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Uniform entropy scalings of filtrations

Stéphane Laurent

June 15, 2014

Abstract

We study Vershik and Gorbulsky’s notion of entropy scalings for filtrations in the particular
case when the scaling is not ǫ-dependent, and is then termed as uniform scaling. Our main result
states that the scaled entropy of the filtration generated by the Vershik progressive predictions
of a random variable is equal to the scaled entropy of this random variable. Standardness of a
filtration is the case when the scaled entropy with a constant scaling is zero, thus our results
generalize some known results about standardness. As an example we derive a proper uniform
entropy scaling for a next-jump time filtration. As a side note, we use the example of the next-
jump time filtrations to write down a case study of Vershik’s theory of intrinsic topology on
Bratteli graphs.
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1 Introduction

This is the first paper written in the probabilistic language about Vershik & Gorbulsky’s theory of
scaled entropy introduced in [12]. We focus on the case of uniform entropy scalings. Our results
contain as particular cases some known results about standardness. In section 2 we recall the
definition of Vershik’s standardness criterion. We use this criterion in section 3 to give a new
proof of the standardness criterion for the family of next-jump time filtrations studied in [9] (where
I-cosiness was used to derive this standardness criterion). Section 4 is a digression: we use the
calculations of section 3 to study the intrinsic topology induced by the Bratteli graph of the next-
jump time filtrations. This provides a complete case study of Vershik’s recent theory introduced in
[14], which is a by-product of standardness. The reader only interested in the entropy could skip
this section, whereas the reader only interested in this illustration of Vershik’s new theory could
only read sections 2 to 4. Section 5 introduces the definition of uniform entropy scalings. In section
6 we pursue the work of section 3 by studying uniform entropy scalings for the next-jump time
filtrations.

2 Vershik’s standardness criterion

In the probabilistic literature, standardness of a filtration F = (Fn)n60 in discrete negative time
is usually defined as the possibility to embed F in the filtration generated by a sequence of inde-
pendent random variables (see [2, 6, 7, 8]). As long as the final σ-field F0 is essentially separable,
standardness is known to be equivalent to Vershik’s standardness criterion. In this section we recall
the statement of Vershik’s standardness criterion and we state some of its elementary properties
which are proved in [7]. In section 5 we will see that these properties are particular cases of some
elementary properties about the scaled entropy.

2.1 Vershik’s standardness criterion

The Kantorovich distance plays a major role in the statement of Vershik’s standardness criterion,
as well as in the definition of the entropy. Given a separable metric space (E, ρ), the Kantorovich
distance ρ′ on the set E′ of probabilities on E is defined by

ρ′(µ, ν) = inf
Λ∈J(µ,ν)

∫∫

ρ(x, y)dΛ(x, y),

where J(µ, ν) is the set of joinings of µ and ν, that is, the set of probabilities on E × E whose
first and second marginal measures are µ and ν respectively. In general, the topology induced by
ρ′ on the set E′ of probability on E is finer than the topology of weak convergence. These two
topologies coincide when (E, ρ) is compact, and (E′, ρ′) is itself compact in this case. The metric
space (E′, ρ′) is complete and separable whenever (E, ρ) is (see e.g. [1]).

In order to state Vershik’s standardness criterion, one has to introduce the Vershik progressive
predictions πnX of a random variable X (corresponding to the so-called universal projectors, or
tower of measures, in [10] and [11]) and the iterated Kantorovich distance ρ(n) on the state space of
πnX. Let F be a filtration, E a Polish metric space andX ∈ L1(F0;E). The Vershik progressive pre-
dictions πnX of X are recursively defined as follows: we put π0X = X, and πn−1X = L(πnX |Fn−1)
(the conditional law of πnX given Fn−1). Thus, the n-th progressive prediction πnX of X with
respect to F is a random variable taking its values in the Polish space E(n) recursively defined by
E(0) = E and E(n−1) = (E(n))

′
, denoting as before by E′ the space of probability measures on any

separable metric space E. Note that (πnX)n60 is a Markov process. The state space E(n) of πnX

is Polish when endowed with the distance ρ(n) obtained by iterating |n| times the construction of
the Kantorovich distance starting with ρ: we recursively define ρ(n) by putting ρ(0) = ρ and by
defining ρ(n−1) = (ρ(n))

′
as the Kantorovich distance issued from ρ(n). The proof of the following

lemma is straightforward from the definitions.

Lemma 2.1. For any Polish space (E, ρ) and X,Y ∈ L1(F0;E), the process
(

ρ(n)(πnX,πnY )
)

n60

is a submartingale. In particular the expectation E

[

ρ(n)(πnX,πnY )
]

is increasing with n.
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Finally, in order to state Vershik’s standardness criterion, one introduces the dispersion dispX
of (the law of) an integrable random variable X in a Polish metric space (E, ρ). It is defined
as the expectation of ρ(X ′,X ′′) where X ′ and X ′′ are two independent copies of X, that is, two
independent random variables defined on the same probability space and having the same law as
X. Now, Vershik’s standardness criterion is defined as follows. Let F be a filtration, let E be a
Polish metric space and X ∈ L1 (F0;E). We say that the random variable X satisfies the Vershik
property, or, for short, that X is Vershikian (with respect to F) if dispπnX −→ 0 as n goes to −∞.
Then we extend this definition to σ- fields E0 ⊂ F0 and to the whole filtration as follows: we say
that a σ- field E0 ⊂ F0 is Vershikian if each random variable X ∈ L1 (E0; [0, 1]) is Vershikian, and
we say that the filtration F is Vershikian, or that F satisfies Vershik’s standardness criterion, if the
final σ- field F0 is Vershikian.

2.2 Properties to be generalized later

Throughout this article, we denote by V (X) the Vershik property for a random variable X, when
an underlying ambiant filtration F is understood. We also denote by V (E0) the Vershik property
for a σ- field E0 ⊂ F0. We will see in section 5 that V (X) can be equivalently stated as hc(X) = 0
where hc is the scaled entropy of X with a constant scaling function c. Then our results in section
5 about the uniformly scaling entropy generalize the following propositions and theorem which are
provided in [7].

Proposition 2.2. Let F be a filtration, n0 6 0 be an integer, and denote by Fn0] = (Fn0+n)n60 the

filtration F truncated at n0. Then Fn0] is Vershikian if and only if F is Vershikian.

Proposition 2.3. a) If (Bk)k>1 is an increasing sequence of sub-σ-fields of F0 then

[∀k > 1, V (Bk)] =⇒ V
(

∨

k>1

Bk

)

.

b) For any Polish metric space (E, ρ) and X ∈ L1(F0;E),

V (X) ⇐⇒ V
(

σ(X)
)

.

Theorem 2.4. For any X ∈ L1(F0;E), the filtration FX generated by the Markov process (πnX)n60

satisfies the Vershik property if and only if the random variable X satisfies the Vershik property.

Proposition 2.2 is a consequence of proposition 5.12. Proposition 2.3 is a consequence of propo-
sition 5.10 and proposition 5.11. Theorem 2.4 is a particular case of theorem 5.6.

2.3 Vershik’s standardness criterion in practice

Vershik’s standardness criterion may appear puzzling and complicated at first glance: calculating
the progressive predictions πnX and the iterated Kantorovich distance on the strange state space
of πnX does not appear easily practicable.

First note that V (X) does not depend on the choice of the Polish space E in which X takes its
values: this stems from the second claim of proposition 2.3. Also note the importance of theorem
2.4: V (X) is equivalent to standardness of the filtration FX generated by the Markov process
(πnX)n60. Thus, if we intend to show that standardness of F holds true, our task is reduced to
only show V (X) if we find X such that FX = F.

Observe that any filtration F having an essentially separable final σ-field F0 can always be
generated by a Markov process (Xn)n60: just take for Xn any random variable generating the
σ-field Fn for every n 6 0. Vershik’s standardness criterion can be rephrased to a more practical
criterion by considering such a Markov process (Xn)n60, as we explain below and summarize in
lemma 2.5; but practicality of the rephrased criterion depends on the choice of the generating
Markov process. Firstly, the strange state spaces of Vershik’s progressive predictions πnX can be
avoided when X is some random variable Xk. It suffices to explain this for X = X0. Denote by
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An the state space of Xn for every n 6 0. Starting with a compact metric ρ0 on A0, we recursively
define a pseudometric ρn on the state space of Xn by setting

ρn(xn, x
′
n) = (ρn+1)′(L(Xn+1 |Xn = xn),L(Xn+1 |Xn = x′

n)
)

where (ρn+1)′ is the Kantorovich pseudometric derived from ρn+1. The ρn are more friendly than
the ρ(n) appearing in Vershik’s standardness criterion, and lemma 2.5 states that there are some
maps ψn : An → A

(n)
0 such that πnX0 = ψn(Xn) and

ρ(n)(ψn(xn), ψn(x′
n)

)

= ρn(xn, x
′
n)

for every xn, x
′
n ∈ An. Thus, in order for the Vershik property V (X0) to hold true, it suffices that

ρn(X ′
n,X

′′
n) → 0 in L1 where X ′

n and X ′′
n are two independent copies of Xn. Moreover, lemma 2.5

states that FX0 = F under the identifiability condition

∀n 6 0,∀xn, x
′
n ∈ An, [ xn 6= x′

n ] =⇒
[

L(Xn+1 |Xn = xn) 6= L(Xn+1 |Xn = x′
n)

]

(⋆)

and then, by theorem 2.4 standardness of F is equivalent to V (X0) under this condition

Lemma 2.5. Let F be the filtration generated by a Markov process (Xn)n60. Denote by An the
state space of Xn for every n 6 0 and assume that A0 is a compact metric space under some
metric ρ0. Consider the pseudometrics ρn introduced above and the iterated Kantorovich metrics
ρ(n) appearing in Vershik’s standardness criterion.

1) There are some maps ψn : An → A
(n)
0 such that πnX0 = ψn(Xn) and

ρ(n)(ψn(xn), ψn(x′
n)

)

= ρn(xn, x
′
n)

for every xn, x
′
n ∈ An and every n 6 0.

2) The Vershik property V (X0) is equivalent to E
[

ρn(X ′
n,X

′′
n)

]

→ 0 where X ′
n and X ′′

n are two
independent copies of Xn.

3) Under the identifiability condition (⋆), the ρn are metrics and the ψn are isometries. Conse-
quently F is generated by the process (πnX0)n60, and V (X0) is equivalent to standardness of
F.

Proof. Obviously π0X0 is a σ(X0)-measurable random variable, and πnX0 = L
(

πn+1X0 |Fn) for
n < 0 is a σ(Xn)-measurable random variable by the Markov property. Therefore, for each n 6 0,
the Doob-Dynkin lemma provides a measurable function ψn for which πnX0 = ψn(Xn), and ψ0 is
nothing but the identity map. The equality in 1) relating ρ(n) and ρn is obviously true for n =
0. Assuming ρ(n+1)

(

ψn+1(xn+1), ψn+1(x′
n+1)

)

= ρn+1(xn+1, x
′
n+1), then the Kantorovich distance

ρn(xn, x
′
n) is given by

ρn(xn, x
′
n) = inf

Λxn,x′
n

∫

ρ(n+1)(ψn+1(xn+1), ψn+1(x′
n+1)

)

dΛxn,x′
n
(xn+1, x

′
n+1),

where the infimum is taken over all joinings Λxn,x′
n

of L(Xn+1 |Xn = xn) and L(Xn+1 |Xn = x′
n),

and then ρn(xn, x
′
n) is also given by

ρn(xn, x
′
n) = inf

Θxn,x′
n

∫

ρ(n+1)(yn+1, y
′
n+1)dΘxn,x′

n
(yn+1, y

′
n+1),

where the infimum is taken over all joinings Θxn,x′
n

of L(πn+1X0 |Xn = xn) = ψn(xn) and
L(πn+1X0 |Xn = x′

n) = ψn(x′
n), thereby showing ρ(n)

(

ψn(xn), ψn(x′
n)

)

= ρn(xn, x
′
n). That shows

1), and 2) obviously follows.
The claim about the ρn in 3) is recursively shown too. It suffices to show that every ψn is

injective. Assuming that ψn+1 is injective and assuming L(Xn+1 |Xn = xn) 6= L(Xn+1 |Xn = x′
n),

then, obviously,
L

(

ψn+1(Xn+1) |Xn = xn

)

6= L
(

ψn+1(Xn+1) |Xn = x′
n

)

,

that is, ψn(xn) 6= ψ(x′
n), thereby showing 3). The last claim of 3), asserting equivalence between

V (X0) and F, stems from theorem 2.4.
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Obviously we can similarly state lemma 2.5 for Xk instead of X0, for any k 6 0. When the
identifiability condition (⋆) does not hold, then in order to prove standardness of F, it is sufficient
to check that V (Xk) holds true for every k 6 0. This is a consequence of proposition 6.2 in [7].

3 The next-jump time filtrations

In section 6 we will study the scaled entropy of the next-jump time filtrations which are introduced
in this section. Standardness of these filtrations has been characterized in [9] with the help of the
I-cosiness criterion. In this section we provide a new proof of this characterization with the help of
Vershik’s standardness criterion (section 2.1). More precisely, we will be in the context of lemma
2.5 and the identifiability condition (⋆) will be fulfilled, and thus our main task will be to derive
the metrics ρn of this lemma. This will be achieved in section 3.2, after we introduce the next-jump
filtrations in section 3.1 as the filtrations generated by some random walks on the vertices of a
Bratteli graph (shown on figure 1). The distances ρn will be the starting point of section 4 where
we will apply the theory recently introduced by Vershik in [14] to the next-jump graph (figure 1).

3.1 Next-jump time process as a random walk on a Bratteli graph

Our presentation of the next-jump time filtrations differs from the one given in [9]. Here we define
these filtrations as those generated by a Markov process on the vertices of a Bratteli graph.

Let B be the (−N)-graded Bratteli graph shown on Figure 1. At each level n, there are |n| + 1
vertices labeled by k ∈ {0, . . . , |n|}, and the vertex labeled by k is connected to the two vertices at
level n− 1 labeled by k and |n| + 1. A path in B is a sequence (γn)n60 consisting of edges γn such
that γn connects a vertex at level n to a vertex at level n − 1 for every n 6 0. The set of paths is
denoted by ΓB. When a path is taken at random in ΓB we denote by Vn the label of the selected
vertex at level n (thus V0 = 0) and we are interested in the filtration F generated by the process
(Vn)n60. When this causes no possible confusion we identify a vertex to its label. We study the
case when the process (V0, V−1, . . .) is the Markov chain whose transition distributions are defined
from a given [0, 1]-valued sequence (pn)n60 satisfying p0 = 1, by

L(Vn |Vn+1 = k) = (1 − pn)δk + pnδ|n|,

that is to say, given Vn+1, the vertex Vn is one of the two vertices connected to Vn+1 and equals
the extreme vertex |n| with probability pn.

In other words, if we consider that the set of paths ΓB is {0, 1}−N by labeling the edges con-
necting a vertex vn at level n to the vertex vn−1 at level n − 1 by 0 if vn−1 and vn have the same
label and by 1 if vn−1 is labeled by |n| + 1, then we are interested in the case when the paths are
taken at random according to the independent product measure

⊗

n6−1(1 − pn, pn) by denoting by
(1 − p, p) the Bernoulli probability measure with probability of success p.

0

−1

−2

−3

−4

1 2 3 4

k

n

(a) Random walk from n = 0 to n =
−∞

0

−1

−2

−3

−4

1 2 3 4

k

n

(b) Random walk from n = −∞ to
n = 0

Figure 1: Next-jump time process as a random walk
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The time-directed process (Vn)n60 is Markovian too. The next-jump time process (Zn)n60

defined in [9] is obtained from Vn by putting Z0 = 0 and Zn = −Vn+1 for n 6 −1. Hence the
filtration F generated by the Markov process (Vn)n60 = (Zn−1)n60 shares the same standardness
status as the one studied in [9] because standardness is an asymptotic property (proposition 2.2).

It is easy to see that Pr(Vn = |n|) = pn. We will say that the pn are the jumping probabilities
because one also has pn = Pr(Vn+1 6= Vn) for every n < 0. It is shown in [9] that

Pr(Vn = |k|) = (1 − pn) · · · (1 − pk−1)pk if 0 6 k < |n|,

and the transitions kernels Pn(v, ·) from n− 1 to n are given by

Pn(v, ·) := L(Vn |Vn−1 = v) =

{

δv if 0 6 v < |n| + 1

L(Vn) if v = |n| + 1
. (3.1)

Obviously the identifiability condition (⋆) defined in section 2.3 cannot hold for (Vn)n60 because
V0 = 0 is degenerate. But we will see in lemma 3.3 that this condition holds for the process truncated
at −1 when p−1 ∈]0, 1[ and pn < 1 for every n 6 −2.

An important particular case is the one when pn = (|n| + 1)−1. In this case, Vn has the
uniform distribution on {0, . . . , |n|} for every n 6 0 and the filtration F generated by (Vn)n60 is
Kolmogorovian and not standard in this case. This results from the standardness criterion provided
by theorem 3.7, which was proved in [9] with the help of the I-cosiness criterion, and which is proved
in the present paper with the help of Vershik’s criterion.

The following proposition about the tail σ- field F−∞ is a rewriting of proposition 3.1 in [9], to
which we refer for a detailed proof.

Proposition 3.1. The sequence (Vn)n60 goes to a random variable V−∞ when n goes to −∞, and
the tail σ- field F−∞ is generated by V−∞. There are three possible situations:

1) if
∑

pn = ∞ then V−∞ = +∞ almost surely, therefore F is Kolmogorovian;

2) if
∑

pk < ∞ then

(a) either V−∞ is not degenerate, therefore F is not Kolmogorovian,

(b) or we are in the following case

pn0 = 1 and pn = 0 for every n < n0 for some n0 6 0 (∗)

and then V−∞ = |n0| almost surely, therefore F is Kolmogorovian and even standard.

Thus F is Kolmogorovian if and only if
∑

pn = ∞ or in case (∗). Standardness of F in case (∗)
elementarily holds true because Fm = {∅,Ω} for every m 6 n0.

3.2 Standardness of F using Vershik’s criterion

Throughout this section, we denote by (Vn)n60 the next-jump time process with jumping probabil-
ities (pn)n60 and we denote by F the filtration it generates. Discarding the elementary case (∗), it
is shown in [9] with the help of the I-cosiness citerion that F is standard (Vershikian) if and only
if

∑

p2
n = ∞. In this section we derive again this result by using Vershik’s standardness criterion.

More precisely we will use the version of Vershik’s standardness criterion given by lemma 2.5. We
firstly treat a particular case in lemma below.

Lemma 3.2. If pn = 1 for infinitely many n, then F is standard.

Proof. For every integer k 6 0, define the random vector Xk = (Vk, . . . , V0) and denote by Bk =
σ(Vk, . . . , V0) the σ- field it generates. By the Markov property, the n-th progressive prediction
πnXk of Xk is measurable with respect to σ(Vn) for every n 6 k, and Vn = |n| almost surely when
pn = 1, therefore πnXk is a degenerate random variable too, and disp(πnXk) = 0. Consequently, F
satisfies Vershik’s standardness criterion by proposition 2.3(a).
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We also know by proposition 3.1 that F is standard in the case when pn = 0 for every n < 0.
Then the following lemma will allow us to restrict our standardness study to the case when the
identifiability condition (⋆) of section 2.3 holds.

Lemma 3.3. 1) Let (Xn)n60 = (Vn−1)n60. The identifiability condition (⋆) holds when

p−1 ∈]0, 1[ and pn < 1 for all n < 0. (3.2)

In this case, F is generated by the process (πnV−1)n60, and even more precisely, σ(πnV−1) =
σ(Vn) for every n < 0.

2) If pn0 = 1 for some n0 < 0, then the process
(

Vn0+n − |n0|
)

n60
is the next-jump time process

with jumping probabilities (pn0+n)n60.

3) If p−1 = 0, then the process (Wn−1)n60 defined by

Wn =

{

0 if Vn−1 = 0

Vn−1 − 1 if Vn−1 > 0
for n 6 −1.

has the same distribution than (Vn−1)n60 where (Vn)n60 is the next-jump time process with
jumping probabilities (p′

n)n60 given by p′
n = pn−1 for every n < 0.

Proof. For v 6= v′ in the state space of Vn−1, the conditional distributions L(Vn |Vn−1 = v) and
L(Vn |Vn−1 = v′) have different supports under (3.2), hence the first point follows. The equality
σ(πnV−1) = σ(Vn) under condition (⋆) is provided by lemma 2.5. Checking the second and third
points do not pose any difficulty.

Thus, since standardness is an asymptotic property at n = −∞ (proposition 2.2), we will focus
on the case when (3.2) holds, and this will allow us to use lemma 2.5. In lemma 3.4 we summarize
the way we are going. Hereafter we denote by Vn = {0, . . . , |n|} the state space of Vn and consider onVn the n-th iterated Kantorovich metric ρn starting with the discrete metric ρ−1 on A−1 = {0, 1}.
That is,

ρn(vn, v
′
n) = inf

Λvn,v′
n

∫

ρn+1dΛvn,v′
n

for every n 6 −2, where Λvn,v′
n

is a joining of the conditional laws L(Vn+1 |Vn = vn) = Pn+1(vn, ·)
and L(Vn+1 |Vn = v′

n) = Pn+1(v′
n, ·). Hereafter we salo denote by dn the dispersion of Vn under ρn,

defined by dn = E[ρn(V ′
n, V

′′
n )] for two independent copies V ′

n and V ′′
n .

Lemma 3.4. Under the identifiability condition (3.2), the filtration F is Vershikian if and only if
the Vershik property V (X) holds true for X = V−1. Moreover, this property is equivalent to dn → 0.

Proof. Consequence of lemma 2.5 and lemma 3.3.

In lemma below we provide a list of relations about the kernels Pn of the next-jump time
Markov chain and the iterated Kantorovich distances ρn. We denote by Pn(v, f) the expectation of
a function f under the probability measure Pn(v, ·). Recall that Pn+1

(

|n|, ·
)

which occurs several
times in the lemma is equal to the law of Vn+1. We use Pn+1

(

|n|, ·
)

and not L(Vn+1) in the lemma
to emphasize that the derivation of the ρn only depends on the kernels Pn by nature. Moreover
this lemma will be used in section 4 in a situation when only the kernels Pn are given.

Lemma 3.5. Let x > 0 and x′ > 0 be integer numbers.

1) If n 6 −1 and x, x′ 6 |n| − 1, then ρn(x, x′) = ρn+1(x, x′).

2) If n 6 −2 and x′ 6 |n| − 1, then ρn(|n|, x′) = Pn+1
(

|n|, ρn+1(·, x′)
)

.

3) If n 6 −3 and x′ 6 |n| − 2, then ρn(|n|, x′) = ρn+1(|n + 1|, x′).

4) If n 6 −1, then ρn−1(|n− 1|, |n|) = (1 − pn)Pn+1
(

|n|, ρn(|n|, ·)
)

.
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5) If n 6 −2, then Pn

(

|n− 1|, ρn−1(|n− 1|, ·)
)

= (1 − p2
n)Pn+1

(

|n|, ρn(|n|, ·)
)

.

6) For every n 6 −1, Pn

(

|n − 1|, ρn−1(|n− 1|, ·)
)

= 2p−1(1 − p−1)
∏−2

m=n(1 − p2
m).

Proof. 1) and 2) are easily get from the expression of L(Vn+1 |Vn = v) given in section 3.1. One
obtains 3) as a consequence of 1) and 2) by using the relation

Pr(Vn = k |Vn−1 = |n− 1|) = (1 − pn) Pr(Vn+1 = k |Vn = |n|) (3.3)

valid for 0 6 k < |n| and n 6 −2. One gets 4) by using 2) and (3.3). Finally, 5) is derived from
3), 4) and (3.3), and one obtains 6) by calculating the right member of 5) for n = −2 and then by
applying 5) recursively.

Lemma 3.6. The dispersion of Vn under ρn is given by dn = 2p−1(1 − p−1)
∏−2

m=n(1 − p2
m) for

every n 6 −1.

Proof. Because of L(Vn+1) = L(Vn+1 |Vn = |n|) we get dn+1 = E
[

ρn(|n|, Vn+1) |Vn = |n|
]

for every
n 6 −2 by equality 2) of lemma 3.5, and then the assertion of the lemma is nothing but equality
6) of lemma 3.5.

Theorem 3.7. The filtration F is standard if and only if
∑

p2
n = ∞ or in case (∗).

Proof. Case (∗) is treated in proposition 3.1. Under the identifiability condition (3.2), we know
that F is standard if and only if

∏−2
n=−∞(1 − p2

n) = 0 by lemma 3.4 and by lemma 3.6. We finally
get the statement of the theorem by using lemma 3.2 and assertion 2) of lemma 3.3.

4 Central and noncentral ergodic measures on the next-jump graph

This section is a digression in the present paper. It provides a complete case study of the theory
introduced in the recent work of Vershik [14]. We are mainly motivated to write it because our
previous investigation on the metrics ρn is a good opportunity to provide this illustration Vershik’s
new theory. This theory mainly deals with the identification of ergodic central probability measures
on a Bratteli graph (or more precisely, on the space of paths of a Brattel graphs). Any probabil-
ity measure µ on the space of paths a Bratteli graph without multiple edges can be interpreted
as the law of the process (Vn)n60 where Vn is the vertex at level n of the path taken at random
according to µ. Denoting by F the filtration generated by (Vn)n60, then µ is said to be ergodic
when F is Kolmogorovian. It is said to be central if for every n < 0, the conditional distribu-
tion L

(

(Vn+1, ..., V0) |Fn) is uniform on the paths connecting the vertex Vn to the root vertex V0.
Therefore, the centrality assumption means the process (Vn)n60 is Markovian and is governed by
the transition kernels Pn given by

Pn(vn−1, vn) = Pr(Vn = vn |Vn−1 = vn−1) =
dim(vn)

dim(vn−1)
,

where dim(v) denotes the number of paths connecting a vertex v to the root vertex ∅.
Thus, saying that µ is central means that (Vn)n60 is a Markov chain governed by a certain

system of transition kernels which is intrinsic to the graph. Although Vershik’s theory is mainly
focused on central measures, it also works when one considers a given arbitrary system of the
transition laws instead of the one corresponding to the centrality assumption. We will illustrate
this theory by applying Vershik’s theorems to the case of the transition laws of the next-jump time
processes (problem 4.1). Vershik’s method is based on the metrics ρn which are straightforward to
derive for our Bratelli graph B with the help of lemma 3.5. This method will be applied in section
4.3 after we investigate the problem by a bare-hands approach in section 4.2.

Centrality of our Bratteli graph B corresponds to the transition laws of the next-jump time
process with jumping probabilities (pn)n60 given by pn ≡ 1

2 for all n < 0. Indeed, for a vertex
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vn at level n of our Bratteli graph B, one has dim(vn) = 1 if vn = 0 and dim(vn) = 2vn−1 for
vn ∈ {1, . . . , |n|}. Therefore, centrality here means that the transition kernels Pn are given by















Pn(vn−1, vn−1) = 1 if vn−1 6= |n− 1|

Pn

(

|n− 1|, vn

)

=

{

1
2|n| if vn = 0

1
2|n|−vn+1 if vn ∈ {1, . . . , |n|}

, (4.1)

and we recognize the transition laws of the next-jump time process in case pn ≡ 1
2 .

Now, under the ergodicity assumption, the law of Vn is the almost sure limit of the condi-
tional law L(Vn |Fm) when m → −∞, as a consequence of the convergence theorem for reverse
martingales, that is to say

Pr(Vn = vn) = lim
m→−∞

Pr(Vn = vn |Vm) almost surely (4.2)

for every vertex vn at level n. Though the probability transitions Pr(Vn = vn |Vm = vm) are
determined under the centrality assumption, in spite of (4.2) the additional ergodicity assumption
does uniquely determine the distribution of the Markov process (Vn)n60. For example, the next-
jump time process in case pn ≡ 1

2 for every n < 0 is governed by the transition kernels (4.1) as well
as the next-jump time process with jumping probabilities pn ≡ 0 for every n < 0. Indeed, in this
case Vn = 0 for every n 6 0, and the Markov chain is indeed governed by the transition kernels
(4.1) because Pn(·, 0) = δ0 and Pn(·, vn−1) has no importance when vn−1 is outside the support of
Vn−1.

4.1 Statement of the problem

Thus, Vershik’s theory introduced in [14] deals with the problem of identifying all possible laws of
a Markov chain (Vn)n60 that is governed by a given system of transitions kernels and generates a
Kolmogorovian filtration. We will illustrate it by investigating the following problem.

Problem 4.1. Let B be the Bratteli graph under study (figure 1) and consider the transition kernels
Pn of the next-jump time process defined by a jumping probabilities sequence (pn)n60:















Pn(vn−1, vn−1) = 1 if vn−1 6= |n− 1|

Pn

(

|n− 1|, vn

)

=

{

pn if vn = |n|

(1 − pn) · · · (1 − pk−1)pk if vn = |k| ∈ {0, . . . , |n| − 1}

(4.3)

What are all the possible Markov chains (Vn)n60 governed by these transition laws and generating a
Kolmogorovian filtration ?

One can check, and this is shown in [9], that any Markov chain governed by the transition
kernels (4.3) satisfies

L
(

Vn |Vm = k
)

= L
(

Vn |Vn−1 = |n− 1|
)

for every m < n and |n− 1| 6 k 6 |m|. (4.4)

4.2 Central and noncentral ergodic measures: bare-hands method

Before investigating problem 4.1 under the light of Vershik’s theory, we will solve it by a bare-hands
approach with the help of the following elementary lemma.

Lemma 4.2. Let (Vn)n60 be a Markov chain on the vertices of a Bratteli graph B. If (4.2)
holds and if Pr(Vn = xn i.o.) = 1 for a sequence of vertices (xn)n60 where each xn is a vertex
at level n, and such that Pr(Vn = vn |Vm = xm) has a limit as m → −∞, then Pr(Vn = vn) =
limm→−∞ Pr(Vn = vn |Vm = xm) for every vertex vn at level n.

Proof. Under the assumption Pr(Vn = xn i.o.) = 1, the random sequence
(

Pr(Vn = vn |Vm)
)

m6n

almost surely has a subsequence which is also a subsequence of the convergent deterministic sequence
(

Pr(Vn = vn |Vm = xm)
)

m6n
.
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The solution of problem 4.1 corresponding to k = 0 in theorem below was already mentioned
after equation 4.1. It is the degenerate case Vn ≡ 0. More generally, for the solution corresponding
to the parameter k, one has Vn = k almost surely for every n 6 −k, and this solution satisfies
condition (∗) of proposition 3.1.

Theorem 4.3. The set of distributions solving problem 4.1 is parameterized by k ∈ N ∪ {+∞}.
The solution distribution with parameter k is the one for which limn→−∞ Vn = k, and this is the
distribution of the next-jump time process with jumping probabilities (p′

n)n60 given by

p′
n = pn for n > −k, p′

−k = 1, and p′
−k−1 = p′

−k−2 = . . . = 0

when k < +∞, and (p′
n)n60 = (pn)n60 when k = +∞.

Proof. The Markov process (Vn)n60 is almost surely decreasing whatever its distribution is. The
limit V−∞ = limn→−∞ Vn is a degenerate random variable under the ergodicity assumption, and it
is either V−∞ = k ∈ N or V−∞ = +∞.

If V−∞ = k ∈ N, then there is only one possible distribution satisfying (4.3) in view of lemma
4.2, and this solution satisfies Pr(Vn = vn) = Pr(Vn = vn |Vn−1 = |n − 1|) in view of property
(4.4). Then we can check that this is the distribution of the next-jump time process defined by
the jumping probabilities sequence (p′

n)n60 given in the theorem. Note that the transition kernels
given by (4.3) are not the same as the ones given by (3.1) for this sequence of jumping probabilities
(p′

n)n60, but this makes sense because they only differ for values of Vn outside of its support.
If V−∞ = +∞ then the event {Vn = |n|} occurs for infinitely many n, because any possible

trajectory of (Vn)n60 realizing only finitely many events {Vn = |n|} is bounded. Therefore Pr(Vn =
vn) = limm→−∞ Pr(Vn = vn |Vm = |m|) by lemma 4.2. Hence,Pr(Vn = vn) = Pr(Vn = vn |Vn−1 =
|n − 1|) by (4.4), and we recognize the distribution of the next-jump time process defined by the
jumping probabilities (pn)n60.

4.3 Central and noncentral ergodic central measures: Vershik’s method

Vershik’s theory introduced in [14] distinguishes two mutually exclusive possible situations in a
problem such as problem 4.1. Under the first possible situation (precompactness of the intrinsic
topology), problem 3.1 is fully solved, and we get more (standardness of the filtrations generated
by the solution Markov chains). Under the opposite situation (non-precompactness of the intrinsic
topology), the theory partially solves the problem. We will state these results in theorem 4.6. For
our problem 4.1 we will meet the two possible situations, depending on the asymptotic behavior of
the jumping probabilities sequence (pn)n60.

Denote by Vert(B) the set of vertices of a Bratteli graph B. Theorem 1 in [14] relates the ergodic
central measures to the accumulation points of

(

Vert(B), ρB

)

, defined as the points of I(B) :=

V̂ert(B) \ Vert(B), where V̂ert(B) is the completion of Vert(B) under the intrinsic pseudometric
ρB introduced in [14], which is a by-product of Vershik’s standardness criterion. As we previously
said, centrality means that we consider the system of transition kernels (4.1), but one can also
define the intrinsic pseudometric in the same way for any other given system of transition kernels.
Perhaps we should reserve the term intrinsic to the central case, but in the present paper we
will allow ourselves to use it for the pseudometric similarly defined from another given system of
transition kernels.

In order to define ρB , Vershik firstly defines the intrinsic pseudometric ρn on the set Vn of
vertices at each level n. It is initiated by a pseudometric ρ−1 on V−1 and then ρn is nothing but the
pseudometric ρn studied in section 3.2, which takes its origin in Vershik’s standardness criterion
(lemma 2.5).

In our example, the pseudometric spaces (Vn, ρn) are easily derived from relations 1), 3), 4) and
6) given in lemma 3.5. Note that 1) means that the canonical embedding (Vn, ρn) → (Vn−1, ρn−1)
is an isometry, and this is a very particular situation. The pseudometrics ρn are shown on table 1.
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k

k′

0 1 2 3 4 5

0 0 1 p−1 p−1 p−1 p−1

1 1 0 1 − p−1 1 − p−1 1 − p−1 1 − p−1

2 p−1 1 − p−1 0 (1 − p−2)d−1 (1 − p−2)d−1 (1 − p−2)d−1

3 p−1 1 − p−1 (1 − p−2)d−1 0 (1 − p−3)d−2 (1 − p−3)d−2

4 p−1 1 − p−1 (1 − p−2)d−1 (1 − p−3)d−2 0 (1 − p−4)d−3

5 p−1 1 − p−1 (1 − p−2)d−1 (1 − p−3)d−2 (1 − p−4)d−3 0

Table 1: Intrinsic metrics ρn(k, k′) for n = −1,−2,−3,−4,−5.

This table is easily filled by successively and iteratively using the following equalities for n 6 −2:


































ρn(0, x) =

{

1 if x = 1

p−1 otherwise

ρn(x, x′) = ρn+1(x, x′) for x, x′ < |n|

ρn(|n|, x) =

{

ρn+1(|n+ 1|, x) if x < |n+ 1|

(1 − pn+1)dn+2 if x = |n+ 1|

where the expression of dn is given in lemma 3.6 for every n 6 −1 and we set in addition d0 = 1.
It follows that the distance ρn(vn, v

′
n) between two vertices vn and v′

n at some level n 6 −2 is
explicitely given when vn < v′

n by

ρn(vn, v
′
n) =















1 if vn = 0 and v′
n = 1

p−1 if vn = 0 and v′
n > 1

(1 − p−vn)d−vn+1 if vn > 0

.

The ρn are metrics under the identifiability condition (3.2). The space (Vn, ρn) is an ultrametric
space represented by the dendrogram shown in figure 2 (numerically, this figure shows the case
pn ≡ 1

2 for n < 0).

v, v
′

ρ
n
(v

,
v

′
)

0

1

0 1 2 3 4 5 6 7

Figure 2: The space (Vn, ρn).

In lemma below and in theorem 4.6, for a given system of transition kernels Pn we denote by
Pn|m the product kernel

∏n
k=m+1 Pk for m < n. Thus L(Vn |Vm) = Pn|m(Vm, ·) for any Markov

chain (Vn)n60 governed by the Pn.

Definition 4.4. The intrinsic pseudometric ρB on the space of vertices Vert(B) =
⋃

n60 Vn induced
by a system of transition kernels Pn is firstly defined by ρB(vn, v

′
n) = ρn(vn, v

′
n) for all vertices vn and

v′
n at a same level n, where ρn is the iterated Kantorovich pseudometric initiated at time 0 by a given

pseudometric ρ0. Then it is defined by

ρB(vm, v
′
n) = Pn|m

[

vm, ρn(·, v′
n)

]

for all vertices vm at level m and v′
n at level n with m < n 6 −1.
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Theorem 4.5. Let B be the Bratteli graph under study and consider the intrinsic pseudometric
ρB induced by the transition kernels Pn of the next-jump time process with jumping probabilities
sequence (pn)n60, given by (4.3).

1) The intrinsic pseudometric is given by ρB(vm, v
′
n) = ρm(vm, v

′
n) for all vertices vm at level m

and v′
n at level n > m.

2) Under the identifiability condition (3.2) (given in lemma 3.3), the intrinsic pseudometric
generates a precompact topology if and only if

∑

p2
n = ∞. The accumulation set I(B) is

N ∪ {+∞} in the precompact case and N otherwise.

Proof. We firstly derive the intrinsic pseudometric. Assume v = vm is a vertex at level m and
v′ = v′

n is a vertex at level n > m. If vm 6 |m| then L(Vn |Vm = vm) is the Dirac distribution at
the vertex at level n whose label is the same as vm and then ρB(v, v′) = ρn(v, v′) = ρm(v, v′) by the
canonical isometries (Vn, ρn) → (Vn−1, ρn−1). If vm > |m| then we know by (4.4) that L(Vn |Vm =
vm) = L(Vn |Vn−1 = |n− 1|). Therefore by equality 2) in lemma 3.5, ρB(vm, v

′
n) = ρn−1(|n− 1|, v′

n)
and we know that ρn−1(|n − 1|, v′

n) = ρm(vm, v
′
n) (see table 1).

Now we check 2). The ρn are metrics under the identifiability condition (3.2) and two vertices
are at 0 distance under ρB if and only if the have the same label. Therefore the quotient space
Vert(B)/ρB is isomorphic to (N, ρ−∞) where ρ−∞ is the direct limit of ρn as n → −∞, defined
by ρ−∞(m,n) = ρ−m(m,n) when m 6 n . It is precompact if and only if +∞ is an accumulation
point, which is equivalent to ρ−∞(k, k + 1) → 0 as k → +∞. We know that ρ−∞(k, k + 1) =
(1 − p−k+1)d−k+2 and it is not diffcult to check that it goes to 0 if and only if

∑

p2
n = ∞.

Now we have everything required to apply Vershik’s following theorem.

Theorem 4.6 (Vershik [14]). Assume we are looking for a Markov chain (Vn)n60 on the vertices
of a Bratteli graph B, which generates a Kolmogorovian filtration and which is governed by some
given transition kernels Pn satisfying the identifiability condition Pn(v, ·) 6= Pn(v′, ·) for v 6= v′ and
every n < 0. Define the intrinsic pseudometric ρB induced by these transition laws. Define the

accumulation points of Vert(B) as the points of I(B) := V̂ert(B) \ Vert(B), where V̂ert(B) is the
completion of Vert(B).

1) For every x ∈ I(B) and every sequence (xn)n60 converging to x, where each xn is a vertex at
level n, the limit Pn|m(xm, ·) at m → −∞ exists for every n 6 0 and only depends on x, and
one defines a possible distribution of (Vn)n60 by setting

Pr(Vn = vn) = lim
m→−∞

Pn|m(xm, vn)

for every n < 0. Moreover this Markov chain (Vn)n60 generates a standard filtration.

2) If the intrinsic pseudometric induces a precompact topology on Vert(B), then every possible
distribution of (Vn)n60 is given by an accumulation point x as in 1).

Thus, note that Vershik’s theory only provides Markov chains (Vn)n60 solving problem 4.1 that
generate a standard filtration, a property stronger than the desired Kolmogorov property.

Theorem 4.7. Let B be the Bratteli graph under study and consider the conditional laws L(Vn |Vn−1 =
v) of the next-jump time process defined by the jumping probabilities sequence (pn)n60 satisfying the
identifiability condition (3.2). The accumulation set I(B) has been derived in theorem 4.5.

1) For each accumulation point k ∈ I(B), the distribution of (Vn)n60 given by 1) in theorem 4.6
is the distribution of the next-jump time process given by the jumping probabilities sequence
(p′

n)n60

p′
n = pn for n > −k, p′

−k = 1, and p′
−k−1 = p′

−k−2 = . . . = 0

when k < +∞, and (p′
n)n60 = (pn)n60 in the case when k = +∞. We know in addition that

the filtration of (Vn)n60 is standard for these distributions.
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2) In the precompact case
∑

p2
n = ∞, there is no other solution than those given by 1).

Proof. Assertion 1) is not difficult to check with the help of property (4.4), and assertion 2) is an
application theorem 4.6.

We have seen in theorem 4.3 that there is one other solution in the non-precompact case: the
one which was naturally parameterized by its limit k = +∞ in theorem 4.3, and for which the
associated filtration is not standard by theorem 3.7. This solution is not provided by theorem 4.6
because k = +∞ is not an accumulation point in the non-precompact case (theorem 4.5). In the
precompact case, Vershik’s theorem provides more than the set of solutions: it also asserts that
corresponding filtrations are standard.

5 The uniformly scaled entropy

In this section we introduce scaled entropies of filtrations by following Vershik and Gorbulsky [12],
except that we use the probabilistic language and we restrict our attention to scalings which are not
ǫ-dependent. Theorem 5.6 is our main result, it provides a more general claim than theorem 2.4.
We denote by H(X) the entropy of a discrete random variable X, defined as H(X) = −

∑

µi log µi

where µ is the law of X.

5.1 Definition

The definition of the scaled entropy of a filtration F has something similar to the definition of
standardness: we begin by defining the scaled entropy for a F0-measurable random variable, then
for a σ- field B ⊂ F0, and finally for the filtration F. It mainly involves the ε-entropy of a Polish-
valued random variable.

Definition 5.1. Let X be a random variable taking its values in a Polish metric space (E, ρ). The
ǫ-entropy of X is

Hε(X) = inf
{

H(F ) | E[ρ(X,F )] < ǫ
}

where the infimum is taken over A-valued but discrete σ(X)-measurable random variables F .

The scaling c : (−N) →]0,∞[ in definition below is termed as uniform scaling because Vershik
and Gorbulsky more generally allow ε-dependent scaling c 7→ c(ε, n). Thus a uniform scaling is a
particular scaling in the sense of Vershik and Gorbulsky’s ǫ-dependent general definition, but when
it is proper in the sense of our definition, then it is also a proper scaling in the sense of Vershik and
Gorbulsky.

Definition 5.2. Let F be a filtration and X an integrable F0-measurable random variable taking its
values in a Polish metric space (E, ρ).

1) The ǫ-entropy of X (with respect to F) at time n is Hε
n(X,F) = Hε(πnX), shorter denoted by

Hε
n(X) when F is understood, where the n-th Vershik prediction πnX is considered as a random

variable taking its values in the Polish space E(n) metrized by the n-th iterated Kantorovich metric
ρ(n) (section 2.1).

In the next definitions we consider a nonincreasing function c : (−N) →]0,∞[, termed as uniform

scaling.

2) The limit

hc(X,F) = lim sup
ε→0

lim sup
n→0

Hε
n(X)
c(n)

is called the c-scaled entropy of X. For short, we also denote it by hc(X) when F is understood.
The uniform scaling c is said to be proper for X when hc(X,F) ∈]0,∞[.
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3) For a σ- field B ⊂ F0, the c-scaled entropy of B with respect to F is defined as

hc(B,F) = sup
X

hc(X),

where the supremum is taken over all integrable B-measurable random variables X taking their
values in in the interval [0, 1] equipped with the usual metric.

4) The c-scaled entropy of F is defined as

hc(F) = hc(F0,F).

The uniform scaling c is said to be proper for F when hc(F) ∈]0,∞[.

Note that the Vershik standardness property for X (section 2.1) is equivalent to hc(X) = 0 with
c(n) ≡ 1. Thus, proper uniform scalings do not exist for standard filtrations, and they provide a
certain measure of nonstandardness for nonstandard filtrations.

Remark 5.3. The notations Hǫ
n(X) and hc(X) do not show the dependence on the metric ρ on

the state space of X. But this is not important in view of proposition 5.11 which will show that
hc(X) = hc

(

σ(X)
)

.

Remark 5.4. As already mentioned in the definition, the ǫ-entropy Hε
n(X) is relative to the underlying

filtration F. It is important to note that it actually only depends on the filtration FX generated by the
Markov process (πnX)n60 of Vershik’s progressive predictions of X. Indeed, it is easy to see that
the value of Hε

n(X) is the same whether we consider F as the underlying filtration or any filtration E

immersed in F so long as X is measurable with respect to the final σ- field E0, and FX is the smallest
such filtration (see [2]).

Remark 5.5. We could replace the ǫ-entropy Hε(X) by

inf
{

H(F ) | P(ρ(X,F ) > ǫ) < ǫ
}

without altering the value of hc(F,X).

5.2 Properties

The goal of this section is to prove the entropy criterion provided by theorem 5.6. This theorem
is a deep generalization of theorem 2.4. It will be used in section 6 to study the uniform entropy
scalings of the next-jump time filtrations.

Theorem 5.6. Let F be a filtration, X ∈ L1(F0;E) where E is a Polish space, and c : (−N) →]0,∞[
a scaling. Then hc(X,F) = hc(FX), where FX is the filtration generated by the Markov process
(πnX)n60.

Note that hc(FX) is the entropy of the filtration FX as well as the entropy of the σ-field
σ(πnX;n 6 0) when we consider F as the underlying filtration (see remark 5.4). Theorem 5.6
is particularly useful when πnX are discrete random variables, because it gives the upper bound
hc(FX ) 6 1 for any scaling c(n) ∼ H(πnX).

Theorem 5.6 will be derived from the following series of lemmas and propositions.

Lemma 5.7. Let F be a filtration. If X and Y are two F0-measurable Polish-valued random
variables related by Y = f(X) for some measurable function f , then πnY = fn(πnX) for some
measurable function fn which is K-Lipschitz if f is K-Lipschitz.

Proof. See [2].

Lemma 5.8 below is new. Note that theorem 2.4 is an easy corollary of this lemma and propo-
sition 2.3, and this provides a cleaner proof of theorem 2.4 than the one given in [7].

Lemma 5.8. Let F be a filtration, X ∈ L1(F0;E) where E is a Polish space metrized by a distance
ρ, and set W n = (πnX, . . . , π−1X,X) for some n 6 0. Consider the metric ρ̄n = 1

|n|+1

∑k=0
k=n ρ

(k)

on the state space of W n. Then πnW
n = φ(πnX) where φ is an isometry.
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Proof. For the proof we consider the distance ρ̃n =
∑k=0

k=n ρ
(k) instead of ρ̄n on the state space of

Wn. For each n 6 0 and k ∈ {n, . . . , 0}, one has πkWn = gn
k (πnX, . . . , πkX) for some functions

gn
k related by the fact that gn

k−1(µn, . . . , µk−1) is the distribution of gn
k (µn, . . . , µk−1,Mk) where

Mk ∼ µk−1. Therefore

ρ̃(k−1)
n

(

gn
k−1(µn, . . . , µk−1), gn

k−1(µ′
n, . . . , µ

′
k−1)

)

= inf
(Mk,M ′

k
)
E

[

ρ̃(k)
n

(

gn
k (µn, . . . , µk−1,Mk), gn

k (µ′
n, . . . , µ

′
k−1,M

′
k)

)

] (#)

where the infimum is take over all joinings (Mk,M
′
k) of µk−1 and µ′

k−1. Using this relation, the
equality

ρ̃(k)
n

(

gn
k (µn, . . . , µk), gn

k (µ′
n, . . . , µ

′
k)

)

= ρ(n)(µn, µ
′
n) + ρ̃

(k)
n+1

(

gn+1
k (µn+1, . . . , µk), gn+1

k (µ′
n+1, . . . , µ

′
k)

)

is easy to derive. Indeed, denoting by H(n, k) this equality, then H(n, 0) is nothing but the equality
ρ̃n = ρ(n) + ρ̃n+1 and the implication from H(n, k) to H(n, k− 1) is easy to derive from the relation
(#).

Now, by (#),

ρ̃(n)
n

(

gn
n(µn), gn

n(µ′
n)

)

= inf
(Mn+1,M ′

n+1)
E

[

ρ̃(n+1)
n

(

gn
n+1(µn,Mn+1), gn

n+1(µ′
n,M

′
n+1)

)

]

where the infimum is take over all joinings (Mn+1,M
′
n+1) of µn and µ′

n. Hence, by relation H(n, n+
1)

ρ̃(n)
n

(

gn
n(µn), gn

n(µ′
n)

)

= ρ(n)(µn, µ
′
n) + inf

(Mn+1,M ′
n+1)

E

[

ρ̃
(n+1)
n+1

(

gn+1
n+1(Mn+1), gn+1

n+1(M ′
n+1)

)

]

,

and recursively using this equality we finally get

ρ̃(n)
n

(

gn
n(µn), gn

n(µ′
n)

)

=
(

|n| + 1
)

ρ(n)(µn, µ
′
n)

which is obviously equivalent to the statement of the lemma.

Lemma 5.9. Let F be a filtration, (Xk)k>1 be a sequence in L1(F0;E) where E is Polish. If
Xk → X in L1 for some random variable X ∈ L1(F0;E), and if σ(Xk) ⊂ σ(X) for every k > 1,
then for every ǫ0 > 0 there exists k0 such that Hǫ0

n (Xk0) > H2ǫ0
n (X) for every n 6 0.

Proof. Let k0 = k(ǫ0) such that E
[

ρ(Xk0 ,X)
]

6 ǫ0, hence Hǫ0
n (Xk0) > H2ǫ0

n (X) for every n by
definition of Hε

n(·) and lemma 2.1. (Actually the lemma is true for every k 6 k0 if we take
E

[

ρ(Xk,X)
]

6 ǫ0 for every k > k0.)

The following lemma is a continuity-like property of X 7→ hc(X,F).

Proposition 5.10. Let c : (−N) →]0,∞[ be a scaling. If, under the same hypotheses as lemma
5.9, there exists ℓ > 0 such that hc(Xk,F) 6 ℓ for every k > 1 then hc(X,F) 6 ℓ.

Proof. Put a = hc(X,F). We firstly check that a < ∞. Assuming a = ∞, the definition of the

superior limit provides ǫ0 such that lim supn→−∞
H

2ǫ0
n (X)
c(n) > ℓ+ 1. Therefore there is k0 such that

lim supn→−∞
H

ǫ0
n (Xk0

)

c(n) > ℓ+ 1 by lemma 5.9. But ǫ 7→ Hǫ
n(Xk0) is decreasing, therefore inequality

lim supn→−∞
Hǫ

n(Xk0
)

c(n) > ℓ+1 holds for every ǫ 6 ǫ0, a contradiction of the assumption of the lemma.
Knowing now that a < ∞, we check that ℓ > a. Given δ > 0, the definition of the superior

limit provides ǫ0 such that lim supn→−∞
H

2ǫ0
n (X)
c(n) > a− δ. By lemma 5.9 and since ǫ 7→ Hǫ

n(Xk0) is

decreasing, one gets lim supn→−∞
Hǫ

n(Xk0
)

c(n) > a− δ. for some k0 and every ǫ 6 ǫ0. Finally ℓ > a.

Proposition 5.11. Let F be a filtration and X ∈ L1(F0;E) where E is a Polish. Then hc(σ(X),F) =
hc(X,F) for any scaling c : (−N) →]0,∞[.
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Proof. If Y = f(X) for some Lipschitz function f then it is easy to check that hc(Y,F) 6 hc(X,F)
with the help of lemma 5.7. The result follows from proposition 5.10 and from the density of set of
random variables f(X), f Lipschitzian, in L1

(

σ(X), [0, 1]
)

(see lemma 2.15 in [6]).

Now we can quickly prove theorem 5.6.

Proof of theorem 5.6. Let Bn = σ(πnX, . . . , π−1X,X). By lemma 5.8 and proposition 5.11, hc(Bn,F) =
hc(X,F). Then the theorem follows from proposition 5.10.

Proposition 5.12 below is another corollary of lemma 5.8, generalizing propostion 2.2.

Proposition 5.12. Let F be a filtration, n0 6 0 be an integer, and denote by Fn0] = (Fn0+n)n60

the filtration F truncated at n0. Let c : (−N) →]0,∞[ be a scaling and denote cn0] = (cn0+n)n60 its

truncation at n0. Then hcn0](Fn0]) = hc(F).

Proof. It is not difficult to derive the equality

Hǫ
n(Xn0 ,F

n0]) = Hǫ
n0+n(Xn0 ,F) (5.1)

for every integrable Fn0-measurable random variable Xn0 , every n 6 0 and every ǫ > 0. This
provides the inequality hcn0](Fn0]) 6 hc(F).

Conversely, if X0 is an integrable F0-measurable random variable, then one has hc(X0,F) 6

hc(W n0 ,F) by proposition 5.11, where W n0 = (πn0X0, . . . ,X0). But lemma 5.8 provides the equal-
ity

Hǫ
n0+n(W n0,F) = Hǫ

n0+n(πn0X0,F)

for every n 6 0. Hence equality (5.1) gives

Hǫ
n0+n(W n0 ,F) = Hǫ

n(πn0X0,F
n0]),

therefore hc(W n0 ,F) = hcn0](πn0X0,F
n0]) and finally hc(X0,F) 6 hcn0](πn0X0,F

n0]). This provides
the inequality hc(F) 6 hcn0](Fn0]).

6 Entropy of next-jump time filtrations

In this section, we consider, for a given sequence (pn)n60 of jumping probabilities, the next-jump
time process (Vn)n60 and its filtration F. Here we study the entropy of F in the Kolmogorovian
nonstandard case, that is, in view of proposition 3.1 and theorem 3.7, the case when

∑

pn = ∞
and

∑

p2
n < ∞. Preliminarily, we study the entropy of the random variables Vn.

6.1 Entropy of Vn

The entropy of Vn can be recursively obtained from the conditional entropy formula

H(Vn, Vn−1) = H(Vn) +H(Vn−1 |Vn) = H(Vn−1) +H(Vn |Vn−1),

by deriving the two conditional entropies:

H(Vn−1 |Vn) = h(pn−1) and H(Vn |Vn−1) = pn−1H(Vn),

where h(θ) = −θ log θ − (1 − θ) log(1 − θ) is the entropy of a Bernoulli variate with parameter
θ. The first formula obviously comes from H(Vn−1 |Vn = k) = h(pn−1) for every k. The second
formula comes from the obvious equality H(Vn |Vn−1 = k) = 0 for k 6 |n|+1 and from the equality
H(Vn |Vn−1 = |n| + 1) = H(Vn−1) which holds because the conditional distribution L(Vn |Vn−1 =
|n| + 1) equals the unconditional distribution L(Vn). Thus we finally get the recursive relation

H(Vn−1) = h(pn−1) + (1 − pn−1)H(Vn), (6.1)
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which provides

H(Vn) = h(pn) + (1 − pn)h(pn+1) + (1 − pn)(1 − pn+1)h(pn+2) + · · · + (1 − pn) · · · (1 − p−2)h(p−1).

Now, note that p−Vn > 0 almost surely, because for every k ∈ {0, . . . , |n|}, the event {Vn = k} is
included in the event {V−k = k} and the latter event has probability pk. Moreover h(0) = 0, and
finally H(Vn) is also given by

H(Vn) = E

[

h(p−Vn)
p−Vn

]

.

Lemma 6.1. When F is Kolmogorovian but not standard, limH(Vn) = +∞ and lim H(Vn−1)
H(Vn) = 1.

Proof. According to proposition 3.1, Vn → +∞ almost surely when F is Kolmogorovian. Therefore
Vn = |n| for infinitely many n, because any possible trajectory of (Vn)n60 realizing only finitely many

events {Vn = |n|} is bounded. In addition, by theorem 3.7, pn → 0, hence h(p−Vn)
p−Vn

→ +∞ because

h(x)/x → +∞ when x → 0+. We deduce from the recursive relation (6.1) that H(Vn−1)
H(Vn) → 1, by

noting that pn → 0 in the Kolmogorovian but not standard case.

6.2 Entropy of the filtration

We have seen in section 3 that the assumption of lemma 6.2 below is fulfilled for the random variable
V−1 of the next-jump time process (Vn)n60 in case of nonstandardness. The proof of this lemma
involves Fano’s inequality (see [3]), whose statement is:

H(X |Y ) 6 h
(

Pr(X 6= Y )
)

+ Pr(X 6= Y ) logN

for any pair of discrete random variables X and Y taking no more than N values, where H(X |Y )
denotes the conditional entropy and h(p) = −p log p − (1 − p) log(1 − p) denotes the entropy of a
Bernoulli variate with parameter p.

Lemma 6.2. Let F be a filtration, X a F0-measurable random variable taking its values in a Polish
metric space (A, ρ), and c : (−N) →]0,∞[ a scaling. Assume that every πnX takes its values in a
finite subset B(n) of A(n) and there exists ǫ0 > 0 such that ρn(x, x′) > ǫ0 for every n 6 0 as long as
x 6= x′. Then Hǫ

n(X) = H(πnX) + o(1) log #B(n) for every n where o(1) → 0 as ǫ → 0 uniformly
in n.

Consequently,

hc(X,F) = lim sup
n→−∞

H(πnX)
log #B(n)

for any scaling c(n) ∼ log #B(n).

Proof. Let δ < 1
2 and set ǫ = δǫ0 < ǫ0. For every n one has Hǫ

n(X) = H(Fn) 6 H(πnX) where Fn

is a σ(πnX)-measurable random variable satisfying Pr(πnX 6= Fn) < δ.
One has H(πnX) −H(Fn) = H(πnX |Fn) and by Fano’s inequality

H(πnX |Fn) 6 h(pn) + pn log #B(n)

where pn = Pr(πnX 6= Fn). Therefore

H(πnX |Fn) 6 h(δ) + δ log #B(n),

and consequently

Hǫ
n(X)

log #B(n)
6

H(πnX)
log #B(n)

6
Hǫ

n(X) + h
(

ǫ
ǫ0

)

log #B(n)
+

ǫ

ǫ0

for every n and every ǫ < ǫ0/2.

17



Now consider the next-jump time process (Vn)n60 and its filtration F. Recall that we have seen
in lemma 6.1 that limH(Vn) = +∞ in the case when F is Kolmogorovian but not standard.

Proposition 6.3. Assume F is Kolmogorovian but not standard. Let c : (−N) →]0,∞[ be a scaling
such that c(n) ∼ H(Vn). Then hc(F) 6 1 and hc(F) = 1 in the uniform case pn = (|n| + 1)−1 (this
is the case when Vn has the uniform distribution).

Proof. In the nonstandard case, there are, in view of theorem 3.7, finitely many values of n for
which pn = 1.

First assume the identifiability assumption (3.2) (p−1 ∈]0, 1[ and pn < 1 for every n 6 −2). By
lemma 3.3(1) and theorem 5.6,

hc(F) = hc(X,F)

with X = V−1, for any scaling c. In the uniform case pn = (|n| + 1)−1, we know by lemma 6.2 that
hc(X,F) = 1 for c(n) ∼ H(Vn) = log

(

|n| + 1
)

. In other cases, one obviously has

Hǫ
n(X)
c(n)

6
H(πnX)
c(n)

and then hc(X,F) 6 1 for c(n) ∼ H(Vn).
In the case when there are several n for which pn = 1, take the smallest such n and call it

n0. Set p′
n = pn0+n. If p′

−1 > 0, then by lemma 3.3(2) and by the previous case, the proposition
holds for c(n) = H(Vn0+n) but it holds for c(n) ∼ H(Vn) too because of lemma 6.1. If p′

−1 = 0, we
similarly conclude by using lemma 3.3(3) after noting that p′

n cannot be zero for every n 6 −1 in
the Kolmogorovian but non-standard case.

We have derived a proper scaling for the uniform case only. To derive a proper scaling for the
general case, we should improve the asymptotic estimate of H(πnX |Fn) in the proof of lemma 6.2
We have used Fano’s inequality which is a general majoration of the conditional entropy. General-
ized Fano’s inequalities studied in [4] do not seem to be helpful for the general case. It would be
interesting to know whether there is a case for which there is a proper scaling c(n) = o

(

H(Vn)
)

,
and a case for which there is no proper scaling.
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