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Abstract. The value 1 problem is a natural decision problem in algorithmic

game theory. For partially observable Markov decision processes with reachabil-

ity objective, this problem is defined as follows: are there observational strategies

that achieve the reachability objective with probability arbitrarily close to 1? This

problem was shown undecidable recently. Our contribution is to introduce a class

of partially observable Markov decision processes, namely ♯-acyclic partially ob-

servable Markov decision processes, for which the value 1 problem is decidable.

Our algorithm is based on the construction of a two-player perfect information

game, called the knowledge game, abstracting the behaviour of a ♯-acyclic par-

tially observable Markov decision process M such that the first player has a

winning strategy in the knowledge game if and only if the value of M is 1.

1 Introduction

Partially Observable Markov Decision Processes (POMDP for short) Markov de-

cision processes (MDPs) are well established tool for modelling systems that mix both

probabilistic and nondeterministic behaviours. The nondeterminism models the choices

of the system supervisor (the controller) and the probabilities describe the environment

behaviours. When the system offers full information, it is rather easy for the controller

to make the best choice, this follows from the fact that fully observable MDPs enjoy

good algorithmic properties. For instance ω-regular objectives such as parity objective

can be solved in polynomial time [10, 8], as well as quantitative objectives such as av-

erage and discounted reward criterions [11, 16]. Moreover, optimal strategies always

exist for any tail winning condition [4, 14]. Unfortunately, the assumption that a real

life system offers a full observability is not realistic. Indeed, an everyday system can-

not be made fully monitored because it is either too large (e.g. information system), or

implementing full monitoring is too costly (e.g. subway system), or even not possible

(e.g. electronic components of an embedded system). That is why partially observable

Markov decision processes are a better suited theoretical tool for modelling real life sys-

tem. In a POMDP, the state space is partitioned and the decision maker cannot observe

the states themselves but only the partition they belong to also called the observation.

Therefore, two executions that cary the same observations and the same actions are

undistinguishable for the controller and hence its choice after both execution is going

to be the same. In other words the strategies for the controller are mappings from se-

quences of observation and actions to actions.



Value 1 Problem This problem is relevant for controller synthesis: given a discrete

event system whose evolution is influenced by both random events and controllable ac-

tions, it is natural to look for controllers as efficient as possible, i.e. to compute strategies

which guarantee a probability to win arbitrarily close 1. This means that the probabil-

ity of winning could never be 1. This differs from the almost-sure winning problem,

where the controller is asked to find a strategy that ensures the objective with probabil-

ity exactly 1. There are toy examples in which an almost-sure controller does not exist

but still there exist controllers arbitrarily efficient, and the system can be considered as

safe, see Fig. 1 for example. In this figure, an almost-sure strategy cannot exist since

any strategy has to take a risk and guess whether the play has started in the top or bot-

tom part of the game. Nevertheless, one can find a strategy that makes the probability

of taking the wrong guess arbitrarily small. Note that in case the example would have

been fully observable, the value 1 and the almost-sure winning would coincide, this is

actually the case for any tail winning condition for simple stochastic games [14]. This

property makes the study of fully observable models way easier and leads in most cases

to decidability. But as one can deduce from the same example, almost-sure winning

and the value 1 problem do not coincide for POMDPs. Actually, almost-sure winning

as well as positive winning for reachability objective are decidable problems [3, 6] as

opposed to the value 1 problem.

Related work The value one problem has been left open by Bertoni since the 1970’s [1,

2]. Recently, we showed that this problem is undecidable for probabilistic automata [15].

This undecidability result extends to POMDP because they subsume probabilistic au-

tomata. Since then, much efforts were put into identifying nontrivial decidable families

of probabilistic automata for the value 1 problem. For instance, ♯-acyclic automata [15],

structurally simple automata [9], and leaktight automata [12]. The common point be-

tween those subclasses is the use of two crucial notions. The first one is the iteration

of actions, this operation introduced in [15] for probabilistic automata and inspired

by automata-theoretic works, describes the long term effects of a given behaviour. The

second one is the limit-reachability. Broadly speaking, limit-reachability, formalises the

desired behaviour of a probabilistic automaton that has value 1. Therefore, the technical

effort in the previously cited papers consists in relating the operation of iteration with

the limit-reachability in a complete and consistent manner. Even though the consistency

can be obtained rather easily, the completeness requires restrictions on the model con-

sidered. This is not surprising since the general case is not decidable. In this work, we

consider POMDP, and identify a subclass for which the value 1 problem is decidable.

Contribution and result we extend the decidability result of [15] to the case of

POMDPs. We define a class of POMDPs called ♯-acyclic POMDPs and we show that

the value 1 problem is decidable for this class.

The techniques we use are new compared to [15]. While in [15] the value 1 problem

for ♯-acyclic automata is reduced to a reachability problem in a graph, in the present

paper, the value 1 problem for POMDPs is reduced to the computation of a winner in a

two-player game. This two-player game is won by the first player if and only if the value

of the POMDP is 1. While for ♯-acyclic probabilistic automata the value 1 problem can
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be decided in PSPACE, the algorithm for the value 1 problem for ♯-acyclic POMDP

runs in exponential time. This algorithm is fix-parameter tractable when the parameter

is the number of states per observation.

Even though the class may seem contrived, as the results on probabilistic automata

show, this class is useful from a theoretical point of view in the sense that it allows the

definition of appropriate formal tools. The main technical challenge was to extend both

the notions of iteration and limit-reachability; while in a probabilistic automaton the

behaviour of the controller can be described by a finite word, because there is no feed

back that the controller could use to change its behaviour. This is not anymore true for

a POMDP and behaviour of the controller is described by a (possibly infinite) tree. The

choice of the next action actually depends on the sequence of observations received

and the actions played. Generalisation from words to trees is in general a nontrivial

step and leads both complexity blowups and technical issues. In our case, the effect of

this generalisation is mostly notable in the definition of limit-reachability. As one can

see in Definition 2 limit-reachability expresses two level of uncertainty as opposed to

probabilistic automata where one level is sufficient. The notion of limit-reachability is

carefully chosen so that it is transitive in the sense of Lemma 1 and can be algorithmi-

cally used thanks to Lemma 3. We believe that this definition can be kept unchanged

for handling more general decidable families of POMDPs.

Outline of the paper in Section 2 we introduce POMDPs and related notations. In

Section 3 we introduce the class of ♯-acyclic POMDPs and state the decidability of the

value 1 problem for ♯-acyclic POMDPS which is our main theorem (c.f. Theorem 2). In

Section 4 we define the knowledge game and prove the main result.

2 Notations

Given S a finite set, let ∆(S) denote the set of distributions over S, that is the set of

functions δ : S → [0, 1] such that
∑

s∈S δ(s) = 1. for a distribution δ ∈ ∆(S), the

support of δ denoted Supp(δ) is the set of states s ∈ S such that δ(s) > 0. We denote

by δQ the uniform distribution over a finite set Q.

2.1 Partially Observable Markov Decision Process

Intuitively, to play in a POMDP, the controller receives an observation according to

the initial distribution then it chooses an action then it receives an other observation

and chooses another action and so on. The goal of the controller is to maximize the

probability to reach the set of target states T .

A POMDP is a tuple M = (S, A, O, p, δ0) where S is a finite set of states, A is a

finite set of actions, O is a partition of S called the observations, p : S × A → ∆(S) is

a transition function, and δ0 is an initial distribution in ∆(S).

We assume that for every state s ∈ S and every action a ∈ A the function p(s, a) is

defined, i.e. every action can be played from every state. When the partition described

by O ∈ O is a singleton {s}, we refer to state s as observable. An infinite play in a
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Fig. 1. Partially observable Markov decision process

POMDP is an infinite word in (OA)ω, and a finite play is a finite word in O(AO)∗. We

denote by Plays the set of finite plays.

Consider the POMDP M depicted in Fig 1. The initial distribution is at random

between states 1 and 3, the play is winning if it reaches ⊤, and the observations are

O = {O, O′, {⊤}} where O = {1, 3} and O′ = {2, 4}. State ⊤ is observable. The

missing transitions lead to a sink and are omitted for the sake of clarity. A play in M
could be ρ = OaOaO′(aO)ω.

2.2 Outcome and Knowledge

Let Q ⊆ S be a subset and a be a letter, we define Acc(Q, a) as the set of states s ∈ S

such that there exists q ∈ Q and p(q, a)(s) > 0.

The outcome of an action a given a subset of states Q is the collection Q ·a of states

that the controller may believe it is in after it has played action a in one of the states of

Q and it has received its observation: Q·a = {R ⊆ 2S | ∃O ∈ O, R = Acc(Q, a)∩O}.

For a collection of subsets R ⊆ 2S we write: R · a =
⋃

R∈R R · a.

Let w = O0a1O1 · · · anOn ∈ Plays be a finite play. The knowledge of the controller

after w has occurred is defined inductively as follows:

{

K(δ0, O0) = Supp(δ0) ∩ O0 , and

K(δ0, w) = Acc(K(δ0, O0 · · · an−1On−1), an) ∩ On .

It is a an elementary exercise to show that for every strategy σ, the following holds:

P
σ
δ0

(∀n ∈ N, Sn ∈ K(δ0, w)) = 1 . (1)

2.3 Strategies and measure

To play, the controller chooses the next action to apply according to the initial distribu-

tion, the sequence of actions played, and the sequence of observations received. Such a

way of playing is called observational, and any strategy that formalise it is called ob-

servational strategy. Formally, an observational strategy for the controller is a function

σ : Plays → A. Notice that we consider only pure strategies. This is actually enough

since in POMDPs randomised strategies are not more powerful than the pure one [13,

5].

4



Once an initial distribution δ0 and a strategy σ are fixed, this defines uniquely a

probability measure P
σ
δ0

on S(AS)ω as the probability measure of infinite trajectories

of the Markov chain whose transition probabilities are fixed by δ0, σ and p : S × A →
∆(S). Using the natural projection π : S(AS)ω → O(AO)ω we extend the probability

measure P
σ
δ0

to O(AO)ω.

We define the random variables Sn, An, and On with values in S, A, and O respec-

tively that maps an infinite play w = s0a1s1a2s2 · · · to respectively the n-th state Sn,

the n-th action An, and the n-th observation On ∈ O such that Sn ∈ On.

2.4 Value 1 problem

The value of a POMPD is the largest probability of winning an objective (reachability

in our case) when the play start in the initial distribution. Formally,

Definition 1 (Value). Let M be a POMDP, δ0 ∈ ∆(S) be an initial distribution, and

T ⊆ S be a subset of target states, the value of δ0 in M is:

ValM(δ0) = sup
σ

P
σ
δ0

(∃n ∈ N, Sn ∈ T ) .

The value 1 problem consists in deciding whether ValM(δ0) = 1 for given M and δ0.

Example 1. The value of the POMDP of Fig 1 is 1 when the initial distribution is uni-

form over the set {1, 3}. Remember that missing edges (for example action c in state 1)

go to a losing sink ⊥, hence the goal of the controller is to determine whether the play

is in the upper or the lower part of the game and to play b or c accordingly. Consider

the strategy that plays long sequences of a2 then compares the frequencies of observing

O and O′; If O′ was observed more than O then with high probability the initial state

is 1 and by playing b state ⊤ is reached. Otherwise, with high probability the play is

in 3 and by playing c again the play is winning. Note that the controller can make the

correct guess with arbitrarily high probability by playing longer sequences of a2, but it

cannot win with probability 1 since it always has to take a risk when choosing between

actions b and c. This example shows that the strategies ensuring the value 1 can be quite

elaborated: the choice not only depends on the time and the sequence of observations

observed, but also depends on the empirical frequency of the observations received.

The value 1 problem is undecidable in general, our goal is to extend the result of [15]

and show that the value 1 problem is decidable for ♯-acyclic POMDP. The idea is to

abstract limit behaviours of finite plays using a finite two-player reachability game on

a graph, so that limit-reachability in the POMDP in the sense of Definition 2 coincides

with winning the reachability game on the finite graph.

The definition of limit reachability relies on the random variable that gives the prob-

ability to be in a set of states T ⊆ S at step n ∈ N given the observations received along

the n − 1 previous steps:

φn(δ, σ, T ) = P
σ
δ (Sn ∈ T | O0A1 · · · AnOn) .
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Definition 2 (Limit-reachability). Let Q ⊆ S be a subset of states and T be a nonempty

collection of subsets of states, we say that T is limit-reachable from S if for every ε > 0
there exists a strategy σ such that:

P
σ
δQ

(∃n ∈ N, ∃T ∈ T , φn(δQ, σ, T ) ≥ 1 − ε) ≥ 1 − ε ,

where δQ is the uniform distribution on Q.

The intuition behind this definition is the following: when T is limit-reachable from

Q, then if the play starts from a state randomly chosen in Q, the controller has obser-

vational strategies such that with probability arbitrarily close to 1 it will know someday

that the play is in one of the sets T ∈ T and which set T it is. Limit-reachability enjoys

two nice properties. First the value 1 problem can be rephrased using limit-reachability,

second limit-reachability is transitive.

Proposition 1. Assume that T is observable, i.e.

T =
⋃

O∈O
O∩T 6=∅

O ,

then ValM(δ0) = 1 if and only if 2T \ ∅ is limit-reachable from Supp(δ0).

Proposition 1 does not hold in the case where the set of target states is not observ-

able. However, there is a computable linear time transformation from a POMDP M to

a POMDP M′ with a larger set of states whose set of target states is observable and

such that a distribution has value 1 in M if and only if it has value 1 in M′. Therefore,

our decidability result holds whether the target states are observable or not.

Limit-reachability is a transitive relation in the following sense.

Lemma 1 (Limit-reachability is transitive). Let Q be a subset of states and R be

a nonempty collection of subsets. Assume that R is limit-reachable from Q and T a

nonempty collection of subsets of states is limit-reachable from every subset R ∈ R.

Then T is limit-reachable from Q.

The following lemma shows that the definition of limit-reachability is robust to a

change of initial distribution as long as the support of the initial distribution is the same.

Lemma 2. Let δ ∈ ∆(S) be a distribution, Q ⊆ S its support, R be a nonempty

collection of subsets of states. Assume that for every ε > 0 there exists σ such that:

P
σ
δ (∃n ∈ N, ∃R ∈ R, φn(δ, σ, R) ≥ 1 − ε) ≥ 1 − ε ,

then R is limit-reachable from δQ.

The above lemma implies that the decision of the value 1 problem depends only on the

support of the initial distribution.
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3 The ♯-acyclic Partially Observable Markov Decision Processes

In this section we associate with every POMDP M a two-player zero-sum game on a

graph GM. The construction of the graph is based on a classical subset construction [7]

extended with an iteration operation.

3.1 Iteration of actions

Definition 3 (Stability). Let Q ⊆ S be a subset of states and a ∈ A be an action, then

Q is a-stable if Q ⊆ Acc(Q, a).

Definition 4 (a-recurrence). Let Q ⊆ S be a subset of states and a ∈ A be an action

such that Q is a-stable. We denote by M[Q, a] the Markov chain with states Q and

probabilities induced by a: the probability to go from a state s ∈ Q to a state t ∈ Q is

p(s, a)(t). A state s is said to be a-recurrent if it is recurrent in M[S, a].

The key notion in the definition of ♯-acyclic POMDPs is iteration of actions. Intu-

itively, if the controller knows that the play is in Q then either someday it will receive

an observation which informs it that the play is no more in Q or otherwise it will have

more and more certainty that the play is trapped in the set of recurrent states of a stable

subset of Q. Formally,

Definition 5 (Iteration). Let Q be a subset of states, a be an action such that Q ∈ Q ·a
and R be the largest a-stable subset of Q. We define

Q · a♯ =

{

{{a-recurrent states of R}} ∪ (Q · a \ {Q}) if R is not empty

Q · a \ {Q} otherwise .

If Q · a♯ = {Q} then Q is said to be a♯-stable, equivalently Q is a-stable and all states

of Q are a-recurrent.

The action of letters and iterated letters is related to limit-reachability:

Proposition 2. Let Q ⊆ S and a ∈ A. Assume Q ⊆ O for some O ∈ O. Then Q · a is

limit-reachable from Q. Moreover if Q ∈ Q · a, then Q · a♯ is also limit-reachable from

Q.

Proof. Let ε > 0 and σ be the strategy that plays only a’s. Since Q ⊆ O, Pσ
δQ

(O0 =

0) = 1. By definition of the knowledge K(δQ, O0) = Q thus by definition of Q · a,

P
σ
δQ

(K(δQ, O0aO1) ∈ Q · a) = 1 ,

and according to (1), Pσ
δQ

(S1 ∈ K(δQ, O0aO1) | O0A1O1) = 1 thus

P
σ
δQ

(φ1(δQ, σ, K(δQ, O0aO1) = 1) = 1 ,

and altogether we get

P
σ
δQ

(∃T ∈ Q · a, φ1(δQ, σ, T ) = 1) = 1 ,
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which proves that Q · a is limit-reachable from Q.

Assume that Q ∈ Q · a. By definition of limit-reachability, to prove that Q · a♯ is

limit-reachable from Q, it is enough to show for every ε > 0,

P
σ
δQ

(

∃n ∈ N, ∃T ∈ Q · a♯, φn(δQ, σ, T ) ≥ 1 − ε
)

≥ 1 − ε . (2)

Let R be the (possibly empty) largest a-stable subset of Q, and R′ the set of a-recurrent

states in R. Let Stayn(O) be the event

Stayn(O) = {∀k ≤ n, Ok = O} .

The strategy σ plays only a’s thus P
σ
δQ

coincides with the probability measure of the

Markov chain M[S, a]. Almost-surely the play will stay trapped in the set of a-recurrent

states. Thus by definition of R′,

(R′ = ∅) =⇒
(

P
σ
δQ

(Stayn(O)) −−−−→
n→∞

0
)

(3)

(R′ 6= ∅) =⇒ P
σ
δQ

(Sn ∈ R′ | Stayn(O)) −−−−→
n→∞

1 . (4)

Now we complete the proof of (2). According to (4) if R′ 6= ∅ there exists N ∈ N

such that Pσ
δQ

(

SN ∈ R′ | StayN (O)
)

≥ 1 − ε, thus

(R′ 6= ∅) =⇒ P
σ
δQ

(

φN (δQ, σ, R′) ≥ 1 − ε | StayN (O)
)

= 1 . (5)

On the other hand if the play is in Stayn(O) and not in Stayn+1(O) it means the

controller receives for the first time at step n + 1 an observation On+1 which is not

O. Since Q ⊆ O it means the play has left Q thus K(δQ, O0aO1 · · · On) = Q and

K(δQ, O0aO1 · · · OnaOn+1) = K(δQ, QaOn+1) ∈ Q ·a\{Q}, thus for every n ∈ N,

P
σ
δQ

(

∃T ∈ Q · a \ {Q}, φn(δQ, σ, T ) = 1 | Stayn(O) ∧ ¬Stayn+1(O)
)

= 1. (6)

Taking (5) and (6) together with the definition of Q · a♯ proves (2). ⊓⊔

3.2 ♯-acyclic POMDP

The construction of the knowledge graph is based on a classical subset construction

extended with the iteration operation.

Definition 6 (Knowledge graph). Let M be a POMDP, the knowledge graph GM of

M is the labelled graph obtained as follows:

– The states are the nonempty subsets of the observations:
⋃

O∈O 2O \ ∅.

– The triple (Q, a, T ) is an edge if T ∈ Q · a and the triple (Q, a♯, T ) is an edge if

Q ∈ Q · a and T ∈ Q · a♯.

Example 2. In Fig 2(a) is depicted a POMDP where the initial distribution is at random

between states s and q. The states ⊤, ⊥, t are observable and O = {s, q}. In Fig 2(b) is

the knowledge graph associated to it.
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Fig. 2. A POMDP and its knowledge graph

Definition 7 (♯-acyclic POMDP). Let M be a POMDP and GM the associated knowl-

edge graph. M is ♯-acyclic if the only cycles in GM are self loops.

This condition may seem restrictive, nevertheless, it does not forbid cycles (e.g. [15]

for an example).

Of course one can check wether a POMDP is ♯-acyclic or not in exponential time.

The main result of the paper is:

Theorem 1. The value 1 problem is decidable for ♯-acyclic POMDPs. The complexity

is polynomial in the size of the knowledge graph, thus exponential in the number of

states of the POMDP and fix-parameter tractable with parameter maxO∈O |O|.

4 Deciding the Value 1

In this section we show that given a POMDP M and its knowledge graph GM there

exists a two-player (verifier and falsifier) perfect information game played on GM where

verifier wins if and only if ValM(δ0) = 1.

4.1 The knowledge game

We first explain how to construct the game and how it is played. Let M be a POMDP

and GM be the knowledge graph associated to M. Starting from a vertex Q, the knowl-

edge game is played on GM as follows:

– Verifier either chooses an action a ∈ A or if Q ∈ Q · a she can also choose an

action a ∈ A♯ ,

– falsifier chooses a successor R ∈ S · a and R ∈ S · a♯ in the second case,
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– the play continues from the new state R.

Verifier wins if the game reaches a subset R ⊆ T of target states.

Definition 8 (♯-reachability). A nonempty collection of subsets R is ♯-reachable from

a subset Q if there exists a strategy for verifier to reach one of the subsets R ∈ R
against any strategy of falsifier in the knowledge game.

Example 3. In the POMDP of Fig 2, assume that the initial distribution δ0 is at random

between state s and q. The value of the initial distribution is 1 because the controller

can use the following strategy. Play long sequences of a and if the only observation

received is O, with probability arbitrarily close to 1 the play is in state s otherwise with

high probability the play would have moved to state q. On the other hand, verifier has a

strategy to win from {s, q} in the knowledge game. This strategy consists in choosing

action a♯ from the initial state, then playing action c if falsifier’s choice is {t} and action

b if falsifier’s choice is {s}.

4.2 Proof of Theorem 1

The proof of Theorem 1 is split into Proposition 3 and Proposition 4. The first proposi-

tion shows that if verifier has a winning strategy in the knowledge game GM, then the

value of the POMDP M is 1. Proposition 3 holds whether the POMDP is ♯-acyclic or

not.

Proposition 3. Let M be a POMDP with initial distribution δ0 and let Q = Supp(δ0).

Assume that for every observation O ∈ O such that O ∩ Q 6= ∅, verifier has a winning

strategy in GM from O ∩ Q. Then ValM(δ0) = 1.

Proof. Let σM be the winning strategy of the verifier and T = 2T \ ∅. The proof is by

induction on the maximal number of steps before a play consistent with σM reaches T
starting from Q ∩ O for all observations O such that Q ∩ O 6= ∅.

If this length is 0 then Supp(δ0) ⊆ T thus ValM(δ0) = 1.

Otherwise for every observation O such that Q ∩ O 6= ∅, let aO = σM(Q ∩ O).

Then by induction hypothesis, from every R ∈ Supp(Q ∩ O) · aO, ValM(δR) = 1.

Given ε > 0, for every R ∈ Supp((Q ∩ O) · aO) let σR a strategy in the POMDP to

reach T from δR with probability at least 1 − ε. Let σ be the strategy in the POMDP

that receives the first observation O, plays aO, receives the second observation O1 then

switches to σK(δ0,O0aOO1).

By choice of σR, for every state r ∈ R, the strategy σR guarantees to reach T from

δ{r} with probability at least 1 − |R| · ε thus σ guarantees to reach T from δ0 with

probability at least 1 − |Q| · ε. Since this holds for every ε, ValM(δ0) = 1. ⊓⊔

While it is not too difficult to prove that if verifier wins GM then ValM(δ0) = 1,

the converse is much harder to establish, and holds only for ♯-acyclic POMDPs.

Proposition 4. Let M be a ♯-acyclic POMDP and δ0 be an initial distribution and

denote Q = Supp(δ0). Assume that ValM(δ0) = 1 then for every observation O ∈ O
such that O ∩ Q 6= ∅, verifier has a winning strategy in GM from O ∩ Q.

10



Lemma 3. Let Q be a subset such that Q ⊆ O for some observation O ∈ O. Assume

that a nonempty collection of subsets of states T is limit-reachable from Q, then either

Q ∈ T for some T ∈ T or there exists a a nonempty collection of subsets of states R
such that:

i) Q 6∈ R,

ii) R is ♯-reachable from Q,

iii) T is limit-reachable from every subset in R.

Proof. If Q ⊆ T for some T ∈ T , then there is nothing to prove. Assume the contrary.

Since T is limit-reachable from Q, for every n ∈ N there exists a strategy σn such that:

P
σn

δQ

(

∃m ∈ N, ∃T ∈ T , φm(δQ, σn, T ) ≥ 1 −
1

n

)

≥ 1 −
1

n
. (7)

Let πn = Oan
1 Oan

2 O · · · the unique play consistent with the strategy σn such that

the observation received all along πn is O and let πm
n = Oa

(n)
1 O · · · a

(n)
m O. Let AQ =

{

a ∈ A | (Q ∈ Q · a) ∧ (Q · a♯ = {Q})
}

and let dn = min
{

k | σn(πk
n) 6∈ AQ

}

with

values in N ∪ {∞} and denote (un)n∈N the sequence of words in A∗ such that: un =

a
(n)
1 · · · a

(n)
dn−1.

We need the following preliminary result (proved in Appendix B.2): there exists

η > 0 such that for every n ≥ 0

P
σn

δQ
(∀m < dn, ∀T ∈ T , φm(δQ, σn, T ) ≤ 1 − η) = 1 . (8)

As a consequence of (8), it is not possible that for infinitely many n, dn = ∞
otherwise (8) would contradict (7). We assume wlog (simply extract the corresponding

subsequence from (σn)n) that dn < ∞ for every n thus all words un and plays πdn
n

are finite Since A is finite we also assume wlog that σn(πdn
n ) is constant equal to some

action a ∈ A\AQ. Since a 6∈ AQ then either Q 6∈ Q ·a or Q ∈ Q ·a and Q ·a♯ 6= {Q}.

In the first case let R = Q · a and in the second case let R = Q · a♯.

We show that R satisfies the constraints of the lemma.

i) holds because a 6∈ AQ and by definition of AQ, ii) holds because either R = Q·a
or R = Q · a♯ hence playing a or a♯ is a winning strategy for Verifier.

The proof of iii) is fairly technical and is presented in Appendix B.3 ⊓⊔

Proof (Proposition 4). Let M be a ♯-acyclic POMDP and δ0 be an initial distribu-

tion. Assume that Val(δ0) = 1 then by Proposition 1 we know that T = 2T \ ∅ is

limit-reachable from Supp(δ0), using the sequence of strategies (σn)n∈N. Thanks to

Lemma 3, we construct a winning strategy for verifier from Supp(δ0): when the current

vertex Q is not in T , compute R given by Lemma 3 and play a strategy to reach one

of the vertices R ∈ R. Because of condition i) of Lemma 3, a play consistent with this

strategy will not reach twice in a row the same vertex until the play reaches some vertes

T ∈ T . Since M is ♯-acyclic, the only loops in GM are self loops and as a consequence

the play will necessarilly end up in T . ⊓⊔

Proposition 3 and Proposition 4 lead the following theorem:

11



Theorem 2. Given a ♯-acyclic POMDP M and an initial distribution δ0. Verifier has

a winning strategy in the knowledge game GM if and only if ValM(δ0) = 1.

Theorem 1 follows directly from Theorem 2 and from the fact that the winner of a

perfect information reachability game can be computed in quadratic time.

5 Conclusion

We have identified the class of ♯-acyclic POMDP and shown that for this class the value

1 problem is decidable. As a future research, we aim at identifying larger decidable

classes such that the answer to the value 1 problem depends quantitatively on the tran-

sition probabilities as opposed to ♯-acyclic POMDPs. This would imply an improve-

ment in the definition of the iteration operation, for example considering the stationary

distribution of the Markov chain induced by the stable subsets.
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Appendix

A Proofs from Section 2

Proposition 5 (Proposition 1 in the paper). Assume that T is observable, i.e.

T =
⋃

O∈O
O∩T 6=∅

O ,

then ValM(δ0) = 1 if and only if T is limit-reachable from Supp(δ0).

Proof. Since T is observable, for every ε > 0,

Sn ∈ T ⇐⇒ On ⊆ T ⇐⇒ φn(δQ, σ, T ) = 1 ⇐⇒ φn(δQ, σ, T ) ≥ 1 − ǫ .

As a consequence

ValM(δ0) = 1 ⇐⇒ ∀ε > 0, ∃σ, P
σ
δ0

(∃n ∈ N, Sn ∈ T ) ≥ 1 − ε ,

⇐⇒ ∀ε > 0, ∃σ, P
σ
δ0

(1On⊆T ) ≥ 1 − ε ,

⇐⇒ P
σ
δ0

(∃n ∈ N, φn(δQ, σ, T ) ≥ 1 − ε) ≥ 1 − ε .

Where the first equivalence is by definition of the value and the second from the fact

that T is observable. ⊓⊔

Lemma 4 (Lemma 1 in the paper). Let Q be a subset of states and R be a nonempty

collection of subsets. Assume that R is limit-reachable from Q and T a nonempty col-

lection of subsets of states is limit-reachable from every subset R ∈ R. Then T is

limit-reachable from Q.

Proof. Let ε > 0. Let σ be a strategy such that:

P
σ
δQ

(

∃n ∈ N, ∃R ∈ R, φn(δQ, σ, R) ≥ 1 −
ε

2

)

≥ 1 −
ε

2
,

and for every R ∈ R let σR such that:

P
σR

δR

(

∃n ∈ N, ∃T ∈ T , φn(δR, σR, T ) ≥ 1 −
ε

2|R|

)

≥ 1 −
ε

2
.

Let σ′ be the strategy that plays σ until φn(δQ, σ, R) ≥ 1 − ε
2 for some R ∈ R, then

switches to σR. A computation shows that this strategy has the property:

P
σ′

δQ

(

∃n ∈ N, ∃T ∈ T , φn(δQ, σ′, T ) ≥
(

1 −
ε

2

)

·
(

1 −
ε

2

))

≥
(

1 −
ε

2

)

·
(

1 −
ε

2

)

,

because
(

φn(δR, σR, T ) ≥ 1 −
ε

2|R|

)

=⇒ ∀r ∈ R,
(

φn(1r, σR, T ) ≥ 1 −
ε

2

)

⊓⊔
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Lemma 5 (Lemma 2 in the paper). Let δ ∈ ∆(S) be a distribution, Q ⊆ S its

support, R be a nonempty collection of subsets of states. Assume that for every ε > 0
there exists σ such that:

P
σ
δ (∃n ∈ N, ∃R ∈ R, φn(δ, σ, R) ≥ 1 − ε) ≥ 1 − ε ,

then R is limit-reachable from δQ.

Proof. If δ = δQ then there result is trivial. If not, the result follows from the fact that

for every events E ∈ s(AS)ω, ε > 0, and n ∈ N:





∑

s∈Q

δ(s)Pσn
s (E) ≥ 1 − ε



 =⇒





∑

s∈Q

1

|Q|
P

σn
s (E) ≥ 1 −

ε

mins∈Q {δ(s)}



 .

⊓⊔

The following lemma shows that even though we consider only observable objec-

tives, it is possible to study objectives that are not observable thanks to the following

construction.

Lemma 6. For every POMDP M, there exists a POMDP M′ computable in linear

time such that:

– the target set in M′ is observable.

– ValM = 1 ⇐⇒ ValM′ = 1.

Proof. Let M be a POMDP and let T a set of target states. We construct M′ =
(S′, A′, O′, p′, δ′

0) such that:

– S′ = (S × {0, 1}) ∪ {⊤, ⊥}.

– A′ = A∪{$} such that for every s ∈ Q′, p′((s, 0), $)(⊥) = 1 and p′((s, 1), $)(⊤) =
1.

– p′ : S′ ×A′ → ∆(Q) such that for every state q, t ∈ S, action a ∈ A and i ∈ {0, 1}
we have:

p′((s, i), a)(t, 1) =

{

p(s, a)(t) if (s ∈ T ) ∨ (i = 1) ,

0 otherwise.

p′((s, i), a)(t, 0) =

{

p(s, a)(t) if (s 6∈ T ) ∧ (i = 0) ,

0 otherwise.

– O′ = O ∪ {O⊤, O⊥} such that O⊤ = {⊤} and O⊥ = {⊥}.

– for every s ∈ S, δ′
0(s, 0) = δ0(s)

– T ′ = {⊤}

We show that ValM′ = 1 if and only if ValM = 1.

Assume that ValM′ = 1 and let σ′ and ε > 0 such that

P
σ′

δ′

0

(∃n ∈ N
∗, Sn = ⊤) ≥ 1 − ε ,
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hence

P
σ′

δ′

0

(∃n ∈ N
∗, Sn−1 ∈ S × {1}) ≥ 1 − ε .

Let σ be the restriction of σ′ on the finite plays defined on O(AO)∗. It follows that:

P
σ
δ0

(∃n ∈ N, Sn ∈ T ) ≥ 1 − ε .

Assume that ValM = 1 and let σ and ε > 0 such that:

P
σ
δ0

(∃n ∈ N, Sn ∈ T ) ≥ 1 − ε .

Let σ′ be a strategy such that for every ρ ∈ Plays we have

σ′(ρ) =

{

σ(ρ) if Pσ
δ0

(Sn ∈ Q × {1} | ρ) < 1 − ε

$ if Pσ
δ0

(Sn ∈ Q × {1} | ρ) ≥ 1 − ε

Since by construction of M′ we have

P
σ
δ′

0

(∃n ∈ N, ∀m ≥ n, Sm ∈ Q × {1}) ≥ 1 − ε ,

it follows that the action $ is chosen at sometime thus

P
σ′

δ′

0

(∃n ∈ N, Sn = ⊤) ≥ 1 − ε ,

which terminates the proof. ⊓⊔

B Proofs from Section 4

B.1 Technical Lemmas

Lemma 7. Let Q be a subset of states and assume Q ∈ Q · a♯, then Q · a♯ = {Q}.

Proof. By definition of the iteration operation, Q is the set of a-recurrent states of the

largest stable subset of Q. It follows that Q = Acc(Q, a) and all states in Q are a-

recurrent thus Q · a♯ = {Q}. ⊓⊔

Lemma 8 (shifting lemma). Let f : Sω → {0, 1} be the indicator function of a mea-

surable event, δ ∈ ∆(S) an initial distribution, and σ a strategy. Then

P
σ
δ (f(S1, S2, · · · ) = 1 | A1 = a ∧ O1 = O) = P

σ′

δ′ (f(S0, S1, · · · ) = 1) ,

where ∀(s ∈ S), δ′(s) = P
σ
δ (S1 = s | A1 = a∧O1 = O), and σ′(O2A3 · · · AnOn) =

σ(OaO2A3 · · · AnOn).

Proof. Using basic definitions, this holds when f is the indicator function of a union of

events over Sω, and the class of events that satisfy this property is a monotone class. ⊓⊔

Lemma 9 (Flooding lemma [15]). Let M be a ♯-acyclic POMDP, assume that O is

the signelton {S} and for every lettre a ∈ A, S · a♯ = {S}. Then {S} is the only

limit-reachable collection from S.
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B.2 Proof of Equation (8) of Lemma 3

Let M[Q, AQ, T ] be the ♯-acyclic automaton with states Q and alphabet AQ and ac-

cepting states T . Almost-surely when playing σn from δQ all observations are equal to

O before step dn. Thus ∀T ∈ T and m < dn,

φm(δQ, σn, T ) = P
σn

δQ
(Sm ∈ T | O0 = O1 = . . . = On = O)

= P
σn

δQ
(Sm ∈ T ) = PM[Q,AQ,T ∩Q](un[0, m]) , (9)

where PM[Q,AQ,T ∩Q](un[0, m]) denotes the probability that the probabilistic automa-

ton M[Q, AQ, T ∩ Q] accepts the prefix of length m of un, denoted un[0, m]. Ac-

cording to the flooding lemma (Lemma 9) the only subset limit-reachable from Q in

the ♯-acyclic automaton M[Q, AQ, T ] is Q itself. Thus, since forall T ∈ T , Q 6⊆ T by

hypothesis and by definition of limit-reachability in a probabilistic automaton (see [15])

max
T ∈T

sup
m<dn

PM[Q,AQ,T ∩Q](un[0, m]) ≤ 1 − η ,

for some η > 0 which together with (9) proves (8).

B.3 Proof of point iii) of Lemma 3

We now show that iii) holds, i.e. for every R ∈ R, the collection T is limit-reachable

from R. According to (8) and (7) for every n ∈ N such that 1
n

< η,

P
σn

δQ

(

∃m ≥ dn, ∃T ∈ T , φm(δ, σn, T ) ≥ 1 −
1

n

)

(10)

= P
σn

δQ

(

∃m ∈ N, ∃T ∈ T , φm(δ, σn, T ) ≥ 1 −
1

n

)

≥ 1 −
1

n
.

Let δ′ be the distribution ∀q ∈ Q, δ′
n(q) = P

σ′

n

δQ
(Sdn

= q | O0 = · · · = Odn
= O), and

∀π′ ∈ Plays, σ′
n(π′) = σn(πdn−1

n σn(πdn−1
n )π′). Applying the shifting lemma dn − 1

consecutive times to equation (10), we obtain

P
σ′

n

δ′

n

(

∃m ∈ N, ∃T ∈ T , φm(δ′
n, σ′

n, T ) ≥ 1 −
1

n

)

≥ 1 −
1

n
.

Since all letters played by strategy σ′
n before step dn are in AQ then by the flooding

lemma again there exist η > 0 such that ∀n ∈ N, ∀s ∈ Q, δ′
n(q) > η. It follows that

P
σ′

n

δQ

(

∃m ∈ N, ∃T ∈ T , φm(δQ, σ′
n, T ) ≥ 1 −

1

n · η

)

≥ 1 −
1

n · η
,

thus we reduced the proof of iii) to the case where forall n ∈ N, σn(O) 6∈ AQ.

Since AQ is finite we assume from now wlog that there exists a ∈ A\AQ such that:

(∀n ∈ N, σn(O) = a) and
(

R = Q · a or R = Q · a♯
)

.
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Assume first that Q 6∈ Q · a thus R = Q · a. For every R ∈ R there is by definition

of Q · a some observation OR ∈ O such that R = Acc(Q, a) ∩ OR. For every n ∈ N,

let σR
n be the strategy defined by σR

n (p) = σn(O ·a ·p). Let xR = P
σn

δQ
(O1 = OR) then

by definition of Q ·a observation OR may occur with positive probability when playing

action a thus xR > 0. Let δR the distribution with support R defined by δR(q) =
P

σn

δQ
(S1 = r | O1 = OR). Then

P
σn

δQ

(

∃m ∈ N, ∃T ∈ T , φm(δQ, σn, T ) ≥ 1 −
1

n

)

= P
σn

δQ

(

∃m > 0, ∃T ∈ T , φm(δQ, σn, T ) ≥ 1 −
1

n

)

=
∑

R∈R

xR · P
σR

n

δR

(

∃m ∈ N, ∃T ∈ T , φm(δR, σR
n , T ) ≥ 1 −

1

n

)

,

where the first equation holds because by hypothesis there exists no T ∈ T such that

Q ⊆ T and the second is the shifting lemma. According to (7) the left part of the above

equation converges to 1 and since ∀R ∈ R, xR > 0 then every subterm of the convex

sum in the right part converges to 1 as well. According to Lemma 2, since the support

of distribution δR is R, it implies that T is limit-reachable from every support in R.

This completes the proof of iii) in the case where R = Q · a.

Assume now that Q ∈ Q · a and R = Q · a♯. Then for every support R ∈ (Q ·
a) ∩ (Q · a♯) we can use exactly the same proof that in the case where R = Q · a to

show that T is limit-reachable from R. By definition of Q · a♯, the remaining case is

the case where R is the set R′ of recurrent states of the largest a-stable subset of Q. But

since R′ ⊆ Q, for every T ∈ T φm(δR′ , σn, T ) ≥ 1
|R′| φm(δQ, σn, T ) and according

to Equation (7) it follows that:

P
σn

δR′

(

∃m ∈ N, ∃T ∈ T , φm(δR′ , σn, T ) ≥ 1 −
1

n|R′|

)

≥ 1 −
1

n|R′|
−−−−→
n→∞

1,

thus T is limit-reachable from R′. This completes the proof of iii) in the case where

R = Q · a♯, and the proof of the lemma.
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