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Large time behaviour of mild solutions of
Hamilton-Jacobi-Bellman equations in infinite dimension

by a probabilistic approach

Ying Hu∗ Pierre-Yves Madec† Adrien Richou‡

June 15, 2014

Abstract
We study the large time behaviour of mild solutions of HJB equations in infinite dimen-

sion by a purely probabilistic approach. For that purpose, we show that the solution of a
BSDE in finite horizon T taken at initial time behaves like a linear term in T shifted with
the solution of the associated EBSDE taken at initial time. Moreover we give an explicit
speed of convergence, which seems to appear very rarely in literature.

1 Introduction
We are concerned with the large time behaviour of solutions of the Cauchy problem in an infinite
dimensional real Hilbert space H :{

ut(t, x) = L u(t, x) + f(x,∇u(t, x)G), ∀(t, x) ∈ R+ ×H,
u(0, x) = g(x), ∀x ∈ H,

where u : R+×H → R is the unknown function and L is the formal generator of the Kolmogorov
semigroup Pt of an H-valued random process solution of the following Ornstein-Uhlenbeck
stochastic differential equation :{

dXt = AXtdt+GdWt, t ∈ R+,
X0 = x, x ∈ H,

whereW is a Wiener process with values in another real Hilbert space Ξ, assumed to be separable.
We recall that (formally), ∀h : H → R,

(L h)(x) =
1
2

Tr(GG∗∇2h(x))+ < Ax,∇h(x) > .

Our method is purely probabilistic, which can be described as follows.
First, let (v, λ) be the solution of the ergodic PDE:

L v + f(x,∇v(x)G) = 0, ∀x ∈ H.
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Then we have the following probabilistic representation. Let (Y T,x, ZT,x) be solution of the
BSDE:{

dY T,xs = −f(Xx
s , Z

T,x
s )ds+ ZT,xs dWs

Y T,xT = g(Xx
T ),

and (Y, Z, λ) be solution of the EBSDE:

dYs = −(f(Xx
s , Z

x
s )− λ)ds+ Zxs dWs.

Then{
Y T,xs = u(T,Xx

s ),
Y xs = v(Xx

s ).

Finally, due to Girsanov transformations and the use of an important coupling estimate result,
we deduce

Y T,x0 − λT − Y x0 → L,

i.e.

u(T, x)− λT − v(x)→ L.

Our method is not only purely probabilistic, but also gives a speed of convergence :

|u(T, x)− λT − v(x)− L| ≤ C(1 + |x|2+µ)e−η̂T .

The constant µ appearing above is the polynomial growth power of g(·) and f(·, 0) and η̂ is linked
to the dissipative constant of A.

Large time behaviour of solutions has been studied for various types of HJB equations of
second order; see, e.g., [1], [6], [8] and [9]. In [1], a result in finite dimension is stated under
periodic assumptions for f and a periodic and Lipschitz assumption for g. Furthermore, they
assume that f(x, z) is of linear growth in z and bounded in x. In [6], some results are stated in
finite dimensionnal framework, under locally Hölder conditions for the coeffcients. More precisely,
they assume that f(x, z) = H1(z)−H2(x) with H1 Lipschitz and under locally Hölder conditions
for H2 and g. They also treat the case of H1 locally Lipschitz but consequently need to assume
that H2 and g are Lipschitz. Furthermore, they only treat the Laplacian case, namely they
assume that G = Id. No result on speed of convergence is given in this paper. In [8], the authors
deal with the problem in finite dimension. They also only treat the Laplacian case and assume
that f(x, z) is convex and of quadratic growth in z and of polynomial growth in x. No result on
speed of convergence is given in this paper. As far as we know, the explicit speed convergence
only appears in [9], but in finite dimension and under periodic assumptions for f(·, z) and g(·).
Furthermore, they assume that linear growth property in z for f with derivatives in z of first
and second order uniformly bounded.

Roughly speaking, we will assume that G : H → H is invertible and bounded operator,
g : H → R continuous with polynomial growth and f : H × Ξ∗ continuous, with polynomial
growth in the first variable and Lipschitz in the second variable.

2 Notations
We introduce some notations; let E, F be real separable Hilbert spaces. The norm and the
scalar product will be denoted by | · |, 〈·, ·〉, with subscripts if needed. L(E,F ) is the space of
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linear bounded operators E → F , with the operator norm, which is denoted by | · |L(E,F ) . The
domain of a linear (unbounded) operator A is denoted by D(A). L2(E,F ) denotes the space
of Hilbert-Schmidt operators from E to F , endowed with the Hilbert-Schmidt norm, which is
denoted by | · |L2(E,F ).

Given φ ∈ Bb(E), the space of bounded and measurable functions φ : E → R, we denote by
||φ||0 = supx∈E |φ(x)|.

We say that a function F : E → F belongs to the class G 1(E,F ) if it is continuous, has a
Gâteaux differential ∇F (x) ∈ L(E,F ) at any point x ∈ E, and for every k ∈ E, the mapping
x 7→ ∇F (x)k is continuous from E to F (i.e. x 7→ ∇F (x) ) is continuous from E to L(E,F ) if
the latter space is endowed with the strong operator topology). In connection with stochastic
equations, the space G 1 has been introduced in [5], to which we refer the reader for further
properties.

Given a real and separable Hilbert space K and a probability space (Ω,F ,P) with a filtration
Ft, we consider the following classes of stochastic processes.
1. LpP(Ω,C ([0, T ];K)), p ∈ [1,∞), T > 0, is the space of predictable processes Y with continuous
paths on [0, T ] such that

|Y |Lp
P(Ω,C ([0,T ];K)) = E sup

t∈[0,T ]

|Yt|pK <∞.

2. LpP(Ω, L2([0, T ];K)), p ∈ [1,∞), T > 0, is the space of predictable processes Y on [0, T ] such
that

|Y |Lp
P(Ω,L2([0,T ],K)) = E

(∫ T

0

|Yt|2Kdt

)p/2
<∞.

3. L2
P,loc(Ω, L

2([0,∞);K)) is the space of predictable processes Y on [0,∞) which belong to the
space L2

P(Ω, L2([0, T ];K)) for every T > 0.
In the following, we consider a complete probability space (Ω,F ,P) and a cylindrical Wiener

process denoted by (Wt)t≥0 with values in Ξ, a real and separable Hilbert space. Ft denotes the
natural filtration generated by (Ws)s≤t and augmented will P-null sets of F . H denotes a real
and separable Hilbert space in which the SDE will take values.

3 Preliminaries
We will need some result about the solution of the SDE when a perturbation term F is in the
drift.

3.1 The perturbed forward SDE
Let us consider the following mild stochastic differential equation for an unknown process (Xt)t≥0

with values in H :

Xt = etAx+
∫ t

0

e(t−s)AF (s,Xs)ds+
∫ t

0

e(t−s)AG(Xx
s )dWs, ∀t ≥ 0, P− a.s. (3.1)

Let us introduce the following hypothesis for the non-degenerate case:
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Hypothesis 3.1. 1. A is an unbounded operator A : D(A) ⊂ H → H, with D(A) dense in
H. We assume that A is dissipative and generates a stable C0-semigroup

{
etA
}
t≥0

. By
this we mean that there exist a constant η > 0 and M > 0 such that

〈Ax, x〉 ≤ −η|x|2, ∀x ∈ D(A); |etA|L(H,H) ≤Me−ηt, ∀t ≥ 0.

2. For all s > 0, esA is a Hilbert-Schmidt operator. Moreover |esA|L2(H,H) ≤ Ms−γ and
γ ∈ [0, 1/2).

3. F : R+ ×H → H is bounded and measurable.

4. G is an operator in L(Ξ, H).

5. G is invertible. We denote by G−1 its bounded inverse (Banach’s Theorem).

Remark 3.1. Note that under the previous set of hypotheses, we immediately get that :

|esAG|2L2(Ξ,H) ≤ |G|
2
L(Ξ,H)|e

sA|2L2(H,H)

≤ |G|2L(Ξ,H)e
s/2Aes/2A|2L2(H,H)

≤ |G|2L(Ξ,H)e
−ηs

(s
2

)−2γ

,

which shows that for every s > 0 and x ∈ H, esAG ∈ L2(H,H).

Lemma 3.2. Assume that Hypothesis 3.1 (only points (1.)-(4.)) hold and that F is bounded and
Lipschitz in x. Then for every p ∈ [2,∞) , there exists a unique process Xx ∈ LpP(Ω,C ([0, T ];H))
solution of (3.1). Moreover,

E sup
0≤t≤T

|Xx
t |p ≤ C(1 + |x|)p, (3.2)

for some constant C depending only on p, γ,M and supt≥0 supx∈H |F (t, x)| but independent of
T > 0.

If F is only bounded and measurable, then the solution to equation 3.1 still exists but in the
martingale sense. By this we mean, see [2], that there exists a new F -Wiener process (Ŵ x)t≥0

with respect to a new probability measure P̂ (absolutely continuous with respect to P), and an
F -adapted process X̂x with continuous trajectories for which (3.1) holds with W replaced by Ŵ .
Moreover (3.2) still holds (with respect to new probability). Finally such a martingale solution is
unique in law.

Proof. For the first part of the Lemma, see [5]. The end of the Lemma is a simple consequence
of the Girsanov Theorem.

We define formally the Kolmogorov semigroup associated to Eq. (3.1) as follow : ∀φ : H → R

Pt[φ](x) = Eφ(Xx
t ).

Lemma 3.3 (Basic Coupling Estimates). Assume that Hypothesis 3.1 and that F is bounded
and Lipschitz. Then there exist ĉ > 0 and η̂ > 0 such that for all φ : H → R measurable with
polynomial growth (i.e. ∃C, µ > 0 such that ∀x ∈ H, |φ(x)| ≤ C(1 + |x|µ)), ∀x, y ∈ H,

|Pt[φ](x)−Pt[φ](y)| ≤ ĉ(1 + |x|2+µ + |y|2+µ)e−η̂t. (3.3)

We stress the fact that ĉ and η̂ depend on F only trough supt≥0 supx∈H |F (t, x)|.
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Proof. In the same manner as in the proof of Theorem 2.4 in [3], we obtain, for every x, y ∈ H,

P(Xx
t 6= Xy

t ) ≤ ĉ(1 + |x|2 + |y|2)e−η̂t.

Now write, for every x, y ∈ H and φ : H → R measurable and such that ∀x ∈ H, |φ(x)| ≤
C(1 + |x|µ))

|Pt[φ](x)−Pt[φ](y)| ≤
√

E(|φ(Xx
t )− φ(Xy

t )|2)P(Xx
t 6= Xy

t )

≤ C(1 + |x|µ + |y|µ)(1 + |x|2 + |y|2)e−η̂t

≤ C(1 + |x|2+µ + |y|2+µ)e−η̂t.

Corollary 3.4. Relation (3.3) can be extended to the case in which F is only bounded measurable
and and for all t ≥ 0, there exists a uniformly bounded sequence of Lipschitz functions in x
(Fn(t, ·))n≥1 (i.e. ∀t ≥ 0,∀n ∈ N, Fn(t, ·) is Lipschitz and supn supt supx |Fn(t, x)| < +∞ ) such
that

lim
n
Fn(t, x) = F (t, x), ∀t ≥ 0,∀x ∈ H.

Clearly in this case in the definition of Pt[φ] the mean value is taken with respect to the new
probability P̂.

Proof. See Corollary 2.5 in [3].

We will need to apply the lemma above to some functions with particular form.

Lemma 3.5. Let ζ, ζ ′ : R+ × H → Ξ∗ such that for all s ≥ 0, ζ(s, ·) and ζ ′(s, ·) are weakly*
continuous with polynomial growth. We define

Υ(x) =

{
ψ(x,ζ(s,x))−ψ(x,ζ′(s,x))
|ζ(s,x)−ζ′(s,x)|2 (ζ(s, x)− ζ ′(s, x)), if ζ(s, x) 6= ζ ′(s, x),

0, if ζ(s, x) = ζ ′(s, x).

There exists a uniformly bounded sequence of Lipschitz functions (Υn(s, ·))n≥1 (i.e. ∀n, Υn(s, ·)
is Lipschitz and sups supn supx |Υn(s, x)| <∞) such that

lim
n

Υn(s, x) = Υ(s, x), ∀s ≥ 0,∀x ∈ H.

Proof. See the proof of Lemma 3.5 in [3].

3.2 The BSDE
Let us fix T > 0 and let us consider the following BSDE in finite horizon for an unknown process
(Y T,xt , ZT,xt )t≥0 with values in R× Ξ∗ :

Y T,xt = ξT +
∫ T

t

f(Xx
s , Z

T,x
s )ds−

∫ T

t

ZT,xs dWs, ∀t ∈ [0, T ], (3.4)

where (Xx
t )t≥0 is the solution of (3.1).

We assume the following :
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Hypothesis 3.2. There exist l > 0, µ ≥ 0 such that the function f : H×Ξ∗ → R and ξT satisfy
:

1. F : H → H is a Lipschitz, bounded and belongs to the class G 1,

2. ξT is a H valued random variable FT measurable and there exists p ≥ 0 such that |ξT | ≤
C(1 + sup0≤t≤T |Xx

t |p),

3. ∀x ∈ H, ∀z, z′ ∈ Ξ∗, |f(x, z)− f(x, z′)| ≤ l|z − z′|,

4. ∀x ∈ H, |f(x, 0)| ≤ C(1 + |x|µ).

Lemma 3.6. Assume that Hypotheses (3.1) and (3.2) hold true then there exists a unique solu-
tion in L2

P(Ω,C ([0, T ];H))× L2
P(Ω, L2([0, T ]; Ξ∗)) for all p ≥ 2 to the BSDE (3.4).

See [5], Proposition 4.3.

3.3 The EBSDE
Let us consider the following ergodic BSDE (EBSDE for short in the what follows) for an unknown
process (Yt, Zt, λ)t≥0 with values in R× Ξ∗ × R :

Y xt = Y xT +
∫ T

t

f(Xx
s , Z

x
s )ds−

∫ T

t

Zxs dWs, ∀T > 0,∀t ∈ [0, T ]. (3.5)

Hypothesis 3.3. There exist l > 0, µ ≥ 0 such that the functions F : H → H and f : H×Ξ∗ →
R satisfy :

1. F : H → H is a Lipschitz bounded function and belongs to the class G 1,

2. ∀x ∈ H, ∀z, z′ ∈ Ξ∗, |f(x, z)− f(x, z′)| ≤ l|z − z′|,

3. ∀x ∈ H, |f(x, 0)| ≤ C(1 + |x|µ).

Lemma 3.7 (Existence). Assume that Hypotheses (3.1) and (3.3) hold true then there exists
a solution (Y x, Zx, λ) ∈ L2

P(Ω,C ([0, T ];H)) × L2
P(Ω, L2([0, T ]; Ξ∗)) × R, for all T > 0 to the

EBSDE (3.5). Moreover there exists v : H → R of class G 1 such that, for all x, x′ ∈ H, for all
t ≥ 0 :

Y xt = v(Xx
t ) and Zxt = ∇v(Xx

t )G,
v(0) = 0,

|v(x)− v(x′)| ≤ C(1 + |x|2+µ + |x′|2+µ),

|∇v(x)| ≤ C(1 + |x|2+µ).

Proof. This can be proved in the same way as in [3].

In the following, we denote by (Y T,x, ZT,x) the solution of (3.4) given by Lemma 3.6 and by
(Y x, Zx, λ) the solution of (3.4) given by Lemma 3.7.
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4 Large time behaviour of solutions

4.1 Path-dependent framework
Theorem 4.1. Assume that Hypotheses 3.1, 3.2 and 3.3 hold true. Then, ∀T ≥ 0 :∣∣∣∣∣Y T,x0

T
− λ

∣∣∣∣∣ ≤ C(1 + |x|2+µ)
T

. (4.1)

In particular,

Y T,x0

T
−→

T→+∞
λ,

uniformly in all compact set of H.

Proof. For all x ∈ H, T > 0:∣∣∣∣∣Y T,x0

T
− λ

∣∣∣∣∣ ≤
∣∣∣∣∣Y T,x0 − Y x0 − λT

T

∣∣∣∣∣+
∣∣∣∣Y x0T

∣∣∣∣ .
We have :

Y T,x0 − Y x0 − λT = ξT − v(Xx
T ) +

∫ T

0

f(Xx
s , Z

T,x
s )− f(Xx

s , Z
x
s )ds−

∫ T

0

ZT,xs − Zxs dWs

= ξT − v(Xx
T ) +

∫ T

0

(ZT,xs − Zs)βTs ds−
∫ T

0

ZT,xs − ZsdWs,

where

βTs =

{
(f(Xx

s ,Z
T,x
s )−f(Xx

s ,Z
x
s ))(ZT,x

s −Zx
s )∗

|ZT,x
s −Zx

s |2
, if ZT,xs − Zxs 6= 0

0, otherwise.

The process βTs is progressively measurable and bounded by l therefore we can apply Girsanov
Theorem to obtain that there exist a probability measure QT under which W̃T

t = −
∫ t

0
βTs ds+Wt

is a Wiener process. We recall that if we define MT = exp
(∫ T

0
βTs dWs − 1

2

∫ T
0
|βTs |2Ξds

)
, the

following formula holds : dQT = MTdP.
Taking the expectation with respect to QT we get

Y T,x0 − Y x0 − λT = EQT

(ξT − v(Xx
T )). (4.2)

Thus ∣∣∣∣∣Y T,x0 − Y x0 − λT
T

∣∣∣∣∣ ≤ C 1 + EQT

[sup0≤t≤T |Xx
t |µ]

T
+ C

1 + EQT (|Xx
T |2+µ

)
T

.

The process (Xx
t )t≥0 is the mild solution of{

dXx
t = AXx

t dt+ F (Xx
t )dt+GβTt 1t<Tdt+GdW̃T

t , t ≥ 0,
Xx

0 = x.
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Thus, by Lemma (3.2), there exists a constant C which does not depend on time such that

EQT

[
sup

0≤t≤T
|Xx

t |µ
]
≤ C(1 + |x|µ),

EQT

[
sup

0≤t≤T
|Xx

t |2
]
≤ C(1 + |x|2+µ),

therefore∣∣∣∣∣Y T,x0 − Y x0 − λT
T

∣∣∣∣∣ ≤ C(1 + |x|2+µ)
T

. (4.3)

Finally note that∣∣∣∣Y x0T
∣∣∣∣ ≤ C(1 + |x|2+µ)

T
,

which gives the result.

4.2 Markovian framework
For the Markovian framework, we replace Hypothesis 3.2 by the following

Hypothesis 4.1. There exist l > 0, µ ≥ 0 such that the function f : H×Ξ∗ → R and ξT satisfy
:

1. F ≡ 0 ,

2. ξT = g(XT ) for a continuous function g : H → H with polynomial growth, i.e. there exists
µ > 0 such that |g(x)| ≤ C(1 + |x|µ),

3. ∀x ∈ H, ∀z, z′ ∈ Ξ∗, |f(x, z)− f(x, z′)| ≤ l|z − z′|,

4. f : H×Ξ∗ → R is continous and of polynomial growth, i.e. ∀x ∈ H, |f(x, 0)| ≤ C(1+ |x|µ).

Theorem 4.2. Assume that Hypotheses 3.1, 3.3 and 4.1 hold true. Then there exists L ∈ R
such that,

∀x ∈ H, Y T,x0 − λT − Y x0 −→
T→+∞

L.

Furthermore the following speed of convergence holds

|Y T,x0 − λT − v(x)− L| ≤ C(1 + |x|2 + |x|µ)(1 + |x|2)e−η̂T .

Proof. Let us denote by (Xt,x
· , Y T,t,x· , ZT,t,x· ) the mild solution of

dXs = AXsds+GdWs, s ≥ t
dYs = −f(Xs, Zs)ds+ ZsdWs, s ∈ [t, T ]
Xt = x ∈ H,
YT = g(XT ).

Now we define

uT (t, x) := Y T,t,xt

wT (t, x) := uT (t, x)− λ(T − t)− v(x).
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We recall that Y T,t,xs = uT (s,Xt,x
s ) and that Y xs = v(Xx

s ), where v is defined in the Lemma
3.5. Remark that taking t = 0 implies Y T,0,xs = Y T,xs . We recall that for all T, S > 0, uT is the
unique mild solution of{

∂uT (t,x)
∂t + L u(t, x) + f(x,∇u(t, x)G) = 0, ∀(t, x) ∈ R+ ×H,

uT (T, x) = g(x), ∀x ∈ H,

and that uT+S is the unique mild solution of{
∂uT+S(t,x)

∂t + L u(t, x) + f(x,∇u(t, x)G) = 0, ∀(t, x) ∈ R+ ×H,
uT+S(T + S, x) = g(x), ∀x ∈ H,

This implies for all x ∈ H,

uT (0, x) = uT+S(S, x).

and then,

wT (0, x) = wT+S(S, x) (4.4)

We are going to need some estimates on wT given in the following Lemma.

Lemma 4.3. Under the hypothesis of the Theorem 4.2, there exists C > 0 such that ∀x, y ∈ H,
∀T > 0,

|wT (0, x)| ≤ C(1 + |x|2+µ),

|∇xwT (0, x)| ≤ CeCε√
ε

(1 + |x|2+µ),∀0 < ε ≤ T,

|wT (0, x)− wT (0, y)| ≤ C(1 + |x|2+µ + |y|2+µ)e−η̂T .

Proof of Lemma 4.3 . The first inequality of the Lemma is a direct application of estimate (4.3).
Indeed, ∀x ∈ H,∀T > 0,

|wT (0, x)| = |uT (0, x)− λT − v(x)|

= |Y T,x0 − Y x0 − λT |
≤ C(1 + |x|2+µ), (4.5)

which gives the first inequality of Lemma.
Now, let us establish the gradient estimate. First remark that the inequality (4.5) still holds

for wT (t, x), i.e. ∀x ∈ H, ∀T > t,

|wT (t, x)| ≤ C(1 + |x|2+µ). (4.6)

The process (wT (s,Xt,x
s ))t≤s≤T satisfies the following equation, for all t ≤ s ≤ T ,

wT (s,Xt,x
s ) = wT (T,Xt,x

T ) +
∫ T

s

(f(Xt,x
r , ZT,t,xr )− f(Xt,x

s , Zt,xs ))ds

−
∫ T

s

(ZT,t,xr − Zt,xr )dWr.
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Now remark that for all t < T ′ ≤ T the following equation hold by unicity of solutions,
∀t < s ≤ T ′

wT (s,Xt,x
s ) = wT (T ′, Xt,x

T ′ ) +
∫ T ′

s

(f(Xt,x
r , ZT,t,xr )− f(Xt,x

r , Zt,xr ))dr

−
∫ T ′

s

(ZT,t,xr − Zt,xr )dWr

= wT−T ′(0, X
t,x
T ′ ) +

∫ T ′

s

(f(Xt,x
r , ZT,t,xr − Zxr + Zxr )− f(Xt,x

r , Zt,xr ))dr

−
∫ T ′

t

(ZT,t,xr − Zxr )dWr.

where we have used the equality (4.4) for the second line.
And we recall that (see [4] Theorem 4.2 and [3] Theorem 3.8), ∀x, h ∈ H,∀s ∈ [t, T ]

ZT,t,xs = ∇xuT (s,Xt,x
s )G,

Zxs = ∇xv(Xt,x
s )G.

Then :

ZT,t,xr − Zt,xr = ∇xwT (r,Xt,x
r )G.

Thus applying the Bismut-Elworthy formula (see [4], Theorem 4.2), ∀x, h ∈ H, ∀t < T :

∇xwT (t, x)h = E
∫ T

t

[f
(
Xt,x
s ,∇xwT (r,Xt,x

r )G− Zt,xs
)
− f

(
Xt,x
s , Zt,xs

)
]Uh(s, t, x)ds

+ E
[
[wT−T ′)(0, X

t,x
T ′ )]Uh(T ′, t, x)

]
,

where, ∀0 ≤ s ≤ T , ∀x ∈ H,

Uh(s, t, x) =
1

s− t

∫ s

t

< G−1∇xXt,x
u h,dW̃u > .

Let us recall that

∇xXt,x
s h = e(s−t)Ah,

then,

E|Uh(s, t, x)|2 =
1

|s− t|2

∫ s

t

|G−1∇xX(u, t, x)h|2du

≤ C|h|2

s− t
,

where C is independant on t, s and x.
Then,∀x, h ∈ H, ∀t < T , using inequality (4.6)

|∇xwT (t, x)h| ≤ C
∫ T ′

t

E
|∇xwT (s,Xt,x

s )h|√
s− t

ds+ C
(1 + |x|2+µ)|h|√

T ′ − t
.

10



We define

ϕ(s) = sup
x

sup
h

|∇xwT (t, x)h|
(1 + |x|2+µ)|h|

,

then

|∇xwT (t, x)h| ≤ C
∫ T ′

t

ϕ(s)√
s− t

E(1 + |Xt,x
s |2+µ)|h|ds+ C

(1 + |x|2+µ)|h|√
T ′ − t

which leads to

|∇xwT (t, x)h|
(1 + |x|2+µ)|h|

≤ C
∫ T ′

t

ϕ(s)√
s− t

ds+
C√
T ′ − t

.

Taking the supremum over x and h, we have

ϕ(t) ≤ C
∫ T ′

t

ϕ(s)√
s− t

ds+
C√
T ′ − t

.

Then by Lemma 7.1.1 in [7] :

|∇xwT (t, x)h| ≤ C|h| (1 + |x|2+µ

√
T ′ − t

eC(T ′−t),

which gives us the second estimate of Lemma for t = 0:

|∇xwT (0, x)h| ≤ C|h| (1 + |x|2 + |x|µ)√
T ′

eCT
′
.

For the third inequality of Lemma, we have by equation (4.2), ∀x ∈ H, ∀T > 0 :

wT (0, x) = EQT

(g(Xx
T )− v(Xx

T ))
= E(g(UxT )− v(UxT )),

where Ux is the mild solution of the following equation defined ∀t ∈ R :

dUxt = [AUxt + F (Uxt ) + βTt 1t<T ]dt+GdWt, Ux0 = x.

Therefore, ∀x ∈ H ∀T > 0 :

|wT (0, x)− wT (0, y)| = |E(g(UxT ) + v(UxT ))− E(g(UyT ) + v(UyT ))|

Remark now that in the Markovian framework, (βTt 1t≤T )t≥0 is Markovian. Furthermore βTs is
uniformly bounded in T by l therefore we can apply the Corollary 3.4, we obtain

|wT (0, x)− wT (0, y)| ≤ C(1 + |x|2+µ + |y|2+µ)e−η̂T . (4.7)

Now, let us come back to the proof of the Theorem. The first estimate of Lemma 4.3 allow
us to construct, by a diagonal procedure, a sequence (Ti)i ↗ +∞ such that for a function w
defined on a countable dense subset of H (denoted by D) : (w : D → R) the following hold

∀x ∈ D, lim
i→+∞

wTi(0, x) = w(x).

11



Then, it is possible to extend this function to the whole H thanks to the second inequality of
Lemma 4.3.

Now, let us show that w : H → R is constant. We have, by the third inequality of Lemma
4.3, for all x, y ∈ H and T > 0,

|wT (0, x)− wT (0, y)| ≤ C(1 + |x|2 + |x|µ + |y|2 + |y|µ)(1 + |x|2 + |y|2)e−η̂T .

Applying the previous inequality with T = Ti and taking the limit in i show us that x 7→ w(x)
is a constant function, namely there exists L1 ∈ R (independent of x) such that : ∀x ∈ H

lim
i
wTi

(0, x) = L1.

Now remark that {wT (0, ·);T > 1} is a relatively compact subspace of the space of continuous
functions H → R for the uniform distance thanks to the two first inequalities of Lemma 4.3.
Therefore, if we show that {wT (0, ·);T > 1} admits only one accumulation point, it will implies
that

lim
T→+∞

wT (0, x) = L1.

Now we claim that the accumulation point is unique. Let us assume that there exists another
subsequence (T ′i )i∈N such that limi wT ′i (0, x) = L2 (note that it must be a constant by the third
inequality of Lemma 4.3).

Let us write, ∀x ∈ H, ∀T, S > 0 :

wT+S(0, x) = Y T+S,x
0 − λ(T + S)− Y x0

= Y T+S,x
S − λT − Y xS +

∫ S

0

(f(Xx
r , Z

T+S,x
r )− f(Xx

r , Z
x
r ))dr

−
∫ S

0

(ZT+S,x
r − Zxr )dWr

= Y T+S,x
S − λT − Y xS +

∫ S

0

(ZT+S,x
r − Zxr )dW̃r,

where

βT+S
s =

{
(f(Xx

s ,Z
T+S,x
s )−f(Xx

s ,Z
x
s ))(ZT+S,x

s −Zx
s )∗

|ZT+S,x
s −Zx

s |2
, if ZT+S,x

s − Zxs 6= 0

0, otherwise,

and

W̃T+S
t = −

∫ t

0

βT+S
s ds+Wt.

Taking the expectation with respect to the probability QT+S under which W̃T+S is a Brow-
nian motion we get (using equality (4.4) for the third line):

wT+S(0, x) = EQT+S

(Y T+S,x
S − λT − Y xS )

= EQT+S

(wT+S(S,Xx
S))

= EQT+S

(wT (0, Xx
s ))

= E(wT (0, UxS )) (4.8)
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where Ux is the mild solution of the following equation defined ∀t ∈ R+ :

dUxt = [AUxt + F (Uxt ) + βT+S
t 1t<T+S ]dt+GdWt, Ux0 = x.

This implies, substituting T by T ′i and S by Ti − T ′i , (up to a subsequence for (Ti)i∈N such that
Ti > T ′i )

wTi(0, x) = E(wT ′i (0, UxTi−T ′i
))

We have:

lim
i
wTi(0, x) = L1.

Furthermore,

|wT ′i (0, UxTi−T ′i
)− L2| ≤ |wT ′i (0, UTi−T ′i )− wT ′i (0, x)|+ |wT ′i (0, x)− L2|

≤ C(1 + |x|2+µ + |UTi−T ′i |
2+µ)e−η̂T

′
i + |wT ′i (0, x)− L2|,

thanks to the third inequality of Lemma 4.3. Now remark that ∀p > 0, ∀ε > 0,

P(|UTi−T ′i |
pe−pη̂T

′
i > ε) ≤ E[|UTi−T ′i |

pe−pη̂T
′
i ]/ε

≤ C e
−pη̂T ′i

ε
,

which shows that

|wT ′i (0, UTi−T ′i )− L2| −→
i→+∞

0, P− a.s.

Then, by the dominated convergence theorem :

lim
i

E(wT ′i (0, UTi−T ′i )) = L2.

Therefore L1 = L2, which as mentioned before, implies that

lim
T→+∞

wT (0, x) = L1.

Now we prove that this convergence holds with an explicit speed of convergence. Let us write,
∀x ∈ H,∀T > 0,

|wT (0, x)− L| = lim
V→+∞

|wT (0, x)− wV (0, x)|

= lim
V→+∞

|wT (0, x)− E(wT (0, UxV−T ))|

thanks to equality (4.8), where Ux is the mild solution of the following equation defined ∀t ∈ R+

:

dUxt = [AUxt + F (Uxt ) + βVt 1t<V ]dt+GdWt, Ux0 = x.

Now, thanks to the third estimate in Lemma 4.3, one have,

|wT (0, x)− L| ≤ lim
V→+∞

CE
(
1 + |x|2+µ + |UxV−T |2+µ

)
e−η̂T

≤ C(1 + |x|2+µ)e−η̂T .
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