r [Urw.r]

which shows that? and t# are optimal in the class of deterministic memoryless sjiage But Theo-

rem[B implies that for priority mean-payoff games strategiptimal in the class of deterministic memo-

ryless strategies are optimal also when all strategiesliamgesl. This terminates the proof of (b).
Obviously (a) follows from (b) and from Lemnia 7.

7 Optimal but not Blackwell optimal strategies

top top
r=0 /ﬂght\T=l
=1 T=2

SMax [v~——Ww = ——| SMin

Figure 1: A parity game. Player Max has two deterministic mpiiess optimal strategies but only one
of them is Blackwell optimal.

Theoreni b stated that Blackwell optimal strategies are@tsional for priority mean-payoff games.
The converse is not true, the notion of Blackwell optimadtggies is strictly more restrictive.

5In fact, [6] shows that the convergence of game values haltlenly for rational parametrizations but for any “reasdeéb
parametrization of discount factors.
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We illustrate this with the game presented in Fidure 1. Hezdhave two stateSax, Svin controlled
respectively by players Max and Min. Both states have theesamight 1 which is omitted. The left
state has priorityr= 2 and reward = 0, the right state has prioritygy = 1 and reward = 1, thus essen-
tially this is the usual parity game with two priorities. Bqgtlayers have two deterministic memoryless
strategies. The optimal strategy for player Min is to takigoac'left”. With this strategy statgyax With
priority 1 is visited infinitely often and since this is themitnhal priority in this games the resulting payoff
will 0 whatever the strategy of player Max. Player Max carypgtap” or “right”, in both cases if player
Min uses the strategy described above the payoff is 0 thusdttegies are optimal for Max.

Now let us consider the associated discounted game withahenical parametrization. Thus the
discount factor 0Byax IS At (Sviax) = 1— (1—t)”(SMax) =t while the discount factor fauin iS At (Svin) =
1—(1—t)™svin) =1 (1—1)2. For player Min the optimal strategy is still to always plagft’. For
player Max the strategies “right” and “top” are now diffeter-or example if we start fromsyax then
playing “top” will result in payoff 0 since we will visit onlythe statesyax with reward 0. On the other
hand playing “right” we will visit infinitely often the stat®i, with a positive reward, thus for discounted
games playing “right” is strictly better for Max than plagiritop” and the strategy where Max plays
“right” is the only Blackwell optimal strategy.

The main motivation behind Blackwell optimal strategieses from the following observation (due
to Blackwell). Consider a mean-payoff game controlled cletety by player Max and suppose that there
are only two possible infinite plays. The first play beginshwatlong but finite sequence of rewards 0
followed by an infinite sequence of rewards 1. The mean pdgofuch history is 1, the initial sequence
of 0 does not count on the limit. Consider now the second plaiglwis an infinite sequence of rewards
1, without any 0. Here also the mean payoff is also 1. Thusepl®ax is indifferent between two
histories. But from the point of view of Maximizer clearlyetlsecond history is better than the first one,
one prefers to have the reward 1 each day rather than to betjinttve reward 0. This difference is
captured by Blackwell optimality.
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