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Uniform entropy scalings of filtrations

Stéphane Laurent

June 22, 2015

Abstract

We study Vershik and Gorbulsky’s notion of entropy scalings for filtrations in the particular
case when the scaling is not ǫ-dependent, and is then termed as uniform scaling. Our main result
states that the scaled entropy of the filtration generated by the Vershik progressive predictions
of a random variable is equal to the scaled entropy of this random variable. Standardness
of a filtration is the case when the scaled entropy with a constant scaling is zero, thus our
results generalize some known results about standardness. As a case-study we consider a family
of next-jump time filtrations. We also rephrase some old theorems by Vershik and provide a
generalization of a theorem by Gorbulsky about the case of poly-adic filtrations.
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1 Introduction

This is the first paper written in the probabilistic language about Vershik & Gorbulsky’s theory of
scaled entropy introduced in [19]. We focus on the case of uniform entropy scalings. Our results
contain as particular cases some known results about standardness. In Section 2 we recall the
definition of Vershik’s standardness criterion. We use this criterion in Section 3 to give a new proof
of the standardness criterion for the family of next-jump time filtrations studied in [12] (where
I-cosiness was used to derive this standardness criterion). In Section 4 we introduce the scaled
entropy with uniform scalings. In Section 5 we pursue the work of Section 3 by studying uniform
entropy scalings for the next-jump time filtrations. Section 6 deals with the exponential entropy for
poly-adic filtrations. We rephrase some old theorems by Vershik and, with a slight generalization,
a theorem by Gorbulsky about the coincidence between the scaled entropy and the exponential
entropy, and we investigate the entropy of the filtrations of unordered pairs.

2 Vershik’s standardness criterion

In the probabilistic literature, standardness of a filtration F = (Fn)n60 in discrete negative time is
usually defined as the possibility to embed F in the filtration generated by a sequence of indepen-
dent random variables (see [3, 9, 10, 11]). As long as the final σ-field F0 is essentially separable,
standardness is known to be equivalent to Vershik’s standardness criterion. In this section we recall
the statement of Vershik’s standardness criterion and we state some of its elementary properties
which are proved in [10]. In Section 4 we will see that these properties are particular cases of some
elementary properties about the scaled entropy.

2.1 Vershik’s standardness criterion

The Kantorovich distance plays a major role in the statement of Vershik’s standardness criterion,
as well as in the definition of the entropy. Given a separable metric space (E, ρ), the Kantorovich
distance ρ′(µ, ν) between two probability measures µ and ν is defined by

ρ′(µ, ν) = inf
Λ∈J(µ,ν)

∫∫

ρ(x, y)dΛ(x, y),

where J(µ, ν) is the set of joinings of µ and ν, that is, the set of probabilities on E ×E whose first
and second marginal measures are µ and ν respectively. In general ρ′(µ, ν) is possibly infinite, but ρ′

defines a distance on the space E′ of integrable probability measures on (E, ρ), where a probability
measure µ on (E, ρ) is said to be integrable when random variables X ∼ µ satisfy E

[

ρ(X,x)
]

< ∞
for some ( ⇐⇒ for every) point x ∈ E, and such a random variable X is also said to be integrable.
When E is compact then every E-valued random variable is integrable. In general, the topology
induced by ρ′ on E′ is finer than the topology of weak convergence, but they coincide when (E, ρ)
is compact, and (E′, ρ′) is itself compact in this case. We mainly use the fact that the metric space
(E′, ρ′) is complete and separable whenever (E, ρ) is (see e.g. [1]).

In order to state Vershik’s standardness criterion, one has to introduce the Vershik progressive
predictions πnX of a random variable X (corresponding to the so-called universal projectors, or
tower of measures, in [15] and [18]) and the iterated Kantorovich distance ρ(n) on the state space
E(n) of πnX. Let (E, ρ) be a Polish metric space. For a σ-field B we denote by L1(B;E) the space
of integrable E-valued B-measurable random variables. Let F be a filtration, and X ∈ L1(F0;E).
The Vershik progressive predictions πnX of X with respect to F are recursively defined as follows:
we put π0X = X, and πn−1X = L(πnX |Fn−1) (the conditional law of πnX given Fn−1). Since
X is integrable, for any x ∈ E the conditional expectation E

[

ρ(X,x) |F−1
]

is finite, therefore
ρ′
(

L(X |F−1), δx

)

< ∞ and thus the conditional law L(X |F−1) = π−1X is integrable. Thus, by
a recursive reasoning, the n-th progressive prediction πnX is a random variable taking its values
in the Polish space E(n) recursively defined by E(0) = E and E(n−1) = (E(n))

′
, denoting as before

by E′ the space of integrable probability measures on any separable metric space E. Note that
(πnX)n60 is a Markov process. The state space E(n) of πnX is Polish when endowed with the
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distance ρ(n) obtained by iterating |n| times the construction of the Kantorovich distance starting

with ρ: we recursively define ρ(n) by putting ρ(0) = ρ and by defining ρ(n−1) = (ρ(n))
′

as the
Kantorovich distance issued from ρ(n).

The proof of the following lemma is straightforward from the definitions.

Lemma 2.1. For any Polish space (E, ρ) and X,Y ∈ L1(F0;E), the process
(

ρ(n)(πnX,πnY )
)

n60

is a submartingale. In particular the expectation E

[

ρ(n)(πnX,πnY )
]

is increasing with n.

Finally, in order to state Vershik’s standardness criterion, one introduces the dispersion dispX
of (the law of) an integrable random variable X in a Polish metric space (E, ρ). It is defined
as the expectation of ρ(X ′,X ′′) where X ′ and X ′′ are two independent copies of X, that is, two
independent random variables defined on the same probability space and having the same law as
X. Now, Vershik’s standardness criterion is defined as follows. Let F be a filtration, let E be a
Polish metric space and X ∈ L1 (F0;E). We say that the random variable X satisfies the Vershik
property, or, for short, that X is Vershikian (with respect to F) if dispπnX −→ 0 as n goes to −∞.
Then we extend this definition to σ- fields E0 ⊂ F0 and to the whole filtration as follows: we say
that a σ- field E0 ⊂ F0 is Vershikian if each random variable X ∈ L1 (E0; [0, 1]) is Vershikian, and
we say that the filtration F is Vershikian, or that F satisfies Vershik’s standardness criterion, if the
final σ- field F0 is Vershikian.

When F is immersed in a bigger filtration G and X ∈ L1 (F0;E) ⊂ L1 (G0;E), it is important
to note that the iterated conditional law πnX is the same considering either F or G as the under-
lying filtration. We refer to [3] or [9] for details about the immersion property. Consequently, in
such a situation, there is no ambiguity in considering the Vershik property without specifying the
underlying filtration.

2.2 Properties to be generalized later

Throughout this article, we denote by V (X) the Vershik property for an integrable random variable
X, when an underlying ambiant filtration F is understood. We also denote by V (E0) the Vershik
property for a σ- field E0 ⊂ F0. We will see in Section 4 that V (X) can be equivalently stated as
hc(X) = 0 where hc is the scaled entropy of X with a constant scaling function c. Then our results
in Section 4 about the uniformly scaling entropy generalize the following propositions and theorem
which are provided in [10].

Proposition 2.2. Let F be a filtration, n0 6 0 be an integer, and denote by Fn0] = (Fn0+n)n60 the

filtration F truncated at n0. Then Fn0] is Vershikian if and only if F is Vershikian.

Proposition 2.3. a) If (Bk)k>1 is an increasing sequence of sub-σ-fields of F0 then

[∀k > 1, V (Bk)] =⇒ V
(

∨

k>1

Bk

)

.

b) For any Polish metric space (E, ρ) and X ∈ L1(F0;E),

V (X) ⇐⇒ V
(

σ(X)
)

.

Theorem 2.4. For any X ∈ L1(F0;E), the filtration FX generated by the Markov process (πnX)n60

satisfies the Vershik property if and only if the random variable X satisfies the Vershik property.

Proposition 2.2 is a consequence of Proposition 4.15. Proposition 2.3 is a consequence of Propo-
sition 4.13 and Proposition 4.14. Theorem 2.4 is a particular case of Theorem 4.9.

2.3 Vershik’s standardness criterion in practice

Vershik’s standardness criterion may appear puzzling and complicated at first glance: calculating
the progressive predictions πnX and the iterated Kantorovich distance on the strange state space
of πnX do not appear easily practicable.

First note that V (X) does not depend on the choice of the Polish space E in which X takes
its values: this stems from the second claim of Proposition 2.3. Also note the importance of
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Theorem 2.4: V (X) is equivalent to standardness of the filtration FX generated by the Markov
process (πnX)n60. Thus, if we intend to show that standardness of F holds true, our task is reduced

to only show V (X) if we find X such that FX = F.
Observe that any filtration F having an essentially separable final σ-field F0 can always be

generated by a Markov process (Xn)n60: just take for Xn any random variable generating the
σ-field Fn for every n 6 0. Vershik’s standardness criterion can be rephrased to a more practical
criterion by considering such a Markov process (Xn)n60, as we explain below and summarize in
Lemma 2.5; but practicality of the rephrased criterion depends on the choice of the generating
Markov process. Firstly, the strange state spaces of Vershik’s progressive predictions πnX can be
avoided when X is some random variable Xk. It suffices to explain this for X = X0. Denote by
An the state space of Xn for every n 6 0. Starting with a compact metric ρ0 on A0, we recursively
define a pseudometric ρn on the state space of Xn by setting

ρn(xn, x
′
n) = (ρn+1)′(L(Xn+1 |Xn = xn),L(Xn+1 |Xn = x′

n)
)

where (ρn+1)′ is the Kantorovich pseudometric derived from ρn+1. The ρn are more friendly than
the ρ(n) appearing in Vershik’s standardness criterion, and Lemma 2.5 states that there are some

maps ψn : An → A
(n)
0 such that πnX0 = ψn(Xn) and

ρ(n)(ψn(xn), ψn(x′
n)
)

= ρn(xn, x
′
n)

for every xn, x
′
n ∈ An. Thus, in order for the Vershik property V (X0) to hold true, it suffices that

ρn(X ′
n,X

′′
n) → 0 in L1 where X ′

n and X ′′
n are two independent copies of Xn. Moreover, Lemma 2.5

states that FX0 = F under the identifiability condition

∀n 6 0,∀xn, x
′
n ∈ An, [ xn 6= x′

n ] =⇒
[

L(Xn+1 |Xn = xn) 6= L(Xn+1 |Xn = x′
n)
]

(⋆)

and then, by Theorem 2.4 standardness of F is equivalent to V (X0) under this condition

Lemma 2.5. Let F be the filtration generated by a Markov process (Xn)n60. Denote by An the
state space of Xn for every n 6 0 and assume that A0 is a compact metric space under some
metric ρ0. Consider the pseudometrics ρn introduced above and the iterated Kantorovich metrics
ρ(n) appearing in Vershik’s standardness criterion.

1) There are some maps ψn : An → A
(n)
0 such that πnX0 = ψn(Xn) and

ρ(n)(ψn(xn), ψn(x′
n)
)

= ρn(xn, x
′
n)

for every xn, x
′
n ∈ An and every n 6 0.

2) The Vershik property V (X0) is equivalent to E
[

ρn(X ′
n,X

′′
n)
]

→ 0 where X ′
n and X ′′

n are two
independent copies of Xn.

3) Under the identifiability condition (⋆), the ρn are metrics and the ψn are isometries. Conse-
quently F is generated by the process (πnX0)n60, and V (X0) is equivalent to standardness of
F.

Proof. Obviously π0X0 is a σ(X0)-measurable random variable, and πnX0 = L
(

πn+1X0 |Fn) for
n < 0 is a σ(Xn)-measurable random variable by the Markov property. Therefore, for each n 6 0,
the Doob-Dynkin lemma provides a measurable function ψn for which πnX0 = ψn(Xn), and ψ0 is
nothing but the identity map. The equality in 1) relating ρ(n) and ρn is obviously true for n =
0. Assuming ρ(n+1)

(

ψn+1(xn+1), ψn+1(x′
n+1)

)

= ρn+1(xn+1, x
′
n+1), then the Kantorovich distance

ρn(xn, x
′
n) is given by

ρn(xn, x
′
n) = inf

Λxn,x′
n

∫

ρ(n+1)(ψn+1(xn+1), ψn+1(x′
n+1)

)

dΛxn,x′
n
(xn+1, x

′
n+1),
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where the infimum is taken over all joinings Λxn,x′
n

of L(Xn+1 |Xn = xn) and L(Xn+1 |Xn = x′
n),

and then ρn(xn, x
′
n) is also given by

ρn(xn, x
′
n) = inf

Θxn,x′
n

∫

ρ(n+1)(yn+1, y
′
n+1)dΘxn,x′

n
(yn+1, y

′
n+1),

where the infimum is taken over all joinings Θxn,x′
n

of L(πn+1X0 |Xn = xn) = ψn(xn) and

L(πn+1X0 |Xn = x′
n) = ψn(x′

n), thereby showing ρ(n)
(

ψn(xn), ψn(x′
n)
)

= ρn(xn, x
′
n). That shows

1), and 2) obviously follows.
The claim about the ρn in 3) is recursively shown too. It suffices to show that every ψn is

injective. Assuming that ψn+1 is injective and assuming L(Xn+1 |Xn = xn) 6= L(Xn+1 |Xn = x′
n),

then, obviously,
L
(

ψn+1(Xn+1) |Xn = xn

)

6= L
(

ψn+1(Xn+1) |Xn = x′
n

)

,

that is, ψn(xn) 6= ψ(x′
n), thereby showing 3). The last claim of 3), asserting equivalence between

V (X0) and F, stems from Theorem 2.4.

Obviously we can similarly state Lemma 2.5 for Xk instead of X0, for any k 6 0. When the
identifiability condition (⋆) does not hold, then in order to prove standardness of F, it is sufficient
to check that V (Xk) holds true for every k 6 0. This is a consequence of proposition 6.2 in [10].

3 The next-jump time filtrations

In Section 5 we will study the scaled entropy of the next-jump time filtrations which are introduced
in this section. Standardness of these filtrations has been characterized in [12] with the help of
the I-cosiness criterion. In this section we provide a new proof of this characterization with the
help of Vershik’s standardness criterion (Section 2.1). More precisely, we will be in the context of
Lemma 2.5 and the identifiability condition (⋆) will be fulfilled, and thus our main task will be
to derive the metrics ρn of this lemma. This will be achieved in Section 3.2, after we introduce
the next-jump filtrations in Section 3.1 as the filtrations generated by some random walks on the
vertices of a Bratteli graph (shown on figure 1).

3.1 Next-jump time process as a random walk on a Bratteli graph

Our presentation of the next-jump time filtrations differs from the one given in [12]. Here we define
these filtrations as those generated by a Markov process on the vertices of a Bratteli graph.

0

−1

−2

−3

−4

1 2 3 4

k

n

(a) Random walk from n = 0 to n =
−∞

0

−1

−2

−3

−4

1 2 3 4

k

n

(b) Random walk from n = −∞ to
n = 0

Figure 1: Next-jump time process as a random walk

Let B be the (−N)-graded Bratteli graph shown on Figure 1. At each level n, there are |n| + 1
vertices labeled by k ∈ {0, . . . , |n|}, and the vertex labeled by k is connected to the two vertices at
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level n− 1 labeled by k and |n| + 1. A path in B is a sequence (γn)n60 consisting of edges γn such
that γn connects a vertex at level n to a vertex at level n − 1 for every n 6 0. The set of paths is
denoted by ΓB. When a path is taken at random in ΓB we denote by Vn the label of the selected
vertex at level n (thus V0 = 0) and we are interested in the filtration F generated by the process
(Vn)n60. When this causes no possible confusion we identify a vertex to its label. We study the
case when the process (V0, V−1, . . .) is the Markov chain whose transition distributions are defined
from a given [0, 1]-valued sequence (pn)n60 satisfying p0 = 1, by

L(Vn |Vn+1 = k) = (1 − pn)δk + pnδ|n|,

that is to say, given Vn+1, the vertex Vn is one of the two vertices connected to Vn+1 and equals
the extreme vertex |n| with probability pn.

In other words, if we consider that the set of paths ΓB is {0, 1}−N by labeling the edges con-
necting a vertex vn at level n to the vertex vn−1 at level n − 1 by 0 if vn−1 and vn have the same
label and by 1 if vn−1 is labeled by |n| + 1, then we are interested in the case when the paths are
taken at random according to the independent product measure

⊗

n6−1(1 − pn, pn) by denoting by
(1 − p, p) the Bernoulli probability measure with probability of success p.

The time-directed process (Vn)n60 is Markovian too. The next-jump time process (Zn)n60

defined in [12] is obtained from Vn by putting Z0 = 0 and Zn = −Vn+1 for n 6 −1. Hence the
filtration F generated by the Markov process (Vn)n60 = (Zn−1)n60 shares the same standardness
status as the one studied in [12] because standardness is an asymptotic property (Proposition 2.2).

It is easy to see that Pr(Vn = |n|) = pn. We will say that the pn are the jumping probabilities
because one also has pn = Pr(Vn+1 6= Vn) for every n < 0. It is shown in [12] that

Pr(Vn = |k|) = (1 − pn) · · · (1 − pk−1)pk if 0 6 |k| < |n|,

and the transitions kernels Pn(v, ·) from n− 1 to n are given by

Pn(v, ·) := L(Vn |Vn−1 = v) =

{

δv if 0 6 v < |n| + 1

L(Vn) if v = |n| + 1
. (3.1)

Obviously the identifiability condition (⋆) defined in Section 2.3 cannot hold for (Vn)n60 because
V0 = 0 is degenerate. But we will see in Lemma 3.3 that this condition holds for the process
truncated at −1 when p−1 ∈]0, 1[ and pn < 1 for every n 6 −2.

An important particular case is the one when pn = (|n| + 1)−1. In this case, Vn has the
uniform distribution on {0, . . . , |n|} for every n 6 0 and the filtration F generated by (Vn)n60 is
Kolmogorovian and not standard in this case. This results from the standardness criterion provided
by Theorem 3.7, which was proved in [12] with the help of the I-cosiness criterion, and which is
proved in the present paper with the help of Vershik’s criterion.

When pn < 1, the law of Vn+1 is the law of Vn conditioned on {0, . . . |n|−1}. Thus, when pn < 1
for every n 6 −1, the law of Vn can be represented as the truncation of a measure µ on N. When
the pn are given, this measure is given by

µ(−n) =
pn

∏−1
k=n(1 − pk)

=
Pr(Vn = n)

Pr(Vn = 0)
.

The µ-measure of the interval {0, . . . ,−n} is

µ(0, . . . ,−n) =
1

∏−1
k=n(1 − pk)

=
1

Pr(Vn = 0)
,

thus µ is normalizable if and only if
∑

pn < ∞. In this case the law of Vn goes to the normalized
version of µ and F is not Kolmogorovian, and in the other case Vn goes to ∞ and F is Kolmogoro-
vian. This is due to the following proposition about the tail σ- field F−∞, which is a rewriting of
proposition 3.1 in [12], to which we refer for a detailed proof.

Proposition 3.1. The sequence (Vn)n60 goes to a random variable V−∞ when n goes to −∞, and
the tail σ- field F−∞ is generated by V−∞. There are three possible situations:
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1) if
∑

pn = ∞ then V−∞ = +∞ almost surely, therefore F is Kolmogorovian;

2) if
∑

pk < ∞ then

(a) either V−∞ is not degenerate, therefore F is not Kolmogorovian,

(b) or we are in the following case

pn0 = 1 and pn = 0 for every n < n0 for some n0 6 0 (∗)

and then V−∞ = |n0| almost surely, therefore F is Kolmogorovian and even standard.

Thus F is Kolmogorovian if and only if
∑

pn = ∞ or in case (∗). Standardness of F in case (∗)
elementarily holds true because Fm = {∅,Ω} for every m 6 n0.

3.2 Standardness of F using Vershik’s criterion

Throughout this section, we denote by (Vn)n60 the next-jump time process with jumping probabil-
ities (pn)n60 and we denote by F the filtration it generates. Discarding the elementary case (∗), it
is shown in [12] with the help of the I-cosiness citerion that F is standard (Vershikian) if and only
if
∑

p2
n = ∞. In this section we derive again this result by using Vershik’s standardness criterion.

More precisely we will use the version of Vershik’s standardness criterion given by Lemma 2.5. We
firstly treat a particular case in lemma below.

Lemma 3.2. If pn = 1 for infinitely many n, then F is standard.

Proof. For every integer k 6 0, define the random vector Xk = (Vk, . . . , V0) and denote by Bk =
σ(Vk, . . . , V0) the σ- field it generates. By the Markov property, the n-th progressive prediction
πnXk of Xk is measurable with respect to σ(Vn) for every n 6 k, and Vn = |n| almost surely when
pn = 1, therefore πnXk is a degenerate random variable too, and disp(πnXk) = 0. Consequently, F
satisfies Vershik’s standardness criterion by proposition 2.3(a).

We also know by Proposition 3.1 that F is standard in the case when pn = 0 for every n < 0.
Then the following lemma will allow us to restrict our standardness study to the case when the
identifiability condition (⋆) of Section 2.3 holds.

Lemma 3.3. 1) Let (Xn)n60 = (Vn−1)n60. The identifiability condition (⋆) holds when

p−1 ∈]0, 1[ and pn < 1 for all n < 0. (3.2)

In this case, F is generated by the process (πnV−1)n60, and even more precisely, σ(πnV−1) =
σ(Vn) for every n < 0.

2) If pn0 = 1 for some n0 < 0, then the process
(

Vn0+n − |n0|
)

n60
is the next-jump time process

with jumping probabilities (pn0+n)n60.

3) If p−1 = 0, then the process (Wn−1)n60 defined by

Wn =

{

0 if Vn−1 = 0

Vn−1 − 1 if Vn−1 > 0
for n 6 −1.

has the same distribution than (Vn−1)n60 where (Vn)n60 is the next-jump time process with
jumping probabilities (p′

n)n60 given by p′
n = pn−1 for every n < 0.

Proof. For v 6= v′ in the state space of Vn−1, the conditional distributions L(Vn |Vn−1 = v) and
L(Vn |Vn−1 = v′) have different supports under (3.2), hence the first point follows. The equality
σ(πnV−1) = σ(Vn) under condition (⋆) is provided by Lemma 2.5. Checking the second and third
points do not pose any difficulty.
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Thus, since standardness is an asymptotic property at n = −∞ (Proposition 2.2), we will focus
on the case when (3.2) holds, and this will allow us to use Lemma 2.5. In Lemma 3.4 we summarize
the way we are going. Hereafter we denote by Vn = {0, . . . , |n|} the state space of Vn and consider on
Vn the n-th iterated Kantorovich metric ρn starting with the discrete metric ρ−1 on A−1 = {0, 1}.
That is,

ρn(vn, v
′
n) = inf

Λvn,v′
n

∫

ρn+1dΛvn,v′
n

for every n 6 −2, where Λvn,v′
n

is a joining of the conditional laws L(Vn+1 |Vn = vn) = Pn+1(vn, ·)
and L(Vn+1 |Vn = v′

n) = Pn+1(v′
n, ·). Hereafter we salo denote by dn the dispersion of Vn under ρn,

defined by dn = E[ρn(V ′
n, V

′′
n )] for two independent copies V ′

n and V ′′
n .

Lemma 3.4. Under the identifiability condition (3.2), the filtration F is Vershikian if and only if
the Vershik property V (X) holds true for X = V−1. Moreover, this property is equivalent to dn → 0.

Proof. Consequence of Lemma 2.5 and Lemma 3.3.

In lemma below we provide a list of relations about the kernels Pn of the next-jump time
Markov chain and the iterated Kantorovich distances ρn. We denote by Pn(v, f) the expectation of
a function f under the probability measure Pn(v, ·). Recall that Pn+1

(

|n|, ·
)

which occurs several
times in the lemma is equal to the law of Vn+1. We use Pn+1

(

|n|, ·
)

and not L(Vn+1) in the lemma
to emphasize that the derivation of the ρn only depends on the kernels Pn by nature.

Lemma 3.5. Let x > 0 and x′ > 0 be integer numbers.

1) If n 6 −1 and x, x′ 6 |n| − 1, then ρn(x, x′) = ρn+1(x, x′).

2) If n 6 −2 and x′ 6 |n| − 1, then ρn(|n|, x′) = Pn+1
(

|n|, ρn+1(·, x′)
)

.

3) If n 6 −3 and x′ 6 |n| − 2, then ρn(|n|, x′) = ρn+1(|n + 1|, x′).

4) If n 6 −1, then ρn−1(|n− 1|, |n|) = (1 − pn)Pn+1
(

|n|, ρn(|n|, ·)
)

.

5) If n 6 −2, then Pn
(

|n− 1|, ρn−1(|n− 1|, ·)
)

= (1 − p2
n)Pn+1

(

|n|, ρn(|n|, ·)
)

.

6) For every n 6 −1, Pn
(

|n − 1|, ρn−1(|n− 1|, ·)
)

= 2p−1(1 − p−1)
∏−2

m=n(1 − p2
m).

Proof. 1) and 2) are easily get from the expression of L(Vn+1 |Vn = v) given in Section 3.1. One
obtains 3) as a consequence of 1) and 2) by using the relation

Pr(Vn = k |Vn−1 = |n− 1|) = (1 − pn) Pr(Vn+1 = k |Vn = |n|) (3.3)

valid for 0 6 k < |n| and n 6 −2. One gets 4) by using 2) and (3.3). Finally, 5) is derived from
3), 4) and (3.3), and one obtains 6) by calculating the right member of 5) for n = −2 and then by
applying 5) recursively.

Lemma 3.6. The dispersion of Vn under ρn is given by dn = 2p−1(1 − p−1)
∏−2

m=n(1 − p2
m) for

every n 6 −1.

Proof. Because of L(Vn+1) = L(Vn+1 |Vn = |n|) we get dn+1 = E
[

ρn(|n|, Vn+1) |Vn = |n|
]

for every
n 6 −2 by equality 2) of Lemma 3.5, and then the assertion of the lemma is nothing but equality
6) of Lemma 3.5.

Theorem 3.7. The filtration F is standard if and only if
∑

p2
n = ∞ or in case (∗).

Proof. Case (∗) is treated in Proposition 3.1. Under the identifiability condition (3.2), we know
that F is standard if and only if

∏−2
n=−∞(1 − p2

n) = 0 by Lemma 3.4 and by Lemma 3.6. We finally
get the statement of the theorem by using Lemma 3.2 and assertion 2) of Lemma 3.3.
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3.3 Iterated Kantorovich distances

Denote by Vn = {0, . . . , |n|} the set of vertices at each level n. The pseudometric spaces (Vn, ρn)
are easily derived from relations 1), 3), 4) and 6) given in Lemma 3.5. Note that 1) means that the
canonical embedding (Vn, ρn) → (Vn−1, ρn−1) is an isometry, and this is a very particular situation.
The pseudometrics ρn are shown on Table 1.

k
k′

0 1 2 3 4 5

0 0 1 p−1 p−1 p−1 p−1

1 1 0 1 − p−1 1 − p−1 1 − p−1 1 − p−1

2 p−1 1 − p−1 0 (1 − p−2)d−1 (1 − p−2)d−1 (1 − p−2)d−1

3 p−1 1 − p−1 (1 − p−2)d−1 0 (1 − p−3)d−2 (1 − p−3)d−2

4 p−1 1 − p−1 (1 − p−2)d−1 (1 − p−3)d−2 0 (1 − p−4)d−3

5 p−1 1 − p−1 (1 − p−2)d−1 (1 − p−3)d−2 (1 − p−4)d−3 0

Table 1: Intrinsic metrics ρn(k, k′) for n = −1,−2,−3,−4,−5.

This table is easily filled by successively and iteratively using the following equalities for n 6 −2:



































ρn(0, x) =

{

1 if x = 1

p−1 otherwise

ρn(x, x′) = ρn+1(x, x′) for x, x′ < |n|

ρn(|n|, x) =

{

ρn+1(|n+ 1|, x) if x < |n+ 1|

(1 − pn+1)dn+2 if x = |n+ 1|

where the expression of dn is given in Lemma 3.6 for every n 6 −1 and we set in addition d0 = 1.
It follows that the distance ρn(vn, v

′
n) between two vertices vn and v′

n at some level n 6 −2 is
explicitely given when vn < v′

n by

ρn(vn, v
′
n) =















1 if vn = 0 and v′
n = 1

p−1 if vn = 0 and v′
n > 1

(1 − p−vn)d−vn+1 if vn > 0

.

The ρn are metrics under the identifiability condition (3.2). The space (Vn, ρn) is an ultrametric
space represented by the dendrogram shown in Figure 2 (numerically, this figure shows the case
pn ≡ 1

2 for n < 0).

v, v
′

ρ
n
(v

,
v

′
)

0

1

0 1 2 3 4 5 6 7

Figure 2: The space (Vn, ρn).
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4 The uniformly scaled entropy

In this section we introduce scaled entropies of filtrations by following Vershik and Gorbulsky [19],
except that we use the probabilistic language and we restrict our attention to scalings which are
not ǫ-dependent (this is why we term them as uniform scalings). Theorem 4.9, our main result,
generalizes Theorem 2.4.

The definition of the Vershik property V (X) (see Section 2) stated by dispπnX → 0 can be
equivalently rephrased by:

∀ǫ > 0,∃n 6 0,∃µ ∈ E(n),E
[

ρn(πnX,µ)
]

< ǫ.

In other words, the Vershik progressive prediction πnX can be approximated by a single value with
probability as high as desired when n → −∞. When this property fails, it is natural to wonder
about some best asymptotic approximation of πnX. Roughly speaking, the scaled entropy compares
the growth of the minimal entropy approximation of πnX with the given scaling. Its main interest
is its ability to distinguish locally isomorphic non-standard filtrations.

The definition of the scaled entropy of a filtration relies on a choice of a measure of entropy
H(µ) for discrete probability distributions µ. Common choices include the Shannon entropy

H(µ) = −
∑

µi log µi,

and the min-entropy (or Renyi entropy of order 0)

H(µ) = log #{µi | µi > 0}.

The general properties we will derive about the scaled entropy hold for a measure entropy as defined
below.

Definition 4.1. An application H associating a quantity H(θ) ∈ (0,+∞) to any a discrete probability
distribution θ is said to be a measure of entropy if it satisfies the following conditions:

1. H(θ) = 0 if and only if θ is concentrated on one point;

2. H is increasing: H(θ′) 6 H(θ) when θ′ is the image of θ under some map.

When X is a discrete random variable we denote by H(X) the entropy of its law.

4.1 Definition

The definition of the scaled entropy of a filtration F has something similar to the definition of
standardness: we begin by defining the scaled entropy for a F0-measurable random variable, then
for a σ- field B ⊂ F0, and finally for the filtration F. It mainly involves the ε-entropy of the Vershik
progressive predictions πnX (introduced in Section 2).

Definition 4.2. Let X be an integrable random variable taking its values in a Polish metric space
(E, ρ). The ǫ-entropy of X is

Hε(X) = inf
{

H(F ) | E[ρ(X,F )] < ǫ
}

where the infimum is taken over E-valued but discrete σ(X)-measurable random variables F .

The scaling c : (−N) →]0,∞[ in definition below is termed as uniform scaling because Vershik
and Gorbulsky more generally allow ε-dependent scaling c 7→ c(ε, n). Thus a uniform scaling is a
particular scaling in the sense of Vershik and Gorbulsky’s ǫ-dependent general definition, but when
it is proper in the sense of our definition, then it is also a proper scaling in the sense of Vershik and
Gorbulsky.

Definition 4.3. Let F be a filtration and X an integrable F0-measurable random variable taking its
values in a Polish metric space (E, ρ).
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1) The ǫ-entropy of X (with respect to F) at time n is Hε
n(X;F) = Hε(πnX), shorter denoted by

Hε
n(X) when F is understood, where the n-th Vershik prediction πnX is considered as a random

variable taking its values in the Polish space E(n) metrized by the n-th iterated Kantorovich metric
ρ(n) (Section 2.1).

In the next definitions we consider a nonincreasing function c : (−N) →]0,∞[, termed as uniform

scaling.

2) The limit

hc(X;F) = lim sup
ε→0

lim sup
n→0

Hε
n(X)

c(n)

is called the c-scaled entropy of X. For short, we also denote it by hc(X) when F is understood.
The uniform scaling c is said to be proper for X when hc(X;F) ∈]0,∞[.

3) For a σ- field B ⊂ F0, the c-scaled entropy of B with respect to F is defined as

hc(B;F) = sup
X
hc(X),

where the supremum is taken over all B-measurable random variables X taking their values in the
interval [0, 1] equipped with the usual metric.

4) The c-scaled entropy of F is defined as

hc(F) = hc(F0;F).

The uniform scaling c is said to be proper for F when hc(F) ∈]0,∞[.

Note that the Vershik standardness property for X (Section 2.1) is equivalent to hc(X) = 0
with c(n) ≡ 1. Thus, proper uniform scalings do not exist for standard filtrations, and they provide
a certain measure of nonstandardness for nonstandard filtrations.

Remark 4.4. The notations Hǫ
n(X) and hc(X) do not show the dependence on the metric ρ on

the state space of X. But this is not important in view of Proposition 4.14 which will show that
hc(X) = hc

(

σ(X)
)

. Thus, we could also define hc(X) when X is non-integrable by replacing ρ with
ρ ∧ 1.

Remark 4.5. As already mentioned in the definition, the ǫ-entropy Hε
n(X) is relative to the underlying

filtration F. It is important to note that it actually only depends on the filtration FX generated by the
Markov process (πnX)n60 of the Vershik progressive predictions of X. Indeed, it is easy to see that
the value of Hε

n(X) is the same whether we consider F as the underlying filtration or any filtration E

immersed in F so long as X is measurable with respect to the final σ- field E0, and FX is the smallest
such filtration (see [3]).

Remark 4.6. We could replace the ǫ-entropy Hε(X) with

inf
{

H(F ) | P(ρ(X,F ) > ǫ) < ǫ
}

without altering the value of hc(X;F).

The above definition Hǫ(πnX) is appropriate for deriving the general properties we will give.
But for the derivation of hc(X;F) on a case-study, it could be better to use the alternative definition
of Hǫ(πnX) given in the following lemma for the Shannon entropy, and in the next lemma for the
min-entropy.

Lemma 4.7. Assume H is the Shannon entropy. In the definition of hc(X;F), one can replace
the ǫ-entropy Hǫ(πnX) with inf −

∑

µn(Pj) log µn(Pj) where µn is the law of πnX and the infimum
runs over all finite partitions {Pj} of the state space of πnX having form {Ai, B} where µn(B) < ǫ
and Ai ⊂ B(Γi, ǫ) for some Γi.
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Proof. Denote by Hǫ
0(πnX) this value. We compare it to the ǫ-entropy Hǫ(πnX) as given in

Remark 4.6. If {Pj} is such a partition, define f(x) = argminΓi
ρn(x,Γi). Then ρn(x, f(x)) < ǫ

on ∪Ai. That shows that Hǫ
0(πnX) > Hǫ(πnX). Conversely, take a function f such that the set

E := {ρn(x, f(x)) < ǫ} has µn-measure greater than 1 − ǫ. Let {Γi} be an enumeration of f(E).
Set Ai = f−1(Γi) ∩ E. Then {Ai} is a partition of E and Ai ⊂ B(Γi, ǫ). Now note that

H(f(πnX)) > µn(E)H(f(πnX) | E) = −
∑

µn(Ai) log µn(Ai) + µn(E) log µn(E)

= −
∑

µn(Pj) log µn(Pj) − γ(µn(E))

where {Pj} = {Ai, E
c} and γ(ǫ) = ǫ log 1

ǫ +(1−ǫ) log 1
1−ǫ . That shows that Hǫ(πnX) > Hǫ

0(πnX)−
γ(ǫ).

Lemma 4.8. Assume H is the min-entropy. Let X a random variable taking its values in a Polish
space (A, ρ). Then the ǫ-entropy Hǫ(X) as given in Remark 4.6 equals the minimal log-number of
ǫ-balls in A such that X falls in their union with probability higher than 1 − ǫ:

min
{

log #{xi} | xi ∈ A,Pr
(

X ∈ ∪B(xi, ǫ)
)

> 1 − ǫ
}

Proof. Denote by Hǫ
0(X) this value. For given xi, define f(x) = argminxi

ρ(x, xi). Then

Pr
(

ρ(X, f(X)) < ǫ
)

= Pr
(

X ∈ ∪B(xi, ǫ)
)

.

That shows that Hǫ
0(X) > Hǫ(X). Conversely, take a function g taking only finitely many values

and such that Pr
(

ρ(X, f(X)) > ǫ) < ǫ. Let {xi} be an enumeration of the support of g. Define,
as before, f(x) = argminxi

ρ(x, xi). Then ρ(X, f(X)) 6 ρ(X, g(X)), hence Pr
(

ρ(X, f(X)) < ǫ) >

Pr
(

ρ(X, g(X)) < ǫ). That shows that Hǫ
0(X) 6 Hǫ(X).

4.2 Main theorem

This section is devoted to prove the main theorem of this paper: Theorem 4.9, which is a deep
generalization of Theorem 2.4. It will be used in Section 5 to study the uniform entropy scalings
of the next-jump time filtrations. In this theorem and all other results of this section, a measure
of entropy H as defined in definition 4.1 is understood.

Theorem 4.9. Let F be a filtration, X ∈ L1(F0;E) where E is a Polish space, and c : (−N) →]0,∞[
a uniform scaling. Then hc(X;F) = hc(F

X), where FX is the filtration generated by the Markov
process (πnX)n60.

Note that hc(F
X) is the entropy of the filtration FX as well as the entropy of the σ-field

σ(πnX;n 6 0) when we consider F as the underlying filtration (see remark 4.5). Theorem 4.9 is
particularly useful when the πnX are discrete random variables with finite entropy, because it gives
the upper bound hc(F

X) 6 1 for any scaling c(n) ∼ H(πnX).
Theorem 4.9 will be derived from the following series of lemmas and propositions.

Lemma 4.10. Let F be a filtration. If X and Y are two F0-measurable Polish-valued random
variables related by Y = f(X) for some measurable function f , then πnY = fn(πnX) for some
measurable function fn which is K-Lipschitz if f is K-Lipschitz.

Proof. See [3].

Theorem 2.4 is an easy corollary of the following lemma and Proposition 2.3, and this provides
a new and cleaner proof of Theorem 2.4 than the one given in [10].

Lemma 4.11. Let F be a filtration, X ∈ L1(F0;E) where E is a Polish space metrized by a distance
ρ, and set W n = (πnX, . . . , π−1X,X) for some n 6 0. Consider the metric ρ̄n = 1

|n|+1

∑k=0
k=n ρ

(k)

on the state space of W n. Then πnW
n = φ(πnX) where φ is an isometry.
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Proof. For the proof we consider the distance ρ̃n =
∑k=0

k=n ρ
(k) instead of ρ̄n on the state space of

Wn. For each n 6 0 and k ∈ {n, . . . , 0}, one has πkWn = gn
k (πnX, . . . , πkX) for some functions

gn
k related by the fact that gn

k−1(µn, . . . , µk−1) is the distribution of gn
k (µn, . . . , µk−1,Mk) where

Mk ∼ µk−1. Therefore

ρ̃(k−1)
n

(

gn
k−1(µn, . . . , µk−1), gn

k−1(µ′
n, . . . , µ

′
k−1)

)

= inf
(Mk,M ′

k
)
E

[

ρ̃(k)
n

(

gn
k (µn, . . . , µk−1,Mk), gn

k (µ′
n, . . . , µ

′
k−1,M

′
k)
)

] (#)

where the infimum is take over all joinings (Mk,M
′
k) of µk−1 and µ′

k−1. Using this relation, the
equality

ρ̃(k)
n

(

gn
k (µn, . . . , µk), gn

k (µ′
n, . . . , µ

′
k)
)

= ρ(n)(µn, µ
′
n) + ρ̃

(k)
n+1

(

gn+1
k (µn+1, . . . , µk), gn+1

k (µ′
n+1, . . . , µ

′
k)
)

is easy to derive. Indeed, denoting by H(n, k) this equality, then H(n, 0) is nothing but the equality
ρ̃n = ρ(n) + ρ̃n+1 and the implication from H(n, k) to H(n, k − 1) is easy to derive from relation
(#).

Now, by (#),

ρ̃(n)
n

(

gn
n(µn), gn

n(µ′
n)
)

= inf
(Mn+1,M ′

n+1)
E

[

ρ̃(n+1)
n

(

gn
n+1(µn,Mn+1), gn

n+1(µ′
n,M

′
n+1)

)

]

where the infimum is take over all joinings (Mn+1,M
′
n+1) of µn and µ′

n. Hence, by relation H(n, n+
1)

ρ̃(n)
n

(

gn
n(µn), gn

n(µ′
n)
)

= ρ(n)(µn, µ
′
n) + inf

(Mn+1,M ′
n+1)

E

[

ρ̃
(n+1)
n+1

(

gn+1
n+1(Mn+1), gn+1

n+1(M ′
n+1)

)

]

,

and recursively using this equality we finally get

ρ̃(n)
n

(

gn
n(µn), gn

n(µ′
n)
)

=
(

|n| + 1
)

ρ(n)(µn, µ
′
n)

which is obviously equivalent to the statement of the lemma.

Lemma 4.12. Let F be a filtration, (Xk)k>1 be a sequence in L1(F0;E) where E is Polish. If
Xk → X in L1 for some random variable X ∈ L1(F0;E), and if σ(Xk) ⊂ σ(X) for every k > 1,
then for every ǫ0 > 0 there exists k0 such that Hǫ0

n (Xk) > H2ǫ0
n (X) for every n 6 0 and every

k > k0.

Proof. Let k0 = k(ǫ0) such that E
[

ρ(Xk,X)
]

6 ǫ0 for every k > k0, hence Hǫ0
n (Xk) > H2ǫ0

n (X) for
every n by definition of Hε

n(·) and Lemma 2.1.

The following lemma is a continuity-like property of X 7→ hc(X;F).

Proposition 4.13. Let c : (−N) →]0,∞[ be a scaling. If, under the same hypotheses as Lemma 4.12,
there exists ℓ > 0 such that hc(Xk,F) 6 ℓ for every k sufficiently large, then hc(X;F) 6 ℓ.

Proof. Put a = hc(X;F). We firstly check that a < ∞. Assuming a = ∞, the definition of

the superior limit provides ǫ0 such that lim supn→−∞
H

2ǫ0
n (X)
c(n) > ℓ + 1. Therefore one can take

k0 sufficiently large in order that hc(Xk0 ,F) 6 ℓ and such that lim supn→−∞
H

ǫ0
n (Xk0

)

c(n) > ℓ + 1 by

Lemma 4.12. But ǫ 7→ Hǫ
n(Xk0) is decreasing, therefore inequality lim supn→−∞

Hǫ
n(Xk0

)

c(n) > ℓ + 1
holds for every ǫ 6 ǫ0, a contradiction of the assumption of the lemma.

Knowing now that a < ∞, we check that ℓ > a. Given δ > 0, the definition of the superior

limit provides ǫ0 such that lim supn→−∞
H

2ǫ0
n (X)
c(n) > a − δ. Taking k as in Lemma 4.12, one gets

lim supn→−∞
Hǫ

n(Xk)
c(n) > a− δ every ǫ 6 ǫ0 because ǫ 7→ Hǫ

n(Xk) is decreasing. Taking k sufficiently

large in order that hc(Xk,F) 6 ℓ, one finally gets ℓ > a.
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Proposition 4.14. Let F be a filtration and X ∈ L1(F0;E) where E is a Polish space. Then
hc(σ(X);F) = hc(X;F) for any scaling c : (−N) →]0,∞[.

Proof. If Y = f(X) for some Lipschitz function f then it is easy to check that hc(Y ;F) 6 hc(X;F)
with the help of Lemma 4.10. The result follows from Proposition 4.13 and from the density of the
set of random variables f(X), f Lipschitzian, in L1

(

σ(X), [0, 1]
)

(see lemma 2.15 in [9]).

Now we can quickly prove Theorem 4.9.

Proof of Theorem 4.9. Let Bn = σ(πnX, . . . , π−1X,X). By Lemma 4.11 and Proposition 4.14,
hc(Bn;F) = hc(X;F). Then the theorem follows from Proposition 4.13.

4.3 Other properties

Proposition 4.15 below is another corollary of Lemma 4.11, generalizing Proposition 2.2.

Proposition 4.15. Let F be a filtration, n0 6 0 be an integer, and denote by Fn0] = (Fn0+n)n60

the filtration F truncated at n0. Let c : (−N) →]0,∞[ be a scaling and denote cn0] = (cn0+n)n60 its

truncation at n0. Then hcn0](Fn0]) = hc(F).

Proof. It is not difficult to derive the equality

Hǫ
n(Xn0 ,F

n0]) = Hǫ
n0+n(Xn0 ;F) (4.1)

for every integrable Fn0-measurable random variable Xn0 , every n 6 0 and every ǫ > 0. This
provides the inequality hcn0](Fn0]) 6 hc(F).

Conversely, if X0 is an integrable F0-measurable random variable and W n0 = (πn0X0, . . . ,X0),
then hc(X0;F) 6 hc(W

n0;F) by Proposition 4.14 and because H is increasing (definition 4.1). But
Lemma 4.11 provides the equality

Hǫ
n0+n(W n0;F) = Hǫ

n0+n(πn0X0;F)

for every n 6 0. Hence equality (4.1) gives

Hǫ
n0+n(W n0 ;F) = Hǫ

n(πn0X0;Fn0]),

therefore hc(W
n0 ;F) = hcn0](πn0X0;Fn0]) and finally hc(X0;F) 6 hcn0](πn0X0;Fn0]). This provides

the inequality hc(F) 6 hcn0](Fn0]).

The property given in the following proposition will be called the left-continuity of the scaled
entropy.

Proposition 4.16. Let F be a filtration, B ⊂ F0 a σ-field, and (Bk)k>1 an increasing sequence of
σ-fields such that Bk ր B. Then hc(B) = lim hc(Bk) for any scaling c.

Proof. Let X be a B-mesurable integrable random variable. Then X = limXk in L1 where each Xk

is Bk-measurable. By Proposition 4.13, hc(X) 6 suphc(Xk), and therefore hc(X) 6 suphc(Bk).
But H is increasing (definition 4.1), hence hc(Bk) is increasing in k and suphc(Bk) = lim hc(Bk).
That shows that hc(B) 6 lim hc(Bk), and the reverse inequality obviously stems from the increasing
property of H.

The following proposition is a generalization of proposition 6.1 in [10].

Proposition 4.17. Let F be a filtration and (Vn)n60 be a superinnovation of F, that is to say,
each Vn is a random variable independent of Fn−1 and satisfies Fn ⊂ Fn−1 ∨ σ(Vn). Denote by G

the extension of F defined by Gn = Fn ∨ σ(Vm;m 6 n). Then hc(G) = hc(F) for any scaling c.
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Proof. By the left-continuity of the scaled entropy (Proposition 4.16), hc(G) = lim hc(Bm) where
Bm = F0 ∨ σ(Vm+1, . . . , V0). But Bm = Fm ∨ σ(Vm+1, . . . , V0), therefore hc(Bm;G) > hc(Fm;G).
Conversely, using the same equality, it is not difficult to check that πmX is measurable with respect
to Fm for any Bm-measurable integrable random variable X. Since hc(X) = hc(πmX), one gets
hc(Bm;G) 6 hc(Fm;G) and finally hc(Bm;G) = hc(Fm;G). Now, F is immersed in G, therefore
hc(Fm;G) = hc(Fm;F). But hc(Fm;F) = hc(F0;F) because of hc(X) = hc(πmX) for every F0-
measurable integrable random variable X.

Proposition 4.18. Let (Xn)n60 be a Markov process and let F be the filtration it generates. Then
hc(F) = lim hc(Xn) for any scaling c.

Proof. By lemma 3.41 in [9], there exists a superinnovation (Vn)n60 of F satisfying the additional
property σ(Xn−1, Vn) ⊃ σ(Xn). By Proposition 4.17, we know that hc(F) = hc(G). By Proposi-
tion 4.16 (left-continuity of the scaled entropy), we know that hc(G) = lim hc(Bm) where Bm =
σ(Xm, Vm+1, . . . , V0). By noting that πmX is σ(Xm)-measurable for every Bm-measurable random
variable X, one gets hc(Bm) = hc(Xm). More precisely, we should write hc(Bm;G) = hc(Xm;G).
But hc(Xm;G) = hc(Xm;F) because F is immersed in G.

5 Entropy of next-jump time filtrations

In this section, we consider, for a given sequence (pn)n60 of jumping probabilities, the next-jump
time process (Vn)n60 introduced in section 3 and its filtration F. Using the Shannon entropy as
the measure of entropy, we study the entropy of F in the Kolmogorovian nonstandard case, that is,
in view of Proposition 3.1 and Theorem 3.7, the case when

∑

pn = ∞ and
∑

p2
n < ∞. Two non-

standard next-jump time filtrations defined by two distinct jumping probabilities sequences are not
locally isomorphism, therefore there is no real interest to compare them with the scaling entropy.
But this case-study provides a nice illustration because of the simplicity of the pseudometrics ρn.

5.1 Entropy of Vn

Preliminarily, we study the entropy of the random variables Vn. The entropy of Vn can be recursively
obtained from the conditional entropy formula

H(Vn, Vn−1) = H(Vn) +H(Vn−1 |Vn) = H(Vn−1) +H(Vn |Vn−1),

by deriving the two conditional entropies:

H(Vn−1 |Vn) = h(pn−1) and H(Vn |Vn−1) = pn−1H(Vn)

where h(θ) = −θ log θ − (1 − θ) log(1 − θ) is the entropy of a Bernoulli variate with parameter
θ. The first formula obviously comes from H(Vn−1 |Vn = k) = h(pn−1) for every k. The second
formula comes from the obvious equality H(Vn |Vn−1 = k) = 0 for k 6 |n|+1 and from the equality
H(Vn |Vn−1 = |n| + 1) = H(Vn) which holds because the conditional distribution L(Vn |Vn−1 =
|n| + 1) equals the unconditional distribution L(Vn). Thus we finally get the recursive relation

H(Vn−1) = h(pn−1) + (1 − pn−1)H(Vn), (5.1)

yielding

H(Vn) = h(pn) + (1 − pn)h(pn+1) + (1 − pn)(1 − pn+1)h(pn+2) + · · · + (1 − pn) · · · (1 − p−2)h(p−1).

Now, note that p−Vn > 0 almost surely, because for every k ∈ {0, . . . , |n|}, the event {Vn = k} is
included in the event {V−k = k} and the latter event has probability pk. Moreover h(0) = 0, and
finally H(Vn) is also given by

H(Vn) = E

[

h(p−Vn)

p−Vn

]

.
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Lemma 5.1. When F is Kolmogorovian and pn → 0, limH(Vn) = +∞ and lim H(Vn−1)
H(Vn) = 1.

Proof. According to Proposition 3.1, Vn → +∞ almost surely when F is Kolmogorovian. Therefore
Vn = |n| for infinitely many n, because any possible trajectory of (Vn)n60 realizing only finitely

many events {Vn = |n|} is bounded. In addition, assuming pn → 0, one has
h(p−Vn)

p−Vn
→ +∞ because

h(x)/x → +∞ when x → 0+. We deduce from the recursive relation (5.1) that H(Vn−1)
H(Vn) → 1.

5.2 Entropy of the filtration

We have seen in Section 3 that the assumption of Lemma 5.2 below is fulfilled for the random
variable V−1 of the next-jump time process (Vn)n60 in case of nonstandardness. The proof of this
lemma involves Fano’s inequality (see [5]), whose statement is:

H(X |Y ) 6 h
(

Pr(X 6= Y )
)

+ Pr(X 6= Y ) logN

for any pair of discrete random variables X and Y taking no more than N values, where H(X |Y )
denotes the conditional entropy and h(p) = −p log p − (1 − p) log(1 − p) denotes the entropy of a
Bernoulli variate with parameter p.

Lemma 5.2. Let F be a filtration, (E, ρ) a Polish metric space, X ∈ L1(F0;E), and c : (−N) →
]0,∞[ a uniform scaling. Assume that every πnX takes its values in a finite subset B(n) of E(n)

and there exists ǫ0 > 0 such that ρ(n)(x, x′) > ǫ0 for every n 6 0 as long as x 6= x′. Then

hc(X;F) = lim sup
n→−∞

H(πnX)

log #B(n)

for any scaling c(n) ∼ log #B(n).

Proof. Let δ < 1
2 and set ǫ = δǫ0 < ǫ0. For every n one has Hǫ

n(X) = H(Fn) 6 H(πnX) where Fn

is a σ(πnX)-measurable random variable satisfying Pr(πnX 6= Fn) < δ. By the conditional entropy
formula, H(πnX) −H(Fn) = H(πnX |Fn), and by Fano’s inequality,

H(πnX |Fn) 6 h(pn) + pn log #B(n)

where pn = Pr(πnX 6= Fn). Therefore

H(πnX |Fn) 6 h(δ) + δ log #B(n),

and consequently

Hǫ
n(X)

log #B(n)
6

H(πnX)

log #B(n)
6
Hǫ

n(X) + h
(

ǫ
ǫ0

)

log #B(n)
+

ǫ

ǫ0

for every n and every ǫ < ǫ0/2, yielding the assertion of the lemma.

Now consider the next-jump time process (Vn)n60 and its filtration F. Recall that we have seen
in Lemma 5.1 that limH(Vn) = +∞ in the case when F is Kolmogorovian but not standard.

Proposition 5.3. Assume F is Kolmogorovian but not standard. Let c : (−N) →]0,∞[ be a uniform
scaling such that c(n) ∼ H(Vn). Then one always has hc(F) 6 1, and one has hc(F) = 1 in the
uniform case pn = (|n| + 1)−1 (this is the case when Vn has the uniform distribution).

Proof. In the nonstandard case, there are, in view of Theorem 3.7, finitely many values of n for
which pn = 1.

First assume the identifiability assumption (3.2) (p−1 ∈]0, 1[ and pn < 1 for every n 6 −2). By
Lemma 3.3(1) and Theorem 4.9,

hc(F) = hc(X;F)
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with X = V−1, for any scaling c. In the uniform case pn = (|n| + 1)−1, we know by Lemma 5.2
that hc(X;F) = 1 for c(n) ∼ H(Vn) = log

(

|n| + 1
)

. In other cases, one obviously has

Hǫ
n(X)

c(n)
6
H(πnX)

c(n)

and then hc(X;F) 6 1 for c(n) ∼ H(Vn).
In the case when there are several n for which pn = 1, take the smallest one and call it n0. Set

p′
n = pn0+n. If p′

−1 > 0, then by Lemma 3.3(2) and by the previous case, the proposition holds
for c(n) = H(Vn0+n) but it holds for c(n) ∼ H(Vn) too because of Lemma 5.1. If p′

−1 = 0, we
similarly conclude by using Lemma 3.3(3) after noting that p′

n cannot be zero for every n 6 −1 in
the Kolmogorovian but non-standard case.

We have derived a proper uniform scaling for the uniform case only. To derive one for the general
case, we should improve the asymptotic estimate ofH(πnX |Fn) in the proof of Lemma 5.2. We have
used Fano’s inequality which is a general majoration of the conditional entropy. Generalized Fano’s
inequalities studied in [6] do not seem to be helpful for the general case. It would be interesting to
know whether there is a case for which there is a proper uniform scaling c(n) = o

(

H(Vn)
)

, and a
case for which there is no proper uniform scaling.

Note that the problem of deriving hc(F) can be elementary rephrased as a problem about the
measure µ on N defining the next-jump time process in the case when the identifiability condition
is fulfilled (see above Proposition 3.1).

6 Entropy of poly-adic filtrations

The pioneering works of Vershik focused on poly-adic filtrations, that is to say, filtrations F such
that for every n 6 0, there exists a random variable ηn uniformly distributed on a finite set,
independent of Fn−1, and such that Fn = Fn−1 ∨ σ(ηn). Such a random ηn is called an innovation
of F (at time n), and denoting by rn the size of the set on which it is uniformly distributed, F is
said to be (rn)-adic.

In spite of the equality Fn = Fm∨σ(ηm+1, . . . , ηn) holding for every m < n 6 0, the Kolmogorov
property F−∞ = {∅,Ω} does not ensure that Fn = σ(ηm;m 6 n). In other words, it does not
ensure that F is generated by the process of innovations (ηn)n60 In fact, standardness of a such a
filtration is known to be equivalent to the existence of a process of innovations (η′

n)n60 generating
this filtration. This is one of the main results of Vershik’s theory of filtrations. The difficult point
to prove in this result is the existence of (η′

n)n60 assuming standardness. The converse is easy to
prove with the help of Proposition 2.3.

Throughout this section, when an (rn)-adic filtration is under consideration, we denote by
(ℓn)n60 the integer sequence associated to (rn)n60 by setting ℓn =

∏0
i=n+1 ri (agreeing with ℓ0 = 1).

For such filtrations, Vershik defined the exponential entropy, originally in [16], as follows.

Definition 6.1. Let F be an (rn)-adic filtration and X a F0-measurable random variable taking only
finitely many values.

1. The (rn)-adic entropy, or the exponential entropy, of X with respect to F is number

h(X;F) = lim
n→−∞

H(πnX)

ℓn
= inf

n60

H(πnX)

ℓn
∈ [0,∞[

where ℓn =
∏0

i=n+1 rn and H, unless something else is specified, is the Shannon entropy.

2. The (rn)-adic entropy, or the exponential entropy, of F is h(F) = suph(X;F) ∈ [0,∞] where the
supremum is taken over all F0-measurable random variables X taking only finitely many values.

With the help of Lemma 6.3, we will see that this definition makes sense (when H is the Shannon
entropy). It is clear that h(X;F) = 0 when X is measurable with respect to σ(ηn, . . . , η0) for any
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process of innovations (ηn)n60. By a result similar to Proposition 4.16, which is given in [18] but not
in the present paper, a standard (rn)-adic filtration has zero entropy (recalling that standardness
means the existence of a generating process of innovations).

Obviously, hc(F) 6 h(F) when c is the scaling c(n) = ℓn. The main results of this section are :

1. Theorem 6.4, whose credit is given to Gorbulsky ([4]), is about the coincidence between
the exponential entropy and the scaled entropy with scaling c(n) = ℓn under the slowness
condition (∆) about the poly-adicity sequence (rn)n60.

2. Theorem 6.10, due to Vershik ([16, 18]), states that poly-adic filtrations have a zero exponen-
tial entropy under the fastness condition (∇) about the poly-adicity sequence (rn)n60.

3. Theorem 6.12, due to Vershik ([16, 18]), gives the value of the exponential entropy for the
split-word filtrations under the slowness condition (∆).

Gorbulsky showed Theorem 6.4 in the dyadic case rn ≡ 2 only. Our proof of the generalization
to condition (∆) essentially uses the same mathematics.

In addition to the points listed above, in this section we investigate the entropy of some filtrations
of unordered pairs.

6.1 The πnX in poly-adic filtrations and the exponential entropy

For poly-adic filtrations, the Vershik progressive predictions πnX and the iterated Kantorovich
distances ρ(n) as defined in Section 2 have a convenient representation, the one given in the following
lemma which is a consequence of lemma 4.6 and lemma 4.7 in [13]. For our purposes, we only state
this result for a countable state space A equipped with the 0–1 metric. In this lemma and hereafter,
it is understood that Gn is the group of automorphisms of the (rn+1, . . . , r0)-ary tree. If needed,
the reader is referred to [13] for details about the group Gn of tree automorphisms and its action
on the set of ℓn-word Aℓn . and

Lemma 6.2. Let F be an (rn)-adic filtration and X a F0-measurable random variable taking its
values in a countable set A. Then πnX can be identified to the orbit of a random word Xn on A
having length ℓn under the action of the group of tree automorphisms Gn. Using this identification
and starting with the 0–1 metric ρ on A, the n-th iterated Kantorovich metric ρ(n) on A(n) is
transported to the metric ρ̄n on the quotient set Aℓn/Gn given by

ρ̄n(Γ,Γ′) = min
w∈Γ,w′∈Γ′

δn(w,w′)

for every pair of orbits Γ and Γ′, where δn(w,w′) is the Hamming distance between the ℓn-words w
and w′ (the proportion of positions at which the letters of w and w′ differ).

We will use this lemma throughout this section. Though we do not provide its proof, it is easy
to derive it from the first part of the following lemma.

Lemma 6.3. Let F−1 be a σ-field, η0 a random variable independent of F−1 taking its values in a
set with finite size r0 > 2, which we assume to be {1, . . . , r0} without loss of generality. Define the
σ-field F0 = F−1 ∨ σ(η0).

Let X0 be a random variable taking its values in a Polish space A.

1. There exist r0 random variables X−1(1), . . ., X−1(r0), taking their values in A and measurable
with respect to F−1, and such that X0 = X−1(η0).

2. For such random variables and when A is finite, one has H(X−1) 6 r0H(X0), where X−1 =
(

X−1(1), . . . ,X−1(r0)
)

and H is the Shannon entropy.

Proof. For the first point, write X0 = f(F−1, η0) for some Borelian function f , and set X−1(i) =
f(F−1, i). For the second point, check the law of X0 is the average law of the X−1(i), hence
H(X−1) 6 H

(

X−1(1)
)

+ · · · +H
(

X−1(r0)
)

6 r0H(X0) by concavity of the Shannon entropy.
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This lemma justifies that the exponential entropy is well defined (when H is the Shannon
entropy): the first part shows that πnX in Definition 6.1 takes only finitely many values, and the
second part implies H(π−1X0) 6 r0H(X0) and by recursively applying this inequality one gets that
H(πnX)

ℓn
is decreasing.

6.2 Gorbulsky’s theorem

In [4], Gorbulsky proved Theorem 6.4 below in the case when rn ≡ 2. We show that this result
more generally holds for sequences (rn) satisfying condition

(∆):
0
∑

n=−∞

log rn!

ℓn−1
< ∞, equivalent to

0
∑

n=−∞

rn log rn

ℓn−1
< ∞.

For example, all bounded sequences (rn)n60 satisfy condition (∆), and it is also fulfilled in the case
when rn = |n| + 1.

Theorem 6.4. Let F be a (rn)-adic filtration. Assume that condition (∆) is fulfilled by the poly-
adicity sequence (rn)n60 and consider the scaling c(n) = ℓn. Then

hc(X;F) = lim
n→−∞

H(πnX)

ℓn

for every F0-measurable random variable X taking only finitely many values.
Consequently the scaled entropy hc(F) is the same as the exponential entropy h(F).

In this theorem, it is understood that we use the Shannon entropy as the measure of entropy
in the scaled entropy.

Only Lemma 6.8 below will be involved in the proof of Theorem 6.4. It is a consequence of
Lemma 6.6 and Lemma 6.7. The result of elementary analysis stated in the following lemma will
be used in Lemma 6.6.

Lemma 6.5. Let (un)n>0 and (vn)n>0 be two sequences of positive numbers such that vn ց 0. If
∑

unvn < ∞ then ǫ
∑n(ǫ)

i=0 ui → 0 when ǫ → 0+, where n(ǫ) = min{n | vn+1 < ǫ}.

Proof. Let δ > 0. Take M1 such that
∑n

i=m+1 uivi < δ whenever n > m > M1. Now take M2 such

that vm
∑M1

i=0 ui < δ whenever m >M2. Set N = max{M1,M2}. If ǫ 6 vN+1, then n(ǫ) > N and

ǫ

n(ǫ)
∑

i=0

ui 6 vn(ǫ)

n(ǫ)
∑

i=0

ui 6 vn(ǫ)

M1
∑

i=0

ui +

n(ǫ)
∑

i=M1+1

uivi < 2δ.

When Γ ∈ Aℓn/Gn is an orbit, we denote by |Γ| the number of words it contains.

Lemma 6.6. Assume that condition (∆) is fulfilled by the poly-adicity sequence (rn). For any pair
of orbits Γ and Γ′,

lim sup
n→−∞

∣

∣log |Γ| − log |Γ′|
∣

∣

ℓn
6 d

(

ρ̄n(Γ,Γ′)
)

,

with limǫ→0 d(ǫ) = 0.

Proof. Consider a word w of length ℓn with its tree structure as shown by Figure 3. We denote by
Γ(w) its Gn-orbit.

The word w at level n is the concatenation of the rn+1 words wi of length ℓn+1 at level n+ 1. If
the Gn+1-orbits Γ(wi) of the subwords wi are pairwise distinct, then |Γ(w)| = rn!|Γ(w1)| . . . |Γ(wrn)|.
If they are all equal, then |Γ(w)| = |Γ(w1)| . . . |Γ(wrn)|. Generally, |Γ(w)| = Mn,1|Γ(w1)| . . . |Γ(wrn)|
where Mn,1 is a multinomial coefficient lying between 1 and rn+1!. Continuing so on, we find

log |Γ(w)| =
−1
∑

j=n

ℓn/ℓj
∑

i=1

logMj,i
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e

0

f
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gh

1

g

0

h

1

Figure 3: The tree structure of abcdefgh.

where Mj,1 is a multinomial coefficient lying between 1 and rj+1!. Writing another word w′ of
length ℓn in the same way, we get

∣

∣log |Γ(w)| − log |Γ(w′)|
∣

∣ 6

−1
∑

j=n

ℓn/ℓj
∑

i=1

| logMj,i − logM ′
j,i|.

Each deviation | logMj,i − logM ′
j,i| is bounded by log rj+1!. If the letters of w and w′ differ at

ǫℓn positions, then at each level j there are at most min
(

ℓn

ℓj
, ǫℓn

)

non-zero deviations | logMj,i −

logM ′
j,i|.

Therefore,

∣

∣log |Γ(w)| − log |Γ(w′)|
∣

∣

ℓn
6

k(ǫ)−1
∑

j=n

log rj+1!

ℓj
+ǫ

−1
∑

j=k(ǫ)

log rj+1! 6

k(ǫ)−1
∑

j=n

rj+1 log rj+1

ℓj
+ǫ

−1
∑

j=k(ǫ)

rj+1 log rj+1

where k(ǫ) = max{k | ℓ−1
k−1 < ǫ}.

Under the (∆) condition, the first sum in the right member goes to
∑k(ǫ)−1

j=−∞
rj+1 log rj+1

ℓj
when

n → −∞, and this goes to 0 when ǫ → 0 because k(ǫ) goes to −∞. The second sum goes to 0 too
because of Lemma 6.5.

Lemma 6.7. For any orbit Γ, the log-number of words in an ǫ-neighbourhood of Γ does not exceed

log |Γ| + γ(ǫ)ℓn + log(#A− 1)ǫℓn

where γ(ǫ) = ǫ log 1
ǫ + (1 − ǫ) log 1

1−ǫ .

Proof. The ǫ-ball around a word w of length ℓn is enumerated by taking k = 0, . . . , ǫℓn positions in
w and changing all letters at these positions. Then the number of words it contains is

(#A− 1)ǫℓn ×
ǫℓn
∑

k=0

(

ℓn
k

)

,

and

log
ǫℓn
∑

k=0

(

ℓn
k

)

6 γ(ǫ)ℓn

by the classical large deviations inequality for independent symmetric Bernoulli variables (Corol-
lary 2.20 in [7]).

Lemma 6.8. Under condition (∆), for any orbit Γ, the log-number of orbits in the ǫ-neighborhood
of Γ does not exceed a value Lǫ

n satisfying

lim
ǫ→0

lim
n→−∞

Lǫ
n

ℓn
= 0.
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Proof. The number of orbits in the ǫ-neighbourhood Vǫ(Γ) of Γ is less than the number of words
in Vǫ(Γ) divided by the minimal length of an orbit Γ′ in Vǫ(Γ). Applying the two previous lemmas
gives the desired result:

Lǫ
n 6

(

log |Γ| + γ(ǫ)ℓn + log(#A− 1)ǫℓn
)

−
(

log |Γ| − d(ǫ)ℓn
)

Proof of Theorem 6.4.

In the proof we use notation H(E) = −
∑

x∈E µ(x) log µ(x) where µ is the law of πnX and E is
any set of Gn-orbits. Note that

H(E) 6 µ(E) log #E − µ(E) log µ(E)

because H(E) = µ(E)H(µ′) − µ(E) log µ(E) where µ′ = µ(· | E).
We use the ǫ-entropy as defined in Lemma 4.7. Let {Ai, B} be a partition achieving Hǫ

n(X),
with Ai ⊂ Vǫ(Γi) and µ(B) 6 ǫ. One has

Hǫ
n(X) = −

∑

i

µ(Ai) log µ(Ai) − µ(B) log(B)

and
H(πnX) =

∑

i

H(Ai) +H(B).

Firstly, H(B) 6 (log #A)ǫℓn − ǫ log ǫ.
On the other hand,

H(Ai) 6 µ(Ai)L
ǫ
n − µ(Ai) log µ(Ai),

hence
∑

i

H(Ai) 6 Hǫ
n(X) + Lǫ

n.

Thus,
Hǫ

n(X)

ℓn
6
H(πnX)

ℓn
6
Hǫ

n(X)

ℓn
+
Lǫ

n − ǫ log ǫ

ℓn
+ (log #A)ǫ,

thereby yielding the theorem.

Corollary 6.9. Let F be a filtration immersed in a (rn)-adic filtration. Consider the scaling c(n) =
ℓn. If (rn)n60 fulfills the (∆) condition, then

hc(X) = lim sup
n→−∞

H(πnX)

ℓn

for every simple F0-measurable random variable X.

Proof. This is a direct consequence of Theorem 6.4 and the immersion property (Remark 4.5).

6.3 ∇-adic filtrations

The (∇) condition is stronger than the negation of the (∆) condition, because this condition is the
divergence of a certain sequence whereas the (∆) condition is the convergence of the series made
up of the same sequence:

(∇) :
log rn

ℓn
→ ∞.

Vershik’s following theorem is proved in [18].

Theorem 6.10. Let F be a (∇)-adic filtrations. Then it has zero exponential entropy when we use
the min-entropy as the underlying measure of entropy H (see above Definition 4.1). Consequently
it also has zero exponential entropy when we use the Shannon entropy as the underlying measure
of entropy, and the same result holds for the scaled entropy with the scaling c(n) = ℓn,
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The proof is based on the following combinatorial lemma.

Lemma 6.11. For an alphabet A having size #A = p, the number of orbits χp
n of the action of Gn

on Aℓn is given by χp
0 = p and the recurrence formula

χp
n−1 =

(

rn + χp
n − 1

rn

)

,

and one has log χp
n = o(ℓn) when condition (∇) holds.

Proof. The recurrence formula obviously stems from the fact that an orbit for the action of Gn−1

is obtained by choosing a list of rn orbits for the action of Gn, with possible repetitions. Then

logχp
n−1 = log(rn + χp

n − 1) · · · (rn + 1) − log(χp
n − 1)! 6 χp

n log rn

by subadditivity of the logarithm. Set tn = log χp
n

ℓn
. Note that rn = exp(βnℓn) where βn is the

quantity going to ∞ under the (∇) condition. Thus

tn−1 6
χp

n log rn

ℓn−1
=

exp(tnℓn)βnℓn
ℓn exp(βnℓn)

= βn exp
(

(tn − βn)ℓn
)

.

The number of orbits cannot exceed the number of words, and this yields the inequality tn 6 log p.
Therefore the right member of the last inequality goes to 0 under the (∇) condition.

Proof of Theorem 6.10. Given any F0-measurable random variable X taking its values in a finite
set A, one has H0(πnX) 6 logχ#A

n with the notations of the previous lemma, where H0 is the
min-entropy. Then the result for the min-entropy follows from this lemma, and the result for the
Shannon entropy H follows because of H 6 H0.

6.4 ∆-adic split-word filtrations

The poly-adic filtrations of the split-word processes with independent letters were studied in [14],
[3], [2], [9]. In the more general case of stationary letters, standardness of thes filtrations is closely
connected, as shown in [13], to the notion of scale of an automorphism introduced by Vershik in
[17]. Theorem 6.12 below, which is a rephrasing of theorem 4.1 in [18], provides the exponential
entropy of these filtrations under condition (∆).

Given a sequence of integers (rn)n60, setting as before ℓn = rn+1 . . . r0, and given an alphabet
A, a (rn)-adic split-word process on A, is a process (Xn, ηn)n60 satisfying for each n 6 0, denoting
by F the filtration it generates:

• Xn is a random word on A of length ℓn;

• ηn is a random variable uniformly distributed on {1, 2, . . . , rn} and is independent of Fn−1,
and the word Xn is the ηn-th letter of of Xn−1 treated as an (rn)-word on Aℓn .

Obviously the filtration F generated by (Xn, ηn)n60 is a (rn)-adic filtration for which (ηn)n60 is a
process of innovations.

For example, one can define such a process by taking a stationary probability measure on AZ

and then defining the law of Xn the projection of this measure on ℓn consecutive coordinates. In this
case and when A is finite, by standard ergodic theory, the Kolmogorov entropy of this stationary
probability measure can be written

θb = lim
n→−∞

H(Xn)

ℓn
∈ (0,+∞) (6.1)

when we use the Shannon entropy H with logarithmic base b. More generally, we can see that θb

exists for any split-word process with the help of Lemma 6.3.
With the terminology of [8], F is an adic filtration on the Bratteli graph shown on Figure 4,

called the graph of the ordered pairs by Vershik (in contrast with the graph of unordered pairs that
we will see in Section 6.5).
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Figure 4: The Bratteli graph of the ordered pairs.

The proof of the theorem involves the cardinal of the group of tree automorphisms Gn given by

log #Gn = ℓn

0
∑

m=n+1

log rm!

ℓm−1
.

Theorem 6.12. For the scaling c(n) = ℓn and under condition (∆), the scaled entropy is hc(F) = θb

when we use the Shannon entropy in logarithmic base b as the underlying measure of entropy.

Proof. By Proposition 4.17 and Proposition 4.18, we know that hc(F) = limm→−∞ hc(Xm;F). And

we know that hc(Xm;F) = limn→−∞
H(πnXm)

ℓn
by Theorem 6.4.

We firstly compare H(πnX0)/ℓn with H(Xn)/ℓn. Recall that πnX0 is the orbit of Xn under the
action of tree automorphisms. Therefore H(πnX0) = H(Xn) −H(Xn | πnX0), and H(Xn | πnX0)
is less than the logarithm of the length of the orbit πnX0, and a fortiori it is less than the logarithm
of the number of tree automorphisms. Thus,

H(Xn) > H(πnX0) > H(Xn) − log #Gn
(

{ri}
0
i=n+1

)

.

In the same way, for n < m,

H(Xn) > H(πnXm) > H(Xn) − log #Gn−m
(

{ri}
m
i=n+1

)

,

therefore

H(Xn)

ℓn
>
H(πnXm)

ℓn
>
H(Xn)

ℓn
−

log #Gn−m

(

{ri}
m
i=n+1

)

ℓn
(6.2)

=
H(Xn)

ℓn
−

m
∑

k=n

log rk+1!

ℓk
, (6.3)

and

θ > lim
n→−∞

H(πnXm)

ℓn
> θ −

m
∑

k=−∞

log rk+1!

ℓk
.

The (∆) condition is lim
∑m

k=−∞
log rk+1!

ℓk
= 0, and the proof is over.

6.5 Dyadic filtrations of unordered pairs

Let (Xn, ǫn) be a dyadic split-word process and F the filtration it generates. Consider the scaling
c(n) = ℓn = 2|n|. We know the scaling entropy of F by Theorem 6.12. It is interesting to wonder
about the scaled entropy hc(X0) of the final letter X0, that is to say, in view of Theorem 4.9,
the scaled entropy hc(F

X0) of the filtration generated by the Markov process (πnX0)n60. Here we
provide a result for the case of an alphabet A = {a, b} having only two letters.
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The Markov process (πnX0)n60 can be seen as a random walk on the vertices of the graph of
the unordered pairs shown on Figure 5 below, and which can be found in [22].

Figure 5: The Bratteli graph of the unordered pairs ([22]).

The filtration FX0 generated by (πnX0)n60 is not dyadic, because πn+1X0 is deterministic given
Fn for certain values of πnX0. This is shown on Figure 5 by the double edges. Nevertheless, one
has hc(X0) = h(X0) by Corollary 6.9.

Indeed, there is a dyadic superinnovation of FX0 , that is to say a sequence (ǫ′n)n60 of independent

symmetric Bernoulli random variables which is a superinnovation (see Proposition 4.17) of FX0

and which is a process of innovations of that the enlarged filtration GX0 defined by GX0
n = FX0

n ∨
σ(ǫ′m;m 6 n). To construct such a dyadic superinnovation, consider for every n 6 0 an arbitrary
but fixed order on the set of Gn-orbits, and set

ǫ′n =















ǫn if πn−1X0 is symmetric;

1 if πn−1X0 = {Γ1,Γ2} with Γ1 < Γ2 and πnX0 = Γ1;

2 if πn−1X0 = {Γ1,Γ2} with Γ1 < Γ2 and πnX0 = Γ2.

As we previously recalled, hc(X0) = hc(F
X0) because of Theorem 2.4. Moreover we know that

hc(F
X0) = hc(G

X0) by Proposition 4.17. In fact it can be shown by using Proposition 4.17 and
lemma 5.3 in [8] that one can always ”drop” the multiple edges when we are interested in the scaling
entropy of the filtration associated (in the way explained in [8]) to a Bratteli graph endowed with
a central probability measure.

The bounds for hc(X0) we give in Proposition 6.15 are derived from the two following lemmas.
The first one, giving the maximal length of a Gn-orbit, is a copy of lemma 3.6 in [18], to which we
refer for the proof. The second one gives an asymptotic equivalent of the number of Gn-orbits (the
number of vertices at level n of the graph of the unordered pairs). In [18], it is stated in lemma 3.7
but the given value of γ is not correct.

Lemma 6.13. For an alphabet with two letters, the maximal length of a Gn-orbit is 2
3
4

2|n|−1 for
every n 6 2.

Lemma 6.14. For an alphabet with two letters, the base 2 logarithm of the number χn of Gn-orbits
is equivalent to γ2|n| where 0.428 < γ < 0.429.

Proof. It is easy to see that the number of orbits χn is given by χ0 = 2 and χn−1 = χn(χn+1)
2 (this
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is a particular case of Lemma 6.11). By the equality

log2 χn−1

2|n−1|
=

log2 χn

2|n|
+

log2

(

1 + 1
χn

)

− 1

2|n−1|
,

the sequence log2 χn

2|n|
is decreasing, and for every n < n0 < 0,

log2 χn0

2|n0|
−

1

2|n0|
6

log2 χn

2|n|
6

log2 χn0

2|n0|
.

Taking n0 = −11 gives the bounds on the limit γ.

Proposition 6.15. For an alphabet with two letters, and taking the scaling c(n) = ℓn = 2|n|,

θ2 −
3

4
6 h(X0) 6 min(θ2, γ)

where γ is given in Lemma 6.14 and θ2 is defined in equation (6.1). Here we use the Shannon
entropy with logarithmic base 2 as the underlying measure of entropy and h(X0) is the exponential
entropy (definition 6.1), but by Theorem 6.4 it is the same as the scaled entropy hc(X0).

Proof. We start, as in the proof of Theorem 6.12, with the equality H(πnX0) = H(Xn) − H(Xn |
πnX0). But this time we bound from above the conditional entropy H(Xn | πnX0) by the logarithm
of the maximal length of a Gn-orbit. In addition we bound from above H(πnX) by the logarithm
of the number of Gn-orbits. Then, using Lemma 6.13 and Lemma 6.14, we get

H(Xn)

2|n|
−

3

4
6
H(πnX0)

2|n|
6 min

{

H(Xn)

2|n|
,
log2 χn

2|n|

}

,

and then the result follows by taking the limit.

For example, this result shows that the filtration FX0 in the uniform case θ2 = 1 is not isomorphic
to the filtration FX0 in a case when θ2 <

1
4 .
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[3] Émery, M., Schachermayer, W.: On Vershik’s standardness criterion and Tsirelson’s notion of
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