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WEIGHTED RESTRICTION TYPE ESTIMATES FOR GRUSHIN
OPERATORS AND APPLICATION TO SPECTRAL MULTIPLIERS AND
BOCHNER-RIESZ SUMMABILITY

PENG CHEN AND EL MAATT OUHABAZ

ABSTRACT. We prove weighted restriction type estimates for Grushin operators. These es-
timates are then used to prove sharp spectral multiplier theorems as well as Bochner-Riesz
summability results with sharp exponent.

1. INTRODUCTION

We consider Grushin operators on R% x R% = Rg} X Rfﬁ, defined by

dyq dy do
j=1 ! j=1 k=1

Such operators, defined by the quadratic form technique, are self-adjoint in L2(R% x R%). Let
Er(X) be the spectral resolution of the operator L for A > 0. By the spectral theorem for every
bounded Borel function F': R — C, one can define

(1.2) F(L) = /0 T RO dEL ().

The operator F(L) is bounded on L?(R% x R%). This paper is devoted to spectral multiplier
results for L, that is, we investigate minimal sufficient condition on F’ under which the operator
F(L) extends to a bounded operator on LP(R% x R%) for some range of p. In this context,
the minimal condition on F' we have in mind is the same as in the Fourier multiplier theorem,
i.e., boundedness of F'(—A) on LP(R?) where A is the Euclidean Laplacian. We also study the
closely related question of critical exponent § for which the Bochner-Riesz means (1 — tL)‘i are
bounded on LP(R% x R%) uniformly in ¢ € [0, c0).

Spectral multipliers and Bochner-Riesz summability for Grushin operators have been studied
recently by other authors. In [9], it is proved that for § > 1(d; + d) — 3, the Bochner-Riesz
means (1 —¢L)’ are bounded on LF(R™ x R%) uniformly in ¢ € [0,00) for all 1 < p < co. A
previous result was proved in [10] with the condition ¢ > %max(dl + dy, 2dy) — % Our aim is
to get similar results for smaller values of 9, i.e. when 0 < ¢ < %(dl +ds) — % In this case, we
cannot hope for (1—¢L)% to be bounded on LF(R% x R%) for all p € [1, o0]. Our aim is to prove
that (1 — ¢L) are bounded on LP(R% x R?) uniformly in ¢ for p in some symmetric interval
[ps. ps] around 2. The value ps depends of course on §. Such questions have been studied for
the Euclidean Laplacian in which case the optimality of § is known but the optimality of p is
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2 PENG CHEN AND EL MAATI OUHABAZ

a celebrate open problem, known as the Bochner-Riesz problem. See [15], p. 420 and [16] for
more details and recent progress on this problem.

Starting from the result quoted above from [9] and [10], one can use complex interpolation
between L? boundedness for any 6 > 0 and L' boundedness for a fixed § > (dy + dg)/2 — 1/2
to obtain that for & > (dy + d2 — 1)|1/p — 1/2|, (1 — tL)% are bounded on LF(R® x R%)
uniformly in ¢. Note however that this strategy does not give the optimal exponent. For
example, when L = —A on R", (14 tA)} are bounded on LP(R™) uniformly when § >
max{n|l/p—1/2|—1/2,0} for 1 <p < (2n+2)/(n+ 3), which is better than the interpolation
approach which leads to § > (n — 1)|1/p — 1/2|. The sharpened result for the Laplacian, i.e.,
0 > max{n|l/p—1/2] —1/2,0} for 1 < p < (2n +2)/(n + 3), is obtained by the restriction
theorem for the Fourier transform on the unit sphere. In an abstract setting, versions of the
restriction estimate are introduced in [1] and we are tempted to follow [1] in order to prove
boundedness of Bochner-Riesz means for L. There is however an obstacle. The restriction type
estimate introduced in [1] leads to spectral multipliers using “the” homogeneous dimension
) = di + 2dy rather than the topological one d; + dy. The exponent we will get for the
Bochner-Riesz means is then max{@|1/p—1/2|—1/2,0}. The problem of getting sharp spectral
multipliers using the topological dimension rather than the homogeneous one appeared already
in the case of the Heisenberg group. See [5] and [11].

Our strategy to deal with this problem is to use a weighted version of restriction estimates
for the operator L. More precisely, let F' be a bounded Borel function with support supp F
contained in [R/4, R] for some R > 0. Then for 1 < p < min{2d,/(dy + 2), (2d2 +2)/(d2 + 3)}
and 0 <~y < dy(1/p—1/2), we prove that

12" E(VL) f |l 2@ets spazy < CREEFWEPTDT 50 B 1oy || 1] oo sz

Using this weighted restriction type estimate, we prove sharp spectral multiplier results and
optimal Bochner-Riesz summability stated in Theorems 1.1 and 1.2 below. We set

D := max{d; + ds,2ds}

and denote as usual W5 the L? Sobolev space of order s with ||F|lw; = [|(I — d2)*/*F|..
Throughout, 7 is an auxiliary and non trivial C* function with compact support contained in
(0, 00).

Theorem 1.1. Let 1 < p < min{2d;/(dy + 2), (2ds 4+ 2)/(d2 + 3)}. Suppose that the bounded
Borel function F': R — C satisfies

sup {1 F'(¢-)[lw; < oo
>0
for some s > max{D|1/p — 1/2|,1/2}. Then the spectral multiplier operator F (L) is bounded
on LP(RU x R%). In addition
IF () < Cpsup [ F(2) .

For Bochner-Riesz means we prove the following result.

Theorem 1.2. Let 1 < p < min{2d;/(dy + 2),(2dy + 2)/(d2 + 3)}. Suppose that 6 >
max{D|1/p—1/2|—1/2,0}. Then the Bochner-Riesz means (1—tL)%. are bounded on LP(R™ x
R%) uniformly in t € [0, 00).

Theorems 1.1 and 1.2 are optimal when d; > ds. In this case D coincides with the topological
dimension d, 4 dy of R% x R%. By the elliptic property of L in the region where 2’ # 0, one can
use the transplantation argument described in [6] to deduce the sharpness of the above theorems
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from the fact that the exponent D|1/p — 1/2| — 1/2 is sharp for the classical Bochner-Riesz
summability on RP. See also [10] and [9].

Conjecture. We believe that the previous theorems are true with D = d; + dy instead of
D = max(d; + ds, 2ds). As we mentioned above, if p = 1, the spectral multiplier theorem in [9]
is valid for s > %(dl + dy). This means that the conjecture is true when p = 1.

Throughout, the symbols “c” and “C” will denote (possibly different) positive constants that
are independent of the essential variables. The notation A ~ B means that the quantities A
and B satisfy cA < B < C'A for some positive constants ¢ and C.

2. RIEMANNIAN DISTANCE AND THE HEAT KERNEL ESTIMATES

Heat kernel bounds for Grushin type operators have been proved in [12]. Here we state some
basic results concerning the Riemannian distance associated with the Grushin operator L and
recall the Gaussian bound for the corresponding heat kernel.

Recall that the Riemannian (quasi-)distance corresponding to the operator L can be defined

by
p(r,y) = sup (Y(z) — P(y))

peD
for all z = (2, 2"),y = (¢/,y") € R x R% where

d1 d1 do
D= {w e W™ < RE) 1 (D100 + (30 12) Do 10wul?) < 1} .
j=1 j=1 k=1

For this distance p and the Lebesgue measure the finite speed propagation property for the
corresponding wave equation as well as Gaussian estimates for the heat kernel of L are satisfied.
See [12, Proposition 4.1] for more detailed discussion and references.

Theorem 2.1. Let p be Riemannian distance associated with the Grushin operator L. Then
forx = (2/,2"), y = (v,y") € R4 x R¥%,

=" —y"] o a2 < | /
— if |x < |z + r

(2'1) p(az,y) ~ ‘SL’/ - y/| + lel/ﬂy‘ 1"1/2 f‘ " y//|1/2 | /‘ |y/|
2" —y [V df 2" =y VR >+ [y

Moreover the volume of the ball B(z,r) := {y € R x R% : p(x,y) < r} satisfies the following
estimates

(2.2) |B(z,7)| ~ r®+ %2 max{r, |2/|}%,
and in particular, for all X > 0,
(2.3) |B(x, Ar)] < C(14X)%|B(z,7)|

where Q) = dy + 2dy is “the” homogenous dimension of the considered metric space. Next, there
exist constants b, C' > 0 such that, for allt > 0, the integral kernel p, of the operator exp(—tL)
satisfies the following Gaussian bound

(24) e, y)| < C|B(y, t1/7)] e ren/!
for all z,y € R% x R,

Proof. For the proof, we refer the reader to [12, Proposition 5.1 and Corollary 6.6]. U
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3. WEIGHTED RESTRICTION ESTIMATES

In this section, we discuss the spectral decomposition of L and then state and prove the
weighted restriction estimate.

Let F : L2(R% x R%2) — L2(R% x R%) be the partial Fourier transform in the variable 2",
that is

Fo',€) = 0(a',€) = 2m) " | o(a!, o) e da”.
Then :

(3.1) FLp(a',§) = Le Fo(a', €),
where L¢ is the Schrodinger operator defined by
Lg = —Ag, + |2'[P[¢]?
acting on L?(R%) where £ € R?%. We have the following proposition.

Proposition 3.1. For any integrable function F with compact support in R, we have

F(L)[(a',2") = FH(F(Le) [, ) ("),
Proof. This equality is essentially proved in [10, Proposition 5]. Alternatively, we can follow

the approach used in the proof of Proposition 3.2 in [2] for a direct proof. U

Next we turn to the spectral decomposition of the operator Le on R%. Let L; = —Ay, + |2/|?
be the harmonic oscillator on R%, v be a multi-index and ®,(2') = h,, (z]) - “hu,, (T, ), where
h,, is the Hermite function of order v;. Recall that 2|v| 4-d; and ®, are the eigenvalues and

eigenfunctions of the operator Li. Thus (2|v| + d;)|¢| and ®S(2) = |£]%/4®, (\/[€]2") are the
eigenvalues and eigenfunctions of the operator L¢; see [10]. Then we have

Lef =Y 2k +dy)le] Y (f, @55
k=0

v|=k
and -
F(Le)f =) F((2k+dlel) Y (f, %),
k=0 lv|=k
We have the following restriction type estimate for L.

Proposition 3.2. Suppose dy > 2. For 1 <p < 2d,/(d; + 2),

dyi_1 dil_1y_ 1
(3.2) I OB oy < ClEN2 522k 4+ di) 2 67272 | £l o
v|=k
Proof. From [7, Corollary 3.2] we have for 1 < p < 2d,/(d; + 2),
di1 1y 1
| 2472 e < Ok ) F6 0 7
lv|=k

Then changing variables from the above inequality implies

IS 8080 = 1D (S B (VIR ) €1 By (Ve 12

lv|=k lv|=k

= — ). 3,() ) D, 2|2
H|;k<f(\/m), ()> (VIEl)]
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=12 <f<ﬁ),<by<~>> B, (2) | 2 ]/

lv|=k

< ClelT M2k 4 dy) 26 "‘)‘%Hﬂﬁ)lm

dye1 1 dye1 1y _ 1
< ClETED 2k + d) T | .
]

In order to prove the weighted restriction estimate for L, we need the following proposition,
which is essentially the same as [10, Proposition 4].

Proposition 3.3. Let v € [0,00) and f € L*(R%). Then
112 fll sy < CIIEILY fll oy
Here C., is non-decreasing in 7.
Proof. Let H be the harmonic oscillator —d?/du® + u? on R. Tt is obvious that
lul fll 2@y < 1HY2Fll 2

In addition since the first eigenvalue of H is bigger than 1,

d? d?
H fH2+H wfll; < H(—eru)sz—?R( de u’f)
< HTI~ 2Re( f,2uf) — 2u
d
< ||Hf||§—2R6<—uf,2uf>
< ||Hf||z+4|| f|| [ f 1|2
< HHsz+4HH1/2fH2HH1/2fH2
< 5[Hf|5.

This implies that
[u® fll ey < V5[ HF| 2w

By iteration, we can prove that for k € N,
lu* fll 2y < CRllH" f| 2q)-

For details, we refer to Proposition 3.2 and 3.3 in [4]. Now by a similar approach as in in the
proof of Proposition 2.2 in [2], we can prove Proposition 3.3. U

We state our weighted restriction estimate for the Grushin operator L.

Theorem 3.4. Let F' be a Borel function with supp F' C [R/4, R] for some R > 0. Then for
1 <p<min{2d;/(d1 +2),(2d2+ 2)/(ds + 3)} and 0 <~y < dy(1/p—1/2),

11y
(33) I PFOI) gy sy < CRE#FDIGD 8|yl o e
Moreover, when |y'| > 4r,

(3.4) ||IHU'IVF(\/E)J-sz?(ym)fIILQ(Rd}XR < RNy 6D 65 F | | f | oaes i,
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where y = (y',y") € R x R® and Py, is the projection on the ball B(y,r) of R" x R® for
distance p.

Proof. When p = 1, this theorem is proved in [10, Proposition 10]. So in what follows we may
assume that d; > 2. Let G(z) = F(y/x). Then supp G C [R?/16, R?]. By a density argument,
it is enough to prove the estimates (3.3) and (3.4) for functions f € L?(R% xR%)NLP(R% x R%)
such that f(a2',2") = g(a')h(z") where g € L*(R%) N LP(R%) and h € L*(R%) N LP(R%).

By Proposition 3.1 and Plancherel equality,

T PVD iy gy = IF (12 TG Lg@ RO 2 g g
(35) Sl KA.

Then by Proposition 3.3,

|2’ "G (Le)g(a')h Gl
< |[[€]7 LG (Le) g (2 YR (€I

L2RY)
= [I1€]77 Y ((2k + d0)E)*G((2k + d1)IE]) D (g, ‘P§>¢§($')ﬁ(§)llig(Rd )
k=0 lv|=k

and by the orthonormal property for eigenfunctions of different eigenvalues, we have

12’ ["G (Le)g (2 YA€) 3. g

< Y ET (2K + d)IENG(2k + d)IE]) D (g, BE) DS (2)h( )IILQ(]R
k=0

v|=k
This together with equality (3.5) implies

ll2'"F(VL)

f”LQ(Rdl R )

(3.6) < D MET @k + d)IENC(2k + d)IE]) D (g, BB V2, oy gy

lv|=k

Let Gy (|€]) be the function on R defined by
G (1€1) = 1€ (2K + d)ENG (2K + dr)IEN) D (g, BE) B (2').

lv|=k

By estimate (3.6) and Plancherel equality,

P EOD) 1 gt ) < Zuf (G (EDRE)) Ity s

(37) S [ Ve w VI T

Note that supp G C [R?/16, R%]. Thus supp Gj. C [0, R2/(2k + d1)]. Set m = 2k + d; and
a = R?/(2k + dy). By restriction type estimates for —A, (see e.g. [1]),

~ 1_1 =~
|G (V=D2)h(a")[3, ) < Ca™ 7260 Gl 7 1l o -
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Thus by (3.7),

- 2do (L -1 ~
B3) TPV g gy < €™ I6Gralgy g 11
x x m:l
By Proposition 3.2,

~ 12 < —2y vy 2 aé\ Fak |2
Gl gy < [ 1061 oI IGmIEDE] S 0, 805,

lv|=k

1_1 1_1y_
< ¢ / lag] > (aml€])7|G (amle))Plag| 4G Pm® G DY g]12, L, dlé]
[€]

dt
< ow / IGOP S ol
R ma
2dy (L —1)—2
39) A i [0 A e

Combing estimates (3.8) and (3.9) and noting that v < dy(1/p — 1/2) yields

ll2'"F(VL)

inQ(Rdl RdQ)

4do (£ —1)42d; ( —l —2y  2y—2do(L—-1)—1
<CZR 2( 3201 (5= 3) Tm” 2(572) HéRQGH%Q(R)HgH%P(Rdl)Hh’H%p(R@)

< CR4d2(*—*)+2d1( —2vH(5RFH%2(R) Hin,,(Rdl CR2)"

This proves the estimate (3.3).
Next we prove (3.4). Similarly to the above derivation, we have

1T F(VE) Prty 2 gty

o
2da (-1 ~
< C'Za 2(p 2)”5aGk,:v’”ig(Rd}XR‘E‘)”h”iﬂ(R%)
m— x

< CZanQ(P”/ a7 (aml€])"|Gaml€D P D _ (9. ‘PZ§>‘1>35||§2(RZ})dISIIIhIIiP(R%)

Rig| lv|=k
<Cza2dz(p 3 /m%t NGO Z g, dY™ (IJt/mHZ dt/(am)||h||ip(Rd2)
lv|=k
< C/R4d2 f; fy|G | Zm?y 2do (L p 2 ” Z g’q)t/m (I)t/mHLQ(RdI dt”h”Lp Ry
lv|=k

where the function g has compact support such that supp g C B(y',r) which is the standard
ball defining by Euclidean distance in R%. Note that supp G C [R?/16, R?]. Thus R* ~ t in
the last integral and then

(310)  ||l#'"F(VL)Pon I

LQ(Rdl d2 2)

< 0 [ meteheeib |Zm2” G 3 (g BN, ) AN

lv|=k
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Next we claim that for 0 <~ < dQ(% — %),

(3.11) S [y PEG D2 h G 212G | S (g gt/
= lv|=k

L2(R%

< Cllgllze,

where C'is independent of ¢ and /.
In order to prove (3.11) we split the sum into two parts: m < v/t|y/|/4 and m > V/t|y/| /4.
If m > /t|y'| /4, by Proposition 3.2,

Z ‘y/‘2d2(%_%)_Q’thb(%—%)—dl(%_%)_’ym?y 2dy (L p 2)” Z g (I)t/m>q)t/mH y dl)
’ L2(R
m>\tly'| /4 lv|=k
<C Y |y PG G DG G ) () Gyt oD g2,
M>\f|y’\/4
<03 (Wl B e
m>Vty'| /4
< Cllgllz»-

If m < Vt|y|/4 and 2/ € B(y,r), then |2/| > |¢/|/2 and m < +/t|a'|/2. Moreover,
Im~Y2\/ta'|? > 4m. By [10, Lemma 8], we know that D=k [P ()2 < Cexp(—c|2'|?) when
|2’|? > 2(2k + d,). Hence

STIRUm@E = Jt/ml 3 (@, (m V)

lv|=k lv|=k

< C|t/m|d1/26—ct\x’\2/m
< C‘t/m|d1/2efct\y’\2/m_
Therefore,
1 (. <I>t/m>‘1>t/’”“|!L2]R N > 1™
lv|=k lv|=k
< allZ MO 1™ Y1 g
lv|=k
< c||g||%p|t/m|d1/26—ctly"2/mr2dl<1—%>.
Hence
C 2d 2 ,d —d —  2y—2dp (L -1 m m
D e e s D DI L
m<Vly'|/4 v|=k
S Z (\/ﬂy|)2d1(1—l)+2d2(———)—2’ym—2d2(%—%)—dl/Qefct\y/\Q/m”gH%p
m<Vily'| /4
- 11d——— dl—dz—cu
ngggu 1(1=p)td2(5—3) =7 di(l=5)—d1/ g ||Lp

< Cllgllz»,
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which complete the proof of the claim (3.11).
Combining (3.11) and (3.10), we obtain

IHx’WF(\/E)PB(y,r)inQ 2% XRY)

< C/RRM2 2y [ )dl("Q)lG(t)|2dt||9||ip||h||ip(m)
SCRz(derdl)(,l,Q)W‘QV%(;é)/|G(t)|2dt/RzﬂgH%thHiP(Rdg)
R

(da+dy)(1— —2ds(
< CRA Gy 2G5 FI2, | £, 00
This completes the proof of estimate (3.4) and so the proof of Theorem 3.4. O

Remark 3.5. Under the assumptions of Theorem 3.4, when v = 0, the estimate (3.3) holds for
all 1 < p < (2dy+2)/(d2+3), which means that the condition p < 2d,/(d; +2) is not necessary
in this case. Actually, in our proof, if v = 0, we do not need the sharp order ﬂ(; -1 - % for

2
2k + d; in the estimate (3.2). We only need that for all 1 <p <2
dyel_1 4 qyl_t
| Z (f, ‘I)§>(I)£HL2(R%) < C|f|7(p 2)(% + dl)( 2 G Q)Hf”LP(Rdl)a
lv|=k
which can be achieved by interpolation between p = 1 and the fact that
1> @)Dl < ClIf e
lv|=k

See also [8].

4. SPECTRAL MULTIPLIERS FOR COMPACTLY SUPPORTED FUNCTIONS

As mentioned in Section 2, the heat kernel of the operator L satisfies a Gaussian upper
bound given in terms of the distance p. In addition, L satisfies the Davies-Gaffney estimate
and the finite speed propagation property, see [12]. On the other hand, we proved restriction
type estimates for the operator L in Section 3. Therefore we may follow ideas in [1], Sections
3 and 4, to prove spectral multiplier results as well as Bochner-Riesz summability results.

Define the multiplication operator w, on R% x R% by

wyf(l‘/, :L‘”) = |l‘,|yf(l‘/, l‘”).

Lemma 4.1. Let F' : [0,00) — C be a bounded Borel function. We denote by Kp) the
Schwartz kernel of F(L). Assume that

supp Kr(z) C Dy = {(z,y) € (R" x R?) x (R x R®): p(z,y) < r}

for some r > 0. Then for 1 < p < 2, there exists a constant C = C, such that for v €
[0,d1(1/p —1/2))

do+di)(L—=1)—
IED)pp < C|S‘u<ri {rEr DG w, F(L) Pp(y llpe)
y'|<4r

+ O sup {T(d2+dl)(%_%)‘y/|d2(%_%)_7Hw'\/F<L)PB(y,7")Hp%2}-

ly'[>4r
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Proof. First we choose a sequence (z,,) € R® x R® such that p(x;, ;) > r/10 for i # j and
SUD,cper xrez 0L p(z, ;) < r/10. Such sequence exists because R x R% is separable under

the new distance p. Second we let B; = B(x;,r) and define B; by the formula
~ = r _ r
BZIB<17_> B( '7_>7
10 \jg Y10

where B (z,7) = {y € R®" x R%: p(x,y) < r}. Third we put y; = Xg,» Where xp is the
characteristic function of the set B;. Note that for i # j, B(x;, 35) N B(z5, 35) = 0. Hence

| Bz, (24 55)7)

< 414972 .
|B(z, 55)]

K :=sup#{j: p(z;,x;) < 2r} <sup

It is not difficult to see that

Dr C U éz X éj C D47».
{4,j: p(xix;)<2r}

Therefore,

F(f= Y. PyF(L)Py [
i,7: p(wi,xj)<2r
Hence by Holder’s inequality
IF(FIE = | Y. PgF(L)Pg [}

,5: p(xi,@j)<2r
=SS Py F(P IR
i Jrp(xi,xy)<2r
1
< CKY Y PaF(L)Ps Sl
v g p(es,@y)<2r
(4.) < CKrY S W, I PR TP fIE
v gip(wg,my)<2r
where 1/g=1/p—1/2.

Now we estimate |||2/|~7[|”

La(B;)’

Suppose |2;| > 4r. Since |v;—z)| < p(z;, 7;) < 2r, we have |z} > 2r and 2|2}| > |z}] > |2%]/2.
Thus, for © € By, that is, p(z, ;) < r/10, we have |2/ — x| < r/10. This implies |#/| > r and
2’| > [2}|/2 > |2}]/4. Then by (2.2)

_ _ o _ di+do) (-1 do(L1_—1
(42) 1N, g, < Clafl ™ (B)"* < Claf [ G D]y i),

If || < dr, |2} < |2] — 2] + [2)] < 6r. Sox € B; implies |2/| < 7r and |2 — 2| < 13r2,
Then

(4.3) H|37/|77Hiq(§') < / / 2|~ da’ dx” < O,
! | =2l |<13r2 J |2/ | <Tr

Substituting estimates (4.2) and (4.3) in (4.1) finishes the proof of Lemma 4.1.
U

Now we can state and prove the following multiplier theorem for compactly supported func-
tions. Recall that D = max(d; + ds, 2ds).
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Theorem 4.2. Suppose that a bounded Borel function F' : R — C with compact support in
[1/4,1] satisfies
||F||W2 < o0

for some s > D|1/p—1/2|. Then the operator F(tL) is bounded on LP(R% x R%). In addition
Sup | F(EL)||p—szr < CpllF|lwy-
Proof. Let n € C2°(R) be even and such that suppn C {£:1/4 < [£] <1} and
d ey =1 vi>o0.

Then we set () = 1 = ¥, (2A)
1 [t -
(4.4) FOMON) = Dy / no(t)F(t) cos(tA) dt
and
(4.5) FO\) = % /+OO n(27%) F(t) cos(t)) dt.

Note that in virtue of the Fourier inversion formula
A=Y FO
>0
and by [1, Lemma 2.1],
supp K ) ) C Doy
Now by Lemma 4.1
£)
IFevD,., < d_IIFOeVD,.,

>0

<Cst{@VM“r”Wuﬂmﬂ%zwwﬁ

>0 1V |<42¢t

(4.6) + Y sup {2 TGy 1B PO (VL) Py a2}

€>0 \y |>42zt

Since F is not compactly supported we choose a function 1y € C°(1/16,4) such that 1)(\) =
for A € (1/8,2) and note that

vaF(@ (t\/E)PB(yJ‘t) Hp—>2

(47) < [l (WFO) VL) Prgy |, + [ (1= ) FO) GVL) Py 0,

p—2 —2°

To estimate the norm [[w, (W F©)(tv/L)Pp, ot llp—2, we use the weighted restriction esti-
mates (3.3) and the fact that ¢ € C.(1/16,4) to obtain

va (QZJF(@)(t\/E)PB(y,m H < Ot (2d2+d1)(1/p—1/2) +vH5 (wp(z))(t_)HLQ
and for |y/| > 272t

[0 (WFO) (tVL) Py 00|
for all t > 0.

p—2 —

< Ot i)W/ |y r=daUfp=1/D || 5, (p FO) (¢

p—2 — ' HL2
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If |y/| > 2972, it follows from s > (d; + dy)(1/p — 1/2) that
sup {(24) G2y | 26D (6 FO) (#3/L) Py |2}

>0 1¥/1>2072

< 0N 2 BERG) |5 (WFO) (1))

£>0

(4.8) < CZWI*@ || FO||
>0
< C[|Fllw;-
For |y/| < 242t, we take v < min{d;, d>}(1/p — 1/2) such that min{d,,ds}(1/p —1/2) —
small enough and s — D(1/p—1/2) > min{dl,dg}(l/p —1/2) —~. Then for s > D(1/p—1/2)

sup  {(24) G2, (0 FO) (3L Py o)l po0}

>0 l¥/1<242%

< Cz 2 %7% +min{dy,d2}(1/p—1/2)— Hét 1 ("LpF

>0

(4.9) <C Z 2£< (2—3)+min{di,da}(1/p—1/2)—) HF () 12

>0
< Ol Fw;-

t')Hm

Next we show bounds for Hw,y((l — w)F(f))(t\/f)PB(ert)Hp%Q. Since the function 1 — ) is
supported outside the interval (1/8,2), we can choose a function ¢ € C2°(2,8) such that

N+ 27N+ DT 027N =) + Y N+ D de(d)  YA>0.

Hence

(A=) FNN) =+ D N aF ) (N vA>o0.

k>0 k<—6

Note that by the Gaussian upper bound for the heat kernel of L, we have E 7{0} = 0. So
it follows from Theorem 3.4 that

e (1 = ) FO) (VD) Py ],
< OO0+ D) (e FO) VL) Py,

k>0 k<-6

< C Z+ Z th (2d2+d1)(1/p 1/2) PYH52'€+315 1(¢RF@ )( )Hoo

k>0  k<-6

Note that suppF C [1/4, 1], supp ¢ C [2,8] and 7 is in the Schwartz class so
|6 F O = 2| @ F * Spem)| , < C27 MmO )
and similarly, ||¢xF© H < 02~ Mmwax{Ok}|| || 1o Therefore
o (1= PO VD) Paa, L, € C s

and when |y| > 2¢+%
va((l _ w)F(z))(t\/DPB(yﬂ"t)Hp% < C27Mét*(d2+d1)(1/p*1/2)|y/"¥*d2(1/p*1/2)HF”L2
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Then by a similar calculation as in (4.8) and (4.9),
(4207 sup (@) WDy B0 (1= ) FO) (VL) Pag a2} < Ol Fllze.

>0 |y/[>20+2¢
and

(4.11) Y7 sup {@DEETETI T lw, (1= ) FOY VL) Prg o llpse} < ClIF ||

>0 ly’|<26+2¢

Now we combine (4.6), (4.7), (4.8), (4.9), (4.10) and (4.11) to complete the proof of Theorem 4.2.
U

5. PROOFS OF THEOREMS 1.1 AND 1.2

In this section, we prove our main results, i.e., Theorems 1.1 and 1.2. The two results follow
from Theorem 4.2. To do this, we need a theorem from [14] which states that singular multiplier
results follow from the corresponding one for compactly supported functions. We recall this
explicitly.

Let (X, p, ) be a metric measure space satisfying doubling condition, that is, for all » > 0
and A > 1,

p(B(x,Ar)) < CX?p(B(x, 1)),
where C' and @) are positive constants. Let A be a non-negative self-adjoint operator which
satisfies the following two off-diagonal estimates: for some m > 2, some py € [1,2] and for all
t>0andall z,y € X

B x, et
and
_ NN | T,Y)\ mo1
(GPO,Zm) ”PB(:B,tl/m)e tAPB(y7t1/m)Hp0~>2 S C/.,L(B(.T,tl/ )) (po 2) eXp (_C(pil/ni/)> 1) '

Let again 7 be a non trivial C*° function with compact support in (0, 00). We have

Theorem 5.1. Let A be a non-negative self-adjoint operator on L*(X) satisfying off-diagonal
estimates (DG,,) and (Gpyom) for some 1 < py < 2. Assume that for any bounded Borel
function H such that supp H C [1/4,4], the following condition holds:

s (¢ V) < I
>
for some p € (po,2), a > 1/q, and 1 < q < oo. Then for any bounded Borel function F such

that
sup [l P (1)l < oo,
>0

the operator F(A) is bounded on L"(X) for allp <r < p'. In addition,
|E) o < Csup InF () llw;-

This theorem is taken from [14, Theorem 3.3]. It is stated there with the additional assump-
tion that o > Q(% — %) where @) is "the” homogeneous dimension. An inspection of the proof

shows that this condition is not needed and the theorem is valid for o > % without appealing
to any dimension.
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Proofs of Theorems 1.1 and 1.2. Note that from Theorem 2.1, the Grushin operator
satisfies Gaussian upper bound and so it satisfies off-diagonal estimates (DG,,) and (G, 2.m)
for m =1 and pg = 1. Then Theorem 1.1 follows from Theorem 4.2 and 5.1.

To prove Theorem 1.2, we decompose the Bochner-Riesz means

(1—tL)} = ¢(L)(1 = tL)% + (1 = o(L)(1 — L)},
where ¢ is a smooth cutoff function on R with supp¢ C [—1/2,1/2] and ¢ = 1 on interval
[—1/4,1/4]. Then when § > max{D|1/p — 1/2| — 1/2,0}, (1 — ¢(L))(1 — ¢L)’ is uniformly
bounded on L? by Theorem 4.2. For ¢(L)(1 — tL), because the function ¢(A)(1 — tA)5 is

smooth for all § > 0, so the LP-boundedness follows from the Gaussian bound of heat kernel of
the operator L and the spectral multiplier result in [3, Theorem 3.1] or [1, Theorem 3.1].
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