Krishnendu Chatterjee 
  
Ist Austria 
  
Laurent Doyen 
  
( Lsv 
  
  
  
  
Perfect-Information Stochastic Mean-Payoff Parity Games

Keywords: Perfect-information games, Stochastic games, Parity and mean-payoff objectives, Almostsure winning

The theory of graph games is the foundation for modeling and synthesizing reactive processes. In the synthesis of stochastic processes, we use 2 1 2 -player games where some transitions of the game graph are controlled by two adversarial players, the System and the Environment, and the other transitions are determined probabilistically. We consider 2 1 2 -player games where the objective of the System is the conjunction of a qualitative objective (specified as a parity condition) and a quantitative objective (specified as a mean-payoff condition). We establish that the problem of deciding whether the System can ensure that the probability to satisfy the mean-payoff parity objective is at least a given threshold is in NP ∩ coNP, matching the best known bound in the special case of 2-player games (where all transitions are deterministic) with only parity objectives, or with only mean-payoff objectives. We present an algorithm running in time O(d • n 2d • MeanGame) to compute the set of almost-sure winning states from which the objective can be ensured with probability 1, where n is the number of states of the game, d the number of priorities of the parity objective, and MeanGame is the complexity to compute the set of almost-sure winning states in 2 1 2 -player mean-payoff games. Our results are useful in the synthesis of stochastic reactive systems with both functional requirement (given as a qualitative objective) and performance requirement (given as a quantitative objective).

Introduction

Perfect-information stochastic games. A perfect-information stochastic graph game [START_REF] Condon | The complexity of stochastic games[END_REF] is played on a finite directed graph with three kinds of states: player-Max, player-Min, and probabilistic states. At player-Max states, player Max chooses a successor state; at player-Min states, player Min (the adversary of player Max) chooses a successor state; and at probabilistic states, a successor state is chosen according to a fixed probability distribution. The result of playing the game forever is an infinite path through the graph. If there are no probabilistic states, we refer to the game as a 2-player graph game; otherwise, as a 2 1 2 -player graph game. There has been a long history of using 2-player graph games for modeling and synthesizing reactive processes [START_REF] Büchi | Solving sequential conditions by finite-state strategies[END_REF][START_REF] Pnueli | On the synthesis of a reactive module[END_REF][START_REF] Ramadge | Supervisory control of a class of discrete-event processes[END_REF]]: a reactive system and its environment represent the two players, whose states and transitions are specified by the states and edges of a game graph. Consequently, 2 1 2 -player graph games provide the theoretical foundation for modeling and synthesizing processes that are both reactive and stochastic [START_REF] Filar | Competitive Markov Decision Processes[END_REF][START_REF] Raghavan | Algorithms for stochastic games -a survey[END_REF]. They subsume both 2-player games which have no probabilistic states, and Markov decision processes (MDPs) which have no player-Min states. Qualitative and quantitative objectives. In the analysis of reactive systems, the problem may specify a goal as a set of desired paths (such as ω-regular specifications), or as a quantitative optimization objective for a payoff function on the paths. In verification and synthesis of reactive systems all commonly used properties are expressed as ω-regular objectives, and parity objectives are a canonical way to express ω-regular objectives [START_REF] Thomas | Languages, automata, and logic[END_REF]. In a parity objective, an integer priority is assigned to every state, and a path satisfies the objective for player Max if the maximum priority visited infinitely often is even. The most classical example of quantitative objective is the mean-payoff objective [START_REF] Filar | Competitive Markov Decision Processes[END_REF][START_REF] Puterman | Markov Decision Processes[END_REF], where a reward is associated with every state and the payoff of a path is the long-run average of the rewards of the path. While traditionally the verification and the synthesis problems were considered with qualitative objectives, recently combinations of qualitative and quantitative objectives have received a lot of attention. Qualitative objectives such as ω-regular objectives specify the functional requirements of reactive systems, whereas the quantitative objectives specify resource consumption requirements (such as for embedded systems or power-limited systems). Combining quantitative and qualitative objectives is crucial in the design of reactive systems with both resource constraints and functional requirements [START_REF] Chakrabarti | Resource interfaces[END_REF][START_REF] Chatterjee | Mean-payoff parity games[END_REF][START_REF] Bouyer | Infinite runs in weighted timed automata with energy constraints[END_REF][START_REF] Bloem | Better quality in synthesis through quantitative objectives[END_REF]. For example, mean-payoff parity objectives are relevant in synthesis of optimal performance lock-synchronization for concurrent programs [START_REF] Cerný | Quantitative synthesis for concurrent programs[END_REF], where one player is the synchronizer, the opponent is the environment, and the randomization arises due to the randomized scheduler; the performance objective is specified as mean-payoff condition and the functional requirement (e.g., data-race freedom or liveness) as an ω-regular objective. Mean-payoff parity objectives have also been used in other applications such as to define permissivity for parity games [START_REF] Bouyer | Measuring permissiveness in parity games: Mean-payoff parity games revisited[END_REF]. Thus 2 1 2 -player mean-payoff parity games provide the theoretical foundation for analysis of stochastic reactive systems with functional as well as performance requirements. Algorithmic questions in 2 1 2 -player games. The study of 2 1 2 -player games has a wealth of algorithmic problems. For example, given a 2 1 2 -player game with reachability objective (where the goal is to reach a target set of states), whether the player Max can ensure the objective with probability at least 1 2 (called the value-strategy problem) is in NP ∩ coNP [START_REF] Condon | The complexity of stochastic games[END_REF]. This is one of the rare combinatorial problems that belongs to NP ∩ coNP, but is not known to be solvable in polynomial time. It is a major and long-standing open question whether the problem can be solved in polynomial time. Moreover, 2-player games with mean-payoff (resp. parity) objectives lie in NP ∩ coNP (even in UP ∩ coUP) [START_REF] Jurdziński | Deciding the winner in parity games is in UP ∩ co-UP[END_REF][START_REF] Zwick | The complexity of mean payoff games on graphs[END_REF][START_REF] Gurvich | Cyclic games and an algorithm to find minimax cycle means in directed graphs[END_REF], and again no polynomial time algorithm is known. Both 2-player parity games and 2-player mean-payoff games admit a polynomial reduction to the value-strategy problem of 2 1 2 -player reachability games. The value-strategy problem for 2 1 2 -player mean-payoff (resp. parity) games also lie in NP ∩ coNP: the key property to show that the problem is in NP ∩ coNP for mean-payoff (resp. parity) games is to show that it is sufficient to consider positional strategies (that are independent of the past history and depends only on the current state), see [START_REF] Liggett | Stochastic games with perfect information and time average payoff[END_REF] for mean-payoff and [START_REF] Chatterjee | Quantitative stochastic parity games[END_REF] for parity objectives. In this work we consider 2 1 2 -player games with conjunction of mean-payoff and parity objectives for player Max. The study of 2 1 2 -player games with conjunction of mean-payoff and parity objectives poses new algorithmic challenges as infinitememory strategies are required. The key challenge is to obtain succinct (polynomial) witness for the infinite-memory strategies and their characterization to obtain complexity results matching the simpler classes of games where positional strategies suffice. Besides the complexity result, our characterization of strategies will also allow us to obtain algorithms to solve 2 1 2 -player mean-payoff parity games. Contributions. The details of our contribution is as follows:

1. We first present polynomial witness for infinite-memory strategies required by player Max, and a polynomial-time verification procedure for the witness, thereby establishing that the value-strategy problem (of whether player Max can ensure that the probability to satisfy the objective is at least a given threshold) is in NP. The fact that player Max requires infinite-memory strategies follows from the special case of 2-player mean-payoff parity games [START_REF] Chatterjee | Mean-payoff parity games[END_REF].

2. We show that positional strategies are sufficient for player Min; and it follows that the valuestrategy problem is also in coNP. Our NP ∩ coNP bound for the problem matches the special cases of 2-player parity and 2-player mean-payoff games.

3. We present an algorithm for the computation of the almost-sure winning set (the set of states where the objective can be ensured with probability 1 by player Max) for 2 1 2 -player mean-payoff parity games in time O(d • n 2d • MeanGame), where n is the number of states of the game graph, d the number of priorities of the parity objective, and MeanGame denotes the complexity to compute the almost-sure winning set in 2 1 2 -player mean-payoff games. In summary, we present results that establish computational, strategy, and algorithmic complexity of solving 2 1 2 -player mean-payoff parity games. Related works. The problem of 2-player mean-payoff parity games was first studied in [START_REF] Chatterjee | Mean-payoff parity games[END_REF]. The NP ∩ coNP complexity bound was established in [START_REF] Chatterjee | Energy parity games[END_REF], and an improved algorithm for the problem was given in [START_REF] Bouyer | Measuring permissiveness in parity games: Mean-payoff parity games revisited[END_REF]. The algorithmic analysis of 2 1 2 -player mean-payoff games was considered in [START_REF] Boros | Stochastic mean payoff games: Smoothed analysis and approximation schemes[END_REF]. The polynomial time complexity for MDPs with mean-payoff parity objectives was established in [START_REF] Chatterjee | Energy and mean-payoff parity Markov decision processes[END_REF] and the polynomial time complexity for MDPs with positive average parity objectives was shown in [START_REF] Gimbert | Computing optimal strategies for Markov decision processes with parity and positive-average conditions[END_REF]. The generalization to 2 1 2 -player games with mean-payoff parity objectives gives rise to many delicate issues, such as dealing at the same time with infinite-memory strategies, stochastic transitions, as well as the opponent.

Definitions

In this section we present definitions of game graphs, objectives, and the basic decision problems.

Probability distributions. For a finite set S, we denote by ∆(S) the set of all probability distributions over S, i.e., the set of functions p : S → [0, 1] such that s∈S p(s) = 1. For a set U ⊆ S we use the following notation: p(U ) = s∈U p(s).

Stochastic games.

A perfect-information stochastic game graph (for brevity, stochastic game) is a tuple G = (S, (S Max , S Min ), A, δ), where S is a finite set of states, (S Max , S Min ) is a partition of S such that S Max is the set of states controlled by player Max and S Min is the set of states controlled by player Min, A is a finite set of actions, and δ : S × A → ∆(S) is a probabilistic transition function. Stochastic games are also known as 2 1 2 -player games where probabilistic states are explicitly present. In our model, the probabilistic states can be embedded in the probabilistic transition function. A Markov decision process (MDP) is the special case of a stochastic game where either S Max = ∅, or S Min = ∅. Typically in this paper, we obtain MDPs from stochastic games after fixing the action choices of one of the players.

For complexity issues, we assume that the probabilities in stochastic games are rational numbers whose numerator and denominator are encoded in binary. We denote by |δ| the size of the encoding of the probabilistic transition function δ.

Subgames and traps. Given a stochastic game G, a set U ⊆ S of states induces a subgame if for all s ∈ U , there exists an action a s ∈ A such that δ(s, a s )(U ) = 1; the induced subgame is G[U ] = (U, (U ∩ S Max , U ∩ S Min ), A, δ ′ ) where, for all states s ∈ U and action a ∈ A, we have δ ′ (s, a) = δ(s, a) if δ(s, a)(U ) = 1, and δ ′ (s, a) = δ(s, a s ) otherwise. We take this definition of subgame to keep the same alphabet of actions in every state. The subgame G[U ] is a trap for player Min in the original game G if for all s ∈ U ∩ S Min and for all a ∈ A we have δ(s, a)(U ) = 1. A trap for player Max is defined similarly.

Plays and strategies.

A play ρ = s 0 s 1 • • • ∈ S ω is an infinite sequence of states such that for all i ≥ 0 there exists a ∈ A such that δ(s i , a)(s i+1 ) > 0. A strategy for Max is a recipe to describe what is the next action to play; formally, it is a function σ : S * S Max → A. A positional strategy is independent of the past and depends only on the current state. We view it as a function σ : S Max → A.

A strategy σ uses finite memory if there exists an equivalence relation ∼ on S ω of finite index, such that σ(ρ 1 ) = σ(ρ 2 ) for all plays ρ 1 , ρ 2 such that ρ 1 ∼ ρ 2 . We define strategies, positional strategies, and finite-memory strategies analogously for Min.

Probability measures. Given a finite prefix ρ ∈ S * of a play, denote by |ρ| the length of ρ and by Cone(ρ) the set of plays with prefix ρ. If ρ ∈ S + is nonempty, we denote by Last(ρ) the last state of ρ. Given a pair of strategies (σ, τ ) for Max and Min, and an initial state s, we first define the probability measure on cones inductively as follows: for all s ′ ∈ S, let

P σ,τ s (Cone(s ′ )) = 1 if s ′ = s 0 if s ′ = s and for all ρ ∈ S + , let P σ,τ s (Cone(ρ • s ′ )) = P σ,τ s (Cone(ρ)) • δ(Last(ρ), σ(ρ))(s ′ ) if Last(ρ) ∈ S Max P σ,τ s (Cone(ρ)) • δ(Last(ρ), τ (ρ))(s ′ ) if Last(ρ) ∈ S
Min By Caratheodary's extension theorem, there is a unique extension of this probability measure to S ω which is also denoted as P σ,τ s (•) [START_REF] Billingsley | Probability and Measure[END_REF]. Mean-payoff parity objectives. An objective is a measurable set ϕ ⊆ S ω of plays. Let rwd : S ×S → Q be a reward function defined on edges and χ : S → N be a priority function defined on states. Given a set of states U ⊆ S and a priority d ∈ N, we denote by U (d) the set {s ∈ U | χ(s) = d} of states with priority d. The mean-payoff objective Mean = s 0 s

1 • • • ∈ S ω | lim sup n→∞ 1 n • n-1
i=0 rwd(s i , s i+1 ) ≥ 0 requires that the long-run average of rewards be non-negative. The parity objective Par = {s 0 s 1 • • • ∈ S ω | lim sup n→∞ χ(s n ) is even} requires that the maximal priority visited infinitely often be even. The mean-payoff parity objective Mean ∩ Par is the conjunction of a mean-payoff objective Mean and a parity objective Par.

Almost-sure and positive winning. We say that player Max wins almost-surely (resp., positively) from an initial state s for an objective ϕ if there exists a strategy σ for Max such that for every strategy τ of player Min we have P σ,τ s (ϕ) = 1 (resp., P σ,τ s (ϕ) > 0). The state s is called almost-sure (resp., positive) winning for Max. In the sequel, we say that a game G is almost-sure (resp., positive) winning, if every state in G is almost-sure (resp., positive) winning for Max. We use analogous definitions for player Min. Note that almost-sure winning for Max is the dual of positive winning for Min.

Value-strategy problem and reduction to almost-sure winning. Given a threshold λ, the valuestrategy problem for an objective asks whether there exists a strategy for player Max to ensure against all strategies of player Min that the objective is satisfied with probability at least λ. A strategy for player Max is optimal if it ensures the maximal value λ (for stochastic mean-payoff parity games, optimal strategies are guaranteed to exist [START_REF] Gimbert | Solving simple stochastic tail games[END_REF]). In this paper we focus on the almost-sure winning problem, which is to decide whether there exists an almost-sure winning strategy for player Max for a mean-payoff parity objective, that is the value-strategy problem for λ = 1. While for player Max infinite-memory strategies are necessary [START_REF] Chatterjee | Mean-payoff parity games[END_REF], we will show that for player Min positional strategies are sufficient, and that the almost-sure winning problem is in NP ∩ coNP.

Remark 1. It follows from the results of [START_REF] Chatterjee | Stochastic games with finitary objectives[END_REF]Lemma 7] and [START_REF] Gimbert | Solving simple stochastic tail games[END_REF]Theorem 4.1] that since mean-payoff parity objectives are tail objectives (independent of finite prefixes), the memory requirement for optimal strategies of both players is the same as for almost-sure winning strategies, and if the almost-sure winning problem is in NP ∩ coNP, then the value-strategy problem is also in NP ∩ coNP. Thus from our results it will follow that the value-strategy problem is in NP ∩ coNP for 2 1 2 -player mean-payoff parity games. Positive attractors. Given a stochastic game G, let U ⊆ S induce a subgame G[U ] with probabilistic transition function δ :

U × A → ∆(U ). For T ⊆ U , let f T : 2 U → 2 U be the operator such that for all Z ⊆ U , f T (Z) = T ∪ {s ∈ S Max ∩ U | ∃a ∈ A : δ(s, a)(Z) > 0} ∪ {s ∈ S Min ∩ U | ∀a ∈ A : δ(s, a)(Z) > 0} . Then Attr Max (T, G[U ]) is the least fixed point of f T , called the positive attractor for Max to T in G[U ].
It can be computed as the limit of the iteration (f i T (∅)) i∈N . There exists a positional strategy for Max (referred to as positive-attractor strategy) to ensure that from all states in Attr Max (T, G[U ]), the set T is reached within |U | steps with positive probability. We define Attr Min (T, G[U ]) as the positive attractor for Min in an analogous way. An important property of positive attractors is that if X is a positive attractor for Max in G[U ], then G[U \ X] is a subgame and it is a trap for Max. Analogous statement holds for Min.

Characterization of the Almost-sure Winning Set

In this section we present the key lemmas that enable an inductive characterization of certificates and a polynomial-time verification procedure for the existence of almost-sure winning strategies, showing that the almost-sure winning problem is in NP for stochastic games with mean-payoff parity objectives.

It follows from the results of [START_REF] Chatterjee | Mean-payoff parity games[END_REF] that finite-memory strategies are not sufficient for Max and infinitememory strategies are required for almost-sure winning. We present polynomial witness and polynomialtime verification procedure for the infinite-memory almost-sure winning strategies. The polynomial witness consists of a trap U for player Min that defines a subgame where all states are almost-sure winning for player Max, together with a certificate defined as an inductive decomposition of the subgame induced by U constructed according to the parity of the largest priority d in U . If d is even we refer to the certificate as an even certificate, if d is odd as an odd certificate.

Intuitive description. To present the intuition of the (inductive) certificates, we informally explain some key properties in establishing that all states in a (sub)game are almost-sure winning for Max. In figures, we denote states of player Max by circles, and states of player Min by square boxes. Probability distributions over states are emphasized by a diamond. We omit actions and assume that every outgoing edge from player-Max and player-Min states corresponds to a different action. Let G be a (sub)game with state space S where all states are almost-sure winning. Then, we describe a certificate according to the parity of the largest priority d in G as follows. no priority-d state in Y ). In other words, the even certificate consists of (i) a positional positive attractor strategy in X for the target S(d); (ii) a positional almost-sure winning strategy in G for the mean-payoff objective; and (iii) a certificate for G[Y ]. We establish that the above two conditions ensure that in G all states are almost-sure winning for Max for the objective Mean ∩ Par. An almost-sure winning strategy for Max is as follows: if the current state is in the subgame G[Y ], then player Max ignores the history of the play up to the last state that was not in Y , and uses an almost-sure winning strategy in G[Y ] (such a strategy exists in G[Y ] by the certificate). If the opponent decides to visit the positive attractor X, then player Max switches to a (positional) positive-attractor strategy for at most |S| steps. Then, either after |S| steps or before (e.g., if a state with priority d is reached), player Max switches to an almost-sure winning strategy for Mean and plays it for a long finite time (that increases over the play). After that, the play might be in Y or in X, and player Max restarts from scratch the same process of playing. Intuitively, if the play keeps visiting X, then with probability 1 the positive-attractor strategy ensures infinitely many visits to a state with priority d (thus the parity condition is satisfied), and the almost-sure winning strategy for Mean played for increasing number of steps ensures that the mean-payoff objective is satisfied. On the other hand, if the play eventually stays in G[Y ] forever, then the almost-sure winning strategy in G[Y ] ensures the mean-payoff parity objective is satisfied with probability 1 (since the objective is independent of finite prefixes).

G priority 2 priority 0 priority 1 Y X q 1 q 2 q 3 q 4 q 5 q 6 q 7 q 8 1 0 1 /2 1 /2 -1 -1 -2 0 1 -1 0 2 -1 0 1 -1 1 /2 1 /2 -1
Example 1. Consider the stochastic game G in Figure 1 where the largest priority is 2. All states are almost-sure winning for the Mean objective, and a positional strategy for player Max is as follows: for state q 1 choose the edge labeled reward 1; and for state q 4 choose the edge to q 3 . The positive attractor for Max to the largest priority is X = {q 4 , q 7 , q 8 }. In the subgame induced by Y = {q 1 , q 2 , q 3 , q 5 , q 6 } there is one less priority, and player Min can decide to leave the subgame in states q 3 and q 6 . An (odd) certificate defined in the subgame G[Y ] witnesses that all states in G[Y ] are almost-sure winning for the mean-payoff parity objective. Thus the even certificate consists of the positional strategy for Mean, the positive-attractor strategy, and a certificate for G[Y ].

2. If d is odd (see Example 2 and Figure 2), an odd certificate is a layer-decomposition of the state space of G into non-empty sets R 1 , . . . , R k and Z 1 , . . . , Z k defined recursively as follows: 

(1) R 1 ⊆ S \S(d) G priority 1 priority 0 R 1 Z 1 R 2 Z 2 R 3 Z 3 q 1 q 2 q 3 q 4 q 5 q 6 q 7 q 8 0 1 /2 1 /2 1 1 -2 1 0 2 -2 1 /2 1 /2
Z 2 = Attr Max (R 2 , G[S \ Z 1 ]
), and so on to obtain the layer-decomposition of G. Such a decomposition must cover the state space, and thus the sets Z 1 , . . . , Z k form a partition of S (and k ≤ |S|). An almost-sure winning strategy for player Max is as follows: if the current state is in a subgame R i , then player Max ignores the history of the play up to the last state that was not in R i , and uses an almost-sure winning strategy (that exists in R i by the certificate). If the current state is in Z i \ R i , then player Max uses the positive-attractor strategy defined in Z i . We show that almost-surely, one of the sets R i is never left from some point on, and then the almost-sure winning strategy in G[R i ] ensures that the mean-payoff parity objective is satisfied with probability 1 (since the objective is independent of finite prefixes).

Example 2. Consider the stochastic game G in Figure 2 where the largest priority is 1. A layerdecomposition is shown where R 1 = {q 1 } is a trap of almost-sure winning states for Max, and

Z 1 = {q 1 , q 2 } is the positive attractor to R 1 . In the subgame G[S \ Z 1 ]
, there is no edge from q 4 to q 2 , and it follows that the states in R 2 = {q 3 , q 4 } form a trap of almost-sure winning states in this subgame, and the positive attractor to R 2 is Z 2 = R 2 ∪ {q 5 }. The last layer consists of R 3 = {q 6 , q 7 } and Z 3 = R 3 ∪ {q 8 }. As this layer-decomposition covers the state space of G, it gives an odd certificate for player Max.

Given the basic intuitions, we now present the formal proofs. We start with a basic lemma, and then we consider the two cases when the largest priority is even or odd.

Lemma 1. Let G be a stochastic mean-payoff game with state space S where all states are almost-sure winning for the mean-payoff objective Mean. Then there exists a positional strategy σ for player Max such that against all strategies τ for Min, for all s ∈ S and for all ǫ > 0, there exists k ǫ such that for all k ≥ k ǫ we have

P σ,τ s s 0 s 1 . . . ∈ S ω | k-1 i=0 1 k • rwd(s i , s i+1 ) ≥ -ǫ ≥ 1 -ǫ.
Proof. The result follows from the following statement. We show that there exists a positional strategy σ for player Max such that against all strategies τ for Min, for all s ∈ S and for all ǫ > 0:

P σ,τ s s 0 s 1 . . . ∈ S ω | lim inf k→∞ k-1 i=0 1 k • rwd(s i , s i+1 ) ≥ 0 = P σ,τ s lim inf k→∞ s 0 s 1 . . . ∈ S ω | k-1 i=0 1 k • rwd(s i , s i+1 ) ≥ -ǫ = lim inf k→∞ P σ,τ s s 0 s 1 . . . ∈ S ω | k-1 i=0 1 k • rwd(s i , s i+1 ) ≥ -ǫ = 1.
To prove this, consider a positional almost-sure winning strategy σ for player Max for the mean-payoff objective. Let

Φ 0 = s 0 s 1 . . . ∈ S ω | lim inf k→∞ k-1 i=0 1 k • rwd(s i , s i+1 ) ≥ 0 ; Φ k,ǫ = s 0 s 1 . . . ∈ S ω | k-1 i=0 1 k • rwd(s i , s i+1 ) ≥ -ǫ .
Assume towards contradiction that there exists a strategy τ for player Min such that P σ,τ s (Φ 0 ) < 1. Since σ is positional, once σ is fixed we have an MDP for player Min and in MDPs with mean-payoff objectives positional strategies suffice. Hence we can consider that there exists positional τ such that P σ,τ s (Φ 0 ) < 1. Given σ and τ are positional strategies, once they are fixed we have a Markov chain, where the set of paths where liminf average coincide with limsup average has probability 1 [START_REF] Filar | Competitive Markov Decision Processes[END_REF]. It

follows that P σ,τ s s 0 s 1 . . . ∈ S ω | lim sup k→∞ k-1 i=0 1 k • rwd(s i , s i+1 ) ≥ 0 < 1, contradicting that σ is
an almost-sure winning strategy. This shows that for all strategies τ we have P σ,τ s (Φ 0 ) = 1. Note that for every ǫ > 0 we have Φ 0 ⊆ lim inf k→∞ Φ k,ǫ and hence we have P σ,τ s (lim inf k→∞ Φ k,ǫ ) = 1. By Fatou's lemma [START_REF] Billingsley | Probability and Measure[END_REF] we know that for an event sequence E ℓ we have that lim inf ℓ→∞ P(E ℓ ) ≥ P(lim inf ℓ→∞ E ℓ ); and hence it follows that lim inf k→∞ P σ,τ s (Φ k,ǫ ) = 1. Let W = max s,s ′ ∈S |rwd(s, s ′ )| be the largest absolute reward and for every j > 0, let ǫ j = 1 j and let

K j = max k ǫ j , j 2 • W where k ǫ j is defined in Lemma 1.
The strategy σ that Max uses is played in rounds numbered 1, 2, • • • , and at round i, the strategy σ is defined as follows:

Phase 1: (Mean-payoff phase). Let j be the length of the current play prefix until the end of phase 3 of round i -1; then play according to the positional strategy σ Mean for K j steps. Switch to Phase 2.

(Under event A).

Observe that both parity and mean-payoff objectives are independent of finite prefixes, and if a play belongs to A, then the finite prefix of the play after which the play only visits states in Y does not change the mean-payoff nor the parity objective. Since σ Sub is almost-sure winning in the subgame induced by Y , it follows that for all s ∈ S and all strategies τ of player Min in G we have P σ,τ s (Mean ∩ Par | A) = 1 (if P σ,τ s (A) = 0). 2. (Under event B). We now reason under the event B and show that both the parity and the meanpayoff objectives are satisfied almost-surely. We first show that the parity objective is satisfied almost-surely. Consider an arbitrary strategy τ for player Min in G and a state s ∈ S.

Parity objective almost-surely. Given the event B, the strategy is in attractor mode infinitely often. Given the strategy is in the attractor mode (Attr, 0), the probability to reach a priority-d state within the next |S| steps after the attractor mode starts is at least x = (p min ) |S| > 0, where p min is the minimum positive transition probability (i.e., p min = min {δ(s, a)(t) > 0 | s, t ∈ S, a ∈ A}). It follows that if the strategy is switching k times to the attractor mode (Attr, 0), then the probability not to visit the priority-d set is at most (1x) k . The event B ensures that the strategy is in the attractor mode infinitely often, and thus the probability that given the event B after some point a priority d state is not visited at all is lim k→∞ (1x) k = 0. Hence given event B, the best even priority d is visited infinitely often almost-surely, ensuring that the parity objective is satisfied, that is for all s ∈ S and all strategies τ of player Min in G we have P σ,τ s (Par | B) = 1 (if P σ,τ s (B) = 0). In other words, given that the positive attractor to a set T is visited infinitely often, it follows that the set T is visited infinitely often with probability 1, and we refer to this property as the almost-sure positive attractor property.

Mean-payoff objective almost-surely. We now prove that the mean-payoff objective is almost-surely satisfied. Given the event B, the strategy σ is in the mean-payoff phase infinitely often. Consider the finite prefixes of play ρ = s 0 • • • s j+1 consistent with (σ, τ ) that are in the mean-payoff phase for the first time in the current round. Then by the definition of the strategy σ, every play prefix ρ ′ = ρ • s j+1 • • • s j+i consistent with (σ, τ ) that extends ρ, for all 0 < i ≤ K j , is in the mean-payoff phase (i.e., Up d (ρ ′ ) = (MeanPh, •)). The sum of the rewards for all prefixes of length j is at least -j • W and then applying Lemma 1 we have

P σ,τ s      s 0 s 1 • • • | 1 j + K j • j+K j i=0 rwd(s i , s i+1 ) ≥ - ǫ j • K j + j • W j + K j    | Cone(ρ)   ≥ 1 -ǫ j
Observe that by the choice of K j (that K j ≥ j 2 • W ) and ǫ j = 1 j we have -

ǫ j •K j +j•W j+K j ≥ - ǫ j •K j K j - j•W j 2 •W ≥ -2 j .
Consider the function f that given a number ℓ returns the maximum number j such that j + K j ≤ ℓ. Note that f is a non-decreasing function and as ℓ tends to ∞, also f (ℓ) tends to ∞. Given the event B, there are infinitely many prefixes ρ consistent with (σ, τ ) that are in the mean-payoff phase for the first time in the current round. Hence we have lim sup

ℓ→∞ P σ,τ s s 0 s 1 • • • | 1 ℓ • ℓ i=0 rwd(s i , s i+1 ) ≥ - 2 f (ℓ) | B ≥ lim sup ℓ→∞ 1 - 1 f (ℓ) = 1.
By Fatou's lemma [START_REF] Billingsley | Probability and Measure[END_REF] we know that for an event sequence E ℓ we have that lim sup ℓ→∞ P(E ℓ ) ≤ P(lim sup ℓ→∞ E ℓ ). Hence an application of the Fatou's lemma gives us that

P σ,τ s lim sup ℓ→∞ s 0 s 1 • • • | 1 ℓ • ℓ i=0 rwd(s i , s i+1 ) ≥ - 2 f (ℓ) | B = 1. Let ϕ ℓ = s 0 s 1 • • • | 1 ℓ • ℓ i=0 rwd(s i , s i+1 ) ≥ -2 f (ℓ)
and ϕ = lim sup ℓ→∞ ϕ ℓ . Consider a play ρ = s 0 s 1 • • • ∈ ϕ. Fix ǫ > 0, and consider ℓ 0 such that 2 f (ℓ 0 ) ≤ ǫ. Since ρ ∈ ϕ, there exists infinitely many ℓ ≥ ℓ 0 such that ρ ∈ ϕ ℓ , and hence for infinitely many ℓ we have 1 ℓ • ℓ-1 i=1 rwd(s i , s i+1 ) ≥ -ǫ. Hence lim sup ℓ→∞ 1 ℓ • ℓ-1 i=1 rwd(s i , s i+1 ) ≥ -ǫ. Since this holds for all ǫ > 0, it follows that lim sup ℓ→∞ 1 ℓ • ℓ-1 i=1 rwd(s i , s i+1 ) ≥ 0. In other words, we have ϕ ⊆ Mean and hence for all s ∈ S and all strategies τ of player Min in G we have P σ,τ s (Mean | B) = 1 (if P σ,τ s (B) = 0).

Thus given either event A or B, the mean-payoff parity objective is satisfied almost-surely. Note that if one of the event has probability 0, then the other has probability 1. It follows that the mean-payoff parity objective is satisfied almost-surely. This concludes one direction of the proof that if the conditions of the lemma are satisfied, then almost-sure winning for Mean ∩ Par is ensured with probability 1.

We now prove the converse. Consider a game G such that all states in its state space S are almostsure winning for the objective Mean ∩ Par for player Max. First, observe that since Mean ∩ Par ⊆ Mean, almost-sure winning for Mean ∩ Par implies almost-sure winning for Mean. This implies the first condition. Second, observe that Y is a trap for player Max. If player Max does not have an almost-sure winning strategy for a non-empty set Z ⊆ Y in the subgame G[Y ], then player Max does not have an almost-sure winning strategy from Z in G, which contradicts that all states in G are almost-sure winning. This establishes the second condition of the lemma and completes the proof.

We now present a characterization of the certificate for almost-sure winning when the largest priority is odd. Lemma 3. Let G be a stochastic mean-payoff parity game with state space S, and such that the largest priority d in G is odd. All states in G are almost-sure winning for the objective Mean ∩ Par if and only if there exists a partition {Z i } 1≤i≤k of S and non-empty sets R i , U i for i = 1, . . . , k, and U k+1 such that U 1 = S and for all 1 ≤ i ≤ k:

• R i ⊆ U i \ U i (d) is a trap for Min in G[U i ]
, and all states in R i are almost-sure winning for the objective Mean ∩ Par in G[U i ],

•

Z i = Attr Max (R i , G[U i ]), • U i+1 = U i \ Z i .
Proof. First, consider a stochastic game G and sets Z i , R i , U i as defined in the statement of the lemma. Note that the sets {Z i } 1≤i≤k are indeed non-overlapping, and since they form a partition of S, we have U k+1 = ∅. Consider the following informal description of a strategy σ for Max: given the current play prefix ρ, (a) if Last(ρ) ∈ R i for some 1 ≤ i ≤ k, then consider the suffix ρ ′ of ρ obtained by ignoring the prefix of ρ up to the last state that is not in R i , and play σ i (ρ ′ ) where σ i is an almost-sure winning strategy for objective Mean ∩ Par in R i ; (b) otherwise, we have Last(ρ) ∈ Z i for some 1 ≤ i ≤ k, and we play according to the positive-attractor strategy in Z i . We show that this strategy σ is almost-sure winning for the objective Mean ∩ Par from every state in G.

For i = 1, . . . , k, let

A i = {s 0 s 1 • • • ∈ S ω | ∃J ≥ 0 • ∀j ≥ J : s j ∈ R i }
be the event that from some point on the play remains in the set R i . Under event A i , since the strategy of player Max plays in R i according to an almost-sure winning strategy for Mean ∩ Par, and since both parity and mean-payoff objectives are independent of finite prefixes, it follows that for all s ∈ S, and all strategies τ of player Min in G we have P σ,τ s (Mean ∩ Par | A i ) = 1 (if P σ,τ s (A i ) = 0). Now, we show that the strategy σ of player Max is almost-sure winning for the event 1≤i≤k A i , that is with probability 1 the play will remain forever in some R i . Intuitively, this is because if a play visits infinitely often the positive attractor of R 1 (namely, Z 1 ), then the set R 1 is reached with probability 1 and never left since it is a trap in G; on the other hand, if a play eventually remains outside Z 1 , then from some point on the play remains always in the subgame G[U 2 ] (recall that U 2 = S \ Z 1 ) and then visiting Z 2 infinitely often implies reaching and staying forever in R 2 with probability 1. Repeating this argument k times shows that in all cases, the play has to remain forever in some R i with probability 1. Formally, fix an arbitrary state s ∈ S, and a strategy τ of player Min in G, and we show that P σ,τ s (

1≤i≤k A i ) = 1. Let B 1 = {s 0 s 1 • • • ∈ S ω | ∃ ∞ j ≥ 0 : s j ∈ Z 1 } and for i = 2, . . . , k, let B i = {s 0 s 1 • • • ∈ S ω | ∃ ∞ j ≥ 0 : s j ∈ Z i } \ l<i B l
be the event that Z i is visited infinitely often, and the states in Z 1 ∪ • • • ∪ Z i-1 are visited only finitely often. Under event B 1 , by the almost-sure positive attractor property presented in the proof of Lemma 2, the set R 1 is reached with probability 1 since the positive attractor Z 1 of R 1 is visited infinitely often. Moreover, once the play is in R 1 , it remains there forever (by definition of the strategy σ, and because R 1 is a trap for the player Min in G). Thus, we have P σ,τ s (A 1 | B 1 ) = 1 (if P σ,τ s (B 1 ) = 0). By a similar argument for i = 2, . . . , k, under event B i the play eventually remains in the subgame G[U i ] since U i = S \ l<i Z l , and it follows that P σ,τ s

(A i | B i ) = 1 (if P σ,τ s (B i ) = 0). Finally, since {Z i } 1≤i≤k is a partition of S we have P σ,τ s ( i B i ) = 1, and thus P σ,τ s ( 1≤i≤k A i ) = P σ,τ s ( 1≤i≤k A i | 1≤i≤k B i ) = 1 which concludes the first part of the proof.
Second, we show that if all states are almost-sure winning in G for the objective Mean ∩ Par, then all sets defined in the statement of the lemma can be constructed, and in particular the sets Z i form a partition of the state space. First, let X = Attr Min (S(d), G) be the positive attractor to priority-d states for player Min in G, and let Y = S \ X. We show that the set R of almost-sure winning states for objective Mean ∩ Par in the subgame G[Y ] for player Max is non-empty. Towards a contradiction, assume that R = ∅. It follows that for all states s ∈ Y and all strategies σ for player Max, there exists a strategy τ for Min such that P σ,τ s (Mean ∩ Par) < 1. Given s and σ, consider the strategy of Min that plays like τ in G[Y ] (ignoring the play prefix up to the last state not in Y ), and plays the positiveattractor strategy in X. Then, consider the events

A = {s 0 s 1 • • • ∈ S ω | ∃ ∞ j ≥ 0 : s j ∈ X } and B = {s 0 s 1 • • • ∈ S ω | ∃J ≥ 0 • ∀j ≥ J : s j ∈ Y }.
Under event A, by the almost-sure positive attractor property (see the proof of Lemma 2) the odd priority d is visited infinitely often with probability 1 and since d is the largest priority in G, the parity objective is violated. Under event B, since mean-payoff parity objectives are prefix-independent, the strategy of player Min in the subgame G[Y ] ensures that with positive probability the mean-payoff parity objective is violated. Clearly A ∩ B = ∅ and P σ,τ s (A ∪ B) = 1, which implies that P σ,τ s (Mean ∩ Par) < 1. This is in contradiction with the assumption that all states in G are almost-sure winning for Max, and thus shows that R = ∅.

Let 

R 1 = R and Z 1 = Attr Max (R 1 , G). If Z 1 = S,

Algorithm

In this section we present an algorithm for the almost-sure winning problem. Let G be a stochastic mean-payoff parity game with largest priority d. Algorithm 1 computes the set R of almost-sure winning states for Max, by iterations that, from the state space S of G remove positive winning states of player Min. When a fixpoint is obtained, we show that it satisfies the characterization of Lemma 2 and Lemma 3, hence it is the almost-sure winning set. Starting with R = S (line 1), the algorithm considers two cases: (a) If d is even (see also Figure 3). (b) If d is odd (see also Figure 4). In each iteration of the main loop (line 14), the algorithm computes a set of positive winning states for player Min as the positive attractor (for Min) to the set U computed in the inner loop (lines 16-21). The inner loop computes in R ′ the almost-sure winning states of player Max in the subgame induced by the complement Y of player-Min positive attractor to priority d, using a recursive call (line 19). The positive attractor for Max to R ′ is removed (line 21), and the next iteration starts (if R ′ = ∅) with a strictly smaller state space U . The main loop terminates when there is nothing to remove (U = ∅).

Correctness and termination. The correctness and termination of Algorithm 1 is established using an argument by induction on the depth of the recursive calls, which are always invoked with games that have at least one less priority than the current game. Empty games are solved as the base case (line 2). First note that when the algorithm starts, R is a trap for player Min and thus it induces a subgame, and this property is maintained throughout the algorithm.

• 

in G[U ] = G[X ∪ Y ],
player Min would play according to the positive-attractor strategy in X, and according to their positive-winning strategy in Y (ignoring the finite prefix up to the last state not in Y ). Analogous arguments as in the proof of Lemma 3 show that this ensures the mean-payoff parity objective is violated with positive probability (actually with probability 1) and thus the states in U are even almost-sure winning for player Min. Therefore, the positive attractor for Min to U can be removed from R before we iterate (line 22). Note that the condition U = ∅ ensures that the variable R has strictly less states in the next iteration, and thus the outer loop terminates after at most |S| iterations. Finally when U = ∅, the value of the set-variables R ′ , Z, U computed in the k iterations of the inner loop satisfy the conditions of Lemma 3 (in particular the sets Z form a partition of R since U = ∅). It follows that R is the almost-sure winning set.

The complexity of Algorithm 1 is exponential in the number of priorities in the game, like the basic algorithm for parity games [START_REF] Zielonka | Infinite games on finitely coloured graphs with applications to automata on infinite trees[END_REF]. The key differences to the basic algorithm for parity games are as follows: (i) in our algorithm there is an extra nested loop when the maximum priority is odd; and (ii) in addition to the basic attractor computation for parity games we also need to compute the almost-sure winning set for stochastic mean-payoff games. If the largest priority in G is even, then as argued before, the loop (lines 5-12) is executed at most n times, and each iteration requires to compute (1) the almost-sure winning region for a mean-payoff game with n states, (2) attractors (computation time linear in the number of edges, hence in O(n 2 )), and (3) the almost-sure winning region for a mean-payoff parity game with at most n states and d -1 priorities. Therefore, we have

T (n, d, |δ|, W ) ∈ O(n • (MeanGame(n, |δ|, W ) + n 2 + T (n, d -1, |δ|, W ))).
If the largest priority in G is odd, then as argued before, the nested loops (lines 14-23 and lines [START_REF] Chatterjee | Mean-payoff parity games[END_REF][START_REF] Chatterjee | Quantitative stochastic parity games[END_REF][START_REF] Condon | The complexity of stochastic games[END_REF][START_REF] Filar | Competitive Markov Decision Processes[END_REF][START_REF] Gimbert | Solving simple stochastic tail games[END_REF][START_REF] Gimbert | Computing optimal strategies for Markov decision processes with parity and positive-average conditions[END_REF] are executed at most n times each (thus O(n 2 ) iterations), and each iteration requires attractor computation (in O(n 2 )) and a recursive call for solving a mean-payoff parity game with at most n states and d -1 priorities. Therefore, we have

T (n, d, |δ|, W ) ∈ O(n 2 • (n 2 + T (n, d -1, |δ|, W ))).
It follows that in all cases,

T (n, d, |δ|, W ) ∈ O(A(n, W ) + B(n) • T (n, d -1, |δ|, W ))) where A(n, W ) = n 4 + n 2 • MeanGame(n, |δ|, W ) and B(n) = n 2 .
A simple calculation then shows that, for all k < d,

T (n, d, |δ|, W ) ∈ O(k • A(n, W ) • B(n) k-1 + B(n) k • T (n, d -k, |δ|, W )))
and therefore (using

k = d -1) we have T (n, d, |δ|, W ) ∈ O(d • n 2d • MeanGame(n, |δ|, W )).
Note that MeanGame(n, |δ|, W ) ∈ |A| n • Poly(n, |δ|, W ) by simply enumerating over all positional strategies and then solving in polynomial time the resulting MDP obtained by fixing the positional strategy. 

R d Y X R ′ 1 R ′ 2 Z 1 Z 2 U = R \ (Z 1 ∪ Z 2 )
X ← Attr Max (U (d), G[U ]) 8 Y ← U \ X 9 R ′ ← SolveMeanPayoffParityGame(G[Y ]) 10 Z ← Attr Min (Y \ R ′ , G[U ]) 11 R ← U \ Z until R ′ = Y 12 return
(U (d), G[U ]) 18 Y ← U \ X 19 R ′ ← SolveMeanPayoffParityGame(G[Y ]) 20 Z ← Attr Max (R ′ , G[U ]) 21 U ← U \ Z until R ′ = ∅ 22 R ← R \ Attr Min (U, G) until U = ∅ 23 return R end 5 

Computational Complexity

In this section we establish the NP ∩ coNP complexity bound for the almost-sure winning problem.

The NP Membership

Although infinite-memory strategies are necessary for player Max to win mean-payoff parity games almost surely [START_REF] Chatterjee | Mean-payoff parity games[END_REF], we show that the almost-sure winning problem can be solved in NP by guessing a polynomial-size decomposition of the state space along with positional strategies that allow to construct an almost-sure winning strategy, possibly with infinite memory. First, if d = 0 then the algorithm guesses a positional strategy for player Max in U , and checks that it is almost-sure winning for the mean-payoff objective. It is known that positional strategies are sufficient in stochastic mean-payoff games [START_REF] Brázdil | One-counter stochastic games[END_REF], and the verification procedure has to solve the almostsure winning problem for mean-payoff objective in MDPs, thus it runs in time T nd (n, 0, |δ|, W ) ≤ n 

n 2 i + T nd (n i , d, |δ|, W ) ≤ k i=1 n i 2 + T nd k i=1 n i , d, |δ|, W and since k i=1 n i ≤ n, we get T nd (n, d + 1, |δ|, W ) ≤ n 2 + (d + 1) • (n 2 + MeanMDP(n, |δ|, W )) ≤ (d + 2) • (n 2 + MeanMDP(n, |δ|, W ))
Hence the announced result follows.

The coNP Membership

We show that positional strategies are sufficient for player Min to win positively in stochastic meanpayoff parity games. Using the fact that Algorithm 1 maintains in variable R an over-approximation of the almost-sure winning set for player Max, we construct a positional strategy for player Min from all states that are removed from R by the algorithm. Lemma 5. To win positively in stochastic mean-payoff parity games, positional strategies are sufficient for player Min.

Proof. We proceed by induction on the number of priorities in the game. First, if the game contains only one priority, then either the unique priority is even and in order to win player Min has to falsify the mean-payoff objective with positive probability which can be done using a positional strategy [START_REF] Brázdil | One-counter stochastic games[END_REF], or the unique priority is odd and player Min wins with an arbitrary positional strategy.

Second, assume by induction that positional strategies are sufficient for player Min to win positively in all stochastic mean-payoff parity games with set of priorities in {0, 1, . . . , d -1}, and let G be a stochastic mean-payoff parity game with priorities {0, 1, . . . , d}. Consider the execution of Algorithm 1 on G and the computation of the almost-sure winning set R.

• If d is even, then if a state s is removed from R by Algorithm 1, then either: (i) s ∈ S \ U (line 6), and then there exists a positional strategy for Min from s to violate the mean-payoff objective with positive probability [START_REF] Brázdil | One-counter stochastic games[END_REF]; Hence, the lemma follows.

Note that positional strategies are also sufficient for player Min to win almost-surely in stochastic mean-payoff parity games (i.e., to violate the mean-payoff parity objective with probability 1 regardless of the strategy of player Max). This follows from Lemma 5 and the following general argument for tail objectives with positional positive-winning strategies. First, we can construct the almost-sure winning set of player Min as follows. Given the almost-sure winning set U for player Max in a game G, construct its positive-attractor X = Attr Max (U, G). Clearly all states in X are positive winning for player Max, and thus are not almost-sure winning for player Min. Iterate the same construction in the subgame G[S \ X] until the almost-sure winning set U is empty. At that point, the remaining subgame is a trap for player Max in which all states are positive winning for player Min. As mean-payoff parity is a tail objective, it follows that the states in the remaining subgame is the set of almost-sure winning states for player Min, and a positional positive-winning strategy (that exists by Lemma 5) is also almost-sure winning for player Min [START_REF] Chatterjee | Concurrent games with tail objectives[END_REF]. By Remark 1 it follows that positional optimal strategies exist for player Min. We conclude with the following result.

Theorem 2. The following assertions hold: (1) Positional optimal strategies exist for player Min in stochastic mean-payoff parity games [START_REF] Billingsley | Probability and Measure[END_REF] The almost-sure winning and the value-strategy problem for stochastic mean-payoff parity games can be decided in NP ∩ coNP.

Proof. We already established the first item. We now argue the second item for almost-sure winning, and the result for the value-strategy problem follows from Remark 1. The NP bound follows from Lemma 4. The coNP bound follows from the fact that player Min has positional positive winning strategies (by Lemma 5), and after guessing a positional strategy for player Min, we obtain an MDP for which deciding almost-sure winning for mean-payoff parity objectives can be done in polynomial time [START_REF] Chatterjee | Energy and mean-payoff parity Markov decision processes[END_REF].

Remark 2. The complexity result of Theorem 2 matches the best known complexity for stochastic meanpayoff games [START_REF] Liggett | Stochastic games with perfect information and time average payoff[END_REF], stochastic parity games [START_REF] Chatterjee | Quantitative stochastic parity games[END_REF] (also see [START_REF] Andersson | The complexity of solving stochastic games on graphs[END_REF] for relationship of stochastic mean-payoff and stochastic parity games), and (non-stochastic) mean-payoff parity games [START_REF] Chatterjee | Energy parity games[END_REF].

Concluding remarks. In this work we established the computational and strategy complexity of the value-strategy problem for 2 1 2 -player mean-payoff parity games. In addition we presented an algorithm for computing the almost-sure winning states which requires the computation of the almost-sure winning states for 2 1 2 -player mean-payoff games. Improved algorithmic solutions for the computation of the almost-sure winning states in 2 1 2 -player mean-payoff games is an interesting question. Our algorithm for almost-sure winning and the general technique mentioned in Remark 1 for 2 1 2 -player games with tail objectives provide an exponential-time algorithm for the value-strategy problem. Whether more specialized algorithms (such as strategy-iteration algorithms) can be developed for the value-strategy problem in 2 1 2 -player mean-payoff parity games is another interesting algorithmic question.
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 1 If d is even (see Example 1 and Figure 1), let X = Attr Max (S(d), G) and Y = S \ X. An even certificate for G ensures that (1) in G all states are almost-sure winning for the objective Mean; and (2) in G[Y ] all states are almost-sure winning for Max for the objective Mean ∩ Par (using a certificate defined recursively in the subgame G[Y ], which has at least one less priority as there is

Figure 1 .

 1 Figure 1. Stochastic game G with largest priority even. An even certificate for G consists of a positional strategy for player Max that is almost-sure winning from every state in G for only the mean-payoff objective, and a certificate for the subgame G[Y ] where Y = S \ Attr Max (S(d), G) (note that G[Y ] has less priorities than G).

Lemma 2 .

 2 Let G be a stochastic mean-payoff parity game with state space S and such that the largest priority d in G is even. Let X = Attr Max (S(d), G) and Y = S \ X. All states in G are almost-sure winning for player Max with the mean-payoff parity objective Mean ∩ Par if and only if: 1. all states in G are almost-sure winning for the mean-payoff objective Mean for Max, and 2. all states in G[Y ] are almost-sure winning for the mean-payoff parity objective Mean ∩ Par for Max. Proof. Let G satisfy the conditions of the lemma. We first show that all states in G are almost-sure winning for Max for the objective Mean ∩ Par. Let σ Sub be an almost-sure winning strategy for Mean ∩ Par in the subgame G[Y ] induced by Y , let σ Attr be a positional positive-attractor strategy to S(d) in G, and let σ Mean be an almost-sure winning strategy for Mean in G.

  then the result of the lemma follows (take k = 1). Otherwise, we can use the same argument as above in the subgameG[S \ Z 1 ] = G[U 2 ], and construct a non-empty set R 2 ⊆ U 2 satisfying the conditions of the lemma. Note that Z 1 = ∅ since R 1 = ∅ and thus G[S \ Z 1 ] has less states than G. It follows that repeating this construction at most k = |S| times achieves the result.

  First, compute the almost-sure wining region U for the Mean objective (line 6) in G[R]. Compute the positive attractor X for player Max to the set of states with priority d in U , and let Y be the complement (line 8). Recursively compute the almostsure winning region R ′ in G[Y ] for the mean-payoff parity objective (line 9), and iterate (until R ′ = Y ) in the subgame induced by the complement U \ Z of the player-Min positive attractor Z = Attr Min (Y \ R ′ , G[U ]) (i.e., removing some positive winning states for player Min).

  In case (a) (d is even), the set Y induces a subgame, and therefore if R ′ = Y , then the conditions of Lemma 2 are satisfied in G[U ] (namely, all states in G[U ] are almost-sure winning for Mean, and all states in G[Y ] are almost-sure winning for Mean ∩ Par by induction hypothesis) and it follows that R = U is the almost-sure winning set. Otherwise R ′ ⊂ Y , and the complement Y \ R ′ and its positive attractor Z for player-Min are positive winning for player Min. Thus all states in Z can be removed and the assignment R ← U \ Z yields a strictly smaller subgame than in the previous iteration (and R is indeed a trap for player Min). Hence, there are at most |S| iterations to obtain the almost-sure winning set in variable R. • In case (b) (d is odd), we show that the set U computed by the inner loop (lines 16-21) contains states that are positive winning player Min, and therefore its positive attractor (for Min) can be removed from R (as done at line 22). The inner loop computes in R ′ , using a recursive call, the set of almost-sure winning states of player Max in the subgame induced by the complement Y of player-Min positive attractor to priority d (this step is correct by induction hypothesis). After removing the positive attractor for Max to R ′ (line 21), we get a strictly smaller state space U , thus the inner loop terminates after at most k ≤ |S| iterations. Now if R ′ = ∅, then in the subgame G[Y ] all states are positive winning for player Min. It follows that against all strategies of player Max

Theorem 1 .

 1 Given a stochastic mean-payoff parity game G with n states, probabilistic transition function δ, priorities in {0, 1, . . . , d -1}, and largest absolute reward W , Algorithm 1 computes the almost-sure winning region of G in time O(d • n 2d • MeanGame(n, |δ|, W )) where MeanGame(n, |δ|, W ) is the time complexity of solving the almost-sure winning problem for stochastic games with only a mean-payoff objective. Proof. The correctness of Algorithm 1 follows from the key arguments given above. Denote by T (n, d, |δ|, W ) the running time of Algorithm 1, where n, d, |δ|, W are as defined in the statement of the lemma. Then, it is easy to check that T (n, 1, |δ|, W ) ∈ O(MeanGame(n, |δ|, W )).

Figure 3 .

 3 Figure 3. View of Algorithm 1 at line 11 (largest priority even).

Figure 4 . 1 R 3

 413 Figure 4. View of Algorithm 1 at line 21 (largest priority odd).
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 456 U be the almost-sure winning region for Max in G[R] for Mean
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Lemma 4 .

 4 The almost-sure winning problem for stochastic mean-payoff parity games is in NP.Proof. We present a nondeterministic polynomial-time algorithm to decide the almost-sure winning problem that, given a stochastic mean-payoff parity game G with n states, probabilistic transition function δ, largest priority d, and largest absolute reward W , runs in timeT nd (n, d, |δ|, W ) ≤ (d + 1) • (n 2 + MeanMDP(n, |δ|, W ))where MeanMDP(n, |δ|, W ) is the time complexity of solving almost-sure winning problem for MDPs with n states and largest absolute reward W , with only mean-payoff objectives. Since MeanMDP(n, |δ|, W ) is bounded by a polynomial[START_REF] Brázdil | One-counter stochastic games[END_REF], the result follows.The proof is by induction on the largest priority d in the game G. Given an initial states s, the algorithm guesses a trap U for player Min such that s ∈ U (which can be done in time O(n 2 )), and checks that all states in G[U ] are almost-sure winning for player Max. Note that since U is a trap for player Min in G, we can use the characterizations of Lemma 2 and Lemma 3 in the subgame G[U ] (if all states in G[U ] are almost-sure winning, then all states of U are almost-sure winning in G as well).

  (ii) s ∈ Y \ R ′ (line 8 and line 9), and then since G[Y ] is a subgame with priorities in {0, 1, . . . , d -1}, by the induction hypothesis there exists a positive winning strategy for player Min from all states in Y \ R ′ ; (iii) s ∈ Attr Min (Y \ R ′ , G[U ]) (line 10), and the positional positive-attractor strategy for player Min ensures to reach Y \ R ′ with positive probability, and from there player Min is positive winning according to (ii). • If d is odd, then the states removed from R by Algorithm 1 are in the positive attractor for player Min to the set U computed by the inner loop (line 22). Hence it suffices to present a positive winning strategy for player Min in U . Note that since U is obtained when R ′ = ∅, it follows that U = X ∪ Y where X is the positive attractor for player Min to the odd priority d, and Y = U \ X is the complement that contains no priority-d state (line 17 and 18). Moreover, all states in Y are positive winning for player Min. In X, fix the positional positive-attractor strategy for player Min, and in Y , by the induction hypothesis, there is a positional positive winning strategy for Min. By analogous argument as in the proof of Lemma 3, this strategy of player Min violates the mean-payoff parity objective with positive probability (in fact with probability 1).

  R

	13	if d is odd then
	14	repeat
	15	U ← R /* over-approx. of pl.-Min pos. winning states */
	16	repeat
	17	X ← Attr Min

  )) for all stochastic games with largest priority d and we show that the same relation holds for stochastic games with largest priority d + 1. We consider two cases:• If the largest priority d + 1 is even. According to Lemma 2, the algorithm can (a) guess a positional strategy for player Max in G[U ], and check that it is almost-sure winning from all states in U for the mean-payoff objective, and (b) compute the positive attractor X = Attr It follows that the running timeT nd (n, d + 1, |δ|, W ) of the algorithm is at most MeanMDP(n, |δ|, W )+n 2 +(d+1)•(n 2 +MeanMDP(n, |δ|, W )) = (d+2)•(n 2 +MeanMDP(n, |δ|, W )).• If the largest priority d + 1 is odd. According to Lemma 3, the algorithm can guess k ≤ |U | sets R i (i = 1, . . . , k), and check that for the sets U i and Z i defined by U 1 = U , and for 1 ≤ i ≤ k byZ i = Attr Max (R i , G[U i ]), and U i+1 = U i \ Z i ,the sets R i are traps for player Min in G[U i ], all states in R i are almost-sure winning for objective Mean ∩ Par in G[U i ], and the sets Z i form a partition of U . Let n i = |R i |. By the induction hypothesis, the running time T nd (n, d + 1, |δ|, W ) of the algorithm is at most

	k
	i=1

2 + MeanMDP(n, |δ|, W ). Second, consider that T nd (n, d, |δ|, W ) ≤ (d + 1) • (n 2 + MeanMDP(n, |δ|, W Max (U (d), G[U ]) for player Max to the states with priority d + 1, and check that all states in the subgame G[U \ X] are almost-sure winning for the mean-payoff parity objective in time at most (d + 1) • (n 2 + MeanMDP(n, |δ|, W )) by the induction hypothesis (since the largest priority in G[U \ X] is at most d).

Phase 2: (Subgame phase). While the current play ρ is in Y , let ρ ′ be the suffix of ρ obtained by ignoring the prefix of ρ up to the end of Phase 1 of the current round. Play σ Sub (ρ ′ ). If the play leaves Y (and thus reaches X), then switch to Phase 3.

Phase 3: (Attractor phase). Play σ Attr for at most |S| steps, or until a state with priority d is reached, or the positive attractor X is left. Switch to Phase 1 in round i + 1.

Formally, define the function Up d : S + → {Sub, Attr, MeanPh} × N that maps play prefixes ρ to a pair Up d (ρ) = (m, c) where m is the current phase, and c is the number of steps already spent in phase m. The definition is inductive. For a play ρ = s where s ∈ S, define

) is defined for a play prefix ρ (note that |ρ|c is the position in ρ of the last switch to current mode m), and for all s ∈ S define:

We are now ready to define the strategy that Max plays in G.

We show that σ is almost-sure winning for the Mean ∩ Par objective. Consider the following events A and B:

Intuitively, A denotes that from some point on the play remains only in the subgame Y , and B denotes that the set X (positive attractor to priority d) is visited infinitely often. Let τ be a strategy for Min, then any play consistent with (σ, τ ) belongs to A ∪ B and since A ∩ B = ∅ we have P σ,τ s (A ∪ B) = P σ,τ s (A) + P σ,τ s (B) = 1.

We now consider two cases to establish that σ is almost-sure winning.