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WEIGHTED RESTRICTION TYPE ESTIMATES FOR GRUSHIN

OPERATORS AND APPLICATION TO SPECTRAL MULTIPLIERS AND

BOCHNER-RIESZ SUMMABILITY

PENG CHEN AND EL MAATI OUHABAZ

Abstract. We prove weighted restriction type estimates for Grushin operators. These es-
timates are then used to prove sharp spectral multiplier theorems as well as Bochner-Riesz
summability results with sharp exponent.

1. Introduction

We consider Grushin operators on Rd1 × Rd2 = R
d1
x′ × R

d2
x′′ defined by

L := −
d1∑

j=1

∂2x′j −
( d1∑

j=1

|x′j|2
) d2∑

k=1

∂2x′′k .(1.1)

Such operators, defined by the quadratic form technique, are self-adjoint in L2(Rd1 ×Rd2). Let
EL(λ) be the spectral resolution of the operator L for λ ≥ 0. By the spectral theorem for every
bounded Borel function F : R → C, one can define

(1.2) F (L) =

∫ ∞

0

F (λ) dEL(λ).

The operator F (L) is bounded on L2(Rd1 × Rd2). This paper is devoted to spectral multiplier
results for L, that is, we investigate minimal sufficient condition on F under which the operator
F (L) extends to a bounded operator on Lp(Rd1 × Rd2) for some range of p. In this context,
the minimal condition on F we have in mind is the same as in the Fourier multiplier theorem,
i.e., boundedness of F (−∆) on Lp(Rd) where ∆ is the Euclidean Laplacian. We also study the
closely related question of critical exponent δ for which the Bochner-Riesz means (1− tL)δ+ are
bounded on Lp(Rd1 × Rd2) uniformly in t ∈ [0,∞).

Spectral multipliers and Bochner-Riesz summability for Grushin operators have been studied
recently by other authors. In [9], it is proved that for δ > 1

2
(d1 + d2) − 1

2
, the Bochner-Riesz

means (1 − tL)δ+ are bounded on Lp(Rd1 × R
d2) uniformly in t ∈ [0,∞) for all 1 ≤ p ≤ ∞. A

previous result was proved in [10] with the condition δ > 1
2
max(d1 + d2, 2d2)− 1

2
. Our aim is

to get similar results for smaller values of δ, i.e. when 0 < δ < 1
2
(d1 + d2)− 1

2
. In this case, we

cannot hope for (1−tL)δ+ to be bounded on Lp(Rd1×Rd2) for all p ∈ [1,∞]. Our aim is to prove
that (1− tL)δ+ are bounded on Lp(Rd1 × Rd2) uniformly in t for p in some symmetric interval
[pδ, p

′
δ] around 2. The value pδ depends of course on δ. Such questions have been studied for

the Euclidean Laplacian in which case the optimality of δ is known but the optimality of p is
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2 PENG CHEN AND EL MAATI OUHABAZ

a celebrate open problem, known as the Bochner-Riesz problem. See [15], p. 420 and [16] for
more details and recent progress on this problem.

Starting from the result quoted above from [9] and [10], one can use complex interpolation
between L2 boundedness for any δ > 0 and L1 boundedness for a fixed δ > (d1 + d2)/2 − 1/2
to obtain that for δ > (d1 + d2 − 1)|1/p − 1/2|, (1 − tL)δ+ are bounded on Lp(Rd1 × Rd2)
uniformly in t. Note however that this strategy does not give the optimal exponent. For
example, when L = −∆ on Rn, (1 + t∆)δ+ are bounded on Lp(Rn) uniformly when δ >
max{n|1/p−1/2|−1/2, 0} for 1 ≤ p ≤ (2n+2)/(n+3), which is better than the interpolation
approach which leads to δ > (n − 1)|1/p− 1/2|. The sharpened result for the Laplacian, i.e.,
δ > max{n|1/p − 1/2| − 1/2, 0} for 1 ≤ p ≤ (2n + 2)/(n + 3), is obtained by the restriction
theorem for the Fourier transform on the unit sphere. In an abstract setting, versions of the
restriction estimate are introduced in [1] and we are tempted to follow [1] in order to prove
boundedness of Bochner-Riesz means for L. There is however an obstacle. The restriction type
estimate introduced in [1] leads to spectral multipliers using “the” homogeneous dimension
Q = d1 + 2d2 rather than the topological one d1 + d2. The exponent we will get for the
Bochner-Riesz means is then max{Q|1/p−1/2|−1/2, 0}. The problem of getting sharp spectral
multipliers using the topological dimension rather than the homogeneous one appeared already
in the case of the Heisenberg group. See [5] and [11].

Our strategy to deal with this problem is to use a weighted version of restriction estimates
for the operator L. More precisely, let F be a bounded Borel function with support suppF
contained in [R/4, R] for some R > 0. Then for 1 ≤ p ≤ min{2d1/(d1 + 2), (2d2 + 2)/(d2 + 3)}
and 0 ≤ γ < d2(1/p− 1/2), we prove that

‖|x′|γF (
√
L)f‖L2(Rd1×Rd2) ≤ CR(2d2+d1)(1/p−1/2)−γ‖δRF‖L2(R)‖f‖Lp(Rd1×Rd2 ).

Using this weighted restriction type estimate, we prove sharp spectral multiplier results and
optimal Bochner-Riesz summability stated in Theorems 1.1 and 1.2 below. We set

D := max{d1 + d2, 2d2}
and denote as usual W s

2 the L2 Sobolev space of order s with ‖F‖W s
2
:= ‖(I − d2x)

s/2F‖2.
Throughout, η is an auxiliary and non trivial C∞ function with compact support contained in
(0,∞).

Theorem 1.1. Let 1 ≤ p ≤ min{2d1/(d1 + 2), (2d2 + 2)/(d2 + 3)}. Suppose that the bounded

Borel function F : R → C satisfies

sup
t>0

‖η F (t·)‖W s
2
<∞

for some s > max{D|1/p− 1/2|, 1/2}. Then the spectral multiplier operator F (L) is bounded

on Lp(Rd1 × R
d2). In addition

‖F (L)‖Lp→Lp ≤ Cp sup
t>0

‖η F (t·)‖W s
2
.

For Bochner-Riesz means we prove the following result.

Theorem 1.2. Let 1 ≤ p ≤ min{2d1/(d1 + 2), (2d2 + 2)/(d2 + 3)}. Suppose that δ >
max{D|1/p−1/2|−1/2, 0}. Then the Bochner-Riesz means (1−tL)δ+ are bounded on Lp(Rd1 ×
R
d2) uniformly in t ∈ [0,∞).

Theorems 1.1 and 1.2 are optimal when d1 ≥ d2. In this case D coincides with the topological
dimension d1+d2 of R

d1 ×R
d2 . By the elliptic property of L in the region where x′ 6= 0, one can

use the transplantation argument described in [6] to deduce the sharpness of the above theorems
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from the fact that the exponent D|1/p − 1/2| − 1/2 is sharp for the classical Bochner-Riesz
summability on RD. See also [10] and [9].

Conjecture. We believe that the previous theorems are true with D = d1 + d2 instead of
D = max(d1+ d2, 2d2). As we mentioned above, if p = 1, the spectral multiplier theorem in [9]
is valid for s > 1

2
(d1 + d2). This means that the conjecture is true when p = 1.

Throughout, the symbols “c” and “C” will denote (possibly different) positive constants that
are independent of the essential variables. The notation A ∼ B means that the quantities A
and B satisfy cA ≤ B ≤ CA for some positive constants c and C.

2. Riemannian distance and the heat kernel estimates

Heat kernel bounds for Grushin type operators have been proved in [12]. Here we state some
basic results concerning the Riemannian distance associated with the Grushin operator L and
recall the Gaussian bound for the corresponding heat kernel.

Recall that the Riemannian (quasi-)distance corresponding to the operator L can be defined
by

ρ(x, y) = sup
ψ∈D

(ψ(x)− ψ(y))

for all x = (x′, x′′), y = (y′, y′′) ∈ Rd1 × Rd2 where

D =

{
ψ ∈ W 1,∞(Rd1 × R

d2) :
( d1∑

j=1

|∂x′jψ|
2 +

( d1∑

j=1

|x′j |2
) d2∑

k=1

|∂x′′kψ|
2
)
≤ 1

}
.

For this distance ρ and the Lebesgue measure the finite speed propagation property for the
corresponding wave equation as well as Gaussian estimates for the heat kernel of L are satisfied.
See [12, Proposition 4.1] for more detailed discussion and references.

Theorem 2.1. Let ρ be Riemannian distance associated with the Grushin operator L. Then

for x = (x′, x′′), y = (y′, y′′) ∈ Rd1 × Rd2,

(2.1) ρ(x, y) ∼ |x′ − y′|+
{

|x′′−y′′|
|x′|+|y′| if |x′′ − y′′|1/2 ≤ |x′|+ |y′|,
|x′′ − y′′|1/2 if |x′′ − y′′|1/2 ≥ |x′|+ |y′|.

Moreover the volume of the ball B(x, r) := {y ∈ Rd1 ×Rd2 : ρ(x, y) < r} satisfies the following

estimates

(2.2) |B(x, r)| ∼ rd1+d2 max{r, |x′|}d2 ,
and in particular, for all λ ≥ 0,

(2.3) |B(x, λr)| ≤ C(1 + λ)Q|B(x, r)|
where Q = d1+2d2 is “the” homogenous dimension of the considered metric space. Next, there

exist constants b, C > 0 such that, for all t > 0, the integral kernel pt of the operator exp(−tL)
satisfies the following Gaussian bound

(2.4) |pt(x, y)| ≤ C|B(y, t1/2)|−1e−bρ(x,y)
2/t

for all x, y ∈ Rd1 × Rd2.

Proof. For the proof, we refer the reader to [12, Proposition 5.1 and Corollary 6.6]. �
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3. Weighted restriction estimates

In this section, we discuss the spectral decomposition of L and then state and prove the
weighted restriction estimate.

Let F : L2(Rd1 × Rd2) → L2(Rd1 × Rd2) be the partial Fourier transform in the variable x′′,
that is

Fφ(x′, ξ) = φ̂(x′, ξ) = (2π)−d2/2
∫

Rd2

φ(x′, x′′) e−iξ·x
′′

dx′′.

Then

(3.1) FLφ(x′, ξ) = Lξ Fφ(x′, ξ),
where Lξ is the Schrödinger operator defined by

Lξ = −∆d1 + |x′|2|ξ|2

acting on L2(Rd1) where ξ ∈ Rd2 . We have the following proposition.

Proposition 3.1. For any integrable function F with compact support in R, we have

F (L)f(x′, x′′) = F−1(F (Lξ)f̂(x
′, ξ))(x′′).

Proof. This equality is essentially proved in [10, Proposition 5]. Alternatively, we can follow
the approach used in the proof of Proposition 3.2 in [2] for a direct proof. �

Next we turn to the spectral decomposition of the operator Lξ on Rd1 . Let L1 = −∆d1 + |x′|2
be the harmonic oscillator on Rd1 , ν be a multi-index and Φν(x

′) = hν1(x
′
1) · · ·hνd1 (x

′
d1
), where

hνj is the Hermite function of order νj . Recall that 2|ν| + d1 and Φν are the eigenvalues and

eigenfunctions of the operator L1. Thus (2|ν| + d1)|ξ| and Φξν(x
′) = |ξ|d1/4Φν(

√
|ξ|x′) are the

eigenvalues and eigenfunctions of the operator Lξ; see [10]. Then we have

Lξf =
∞∑

k=0

(2k + d1)|ξ|
∑

|ν|=k
〈f,Φξν〉Φξν

and

F (Lξ)f =

∞∑

k=0

F ((2k + d1)|ξ|)
∑

|ν|=k
〈f,Φξν〉Φξν .

We have the following restriction type estimate for Lξ.

Proposition 3.2. Suppose d1 ≥ 2. For 1 ≤ p ≤ 2d1/(d1 + 2),

‖
∑

|ν|=k
〈f,Φξν〉Φξν‖L2(Rd1 ) ≤ C|ξ|

d1
2
( 1
p
− 1

2
)(2k + d1)

d1
2
( 1
p
− 1

2
)− 1

2‖f‖Lp(Rd1 ).(3.2)

Proof. From [7, Corollary 3.2] we have for 1 ≤ p ≤ 2d1/(d1 + 2),

‖
∑

|ν|=k
〈f,Φν〉Φν‖L2 ≤ C(2k + d1)

d1
2
( 1
p
− 1

2
)− 1

2‖f‖Lp.

Then changing variables from the above inequality implies

‖
∑

|ν|=k
〈f,Φξν〉Φξν‖L2 = ‖

∑

|ν|=k

〈
f, |ξ|d1/4Φν(

√
|ξ|·)

〉
|ξ|d1/4Φν(

√
|ξ|x′)‖L2

= ‖
∑

|ν|=k

〈
f(

·√
|ξ|

),Φν(·)
〉
Φν(

√
|ξ|x′)‖L2
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= ‖
∑

|ν|=k

〈
f(

·√
|ξ|

),Φν(·)
〉
Φν(x

′)‖L2 |ξ|−d1/4

≤ C|ξ|−d1/4(2k + d1)
d1
2
( 1
p
− 1

2
)− 1

2‖f( ·√
|ξ|

)‖Lp

≤ C|ξ|
d1
2
( 1
p
− 1

2
)(2k + d1)

d1
2
( 1
p
− 1

2
)− 1

2‖f‖Lp(Rd1 ).

�

In order to prove the weighted restriction estimate for L, we need the following proposition,
which is essentially the same as [10, Proposition 4].

Proposition 3.3. Let γ ∈ [0,∞) and f ∈ L2(Rd1). Then

‖|x′|γf‖L2(Rd1 ) ≤ Cγ‖|ξ|−γLγ/2ξ f‖L2(Rd1 ).

Here Cγ is non-decreasing in γ.

Proof. Let H be the harmonic oscillator −d2/du2 + u2 on R. It is obvious that

‖|u|f‖L2(R) ≤ ‖H1/2f‖L2(R).

In addition since the first eigenvalue of H is bigger than 1,

‖ d
2

du2
f‖22 + ‖u2f‖22 ≤ ‖(− d2

du2
+ u2)f‖22 − 2Re〈− d2

du2
f, u2f〉

≤ ‖Hf‖22 − 2Re〈 d
du
f, 2uf〉 − 2‖u d

du
f‖22

≤ ‖Hf‖22 − 2Re〈 d
du
f, 2uf〉

≤ ‖Hf‖22 + 4‖ d
du
f‖2‖uf‖2

≤ ‖Hf‖22 + 4‖H1/2f‖2‖H1/2f‖2
≤ 5‖Hf‖22.

This implies that

‖u2f‖L2(R) ≤
√
5‖Hf‖L2(R).

By iteration, we can prove that for k ∈ N,

‖ukf‖L2(R) ≤ Ck‖Hk/2f‖L2(R).

For details, we refer to Proposition 3.2 and 3.3 in [4]. Now by a similar approach as in in the
proof of Proposition 2.2 in [2], we can prove Proposition 3.3. �

We state our weighted restriction estimate for the Grushin operator L.

Theorem 3.4. Let F be a Borel function with suppF ⊂ [R/4, R] for some R > 0. Then for

1 ≤ p ≤ min{2d1/(d1 + 2), (2d2 + 2)/(d2 + 3)} and 0 ≤ γ < d2(1/p− 1/2),

‖|x′|γF (
√
L)f‖

L2(R
d1
x′

×R
d2
x′′

)
≤ CR(2d2+d1)(

1
p
− 1

2
)−γ‖δRF‖L2(R)‖f‖Lp(Rd1×Rd2).(3.3)

Moreover, when |y′| > 4r,

‖|x′|γF (
√
L)PB(y,r)f‖L2(R

d1
x′

×R
d2
x′′

)
≤ CR(d2+d1)(

1
p
− 1

2
)|y′|γ−d2( 1p− 1

2
)‖δRF‖L2‖f‖Lp(Rd1×Rd2),(3.4)
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where y = (y′, y′′) ∈ Rd1 ×Rd2 and PB(y,r) is the projection on the ball B(y, r) of Rd1 ×Rd2 for

distance ρ.

Proof. When p = 1, this theorem is proved in [10, Proposition 10]. So in what follows we may
assume that d1 > 2. Let G(x) = F (

√
x). Then suppG ⊂ [R2/16, R2]. By a density argument,

it is enough to prove the estimates (3.3) and (3.4) for functions f ∈ L2(Rd1×Rd2)∩Lp(Rd1×Rd2)
such that f(x′, x′′) = g(x′)h(x′′) where g ∈ L2(Rd1) ∩ Lp(Rd1) and h ∈ L2(Rd2) ∩ Lp(Rd2).

By Proposition 3.1 and Plancherel equality,

‖|x′|γF (
√
L)f‖2

L2(R
d1
x′

×R
d2
x′′

)
= ‖F−1(|x′|γG(Lξ)g(x′)ĥ(ξ))(x′′)‖2L2(R

d1
x′

×R
d2
x′′

)

= ‖|x′|γG(Lξ)g(x′)ĥ(ξ)‖2L2(R
d1
x′

×R
d2
ξ )
.(3.5)

Then by Proposition 3.3,

‖|x′|γG(Lξ)g(x′)ĥ(ξ)‖2L2(R
d1
x′

)

≤ ‖|ξ|−γLγ/2ξ G(Lξ)g(x
′)ĥ(ξ)‖2

L2(R
d1
x′

)

= ‖|ξ|−γ
∞∑

k=0

((2k + d1)|ξ|)γ/2G((2k + d1)|ξ|)
∑

|ν|=k
〈g,Φξν〉Φξν(x′)ĥ(ξ)‖2L2(R

d1
x′

)
,

and by the orthonormal property for eigenfunctions of different eigenvalues, we have

‖|x′|γG(Lξ)g(x′)ĥ(ξ)‖2L2(R
d1
x′

)

≤
∞∑

k=0

‖|ξ|−γ((2k + d1)|ξ|)γ/2G((2k + d1)|ξ|)
∑

|ν|=k
〈g,Φξν〉Φξν(x′)ĥ(ξ)‖2L2(R

d1
x′

)
.

This together with equality (3.5) implies

‖|x′|γF (
√
L)f‖2

L2(R
d1
x′

×R
d2
x′′

)

≤
∞∑

k=0

‖|ξ|−γ((2k + d1)|ξ|)γ/2G((2k + d1)|ξ|)
∑

|ν|=k
〈g,Φξν〉Φξν(x′)ĥ(ξ)‖2L2(R

d1
x′

×R
d2
ξ )
.(3.6)

Let G̃k,x′(|ξ|) be the function on R defined by

G̃k,x′(|ξ|) = |ξ|−γ((2k + d1)|ξ|)γ/2G((2k + d1)|ξ|)
∑

|ν|=k
〈g,Φξν〉Φξν(x′).

By estimate (3.6) and Plancherel equality,

‖|x′|γF (
√
L)f‖2

L2(R
d1
x′

×R
d2
x′′

)
≤

∞∑

k=0

‖F−1
(
G̃k,x′(|ξ|)ĥ(ξ)

)
(x′′)‖2

L2(R
d1
x′

×R
d2
x′′

)

=
∞∑

k=0

‖G̃k,x′(
√

−∆2)h(x
′′)‖2

L2(R
d1
x′

×R
d2
x′′

)
.(3.7)

Note that suppG ⊂ [R2/16, R2]. Thus supp G̃k,x′ ⊂ [0, R2/(2k + d1)]. Set m = 2k + d1 and
a = R2/(2k + d1). By restriction type estimates for −∆2 (see e.g. [1]),

‖G̃k,x′(
√
−∆2)h(x

′′)‖2
L2(R

d2
x′′

)
≤ Ca2d2(

1
p
− 1

2
)‖δaG̃k,x′‖2L2(R)‖h‖2Lp(Rd2 ).
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Thus by (3.7),

‖|x′|γF (
√
L)f‖2

L2(R
d1
x′

×R
d2
x′′

)
≤ C

∞∑

m=1

a2d2(
1
p
− 1

2
)‖δaG̃k,x′‖2L2(R

d1
x′

×R|ξ|)
‖h‖2Lp(Rd2 ).(3.8)

By Proposition 3.2,

‖δaG̃k,x′‖2L2(R
d1
x′

×R|ξ|)
≤

∫

R|ξ|

|aξ|−2γ(am|ξ|)γ|G(am|ξ|)|2‖
∑

|ν|=k
〈g,Φaξν 〉Φaξν ‖2

L2(R
d1
x′

)
d|ξ|

≤ C

∫

R|ξ|

|aξ|−2γ(am|ξ|)γ|G(am|ξ|)|2|aξ|d1( 1p− 1
2
)md1(

1
p
− 1

2
)−1‖g‖2Lp(Rd1 ) d|ξ|

≤ Cm2γ−1

∫

R

t−2γtγ|G(t)|2td1( 1p− 1
2
) dt

ma
‖g‖2Lp(Rd1 )

≤ Cm2γ−1R2d1(
1
p
− 1

2
)−2γ‖δR2G‖2L2(R)‖g‖2Lp(Rd1 ).(3.9)

Combing estimates (3.8) and (3.9) and noting that γ < d2(1/p− 1/2) yields

‖|x′|γF (
√
L)f‖2

L2(R
d1
x′

×R
d2
x′′

)

≤ C
∞∑

m=1

R4d2(
1
p
− 1

2
)+2d1(

1
p
− 1

2
)−2γm2γ−2d2(

1
p
− 1

2
)−1‖δR2G‖2L2(R)‖g‖2Lp(Rd1 )‖h‖2Lp(Rd2 )

≤ CR4d2(
1
p
− 1

2
)+2d1(

1
p
− 1

2
)−2γ‖δRF‖2L2(R)‖f‖2Lp(Rd1×Rd2 ).

This proves the estimate (3.3).
Next we prove (3.4). Similarly to the above derivation, we have

‖|x′|γF (
√
L)PB(y,r)f‖2L2(R

d1
x′

×R
d2
x′′

)

≤ C
∞∑

m=1

a2d2(
1
p
− 1

2
)‖δaG̃k,x′‖2L2(R

d1
x′

×R|ξ|)
‖h‖2Lp(Rd2 )

≤ C
∞∑

m=1

a2d2(
1
p
− 1

2
)

∫

R|ξ|

|aξ|−2γ(am|ξ|)γ|G(am|ξ|)|2‖
∑

|ν|=k
〈g,Φaξν 〉Φaξν ‖2

L2(R
d1
x′

)
d|ξ|‖h‖2Lp(Rd2 )

≤ C
∞∑

m=1

a2d2(
1
p
− 1

2
)

∫

R

m2γt−γ |G(t)|2‖
∑

|ν|=k
〈g,Φt/mν 〉Φt/mν ‖2

L2(R
d1
x′

)
dt/(am)‖h‖2Lp(Rd2 )

≤ C

∫

R

R4d2(
1
p
− 1

2
)−2t−γ |G(t)|2

∞∑

m=1

m2γ−2d2(
1
p
− 1

2
)‖

∑

|ν|=k
〈g,Φt/mν 〉Φt/mν ‖2

L2(R
d1
x′

)
dt‖h‖2Lp(Rd2 ),

where the function g has compact support such that supp g ⊂ B(y′, r) which is the standard
ball defining by Euclidean distance in R

d1 . Note that suppG ⊂ [R2/16, R2]. Thus R2 ∼ t in
the last integral and then

‖|x′|γF (
√
L)PB(y,r)f‖2L2(R

d1
x′

×R
d2
x′′

)
(3.10)

≤ C

∫

R

R2d2(
1
p
− 1

2
)−2td2(

1
p
− 1

2
)−γ|G(t)|2

∞∑

m=1

m2γ−2d2(
1
p
− 1

2
)‖

∑

|ν|=k
〈g,Φt/mν 〉Φt/mν ‖2

L2(R
d1
x′

)
dt‖h‖2Lp(Rd2 ).
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Next we claim that for 0 ≤ γ < d2(
1
p
− 1

2
),

∞∑

m=1

|y′|2d2( 1p− 1
2
)−2γtd2(

1
p
− 1

2
)−d1( 1p−

1
2
)−γm2γ−2d2(

1
p
− 1

2
)‖

∑

|ν|=k
〈g,Φt/mν 〉Φt/mν ‖2

L2(R
d1
x′

)
(3.11)

≤ C‖g‖2Lp,

where C is independent of t and y′.
In order to prove (3.11) we split the sum into two parts: m ≤

√
t|y′|/4 and m >

√
t|y′|/4.

If m >
√
t|y′|/4, by Proposition 3.2,

∞∑

m>
√
t|y′|/4

|y′|2d2( 1p− 1
2
)−2γtd2(

1
p
− 1

2
)−d1( 1p−

1
2
)−γm2γ−2d2(

1
p
− 1

2
)‖

∑

|ν|=k
〈g,Φt/mν 〉Φt/mν ‖2

L2(R
d1
x′

)

≤ C

∞∑

m>
√
t|y′|/4

|y′|2d2( 1p− 1
2
)−2γtd2(

1
p
− 1

2
)−d1( 1p−

1
2
)−γm2γ−2d2(

1
p
− 1

2
)(t/m)d1(

1
p
− 1

2
)md1(

1
p
− 1

2
)−1‖g‖2Lp

≤ C
∞∑

m>
√
t|y′|/4

(
√
t|y′|)2d2( 1p− 1

2
)−2γm2γ−2d2(

1
p
− 1

2
)−1‖g‖2Lp

≤ C‖g‖2Lp.

If m ≤
√
t|y′|/4 and x′ ∈ B(y′, r), then |x′| ≥ |y′|/2 and m ≤

√
t|x′|/2. Moreover,

|m−1/2
√
tx′|2 ≥ 4m. By [10, Lemma 8], we know that

∑
|ν|=k |Φν(x′)|2 ≤ C exp(−c|x′|2) when

|x′|2 ≥ 2(2k + d1). Hence
∑

|ν|=k
|Φt/mν (x′)|2 = |t/m|d1/2

∑

|ν|=k
|Φν(m−1/2

√
tx′)|2

≤ C|t/m|d1/2e−ct|x′|2/m

≤ C|t/m|d1/2e−ct|y′|2/m.
Therefore,

‖
∑

|ν|=k
〈g,Φt/mν 〉Φt/mν ‖2

L2(R
d1
x′

)
≤ ‖g‖2Lp

∑

|ν|=k
‖Φt/mν ‖2

Lp′(B(y′,r))

≤ ‖g‖2Lp‖(
∑

|ν|=k
|Φt/mν |2)1/2‖2

Lp′(B(y′,r))

≤ C‖g‖2Lp|t/m|d1/2e−ct|y′|2/mr2d1(1− 1
p
).

Hence
∞∑

m≤
√
t|y′|/4

|y′|2d2( 1p− 1
2
)−2γtd2(

1
p
− 1

2
)−d1( 1p−

1
2
)−γm2γ−2d2(

1
p
− 1

2
)‖

∑

|ν|=k
〈g,Φt/mν 〉Φt/mν ‖2

L2(R
d1
x′

)

≤
∞∑

m≤
√
t|y′|/4

(
√
t|y′|)2d1(1− 1

p
)+2d2(

1
p
− 1

2
)−2γm−2d2(

1
p
− 1

2
)−d1/2e−ct|y

′|2/m‖g‖2Lp

≤
∞∑

m=1

sup
u>m

ud1(1−
1
p
)+d2(

1
p
− 1

2
)−γmd1(1− 1

p
)−d1/2e−cu‖g‖2Lp

≤ C‖g‖2Lp,
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which complete the proof of the claim (3.11).
Combining (3.11) and (3.10), we obtain

‖|x′|γF (
√
L)PB(y,r)f‖2L2(R

d1
x′

×R
d2
x′′

)

≤ C

∫

R

R2d2(
1
p
− 1

2
)−2|y′|2γ−2d2(

1
p
− 1

2
)td1(

1
p
− 1

2
)|G(t)|2 dt‖g‖2Lp‖h‖2Lp(Rd2 )

≤ CR2(d2+d1)(
1
p
− 1

2
)|y′|2γ−2d2(

1
p
− 1

2
)

∫

R

|G(t)|2 dt/R2‖g‖2Lp‖h‖2Lp(Rd2 )

≤ CR2(d2+d1)(
1
p
− 1

2
)|y′|2γ−2d2(

1
p
− 1

2
)‖δRF‖2L2‖f‖2Lp(Rd1×Rd2 ).

This completes the proof of estimate (3.4) and so the proof of Theorem 3.4. �

Remark 3.5. Under the assumptions of Theorem 3.4, when γ = 0, the estimate (3.3) holds for
all 1 ≤ p ≤ (2d2+2)/(d2+3), which means that the condition p < 2d1/(d1+2) is not necessary
in this case. Actually, in our proof, if γ = 0, we do not need the sharp order d1

2
(1
p
− 1

2
)− 1

2
for

2k + d1 in the estimate (3.2). We only need that for all 1 ≤ p ≤ 2

‖
∑

|ν|=k
〈f,Φξν〉Φξν‖L2(Rd1 ) ≤ C|ξ|

d1
2
( 1
p
− 1

2
)(2k + d1)

(
d1
2
−1)( 1

p
− 1

2
)‖f‖Lp(Rd1 ),

which can be achieved by interpolation between p = 1 and the fact that

‖
∑

|ν|=k
〈f,Φξν〉Φξν‖L2 ≤ C‖f‖L2.

See also [8].

4. Spectral multipliers for compactly supported functions

As mentioned in Section 2, the heat kernel of the operator L satisfies a Gaussian upper
bound given in terms of the distance ρ. In addition, L satisfies the Davies-Gaffney estimate
and the finite speed propagation property, see [12]. On the other hand, we proved restriction
type estimates for the operator L in Section 3. Therefore we may follow ideas in [1], Sections
3 and 4, to prove spectral multiplier results as well as Bochner-Riesz summability results.

Define the multiplication operator wγ on Rd1 × Rd2 by

wγf(x
′, x′′) = |x′|γf(x′, x′′).

Lemma 4.1. Let F : [0,∞) → C be a bounded Borel function. We denote by KF (L) the

Schwartz kernel of F (L). Assume that

suppKF (L) ⊂ Dr = {(x, y) ∈ (Rd1 × R
d2)× (Rd1 × R

d2) : ρ(x, y) ≤ r}
for some r > 0. Then for 1 ≤ p ≤ 2, there exists a constant C = Cp such that for γ ∈
[0, d1(1/p− 1/2))

‖F (L)‖p→p ≤ C sup
|y′|≤4r

{r(2d2+d1)( 1p− 1
2
)−γ‖wγF (L)PB(y,r)‖p→2}

+ C sup
|y′|>4r

{r(d2+d1)( 1p− 1
2
)|y′|d2( 1p− 1

2
)−γ‖wγF (L)PB(y,r)‖p→2}.
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Proof. First we choose a sequence (xn) ∈ Rd1 × Rd2 such that ρ(xi, xj) > r/10 for i 6= j and
supx∈Rd1×Rd2 inf i ρ(x, xi) ≤ r/10. Such sequence exists because Rd1 × Rd2 is separable under

the new distance ρ. Second we let Bi = B(xi, r) and define B̃i by the formula

B̃i = B̄
(
xi,

r

10

)
\
⋃

j<i

B̄
(
xj ,

r

10

)
,

where B̄ (x, r) = {y ∈ R
d1 × R

d2 : ρ(x, y) ≤ r}. Third we put χi = χB̃i
, where χB̃i

is the

characteristic function of the set B̃i. Note that for i 6= j, B(xi,
r
20
) ∩B(xj ,

r
20
) = ∅. Hence

K := sup
i

#{j : ρ(xi, xj) ≤ 2r} ≤ sup
x

|B(x, (2 + 1
20
)r)|

|B(x, r
20
)| < C41d1+2d2 <∞.

It is not difficult to see that

Dr ⊂
⋃

{i,j:ρ(xi,xj)<2r}
B̃i × B̃j ⊂ D4r.

Therefore,

F (L)f =
∑

i,j:ρ(xi,xj)<2r

PB̃i
F (L)PB̃j

f.

Hence by Hölder’s inequality

‖F (L)f‖pp = ‖
∑

i,j:ρ(xi,xj)<2r

PB̃i
F (L)PB̃j

f‖pp

=
∑

i

‖
∑

j:ρ(xi,xj)<2r

PB̃i
F (L)PB̃j

f‖pp

≤ CKp−1
∑

i

∑

j: ρ(xi,xj)<2r

‖PB̃i
F (L)PB̃j

f‖pp

≤ CKp−1
∑

i

∑

j: ρ(xi,xj)<2r

‖|x′|−γ‖p
Lq(B̃i)

‖|x′|γPB̃i
TPB̃j

f‖p2(4.1)

where 1/q = 1/p− 1/2.
Now we estimate ‖|x′|−γ‖p

Lq(B̃i)
.

Suppose |x′j | > 4r. Since |x′i−x′j | < ρ(xi, xj) < 2r, we have |x′i| > 2r and 2|x′j| > |x′i| > |x′j |/2.
Thus, for x ∈ B̃i, that is, ρ(x, xi) ≤ r/10, we have |x′ − x′i| ≤ r/10. This implies |x′| > r and
|x′| > |x′i|/2 > |x′j |/4. Then by (2.2)

‖|x′|−γ‖p
Lq(B̃i)

≤ C|x′j|−pγµ(B̃i)
p/q ≤ C|x′j |−pγrp(d1+d2)(

1
p
− 1

2
)|x′j |pd2(

1
p
− 1

2
).(4.2)

If |x′j | ≤ 4r, |x′i| ≤ |x′i − x′j | + |x′j| ≤ 6r. So x ∈ B̃i implies |x′| ≤ 7r and |x′′ − x′′i | ≤ 13r2.
Then

‖|x′|−γ‖q
Lq(B̃i)

≤
∫

|x′′−x′′i |≤13r2

∫

|x′|≤7r

|x′|−qγdx′dx′′ ≤ Cr2d2+d1−qγ.(4.3)

Substituting estimates (4.2) and (4.3) in (4.1) finishes the proof of Lemma 4.1.
�

Now we can state and prove the following multiplier theorem for compactly supported func-
tions. Recall that D = max(d1 + d2, 2d2).
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Theorem 4.2. Suppose that a bounded Borel function F : R → C with compact support in

[1/4, 1] satisfies

‖F‖W s
2
<∞

for some s > D|1/p− 1/2|. Then the operator F (tL) is bounded on Lp(Rd1 ×R
d2). In addition

sup
t>0

‖F (tL)‖Lp→Lp ≤ Cp‖F‖W s
2
.

Proof. Let η ∈ C∞
c (R) be even and such that supp η ⊆ {ξ : 1/4 ≤ |ξ| ≤ 1} and

∑

ℓ∈Z
η(2−ℓλ) = 1 ∀λ > 0.

Then we set η0(λ) = 1−∑
ℓ>0 η(2

−ℓλ),

F (0)(λ) =
1

2π

∫ +∞

−∞
η0(t)F̂ (t) cos(tλ) dt(4.4)

and

F (ℓ)(λ) =
1

2π

∫ +∞

−∞
η(2−ℓt)F̂ (t) cos(tλ) dt.(4.5)

Note that in virtue of the Fourier inversion formula

F (λ) =
∑

ℓ≥0

F (ℓ)(λ)

and by [1, Lemma 2.1],

suppKF (ℓ)(t
√
L) ⊂ D2ℓt.

Now by Lemma 4.1
∥∥F (t

√
L)

∥∥
p→p

≤
∑

ℓ≥0

∥∥F (ℓ)(t
√
L)

∥∥
p→p

≤ C
∑

ℓ≥0

sup
|y′|≤42ℓt

{(2ℓt)(2d2+d1)( 1p− 1
2
)−γ‖wγF (ℓ)(t

√
L)PB(y,2ℓt)‖p→2}

+ C
∑

ℓ≥0

sup
|y′|>42ℓt

{(2ℓt)(d2+d1)( 1p− 1
2
)|y′|d2( 1p− 1

2
)−γ‖wγF (ℓ)(t

√
L)PB(y,2ℓt)‖p→2}.(4.6)

Since F (ℓ) is not compactly supported we choose a function ψ ∈ C∞
c (1/16, 4) such that ψ(λ) = 1

for λ ∈ (1/8, 2) and note that
∥∥wγF (ℓ)(t

√
L)PB(y,2ℓt)

∥∥
p→2

≤
∥∥wγ

(
ψF (ℓ)

)
(t
√
L)PB(y,2ℓt)

∥∥
p→2

+
∥∥wγ

(
(1− ψ)F (ℓ)

)
(t
√
L)PB(y,2ℓt)

∥∥
p→2

.(4.7)

To estimate the norm ‖wγ
(
ψF (ℓ)

)
(t
√
L)PB(y,2ℓt)‖p→2, we use the weighted restriction esti-

mates (3.3) and the fact that ψ ∈ Cc(1/16, 4) to obtain
∥∥wγ

(
ψF (ℓ)

)
(t
√
L)PB(y,2ℓt)

∥∥
p→2

≤ Ct−(2d2+d1)(1/p−1/2)+γ
∥∥δt−1

(
ψF (ℓ)

)
(t·)

∥∥
L2

and for |y′| ≥ 2ℓ+2t
∥∥wγ

(
ψF (ℓ)

)
(t
√
L)PB(y,2ℓt)

∥∥
p→2

≤ Ct−(d2+d1)(1/p−1/2)|y′|γ−d2(1/p−1/2)
∥∥δt−1

(
ψF (ℓ)

)
(t·)

∥∥
L2

for all t > 0.
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If |y′| > 2ℓ+2t, it follows from s > (d1 + d2)(1/p− 1/2) that
∑

ℓ≥0

sup
|y′|>2ℓ+2t

{(2ℓt)(d2+d1)( 1p− 1
2
)|y′|d2( 1p− 1

2
)−γ‖wγ(ψF (ℓ))(t

√
L)PB(y,2ℓt)‖p→2}

≤ C
∑

ℓ≥0

2ℓ(d1+d2)(
1
p
− 1

2
)
∥∥δt−1

(
ψF (ℓ)

)
(t·)

∥∥
L2

≤ C
∑

ℓ≥0

2ℓ(d1+d2)(
1
p
− 1

2
)‖F (ℓ)‖L2(4.8)

≤ C‖F‖W s
2
.

For |y′| ≤ 2ℓ+2t, we take γ < min{d1, d2}(1/p− 1/2) such that min{d1, d2}(1/p− 1/2)− γ is
small enough and s−D(1/p− 1/2) > min{d1, d2}(1/p− 1/2)− γ. Then for s > D(1/p− 1/2)

∑

ℓ≥0

sup
|y′|≤2ℓ+2t

{(2ℓt)(2d2+d1)( 1p− 1
2
)−γ‖wγ(ψF (ℓ))(t

√
L)PB(y,2ℓt)‖p→2}

≤ C
∑

ℓ≥0

2ℓ(D( 1
p
− 1

2
)+min{d1,d2}(1/p−1/2)−γ)∥∥δt−1

(
ψF (ℓ)

)
(t·)

∥∥
L2

≤ C
∑

ℓ≥0

2ℓ(D( 1
p
− 1

2
)+min{d1,d2}(1/p−1/2)−γ)‖F (ℓ)‖L2(4.9)

≤ C‖F‖W s
2
.

Next we show bounds for
∥∥wγ

(
(1 − ψ)F (ℓ)

)
(t
√
L)PB(y,2ℓt)

∥∥
p→2

. Since the function 1 − ψ is

supported outside the interval (1/8, 2), we can choose a function φ ∈ C∞
c (2, 8) such that

1 = ψ(λ) +
∑

k≥0

φ(2−kλ) +
∑

k≤−6

φ(2−kλ) = ψ(λ) +
∑

k≥0

φk(λ) +
∑

k≤−6

φk(λ) ∀λ > 0.

Hence (
(1− ψ)F (ℓ)

)
(λ) = (

∑

k≥0

+
∑

k≤−6

)
(
φkF

(ℓ)
)
(λ) ∀λ > 0.

Note that by the Gaussian upper bound for the heat kernel of L, we have E√
L{0} = 0. So

it follows from Theorem 3.4 that
∥∥wγ

(
(1− ψ)F (ℓ)

)
(t
√
L)PB(y,2ℓt)

∥∥
p→2

≤ (
∑

k≥0

+
∑

k≤−6

)
∥∥wγ

(
φkF

(ℓ)
)
(t
√
L)PB(y,2ℓt)

∥∥
p→2

≤ C(
∑

k≥0

+
∑

k≤−6

)(2kt−1)(2d2+d1)(1/p−1/2)−γ∥∥δ2k+3t−1

(
φkF

(ℓ))(t·)
∥∥
∞.

Note that suppF ⊂ [1/4, 1], supp φ ⊂ [2, 8] and η̌ is in the Schwartz class so
∥∥φkF (ℓ)

∥∥
∞ = 2ℓ

∥∥φk(F ∗ δ2ℓ η̌)
∥∥
∞ ≤ C2−M(ℓ+max{0,k})‖F‖L2

and similarly,
∥∥φkF (0)

∥∥
∞ ≤ C2−M max{0,k}‖F‖L2. Therefore

∥∥wγ
(
(1− ψ)F (ℓ)

)
(t
√
L)PB(y,2ℓt)

∥∥
p→2

≤ C2−Mℓt−(2d2+d1)(1/p−1/2)+γ‖F‖L2

and when |y′| ≥ 2ℓ+2t
∥∥wγ

(
(1− ψ)F (ℓ)

)
(t
√
L)PB(y,2ℓt)

∥∥
p→2

≤ C2−Mℓt−(d2+d1)(1/p−1/2)|y′|γ−d2(1/p−1/2)‖F‖L2
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Then by a similar calculation as in (4.8) and (4.9),
∑

ℓ≥0

sup
|y′|>2ℓ+2t

{(2ℓt)(d2+d1)( 1p− 1
2
)|y′|d2( 1p− 1

2
)−γ‖wγ((1− ψ)F (ℓ))(t

√
L)PB(y,2ℓt)‖p→2} ≤ C‖F‖L2.(4.10)

and
∑

ℓ≥0

sup
|y′|≤2ℓ+2t

{(2ℓt)(2d2+d1)( 1p− 1
2
)−γ‖wγ((1− ψ)F (ℓ))(t

√
L)PB(y,2ℓt)‖p→2} ≤ C‖F‖L2.(4.11)

Now we combine (4.6), (4.7), (4.8), (4.9), (4.10) and (4.11) to complete the proof of Theorem 4.2.
�

5. Proofs of Theorems 1.1 and 1.2

In this section, we prove our main results, i.e., Theorems 1.1 and 1.2. The two results follow
from Theorem 4.2. To do this, we need a theorem from [14] which states that singular multiplier
results follow from the corresponding one for compactly supported functions. We recall this
explicitly.

Let (X, ρ, µ) be a metric measure space satisfying doubling condition, that is, for all r > 0
and λ > 1,

µ(B(x, λr)) ≤ CλQµ(B(x, r)),

where C and Q are positive constants. Let A be a non-negative self-adjoint operator which
satisfies the following two off-diagonal estimates: for some m ≥ 2, some p0 ∈ [1, 2] and for all
t > 0 and all x, y ∈ X

(DGm) ‖PB(x,t1/m)e
−tAPB(y,t1/m)‖2→2 ≤ C exp

(
−c

(ρ(x, y)
t1/m

) m
m−1

)

and

(Gp0,2,m) ‖PB(x,t1/m)e
−tAPB(y,t1/m)‖p0→2 ≤ Cµ(B(x, t1/m))

−( 1
p0

− 1
2
)
exp

(
−c

(ρ(x, y)
t1/m

) m
m−1

)
.

Let again η be a non trivial C∞ function with compact support in (0,∞). We have

Theorem 5.1. Let A be a non-negative self-adjoint operator on L2(X) satisfying off-diagonal

estimates (DGm) and (Gp0,2,m) for some 1 ≤ p0 < 2. Assume that for any bounded Borel

function H such that suppH ⊂ [1/4, 4], the following condition holds:

sup
t>0

‖H(t
m
√
A)‖p→p ≤ C‖H‖Wα

q

for some p ∈ (p0, 2), α > 1/q, and 1 ≤ q ≤ ∞. Then for any bounded Borel function F such

that

sup
t>0

‖ηF (t·)‖Wα
q
<∞,

the operator F (A) is bounded on Lr(X) for all p < r < p′. In addition,

‖F (A)‖r→r ≤ C sup
t>0

‖ηF (t·)‖Wα
q
.

This theorem is taken from [14, Theorem 3.3]. It is stated there with the additional assump-
tion that α > Q(1

p
− 1

2
) where Q is ”the” homogeneous dimension. An inspection of the proof

shows that this condition is not needed and the theorem is valid for α > 1
q
without appealing

to any dimension.
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Proofs of Theorems 1.1 and 1.2. Note that from Theorem 2.1, the Grushin operator
satisfies Gaussian upper bound and so it satisfies off-diagonal estimates (DGm) and (Gp0,2,m)
for m = 1 and p0 = 1. Then Theorem 1.1 follows from Theorem 4.2 and 5.1.

To prove Theorem 1.2, we decompose the Bochner-Riesz means

(1− tL)δ+ = φ(L)(1− tL)δ+ + (1− φ(L))(1− tL)δ+,

where φ is a smooth cutoff function on R with suppφ ⊂ [−1/2, 1/2] and φ = 1 on interval
[−1/4, 1/4]. Then when δ > max{D|1/p − 1/2| − 1/2, 0}, (1 − φ(L))(1 − tL)δ+ is uniformly
bounded on Lp by Theorem 4.2. For φ(L)(1 − tL)δ+, because the function φ(λ)(1 − tλ)δ+ is
smooth for all δ > 0, so the Lp-boundedness follows from the Gaussian bound of heat kernel of
the operator L and the spectral multiplier result in [3, Theorem 3.1] or [1, Theorem 3.1].
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