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Abstract

We investigate the fast relaxation of internal energy in nonequilibrium gas models derived from
the kinetic theory of gases. We establish uniform a priori estimates and existence theorems for
symmetric hyperbolic-parabolic systems of partial differential equations with small second order
terms and stiff sources. We prove local in time error estimates between the out of equilibrium
solution and the one-temperature equilibrium fluid solution for well prepared data and justify the
apparition of volume viscosity terms.

1 Introduction

The kinetic theory of polyatomic gases shows that the volume viscosity coefficient is related to the time
required for the internal and translational temperatures to come to equilibrium [6, 16, 35, 36, 3, 4, 5].
We establish in this paper local in time error estimates between the solution of an out of equilibrium
two-temperature model and the solution of a one-temperature equilibrium model—including volume
viscosity terms—when the relaxation time goes to zero.

The system of partial differential equations modeling fluids out of thermodynamic equilibrium as
derived from the kinetic theory of gases is first summarized [3, 4]. This system and its symmetrizability
properties have been investigated in our previous work [25]. The symmetrizing normal variable w of
the out of equilibrium model is taken in the form

1 1 1\t
1.1
W ('O’v’Ttr T’ T)’ (1.1)

where p denotes the gas density, v the fluid velocity, T;, the translational temperature, T;, the internal
temperature, and T the local equilibrium temperature. The resulting system of partial differential
equations is in the general form

Ao (w)d,w +Zﬂi(w)8iw - edz 9; (Bij(w)d;w) + %E(w)w = eab(w, D, wy), (1.2)

i€D i,j€D

where 0; denotes the time derivative operator, 9; the space derivative operator in the ith direction,
D ={1,...,d} the spatial directions, d the space dimension, ¢, ¢, € (0, 1] two positive parameters and
w = (w;,wy)? is decomposed into its hyperbolic components w; and parabolic components wy;. The
matrix Ay is symmetric positive definite and bloc-diagonal, A; are symmetric, Ezj = §ji, Eij have
nonzero components only into the right lower EZ“ blocs, B = > ijeD E;;“(w)fi{j is positive definite
for £ € X971, L is positive semi-definite with a fixed nullspace E, and b(w, d,wy) is quadratic in the
gradients. Denoting by 7 the orthogonal projector onto %J', the normal variable w is such that we have
the commutation relation 7Ag = Ag7m. The source term is also naturally in quasilinear form as is typical
in a relaxation framework and often encountered in mathematical physics [45]. The small parameter e
is associated with energy relaxation and the small parameter ¢; with second order dissipative terms.



We establish uniform a priori estimates for linearized symmetric hyperbolic-parabolic systems with
small dissipation and stiff sources obtained from the nonlinear equations (1.2). Symmetrized forms
are important for analyzing hyperbolic as well as hyperbolic-parabolic systems of partial differential
equations modeling fluids [26, 17, 42, 34, 29, 33, 30, 31, 7, 39, 20, 18, 8, 9, 40, 28, 15, 44, 32, 19, 21, 2,
40, 24, 9, 23]. A priori estimates are obtained uniformly with respect to the parameters e; € (0, 1] and
e € (0,1]. The differences with the estimates established by Kawashima [29] are the inclusion of extra
terms associated with the fast variable mw/e and the estimates for time derivatives. Denoting by w* a
constant equilibrium state and 7 a positive time, we estimate w —w* in the space C° ( [0,7], H l) as well
as Oyw and mw/e in L?((0,7), H'™1) for I > [d/2] + 2 where H' = H'(R?) denotes the usual Sobolev
space when the initial solution is close to the equilibrium manifold. A priori estimates require the
commutation between the mass matrix and the orthogonal projector onto the fast manifold 7Ag = Agr.
These estimates lead to local existence theorems for well prepared initial conditions on a time interval
independent of both parameters eq € (0,1] and € € (0, 1]. Key points for local existence are notably to
take into account stiff sources in the linearized equations in order to build approximated solutions, the
new estimates for time derivatives, and the convergence rate of successive approximations that may
depends on e. Stronger estimates for d,w in C°([0,7], H'~2) as well as for 7w /e in L?((0,7), H'~%)
with I > [d/2] + 4 are also established when the initial time derivative is close to the equilibrium
manifold. These theorems yield the first existence results for the out of equilibrium two-temperature
model derived in [3] and symmetrized in [25]. The situation of ill prepared data is also addressed with
inital layers.

We finally investigate the singular limit €,e4 — 0 in the system modeling fluids out of thermody-
namic equilibrium. Various relaxation models have also been investigated in the literature in different
physical and mathematical contexts [7, 8, 10, 32, 37, 43, 46]. In order to investigate the asymptotic
behavior of solutions as €,e4 — 0 we combine a priori estimates out of thermodynamic equilibrium
with stability results associated with the equilibrium limit model. The fast variable notably corre-
sponds to the rescaled temperature difference with (T, — Tin)/e = —TyTinmw/e and we use that
perturbed hyperbolic-parabolic systems with small second order terms and perturbing right hand sides
admit local solutions that depend continuously on perturbations. Denoting by we = (pe, Ve, —1/Te)*
the solution of the equilibrium one-temperature model including the volume viscosity terms and by
ow = (p,v,—1/T)! the projection on the slow manifold of the normal variable w out of equilibrium,
we establish that ¢w — we = O(e(e + €q)). This justifies the addition of the volume viscosity term
—ke (V-ve)I in the viscous tensor IT, at equilibrium

II. = —ke (V-ve)I — e (Voo + (Vo) — 2(V-we)I),

where k. and 7, denote the equilibrium volume and shear viscosities, discarding (9(6(6 + ed)) Burnett
type residuals. In the situation where € = ¢4, it has also been established that the equilibrium system
corresponds to a second order Chapman-Enskog expansion for small relaxation times [25] and the error
estimates of pw — w, yields a rigorous jusitification of the second order accuracy. To the author’s
knowledge, it is the first time that the apparition of volume viscosily terms is justified rigorously with
an error estimate. Note incidentally that experimental measurements [38, 41] as well as theoretical
calculations [6, 16, 35, 3] have shown that the volume viscosity coefficient is of the same order as the
shear viscosity coefficient for polyatomic gases and the impact of volume viscosity in fluid mechanics
has also been established [12, 13, 11, 27, 1, 3].

The nonequilibrium two-temperature model and its symmetrization are summarized in Section 2.
A priori estimates and local existence results are established in Section 3. Stability for equilibrium
models and convergence of the nonequilibrium model towards the one-temperature model is established
in Section 4.

2 Governing equations

The system of equations modeling fluids out of thermodynamic equilibrium as derived from the kinetic
of gases is summarized and recast into a convenient normal form [3, 4, 25]. The local equilibrium
temperature, the volume viscosity coefficient, and the equations at equilibrium are also discussed.



2.1 Conservation equations

In a nonequilibrium gas with internal degrees of freedom, the conservation of mass, momentum, internal
energy and total energy may be written in the form [3]

Op+ V-(pv) =0, (2.1)
O (pv) + V-(pvev +pl)+ V-II =0, (2.2)
9, (pein) + V- (pvew) + V-Qy, = win, (2.3)
O, (plew + em + 3|v[*)+ V- (pv(ew + €in + [v|*) + vp)

+ V(Q +Qy, +IT-v) =0, (2.4)

where V denotes the space derivative operator, p the mass density, v the fluid velocity, ® the tensor
product symbol, p the pressure, IT the viscous tensor, I the unit tensor in the physical space R?, e;,
the internal energy of internal origin per unit mass, @, the heat flux of internal origin, wi, the energy
exchange rate, e, the internal energy of translational origin per unit mass, and Q,, the heat flux of
translational origin. The components of v and V are written v = (v1,...,v4)" and V = (91,...,04)"
where v; denotes the velocity in the ith spatial direction, 9; the derivation in the ith spatial direction
and bold symbols are used for vector or tensor quantities in the physical space R?. The equations
(2.2)-(2.4) have to be completed by relations expressing the thermodynamic properties ey, e, and p,
the rate of energy exchange win, and the transport fluxes IT, Q;, and Q..

2.2 Thermodynamics

The pressure p, the total internal energy per unit mass e, the internal energy of translational origin
per unit mass ey, and the internal energy of internal origin per unit mass e, are in the form

T

p= pTTtrv € = € + €Ein, Ctr = Cv,tthr; €in = €in,st + / Cin(T/) dT/a (25)
Tst

where r denotes the gas constant per unit mass, ¢y ¢ = %r the translational heat at constant volume
per unit mass, T}, the translational temperature, ¢;, the internal heat per unit mass, Ti, the internal
temperature, Ty the standard temperature, and ej, s the internal formation energy at the standard
temperature. We will also use in the following the translational heat at constant pressure per unit
mass Cpr = %r and the formation energy at zero temperature el = eiy(0).
The rate of energy exchange between the translational and internal degrees of freedom wj, may also
be written [3]
PCin

Tin

(Ttr - T’in)y (26)

Win =

where 7i, denotes the energy exchange time.

2.3 Transport fluxes

In the framework of the kinetic theory of polyatomic gases out of thermodynamic equilibrium, the
translational and internal heat fluxes are in the form [3]

Qtr - - )\tr,trVTtr - )\tr,inVT’iny (27)
Qin - - )\in,trVTtr - Ain,inVT‘in; (28)

where Agrtr, Atrjin, Ainjtr, and Aip in denote thermal conductivities. On the other hand, the viscous
tensor is given by
II = —n(Vv+ (Vo) — 2(V-o)I), (2.9)

where 7 denotes the shear viscosity and d’' the dimension of the velocity space in the underlying kinetic
framework. It will be assumed in the following that the dimension of the kinetic velocity space d’ is
such that 2 < d’ and d < d’. The assumption 1 < d < d’ means that the spatial dimension d of the



model has eventually been reduced. The assumption 2 < d’ is natural since d’ = 3 in our physical
world and since IT is identically zero when d’ = 1.

The thermal conductivities Aty tr, Atr,ins Ain,trs a0d Ainin and the shear viscosity n are obtained
from the kinetic theory of non equilibrium gases [3]. From the expression (2.9) it is also noted that the
viscous tensor IT does not present a volume viscosity term and our aim is to investigate the apparition
of such a contribution in the one-temperature equilibrium limit model as the relaxation time 7, goes
to zero.

2.4 Mathematical assumptions

The mathematical assumptions associated with the thermodynamic properties, the energy exchange
rate, and the transport coefficients are the following where » > 3 denotes the regularity class [22, 18,
3, 25].

(T1) The formation energy eins and formation entropies Sy and Singy are real constants. The
mass per unit mole m, the gas constant R, and the gas constant per unit mass r = R/m are
positive. The internal species heat per unit mass cin(Tin) is a C*~1 function over [0,00) and
there exist constants ¢ and € such that 0 < ¢ < ¢in(Tin) < € for all Ty, > 0.

(T2)  The energy exchange rate Tin(p, Ter, Tin) s in the form

st =st
Tin = €Tin = Eu, (210)
p
where € € (0,1] denotes a positive parameter, Tin(p, Ttr, Tin) = p*75¢/p the rescaled energy
exchange time and 758 (Tyy, Tin) the rescaled energy exchange time at the standard pressure p*
which only depends on Ty, and Ti,. The rescaled time 75 is a positive C* function of the two
temperatures Tiy, Tin € (0,00).

(Tr1)  The coefficients 1, Airtrs Atrins Aintes 1A Ain,in are in the form

N = €41, /\tr,tr :Ed/\tr,trv /\tr,in = Ed)\tr7inv

Ain,tr = Ed/_\in,tr, Ainin = €4\ (2.11)

in,in>»

where eq € (0,1] denotes a positive parameter, and 1, A, i, A
transport coefficients. The rescaled coefficients 7, Xtr’m A
tions of the two temperatures Ty, Tin € (0,00).

and X

in,tr’ in,in

\ P2
it and Ay, 5, are CF func-

tr,in A the rescaled

A

tr,in’

(Tr2)  For any Ty, Tin € (0,00), the matrix

T’in/\in,in Ttr/\in,tr 1

B B (2.12)
111%1)‘ Tt2r)‘tr,tr

tr,in

is symmetric positive definite. In the viscous tensor (2.9), the coefficient n is positive and the
dimension d’ of the kinetic velocity space is such that max(2,d) < d'.

The rescaled energy exchange time 7i, as well as the rescaled transport coefficients 7, Ay, ¢, A

tr,in>
Xin,tr’ and Xin)in have been introduced in order to investigate the fast relaxation limit.
2.5 Volume viscosity
The local thermal equilibrium temperature is defined as the unique scalar T" such that
Ctr (T) + €in (T) = etr(Ttr) + eil’l(ﬂl’l)7 (213)

keeping in mind that ey, (T') +ein(T) is an increasing function of T'. The temperature T is a C* function
of (T, Tin) and is the temperature that would be obtained at local thermal equilibrium T, = Tiy,



assuming that the internal energy ey, +e;y, is kept fixed. Letting ¢, = fol Cin (Tin—l—s(T—Tin)) ds, we may
write e, (T) —€in (11111) = (T_T‘in)gin so that (Ttr _T)Cv,tr = (T_ﬂn)an and (Ttr _T)gv = (Ttr _/Tin)gin
where ¢, = ¢y i + Cin (T, Tin). Letting ¢y (Tin) = ¢y e + ¢in(Tin) and

PCinPTin T Cin DT

k= kT, Tin) = s Tt (2.14)

the following relation is obtained after some algebra

pr(T ~T) = sV~ (I1:V0 + V-Q, ~ 20V-Q,

n

+ p0,(Tex — Ti) + pv-V (Toe — T )). (2.15)

Note that we have k = €k with & = 7 iy pTin/(cy¢y) from assumption (2.10). Equation (2.15) is a
relaxation equation that yields formally pr(Ti, —T) = —kV-v + (’)(e(e—i—ed)) so that both temperatures
Tt and Ti, should converge towards the local equilibrium temperature 7. In the momentum equation,
the pressure tensor prii.I + IT is thus asymptotically in the form

prToI +IT = prTT — 5 (V-v)I —n (Vo + (Vo) — 2(V-0)I) + O(e(e + €4)).

This is in agreement with classical one-temperature models where the pressure pr1' is evaluated at
the thermal equilibrium temperature 7' and the viscous tensor IT includes a volume viscosity term
—k(V-v)I. Such a physically intuitive derivation may be found in many physics papers and books
either in a molecular framework or in a macroscopic fluid framework usually around equilibrium states
[6, 16, 35, 36, 3, 4, 5]. Numerical simulations using Boltzmann equation have consistently established
that the limit one-temperature model is an accurate description of the two temperature fluid when
the relaxation time is small [3]. In our previous work [25], it has further been established that the
Chapman-Enskog method exactly yields the one-temperature fluid equations with the volume viscosity
terms at second order in the fast relaxation limit. The goal of this paper is to justify with an error
estimate both the above physically intuitive approximation as well as the accuracy of the two term
Chapman-Enskog expansion [25].

2.6 Quasilinear forms
Letting n = d+ 3, the conservative variable u € R™ associated with equations (2.1)—(2.4) is found to be
t
u= (pa PV, PEin, P(etr + €in + %|’U|2)) )

and the natural variable z € R™ is defined by z = (p,v, Tin,Ttr)t. For convenience, the velocity
components of vectors in R” = R x R? x R? are generally written as vectors of R?. We introduce the
corresponding open sets O, and O, of R™ given by

O, = {u = (Up, Uy, Uin, Uc1)t € R™; u, >0, ugy > upe?n, ugy > f(up,u,,,uin)}7

where f(up, Uy, Uin) = Uin + %uv-uv/up and O, = (0,00)xR%¥x(0,00)2. The following proposition has
been established in our previous work [25].

Proposition 2.1. Assuming that (T1) holds, the map z — u is a C* diffeomorphism from the open
set O, onto the open set O, and the open set O, is conver.

The equations modeling fluids out of thermodynamic equilibrium may then be written in the com-
pact form
- 1
d ™
atU'FZaiFi‘f'EdzaiFilbb—ZQZO, (2.16)
€D i€D
where F; denotes the convective flux in the ith direction, e; the Knudsen number, F$ the rescaled
dissipative flux in the ith direction, € the relaxation parameter, and §2 the rescaled source term.



From the governing equations (2.1)—(2.4) the convective flux F; in the ith direction is given by

Fi = (pvi, pov; + pes, peinvs, (pee + pein + Lplol? + p)v;)’, (2.17)

where e; denotes the basis vectors of R?. Similarly, the dissipative flux ¢,F{*** is given by
i t
6dF?lSS = (0, Hiv Qin,i; Qtr,i + Qin,i + Hl’l}) ) (218)

where Qy, = (Qtr.1,- -+ Qtr,d)'s Qi = (Qin,1y- -+, Qina)t, IIij, 1 <i,j < d, are the components of the
viscous tensor IT, and IT, = (I1y;, ..., I14)". The source term is finally given by

%Q = (0,0,win,0)". (2.19)

From the expressions of the viscous tensor and of the heat fluxes we deduce that the dissipative fluxes
Fdiss are linear expression in terms of spatial derivatives of z and may thus be written in the form

Fdiss — >jep Bi;(2)d;z. Using Proposition 2.1, we may then write that Fdis = — > jep Bij(u)o;u
where the dissipation matrix B;; is defined as B;; = B;;0,z. Further introducing the Jacobian matrices
of the convective fluxes A; = 9,F; the governing equations are finally rewritten into the compact form

du+ > Ai(w)ou—es Y (B - —Q( )= (2.20)

i€D i,j€D

In our previous work [25], all possible normal variables leading to a symmetric hyperbolic-parabolic

structure have been shown to be in the form (]—'l(p), Fu(v, Tin, Ttr))t where F, and F;; are diffeomor-
phisms in R and R%*2, respectively. The natural variable z is in particular a normal variable but for
convenience the following normal variable will be used

11 1yt
. 2.21
W (”’”’Ttr T’ T) (2.21)

The density w; = p is the hyperbolic variable, w;, = (v, Ti — Tl ,——) the parabolic variable, and

the corresponding normal form has been evaluated [25]. The third component of w goes to zero with
the relaxation time and the other components (p,v, -1 /T) are expected to converge towards the

corresponding normal variable at thermodynamic equilibrium w, = (pe, Ve, —1/ Te)t.

Theorem 2.2. Assume that (T1)(T2) and (Tr1)(Tra) hold. Then the map u — w is a C*~1 diffeo-
morphism from the open set O, onto the open set O, = (0,00)xRIxRx(—00,0). The system written
in the w variable is in the normal form with a source term in quasilinear form

1— _
w)d,w + § Ai(W)O;w — g § i (Bij(w)d;jw) + EL(W)W = egb(w, 9, wy), (2.22)
i€D i,j€D

and the matrices Ay, A;, i € D, Eij, i,j € D, L, as well as the quadratic residual b and the source

term Q are detailed in previous work [25]. The matriz Ag is symmetric positive definite, A;, i € D,
are symmetric, we have EZ—J— = Eji, i,j € D, L is positive semi-definite with a fized nullspace E, and
b(w, d,wy) is quadratic in the gradients. Using the bloc structure induced by the partitioning between
hyperbolic and parabolic variable, Ay is bloc diagonal, B;; has nonzero coefficients only in the right
lower bloc E?j“ and for any & in the sphere X% the matriz B (w, &) = ZMGD Bij(w)&:€; is positive
definite. The matrices EZ—J— have the structure EZ—J— = %EA(SZ-J-—I—%EZ- where EA 18 associated with thermal
conductivities and E?j with shear viscous effects. The equilibrium linear manifold with respect to the
normal variable is the fized subspace E = RxR¥x {0} xR and the normal variable w is quasilinear on

the fast manifold Tt = = Regyo. Finally, the normal variable is compatible with the fast manifold so
that mAg = Agrr.



2.7 Equations at equilibrium

In order to investigate the fast relaxation limit € — 0 we will need to establish a stability theorem for
the equations governing fluids at thermodynamic equilibrium that are summarized in this section. The
equations modeling one-temperature fluids are in the form [6, 16, 18]

9ype + V-(peve) =0, (2.23)
0y (peve) + V- (pee®@ve + peI) + V- II, =0, (2.24)
9, (pee + %p|UC|2) +V- (’Uc(pec + %p|’00|2 +p0)) +V(Q. + Hcve) =0, (2.25)

where the subscript e denotes thermodynamic equilibrium, p, the mass density, v, the fluid velocity,
Pe the pressure, IT, the viscous tensor involving the volume viscosity, e, the internal energy per unit
mass, and @, the heat flux.

The pressure p. and the internal energy per unit mass e, are in the form p, = perT. and e, =
€est + fT:;CV(T/ )dT" where ¢y (Te) = ¢y ir + cin(Te) denotes the heat at constant volume per unit
mass, T, the equilibrium temperature, e, s formation energy at the standard temperature and we have
ee(Ts) = ewr(Te) + ein(Te). The equilibrium viscous tensor is in the form

II. = —£(T.) (V-ve)I — 1e(Te) (Vve 4+ (Vwe)' — 2(V-we)I), (2.26)

where 10(T.) = n(Te, To) and ke(Te) = K(Te, Te) so that ke = 7 cin pTin/c2, and the heat flux is given
by Qc - _)\C(TC)VTm with )\C(TC) = )\tr,tr(Tc; Tc) + At:r.,in(T’m To) + )\in,tr(Tc; Tc) + Ain.,in(T‘(:y To)

Letting ne = d + 2, the conservative variable u, € R™ associated with equations (2.23)—(2.25) is
Ue = (pc, PeVe, PCe + %pcvcmc)t and the corresponding natural variable reads z, = (pc, Vo, Tc)t. The
corresponding open sets are given by O,, = {uc = (Up, Uy, ug)® € R™; u, >0, ug > f°(up, uv} where
I(up,up) = u,pel + %% and O,, = (0, 00)xR%x(0,00). The map z, — U, is easily shown to be a C*
diffeomorphism from O, onto O, . Introducing the convective and dissipative fluxes of the equilibrium
fluid model (2.23)—(2.25)

t
F? - (pcvci; PeVelei + Pe€i, (pec +pc + %pc|vc|2>vci) 5 (227)

eaFe = (0, I,;, Qus + M;ve)', (2.28)
using straighforward notation, the system at equilibrium may be rewritten in qualilinear form
Opue + Z Af(ue)Oiue — €q Z Bi(ij(ue)ajue) =0, (2.29)
i€D i,jED
where A{, i € D, denote the Jacobian matrices AS = 9, F§ and B, i,J € D, the dissipation matrices
at equilibrium with F¢diss = —Z]ED Bf;j0jue [29, 31, 18]. The equations of the one-temperature
equilibrium model may also be written in normal form [25] with the normal variable

1 t
we = (perves =7 ) (2.30)
[S]

where the density we, = p. is the hyperbolic variable and we; = (ve, —%)t the parabolic variable.

Theorem 2.3. Assume that (T1)(T2) and (Tr1)(Tra) hold. Then the map ve — we is a C*~ 1 diffeo-
morphism from the open set O, onto the open set O,, = (0,00)xR4x (—00,0). The system written in
the we variable is of the normal form

Ay (We)d,we + ZK:(WC)aiWC — €4 Z@i (gjj (We)Djwe) = €gbe(We, O Wire), (2.31)
i€D i,j€D
where Kg, K?, 1€ D, E;-, are detailed in [25] and have regularity at least » — 1, and be is a quadratic

residual. The matrices at equilibirum are related to the analog matrices out of equilibrium with the



relations Ay = 1 Ao (hwe ), Ay = A (hwe)) with

1 01q O
0g1 I 041
P = . (2.32)
0 014 O
0 014 1
Moreover, the dissipation matrices Ejj have the structure Ejj = %E)\’Céij + fT‘ngc + T%‘E?;C with

K,e
iy

B = Pt E)\(’Q/JWQ)’Q/J and B} = ¢! B};(Ywe)y whereas the matrices By, , i,j € D, are given in [25].

Denoting by ¢ the linear operator ¢ = 9" where 1 is the rectangular matrix (2.32), one of the
goal of this paper is to establish that the equilibrium projection ¢pw of the normal variable w out of
thermodynamic equilibrium is close to the normal variable w, at thermodynamic equilibrium so that
oW — we = O(e(e + €q)).

3 Hyperbolic-parabolic systems with stiff source terms

We investigate in this section local existence theorems for hyperbolic-parabolic systems of partial
differential equations in normal form with small second order terms and stiff sources. We generally
follow the elegant formalism and methods of proof of Kawashima [29], the differences being due to the
stiff sources.

3.1 Preliminaries

We consider an abstract hyperbolic-parabolic system with small second order terms and stiff sources
in normal form. The system is written

1—

Ao (w)d,w —l—ZKi(w)Biw —€q Z 9i(Bij(w)d;w) + =L(w)w = egb(w, O wy), (3.1)
ieD i,jED €
where w = (w,wy)t € O, O, is an open set of R, w; are the hyperbolic components, w;, the

parabolic components, and €4, € € (0, 1] are two positive parameters. The dimensions of the hyperbolic
ind Baribolic components are denoted by n; and n; respectively so that n = n; 4+ n;. The matrices
Ag, A;, Byj, and L are assumed to have at least regularity sz — 2. We will generally assume that s is
as large as required by the various theorems in the following, in particular that c =3 >1+1> Iy +2
where o = [d/2] 4+ 1. The matrix Ag is symmetric positive definite, the matrices A; are symmetric, B;;
satisfy Efj = §ji, and L is positive semi-definite with a fixed nullspace E. The matrices Ay and EZ—J—,
i,7 € D, have the bloc structure
=y 07747"74 Onhnu
; Bij = [ —I1,11 )

Onu;'ﬂl BZ]

—I,1

AO Onl)nll

—I1,11

Onu;'ﬂl AO

Ay =

—I1,11 —I1,11

and B (w,&) = >, jcp Bij (W)&&; is positive definite for w € O,, and £ € »4=1 The quadratic
source term is also in the form
_ t
b(w, dwy) = Z M;j(w)O;wojw = (0, Z WZ-[J?“’“(W)@WUGJ-WH,) (3.2)
i,jeD i,jeD

where M;; are third order tensors depending on w with at least regularity s — 3. Denoting by 7 the

orthogonal projector onto the orthogonal of the equilibrium manifold %L, we assume that Ay satisfies

the compatibility condition
T Ag(w) = Ag(w) T, we O, (3.3)



We are only interested in well prepared initial data in this section, that is, we assume that the initial
condition wy, is close to the equilibrium manifold ‘E in such a way that mwq is small. The situation of
ill prepared data will be investigated with initial layers.

We denote by u* and w* corresponding constant equilibrium states in the u, and w variables
respectively, so that w* € O, N E and 7w* = 0. We denote by | e |, the norm in the Sobolev space
H' = H'(R?) and otherwise || ® || , in the functional space A. If a = (a1, ..., aq) € N? is a multiindex,
we denote as usual by 9% the differential operator 07" - -- 95¢ and by |« its order |a] = ag + -+ + agq.
The square of k' derivatives of a scalar function ¢, like T, p, or v;, 1 < i < d, is defined by

ool = 3 Borer = Y0 00,00 (3.4

la|l=k 1<i1,.e0yip <d

where k!/a! are the multinomial coefficients and similarly, for a vector function like v we define |0*v|? =
> <icq|0%v;|?. Finally, for any map ¢ : [0, 7]xR? — R™ where 7 > 0 is positive and for any 7 € [0, 7],
we denote by ¢(7) the partial map x — ¢(7,x) defined over R%.

3.2 A priori estimates
We consider in this section linearized equations in the form
_ ~ — ~ - 1
Ao(W)OW + ;)Ai(w)aiw —~ ed_gpsij (W)Di0; % + —L(wW)W = f + eag. (3.5)
7 1,7

Such linearized equations (3.5) are useful in order to build sequences of successive approximations that
converge towards solutions of the nonlinear equations (3.1) as well as to estimate the derivatives of
such solutions. For a given 7 > 0 and | > Iy + 1 where [y = [d/2] + 1, we assume that w is such that

w, —w; € CO([0, 7], HY) nc ([0, 7], H' 1),
0 -1 171 1 —1 r7l-2 (3.6)
wy —wp €C ([O,T],H ) nce ([O,T],H ),
Opwy; € L2((077—_)7 Hl_l)v (3'7)
and we define .
sup |w(r) — w*|l2 = M?, / |8tW(7')|12_1 dr = M3?. (3.8)
0<r<7 0
We consider O such that Oy C Oy, dy such that 0 < dy < d(@o, 00,,), and define
0, = {W S OW; d(W,@()) < d } (39)
It is also assumed that w, and w are such that
wg(x) = w(0,x) € O, w(t,x) € Oy, tel0,7], xeR% (3.10)

The following priori estimates for linearized equations will be of fundamental importance for exis-
tence theorem of the full quasilinear system (3.1). When the source terms are not stiff such estimates
have been established by Kawashima [29]. The estimates in the situation of stiff sources differ by
the inclusion of new terms associated with the fast variable mw/e as well as for the time derivatives
which cannot anymore be estimated directly from the governing equations but require well chosen test
functions. In particular, the time derivatives are not in the space C°([0,7], H'=2) uniformly in € but
only in the space L?([0,7], H'=2). Stronger estimates in C°([0,7], H'~?), obtained in the next section,
indeed require the boundedness of [wdywg|? /€.

Theorem 3.1. Let | > lg + 1 with lo = [d/2] + 1, consider the linearized system (3.5), and assume
that the solution w is such that
w, —w; € CO([o, 7], HY) nct ([0, 7], H' 1),

Wy — W) € CO([O, 7—]7 Hl) N Cl([O, 7*.], Hl—2) N LQ((O77—_)7 Hl+1), (311)



where W* = (W, w})! is a constant state W* € E. Further assume that

fe (o, 7, H ) n L' ([0, 7], H'), (3.12)
geC([0,7, H'"), & =0, (3.13)
and denote by wq the initial state wo(x) = w(0,x). Then there exists constants c¢1(O1) > 1 and

c2(01, M) > 1, with ca(O1, M) increasing with M, such that for any t € [0, 7]

t

~ ~ 1, - ~ ~
sup {[#(r) = @} + (O} +ea [ [nlr) ~ T dr
0<r<t € 0

1 [t o 1 -
+E/|7TW(T)|I2CZT < cfexp(cz(t—l-Ml\/Z))Owo—W |l2+€|7rwo|g
0

t t 9 t
+edc2/|gn(7)|%,1dr+c2{/|f(T)|ldT} +cz/|7rf(7-)|§d7-), (3.14)
0 0 0

1 ~ 2 1 t ~ 2 ¢ ~ 2
— sup |mw(T)[;_; + 6_2/0|7TW(7')|171 dT+/O|6tW(T)|zf1 dr

€ o<r<t

o 1 - ¢
< cpexp(ca(t + MiVt)) (|Wo — W+ ngW0|?71 + 6d/|g11|12—1 dr
0

+ {/OTf|ldr}2 +/0Tf|l2_1d7). (3.15)

Proof. The lengthy proof is given in Appendix A. O O

3.3 Local existence

We first restate an existence theorem for the linearized equations (3.5) which is a coupled system
of hyperbolic-parabolic type established by Kawashima [29]. These linearized coupled hyperbolic-
parabolic solutions are then used in order to establish the existence of local solutions for the full
nonlinear system (3.1).

Proposition 3.2. Letl > Iy + 1 where ly = [d/2] + 1, T > 0, assume that w is such that (3.6), (3.7)
and (3.10) hold, that f and g satisfy (3.12) and (3.13), and that Wo is such that wo — w* € H' for
some constant state W* € E. Then there exists a unique solution W to the linearized equations (3.5)
with initial condition Wy and regularity (3.11).

We now establish a local existence theorem on a time interval 7 > 0 independent of €; and e
for the system of partial differential equation in normal form (3.1). Such an existence theorem is a
fundamental step toward a convergence theorem for €,e; — 0. Since we are interested in convergence
results on time intervals including the time origin ¢ = 0, we assume in this section that the initial data
is well prepared or equivalently that mwg is small. We follow the elegant method of proof of Kawashima
in his seminal work on hyperbolic-parabolic systems [29]. The differences are in the definition of the
approximated solutions which include the stiff sources, in the definition of the invariant set by iteration,
and fundamentally in the convergence rate of the successive approximated solutions which may indeed
depend on e.

Theorem 3.3. Let d > 1 and 1 > lo+1, be integers with lo = [d/2]+ 1, and let b > 0 be given. Let O
such that Oy C O, dy such that 0 < dy < d(Og,00,,), and define O = {w € Oy; d(w,Op) < di }.
There exists T > 0 depending on O1 and b, and independent on eq € (0,1] and € € (0, 1], such that for
any Wo with

1
lwo — w*|? + Z|7TW0|I271 <V (3.16)

and wg € Oy, there exists a unique local solution w to the system

Ao(w)O,w + Zﬂi(w)aiw — €4 Z 0; (Eij (wW)o;w) + %E(W) w = egb(w, dwy), (3.17)

i€D i,j€D
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with initial condition
w(0,x) = wp(x), x € RY,

such that
w(t,x) € Oy, te[0,7], xeRY,

and
w; —w; e C([0,7], HY) nC ([0, 7], H' 7Y,

w —wy € CO([0, 7], HY) nct ([0, 7], H=2) n L2((0,7), H'T).
In addition, there exists C' > 0 which only depend on O1 and b, such that

sup(jw(r) w7+ Ll ) + o [ o) = wi
0<r<7

I 1
1 [l ar+ 5 [ lowir >|l_1df+/|aw< i
€ Jo & Jo
N 1
< C(Iwo = w'[} + ~lmwol}_, ). (3.18)

Proof. Solutions to the nonlinear system (3.17) are fixed points w = w of the linearized equations [29]

w)o,w —i—ZA aw—edZB” 0;0;W + — L( W = €48, (3.19)
€D i,J€ED
with
g(w, Ow) = Y 9;(Bij(w)) w — > 3i(0,v)" (9,w)'Bi; djw. (3.20)
,J€ED i,j€D

Fixed points are investigated in the space w € XL (O1, M, My) defined by w,—w; € C°([0, 7], H'), O,w, €
CO([0,7], H=1), wy —wiy € €O([0, 7], H') N L2((0,7), H'), 0wy € CO([0,7], H=2) N L2((0,7), H'™1),
w(t,x) € O1, and

7

N ! 1
sup |w(1) —w |12+€d/0 |wi (7) —wﬁ|l2+1 dr + Z/O|7TW(T)|l2dT§M27

0<r<7
1 2 1" 2 j 2 2
- SUP7|7TW(T)|171 + = [mw(T)[;_y dr + [ [Opw(T)[;_y dr < M7,
€ 0<r<7 & Jo 0

For w in XL ((91, M, M 1), we may use the estimates established for linearized systems in Theorem 3.1
of Section 3.2. Noting also that f = 0, g; = 0, and that g; is quadratic in the gradients, we obtain
upper bounds in the form

let)|7; < caM?, teo,7], (3.21)

and the constants co of this estimate may be taken identical to the constant of the linear estimates,
upon taking the maximum of both constants. Using assumption (3.16) and combining these bounds
with the linear estimates (3.14) and (3.15), we obtain that

t
sup [W(r) — w*(r) +eq / [Fin(r) — w2, dr
0<r<t 0

IR
+ Z/|7TW(T>|Z2 dr < ciexp(ca(t + Mlx/Z)) (b* + teacs M?), (3.22)
0

—sup |ew(r)|7 , + /|7TW |lld7'+/|8w )7, dr

€ 0<r<t

coexp(ca(t + MiVt)) (0% + tegca M?). (3.23)

11



We now define
Mb = 2C1(01)b, Mlb = Cg(Ol,Mb)2C1(01)b.

Let then be 7 < 1 small enough such that
eXP(C2(01,Mb)(? + Mlbﬁ)) <2,

(01, My)7(2c1(01))* < 1,

oMV < dy,
where we have used ||¢|~ < col@|i—1. Then for any w € XL(Oy, My, My), any wo(x) such that
wo —w* € H', wy € Op, and |wg — w*|? + |mwo|?_; /e < b2, and any €4, € € (0, 1], the solution w to the
linearized equations with initial condition wgy stays in the space le (Ol,Mb, Mlb). More specifically,

letting M2 and ]T/[/l2 be the maximum of the left hand sides of (3.22) and (3.23) respectively, we obtain
from (3.22) that

M? < 26202 (1 + degc3car) < 4c2b? = M}
and from (3.23) we deduce that
M7 < 2636 (1 + deqrc?) < M3,

since 47¢§ < 47c?c3 < 1 and finally that |w — w*||;« < coMi4V/7 < d1 and we have established that
the space Xl% ((91, My, Mlb) is stable.

Let w and w be in le((’)l,Mb,Mlb), let wo(x) and Wo(x) such that wo —w* € H!, Wo —w* € H!,
wo, Wo € Op, |wo — W*[? + [mwo|?_, /e < b2, [Wo — w*[? + [mWo|?_, /e < b, let €q,€ € (0,1], and define

ow =w —w and 6w = w — w. Forming the difference between the linearized equations, we obtain that
— - — - = PO P
Ao(W)D,6W + > A;(W)D;0W — €a > Byj(W)D;0;0W + ~L(W)ow = 6f + eqdg. (3.24)
i€D i,jeD ¢
Here

of == > (Ao (@) (Ro(w)) " Ailw) — Ai(@) ) 0is

i€D

— 2 (Ro(@) (Ro(w))

“Tw) — E(W))ww, (3.25)

5g =Ao(®) (Ro(w)) " g(w, dw) — g(W, )
+ 7 (Rol®) (Bo(w)) "B (w) — Biy (W) ) %, (3.26)
i,jED
and we have in particular dg; = 0. These expressions imply that
C

2
|5W|l2—17

|6fl|l2—1 + |5f11|l2—1 < €

|5gu|l272 < C2|5W|12717

where the 1/e factor arises from the nonlinear stiff sources and will make the convergence of the suc-
cessive approzimations more difficult to establish than for non stiff problems. We define N? | (a,a’, 6w)
when [a, '] C [0,7] by

_ _ 1, @
NE (0, 5%) = sup ([0(r)F + Clndw(r)Eo) +eo [ o) dr

a<rt<a’

1 a' " 1 a' " a/ _
+;/ |ﬁ5w(r)|%,1d7+€—2/ |ﬁ5w(r)|l{2d7+/ |0,0W(7)|}_y dr. (3.27)
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In order to obtain fixed points, we introduce the sequence of successive approximations {w* j
starting at w® = w* with wFt! = W*, i.e., wFt! is obtained as the solution w = wF*! of linearized
equations with w = w”* and with initial condition wy. We also denote by ¢*w the difference §*w =
whtl —wk for k > 0. We first establish that the sequence of successive approximations {w*};>q is
convergent for the norm N;_1(0,7.,e) and thus also for the norm of C°([0,7.], H'=') over [0, 7] for
a suitable 7. small enough and we then gradually extend the convergence domain over each interval
[§7e, (j +1)7] C [0, 7] by induction on j. We also establish uniqueness of solutions first over [0, 7] and
gradually over each [jc, (j + 1)7] included in [0, 7].
Using the linearized estimates and the difference equation (3.24) we first obtain

- 1 TCh
NE1(0.70,8) < o ([owol; -y + clmowol?5) + 72 sup [sw(r)f} . (3.28)
0<7<7,

where ¢y and ¢}, depends on O; and b and where dwy = wy —Wg. Let now 7. be small enough such that

chre 1

€ 4’

while 7 /7. is an integer denoted by N, + 1. From the estimates (3.28) and since the successive approx-
imations have the same initial condition, that is dwy = 0, we obtain that

N2 (0,7, 68 w) < iNf_l (0, 7, 6%w),

so that N2 (0,7, 0"w) < N2 (0, 7,8°W)/4* and defining for convenience I'’ = N? (0, 7, 8%w), we
have established that 4*N?2 | (0, 7., 6*w) < T°. Any fixed point W is also unique from the difference
estimates (3.28) written between two fixed points.

Letting for convenience

Bl = N2y (j7e, ( + Dre, 6Fw),  0<k,  0<j<N,

we have established that 2’%2 < TY for k > 0, and we next consider the interval [r.,27.]. From the
difference equations and the linearized estimates over |7, 27.] we obtain that

!
N2 (70,270, 05T w) < N2 (0, 70, 8 1w) + Tﬁ—fN;{ (7o, 270, R w), (3.29)

where we have used that [ow(7.)|? | + %|7r6v~v(76)|l272 < N? ,(0,7.,8%"'w). This now implies that
51%4—1 < C2ﬁ2+1 + %B,ﬁ for k > 0 and multiplying by 25+ and letting

vl=2F61  0<k,  0<j<N,

we have
Yierr M 3% 0< k. (3.30)

Since v2 < T'? it is easily deduced from (3.30) that v} < 2cI'° + 44 and defining I'! = 2coI'% 4+ v we
have v < T'! for & > 0. We further deduce that any fixed point W is unique over [0,27] since it is
already unique over [0, 7] and from (3.29) rewritten between two fixed points it is also unique over the
interval 7, 27].

The same type of estimates may now be established by induction on j for 1 < j < N.. More
specifically, assume that for 0 < i < j — 1 we have inequalities in the form 7, < T where the
majorizing bounds I'* are defined by T° = N2 (0,7, 6°W) and T'" = 2coI'" =1 + N? | (i7e, (i + 1)7e, 6%W)
for 1 <i < j—1, and that uniqueness of fixed points holds over [0, j7.]. We then consider the sequence
of approximation over [j., (j + 1)7¢]. Using the difference equations and the linearized estimates over
[i7e, (7 + 1)7c], we obtain that

NZ 3 (7es (G 4+ D)7, 6 w) < NP (G — D7, jire, 6 w)
+ %Nl2—1 (jTév (.] + 1)7-65 6kw)a (331)
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where we have used
Ry + WGy < Ny (G~ 17er 47,85 w),
so that Bi a1 < cQﬁiﬂ + % ﬁi. Multiplying by 2¥*1 we have therefore established that
Y1 < eyl + 3, (3.32)

and since 77 ' < TY=! it is easily deduced from (3.32) that 77 < 2c,IV~' + 4 so that defining
[V = 2¢lV 71 + ) = 2,197 + N2 | (j7e, ( + 1)7e, 6°W) we have established that v, < IV for k > 0,
so that

o T,
N (37 (G + D)7, 0" w) < o (3.33)

We also deduce that any fixed point W is unique over [j7, (j + 1)7¢] since it is already unique over
[0, 7] and from (3.31) written between two fixed points it is also unique over [j7, (j + 1)7].
Letting for short cc = > ;. T, it is obtained from (3.33) that

C

Nl2fl(0777—7 5kW) S _]Zu 0 S ku (334)

[\

where c. depends on €, O1, b, and the data but is independent of k. We thus conclude that the
sequence if successive approximation {w¥};>¢ is convergent over [0, 7] towards a fixed point W for the
norm N;_1(0,7,wF — W). Since the sequence {w*};>o is bounded in the space XL (Ol,Mb,Mlb), it
follows from standard functional analysis arguments using weakly convergent subsequences that w is
the unique solution of the system of partial differential equations with the required regularity.

The estimates (3.18) are next established by using the fact that the solution is a fixed point w = w.
Denoting by w the solution of the nonlinear system of equations, letting

T . 1 T
ME = sup fw(r) = w(r) + o [ lonlr) ~wiltydr+ ¢ [ (o)l ar,
0<7<7 0 €Jo
the linearized estimate (3.14) now yields that
1
Mv% < C% exp(c2(7_' + Ml\/;)) (|W0 — W*|l2 + —|W0 — W*|(2) + ?Edch\,%),
€
and since exp(co(7 + M1v/7)) < 2 and 2cic37 < 1/2 by definition of 7 we get that
1
M2 < C(|w0 - w*|l2 + —|wp — W*|g), (3.35)
€

where C only depends on Oy and b. On the other hand, from the linearized estimates (3.15) we further
get that

1 ~ 2 1 T ~ 2 T ~ 2
— sup |7TW(T)|171+6_2/0|7TW(T)|171 dT+/0|atW(T)|171 dr

€ 0<r<7
1
< coexp(ca(7 + M1V7)) (|w0 - W*|l2 + E|W0 — w7+ ?ede%). (3.36)
Combining (3.35) and (3.36) finally yields (3.18) and the proof is complete. O O

3.4 Stronger time derivative estimates

We now strengthen the estimates for O,w obtained with the local existence theorem. Such extra
estimates for oyw € C°([0,7], H'=?) and wd;w/e € L*((0,7), H'=?), uniformly in eq,e € (0,1] when
[ > [d/2] 4+ 4 are relevant when the initial time derivative diwg at ¢ = 0 is close to the equilibrium
manifold and will be needed in the convergence analysis of the fast relaxation limit.
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Theorem 3.4. Keep the assumptions of Theorem 3.8 and further assume that | > lo+4. There exists
C depending on O1 and b such that the following estimates hold

1 T
sup (10w(r)F s+ clrom(n)lE 5) + o [ owua(r)fF dr
0<r<7 € 0

1 [T 1/ 4 2
+ - / |ﬂ'8tw(7')|l2_2 dr + = / |778tw(7')|l2_3 dr + / |8§W(7’)|l_3 dr
0 0 0

1 1
< O(Iwo — w7+ Zfmwol_, + [Owol_y + = mdhwol; ) (3.37)
Proof. The proof in given in Appendix B. O O

Corollary 3.5. Keeping the assumptions of Theorem 3.4, there exists C' only depending on O1 and b
such that

1 1
= sup |nw(n)|2, < c(|w0 — WP = lrwol?, + 19w 2, + —|ﬁatwo|f_3). (3.38)
€7 o< r<t € €

Moreover, if w and w' corresponds to two initial conditions wo and w{ as in Theorem 3.3 and if
lwo — w*|l2 + %|7TW0|l2_1 + |8two|12_2 + %|7T8tW0|l2_3 remains bounded by some constant only depending on
O1 and b, letting dw = w —w' and dwg = wo — Wy, then there exists C' only depending on O and b
such that

1 T 1 T
sup (|5W(T)|l2—1 + E|7T5W(T)|1272) + 6d/ |5W11(T)|l2 dr + - / |7T(5W(T)|1271 dr
0 0

0<r<7
1 /7 ) 7 ) , 1 ,
+ = ; |Tow(T)|; o dr + ; 10,0w(T)|]_odT < C(|6Wo|l_1 + €|7T6W0|l_2). (3.39)

Proof. The new estimate (3.38) is first a consequence of Theorem 3.4 and of the relation (B.4).
In order to establish the differential estimate (3.39) we now combine the linearized estimates, the

equation (3.24) for the difference dw (where w = w, w = w and éw = dw) and the new estimates
(3.38) of sup |mw(7)|;—2/e. Keeping in mind the notation (3.27) for N7 ;(0,7’,dw) we obtain from
0<r<t

the difference equations (3.24) and the linearized estimates that

1
N (0,7, 6w) < o (lwolf; + = [mowol?_)

T/ T/ 2 T/
+C2(ed/0 |5gu|$,2d7+{/0 6F),_y dr } +/0 6Ff7_ dr).

From the expressions (3.25) and (3.26) of 6f and dg, all terms in the right hand side are easily majorized
thanks to the a priori estimates obtained in the local existence theorem except for the terms arising
from the stiff sources

5 = —% (Bo@) (Bo(w)) ™ T(w) ~ L(@)) mw

The corresponding integrals are next majorized with

/|5f 1 dr) <T /|6f’|l dr} < ey sup [wl?_y.
[0,77]

using the estimate for % fof|7rw(7')|l271 dr from the local existence theorem and by

T’ su o |rw|?
/ |5fl|1272 dr <71’ M sup [dw|? 5 < 7co sup |ow|? |,
0 € [0,77] [0,77]

since % Sup[o, 7| |7rw(7')|l272 is bounded with the new estimates (3.38). Collecting from previous results,
we have established that

1
Nf_l((),T’,éw) < C2(|5W0|l2_1 + Z|7T5W0|l2_2) + 7'cy sup |5w|l 1
[0,77]
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and assuming then that 7/ is such that 7/c; < %, we obtain the estimates (3.39) over the interval [0, 7'].
Reitering the linearized estimates over the intervals [j7/, (j+1)7'] C [0, 7] whose number is independent
of € completes the proof. O O

Finally note that a priori estimates for 7w/e generally improve as wg and its time derivatives 9Fwo,
k > 1, are closer to the equilibrium manifold €. We may in particular use the extra estimates for the
first time derivative itself and obtain the following new estimates.

Theorem 3.6. Keep the assumptions of Theorem 3.8 and assume that | > lg + 6. There exists C
depending on Oy and b such that the following estimates hold

1 T
sup (OBw(r)Eo+ ¢lroBw(r)E ) + o [0Fwn(r) o i

0<r<7
L[ s 2 L7 2 j 3 2
+ - |To;w(T)|,_, dT + = |TOFw(T)|,_sdT + [ |0y w(T)|,_5dT
0 0 0
N 1 1
< O(Iwo —w* [} + Zlmwoli_, + [9wol}_y + ~[mdwol_
2 1 2
+[02wol,_, + z|7ra§wo|H,)). (3.40)
Corollary 3.7. Keeping the assumptions of Theorem 3.6, we have estimates in the form

1 1
— sup |TOw(T)|7, SC’(|W0 - W*|l2 + —|7TW0|l2_1 + |8tw0|l2_2
€% 0<r<t €

1 2 1 2
+ ~|mdhwolt_ + 02wol_ + <ImOPwl s ). (3.41)

3.5 Initial layers

We discuss in this section the situation of ill prepared initial data. In order to bridge with the well
prepared data case, it is then necessary to take into account initial layer correctors. Such correctors
may notably be investigated by using composite expansions [43] but such a general study lay outside
the range of the present work. More simply, in this paper, we are looking for a corrector in the form
w0 (7,x) + ew!!(7,x) where 7 = t/e. This corrector must decrease exponentially to zero as 7 — oo, and
be such that the new variable
w=w— (W' +ewl),

corresponds to a well prepared data case. In other words, we want w® and w'! to decrease exponentially
with 7 and W to be such that (1/€)|mWo|? and (1/€)|7d,Wo|?_; remain bounded for € € (0, 1]. Note that
the initial layer correctors are then only significant for small times since 7 = t/e.

At zeroth order, the initial layer is along the fast manifold w? = 7w% and is defined from the
simplified system of ordinary differential equations

KO (Wo)aTWOl + E(WQ)WOI == 0, (342)

with initial condition w)!(x) = 7w(0,x) = mwg(x). The corresponding corrector w}, is given by

wol = eXp(—TK(J_l(Wo)E(Wo))WWO, (3.43)

~—1 - .. .
where A, ~ and L are evaluated at the inital value of the normal variable wy = wo(x).
At first order, only the fast component is also taken into account w' = 7w, and we define w
from the system of ordinary differential equations

11

Ao (wo)drw!! + omE 4 L(wg)w!! =0, (3.44)

with zero initial condition w'!(x) = 0. We have denoted here by = the time independant vector

E = ZKZ(Wo)azWO — €4 Z 81 (EU (Wo)ajWO) — GdB(Wo, 8XWIIO)7

i€D i,j€D
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and by o = o(7) an exponential function in the form o(7) = exp(—a7) where o > 0 is a constant of

the order of magnitude of the (bounded) spectrum of Ko_l(wo)f(wo). The equation (3.44) may again
be integrated and yields the explicit solution

wil = — /OTeXp(—(T -7 Koil(WO)E(Wo))U(T/) dr’ K0717TE. (3.45)

This corrector w' is also readily seen to decrease exponentially to zero as 7 — oo.
The initial value wq of the modified variable w then has its projection of the fast manifold mwq such

that

Wy = 7 (wo — (W) + ew')) = 7 (wo — Twg) = 0,

and
Ao (wo)d,mWo = mAg(Wo),Wo = mAg(Wo) (Fywo — %(@ng +edrwy'))
= (=2~ LT(wo)wo — + (~L(wo)wo — ex=)) =0,
so that (1/€)|mWo|? and (1/€)|rd,Wo|?_; are bounded. This shows that the transformed problem in
terms of the modified variable w corresponds to the situation of well prepared data.

4 Convergence analysis and volume viscosity

Denoting by ¢ the linear operator

1 01g 0 O
o= 10g1 I 041 0|, (4.1)
0 014 0 1

the ‘equilibrium components’ pw of the normal variable w are given by ow = (p, v, —1/T)t. We first
estimate in this section to what extend this equilibrium projection pw of the normal variable w out
of equilibrium satisfies the equations of the normal variable we at thermodynamic equilibrium. We
then restate a stability theorem for the equations governing fluids at thermodynamic equilibrium. By
combining these results, we rigorously establish that the difference pw —w, is (’)(e(e + ed)). This yields
a convergence theorem for the fast relaxation limit as well as a rigorous justification of the volume
viscosity term appearing in the equilibrium fluid model.

4.1 Residual estimates

The equations governing fluids at thermodynamic equilibrium have been investigated in Section 2.7
and the corresponding equations in normal form read

K;(we)atwe + ZK?(We)aiwe —€q Z 0; (E;- (We)OjWe) — €abe(We, Ower) = 0, (4.2)
i€D i,j€D

where we = (pe, e, —1/Te)! is the normal variable at equilibrium. Moreover, using the Chapman-
Enskog expansion, it has been established in our previous work [25] that the equilibrium projection
ow = (p,v, —1/T)! of the normal variable out of equilibrium w is formally a second order approximate
solution of the one-temperature governing equations when €4 = €.

We estimate rigorously in this section the residual h defined by

Ao(ew)d, (ow) + > A (pw)d;(pw) — €a Y i (By; (ow)d; (ow))

€D i,j€D

— €qbe ((pw, tp@xwu) =h, (4.3)
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that is, we estimate the ‘default to equilibrium residual’ of the projection pw. Using estimates for h
we will deduce in the next section estimates for the difference pw — w, and establish a convergence
theorem in the fast relaxation limit.
We begin by evaluating h in terms of fluid properties and this requires a few notation and technical
lemmas. We denote by 6 the reduced temperature difference
g— Luo=Tin _ —TtrTin%, (4.4)

€

which thus essentially corresponds to the fast variable 7w/e. The estimates for hyperbolic-parabolic
systems with stiff sources obtained in Section 3 yield in particular various estimates of 6 uniformly
with respect to the parameters €, ¢4 € (0, 1]. We first investigate the difference ¢(Tt,, Tin) — ¢(T,T) for
a smooth function of the translational and internal temperatures.

Lemma 4.1. Let ¢ be a C* function ¢(Tiy, Tin) of both temperatures Ty, and Ti,. Then
¢(Ttruﬂn) - ¢(T7 T) = 6h¢(97Tt1‘711in)7 (45)
where E¢ is a C*~ 1 function of Ty, and Ty, and is also proportional to 0.

Proof. We may first write

(Tir — ))d+

h, =

/(?T O(Ttr, T+ s(Tin — T)) ds,

and since Ty — T = (Tyy — Tin)Cin /¢y and (Tiy — T') = — (T4 — Tin)Cv.tr/Cv We obtain that

>

1
5= Cm/% (T + (T — T),T) ds - C?r/8Tm¢(Ttr,T+S(7?n—T>>d5}'
v 0

Finally h,, is C*~! since ¢, and ¢, are C*~! functions of (T}, Tin), since T is a C* function of (T}, Tin)
and since ¢ is C'*. O O

We may now use this lemma in order to rewrite in a convenient form the various transport coefficients
appearing in the governing equations. Keeping in mind that the viscosity 7 is given by 1 = €47 from
(2.11), and using Lemma 4.1 with ¢ = 7, we obtain that (T}, Tin) —7e(T) = ¢h; where 7o (T) = 7(T, T).
Further defining the total conductivity as A = Air tr + Atz in + Ain,tr + Ainin, We may wrlte from (2.11)
that A = eg\ where A = A\, ot )\tr . ot )\m s and using Lemma 4.1 with ¢ = A, we then have
MTor, Tin) — A (T) = eh where A\ (T) = )\(T T). Finally, the volume viscosity may be written k = €R
from (2.14) and using Lemma 4.1 with ¢ = & yields (T, Tin) — Fe(T) = €hg where 7o(T) = &(T,T).
The transport coefficients are thus in the form

K(Ttru 11111) - ’ie(T) = ezhfw n(Ttru 11111) - ne(T) = Eedﬁﬁu
AT, Tin) — Xe(T) = €cqhy, (4.6)
with e(T) = €Re(T), 1e(T) = €anfe(T), and A\e(T) = e, (T). We further define the reduced transport

Qtr = _S\tr,trVTtY - /\tr,inVT’inv Gin = /\1n trVTtr - )\m mVT’mv (47)
in such a way that
Q = Edau Qtr = edatrv Qin = 6dai]ﬂ’ 1 = Edﬁ. (49)

From the relation (2.15) we next obtain

pr(Tyy = T) = —ke(T)V-v — €2 (_g

K
—(0,0+ v-ve))

TLgr
_eedp (H V’U + V Qtr ﬁv'ain)v (410)

and we are ready to investigate the structure of the residual h.
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Proposition 4.2. The residual h may be written in the form

h = €2h, + eeqha, (4.11)
with . .
hy = ((Owve) (o))" > Ohri,  ha = ((Owove) (o))" > Dihasi, (4.12)
i€D icD
and denoting by € = (&1,...,&4)" an arbitrary vector of R, the components h,; and hq; are given by
Zgihhi = (07 aéa a’v'g)ta (413)
i€D
S &ihai = (0, hyS-€ + b€, hy(Sv,€) +bv-€ +hVT-€+c), (4.14)
i€D
where _
a=hzV-v+ (&/rTi)(0,0 + v-V0), (4.15)
b= (R/p) (ﬁ:Vv + V'Gtr - (Cv,tr/cin)v'ain)a (4'16)
Ci = (S\tr,tr + j\in,tr)ai(oan/a/) - (S\tr,in + Xin)in)ai(ecv,tr/gv)y (417)

and where S = Vv + (Vv)' — 2(V-v)I.

Proof. The residual h associated with the normal form is directly related to the residual h, associated
with the conservative variable by the relation h = (Bwe ve(cpw))thu. It is thus sufficient to establish that

h, = €2 Z 8ihr,i + €€q Z 8ihd,i7 (418)

€D €D

by using the error functions Eﬁ, hz, F\;\, the reduced transport fluxes IT, am Q,,, the coefficients &, 7,
A, and the expression (4.10).

In order to evaluate the residual h, associated with the conservative formulation, we start from
the total mass, momentum and total energy conservation equations. In the momentum and energy
conservation equations, the translational temperature T}, appearing in the state law is expressed in
terms of T and the volume viscosity correction by using (4.10). All transport coefficients in the
momentum and energy conservation equations are also expressed using Lemma 4.1. In addition, the
temperatures Ty, and Tiy, in the heat fluxes are expressed as Ty, = T'+€0¢iy, /¢y and Ty, = T —€fcy 41/ Cy.

More specifically, from (4.10) we first obtain the expression of h,; as well as the contributions
proportional to (%/p)(IT:Vv + V-Qy, — (¢y,tr/¢in) V- Qyy) in hg ;. The remaining contributions in hg
then arise from the viscous tensor which is written

in»

IT = —1e(T)S — eeqh;S,
and from the heat flux written
Q =~ \e(T)VT — €e4hs VT
— €€q ((S\tr,tr + j\in,tr)

Using then T, = T+€0¢i, /¢y and Ty, = T —e€fcy 11 /¢y and regrouping the various error terms completes
the proof. O O

V(T —T - - V(T —T
(ti) + ()‘tr,in =+ /\in,in)(i)) .

€ €

We now estimate the residuals h, and hg from (4.11)-(4.12) in the functional spaces L2((0,7), H'=%)
and LQ((O, 7), Hl_3), respectively, uniformly with respect to the parameters €, eq € (0, 1].

Theorem 4.3. Assume that | > lg + 4 and that wg is such that
N 1 1
[wo — w*[} + ;|7TW0|1271 + [Brwol;_y + g|7T3tW0|z273

is uniformly bounded independently of € € (0,1]. Then the residual h, belongs to C°([0,7], H'=3)
and is bounded in L2((O,?),Hl_4) independently of e,eq € (0,1], and the residual hy belongs to
C°([0,7], H'=3) and is bounded in L*((0,7), H'=3) independently of €,eq € (0,1].
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Proof. Tt is sufficient to establish the regularity property and the uniform estimates for the residuals
> iep Oihri and ), Oihg ;i associated with the conservative form h, since h = (Ow,Ve)'hy. Tt is thus
sufficient to establish that h,; € C°([0,7], H'~2) is uniformly bounded in L?((0,7), H'=3) and that
ha,; € C°([0,7], H'~?) is uniformly bounded in L?((0,7), H'~?) for i € D.

Using the relations (4.13) and (4.15) for h,; and the relations (4.14), (4.16) and (4.17) for hg ;, where
0 has been written (T, — Tin)/¢, a direct examination of their components shows that there are all in
the space C°([0, 7], H'~2) since w —w* € C°([0,7], H'), o,w € C°([0,7], H"'), dyw € C°([0, 7], H'~%)
and 92w € C°([0,7], H'7?).

On the other hand, the uniform bound for h, ; in LQ((O, 7), Hl_3) is a consequence of the uniform
bound for first derivatives of w in L2((0,7), H'='), of the uniform bound for 8,0 in L?((0,7), H'~?%)
due to (3.18), and of the uniform bounds of 9;6 in L?((0,7), H'~®) obtained with (3.37). Similarly,
the uniform bounds for hg; in L?((0,7), H'=2) are consequences of the uniform bounds for first and
second derivatives in L*((0,7), H'=?), and of the uniform bounds for 9,0 in L*((0,7), H'~2) due to
(3.18). Tt is interesting to note that the most difficult term to estimate is the time derivative of the
fast variable 0,0. O O

4.2 Local stability at equilibrium and convergence

We restate a local existence theorem for an abstract perturbed hyperbolic-parabolic system of partial
differential equations in normal form with small second order terms and without sources [29]. This
theorem is established by Kawashima [29] without the perturbing right hand side but including such
perturbed terms does not present serious difficulties. These results are then applied to the limit one-
temperature fluid model presented in Section 2.7. For the sake of notational simplicity we keep the
notation of our previous sections even though these results are to be applied to the normal variable w,
of equilibrium fluids.

Theorem 4.4. Letd > 1 andl > [d/2]+42 be integers and let b > 0 be given and consider the perturbed
system of equations

Ao(w)O,w + ZR(W)&»W — €4 Z 9i(Bij(w)d;w) — egb(w, O w) = f + eqg, (4.19)
ieD i,jeD
where b = — > i iep 0i(0,v)" (O,w)!B;j O;w and where for some positive T > 0
feCO([0, 7], HY) N LM ([0, 7], HY), (4.20)
g e C[0,7m], HY), g =0. (4.21)

Let Oq be given such that Oy C Oy, di such that 0 < dy < d(@o, 00y,), and define
0, = {W € Ow; d(W,@o) < d }

There exists T with 0 < T < Ty, and x > 0 depending on O1 and b, and independent on €4 € (0, 1], such
that for any wo with wo € O and any f and g satisfying (4.20)(4.21) with

t 9 t t
lwo — w* |7 < b, {/|f|l dT} + /|f|12_1 dr < xb?, /|g|12_1 dr < xb?, (4.22)
0 0 0
there exists a unique local solution w to the perturbed system (4.19) with initial condition
w(0,x) = wp(x), x € RY,

such that
w(t,x) € O, te0,7], xe&R%

and
w; —wy € CO([0, 7], HY) nc([0,7], H' 1),

w; —wy € CO([0, 7], HY) nc ([0, 7], H=2) n L2((0,7), H'T).
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In addition, there exists C' > 0 only depending on Oy and b, such that

sup |w(T) — W*|12 +eaf lwu(r) — W1*1|l2+1 dr <
0<r<7 0

c(|w0 — W+ {/O|Tf|l dT}Z ¥ea 0|Tg|l2_1 dr), (4.23)

t 7 9 7 7
/|atw(7)|§_1 dr < C(jwo - w'l} + {/|f|l ar} + /|f|f,1 dr+eaf lgfoar).  (4.24)
0 0 0 0

Moreover, if w and w' correspond to two different inital conditions and different perturbations, letting
ow=w—w,df =f—f' dg=g—g, then

-
sup |[ow(T)[? | + ed/|5wu(7')|12 dr
0<r<7 0

2 T 2 T 2
< c(|5w0|H + {/O|5f|l,1 dr} Ty 0|5g|l,2dr). (4.25)

Remark 4.5. We have not included nonstiff source terms in the stability theorem since they are not
required for our application to fluids out of thermodynamical equilibrium. However, it is straightforward
to add such nonstiff extra sources in the stability analysis.

Remark 4.6. The decomposition of the right hand side in the form f + eqg with (4.20)(4.21) is of
course not unique. A right hand side in the form eqg’ may be decomposed for instance into f = eqg’
and g = 0 as well as f = 0 and g = g’. The interest of the g term is that only the lower regularity
g € CO([O,?m],Hl_l) is needed, but the price to pay is a factor \/eq since the dissipative terms are
O(eq) and there are correspondingly eq factors in the estimates of higher derivatives. In particular, in
the estimates (4.25), even though eqg’ is O(eq), the perturbation dw is only shown to be O(\/€z). On
the contrary, with the f factor, any scaling of f is fully tranmitted to dw, but we then need the stronger
relularity f € C°([0, 7], H').

We now combine the estimate of the residual h to the stability theorem at equilibrium in order to
obtain a convergence theorem.

Theorem 4.7. Let d > 1,1 > ly+4, lg = [d/2]+ 1, be integers and let b > 0 be given. Let Oq be given
such that Oy C O, dy such that 0 < dy < d(Og,00,,), and define O = {w € Oy; d(w,Op) < di }.
There exists T > 0 depending on O1 and b, and independent on eq € (0,1] and € € (0, 1], such that for
any wo € Oy with

1
lwo — w*|7 + Z|7rwo|l2_1 < b (4.26)

and such that 1 1

[wo — W[} + —[mwol_y + [Bwol;_y + ~[mDpwol;_,
is also bounded independently of €, there exists a unique solution of the out of equilibrium system such
that the estimates (3.18) and (3.39) holds, as well as the estimates (3.37), and furthermore, there

exists a unique solution of the equilibrium system starting from pwg. Then there exists a constant C
depending on O1 and b and independent of €,eq € [0,1) such that

sup |ow — we|i—g < Ce(e + €4).
T€[0,7]

Proof. We may use the estimates of the residual term h in Theorem 4.3 and apply Theorem 4.4 with
f =h, g =0, and use the differential estimates (4.25). O O

In particular, in the special case ¢; = €, we have established that the two term Chapmen-Enskog
expansion derived in the companion paper [25], which includes the O(¢) volume viscosity terms, is
effectively of second order accuracy.
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5 Conclusion

We have proved rigorously for the first time that the solution of the out of equilibrium gas model
converges towards the solution of the one temperature model. We have further established that the
distance between these two solutions is of the order of Burnett type residuals. This is in full agreement
with our previous work where it has been established that the volume viscosity coefficient is obtained
with a two term Chapman-Enskog expansion [25].

A Linearized equations estimates

We establish in Appendix A the proof of the linearized estimates (3.14)(3.15). It is sufficient to establish
these estimates for smooth solutions since we may use mollifiers and convolution operators [29]. We
follow the elegant method of proof of Kawashima [29] and mainly indicate the differences due to the
stiff sources.

Step 0. Preliminaries. In the following §; = §(01) < 1 denotes a generic small constant only depending
on 01, ¢ = ¢1(01) > 1 a generic large constant only depending on Op, and co = c2(O1, M) > 1 a
generic large constant depending on O; and M. The various occurrences of these constants may be
distinguished and the minimum of all §; and the maxima of all ¢c; and cs may be taken at the end of the
proof so that only single constants ultimately remain. The dependence on d, I, n of these estimating
constants, on the other hand, is left implicit. For k > 0 and ¢ € H* we also define

| _
PHOEESY @ {Ao(W)d%¢, 9°p) dx, (A1)
o<lal<k IR
N al _
By = S 2 (Twors,00) ax (A2)
0<laj<k R

In order to alleviate notation in the proof we denote for short ow = w — w*. We will use the classical
estimates

1£(9) = L)k < coll fller <o ooy (1 + Dl o) [l (A.3)

where £ > 1 and ¢y denotes a generic constant independent of O; and M, as well as the estimates
luols < colulF|v)z, for 0 < k < 1, and ||¢]| .« < col¢l; valid for any 1 > Iy = [d/2] + 1. We also
have the commutator estimate Zog‘algl‘[aa,u]vyo < ¢o|Opul,_q|v];_; valid for any [ > Iy + 1 where
[0%, ulv = 0%(uv) — ud®v denotes the commutator between 0% and w. Finally, we have the Garding
inequality

61|¢11|? S Z / <E3H(W)ai¢ua aj¢11> dx + C2|¢11|(2)a
Rd

i,j€D
for any vector valued function ¢y : R — R™ in the space H'.
Step 1. The zeroth order estimates. Multiplying (3.5) by 6w = w — W* integrating over R?, using the

symmetry of Ag and A;, using Garding inequality, and noting that [0,w|, ; < M, while c; may depend
on M, we obtain after some algebra that

~ _ 01, - ~ ~
8tE02(5W) + ed51|5wu|§ + ?1|71'w|(2J < c1|flplow]y + edc1|gu|g +co(l+ |8tw|l_1)E§(5w).

Letting v2(t) = sup EZ(6wW(T)) + d1eq fot|5v~vu|% dr + 2 fot|7rv~v|(2J dr, noting that v is nondecreasing so
0<r<t

that f(f|f|07(7') dr < ~y(t) f(f|f|0d7', and noting that fg |Osw|,_, dT < Mi+/t we obtain from Gronwall
inequality with v2 that

t t
. ~ 1 ~
sup ‘5w(7’)‘§ +ed/0|5wn(7')|%d7'+ Z/O|7TW|(2) dr

0<r<t
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t t 2
< Zexp(ca(t + MyvV1)) (|5v~v0|g+edc1/|g11|§d7+c1{/|f|odr} )
0 0

Similarly, multiplying the governing equation (3.5) by (1/€¢)mw and proceeding as above we get
1 01, c _ ~ _
LB () + 2wy < alnf + arlal} + Lol B () + caloWE + erlwm 3 (A4)

Moreover, multiplying the governing equation by d,w, integrating over R%, using the symmetry of L,
and proceeding similarly we obtain that

~ 1.~ [¢ ~o, ~ ~
811063 + — 0 EJ (w#) < ca|f[f + c1c3lgul3 + :1|atw|l,1Eg(ww) T |6W? + Ecrlowal?. (A5)

Step 2. The Ith order estimate. We first differentiate the hyperbolic-parabolic system (3.5) with
respect to the space variable. Denoting by 0% the ath derivative spatial operator, we obtain that

Ao(W)0,0°W + Y A;(W)0i0°W — €q Y Bij(w)Did;0°W + = L( )OW = f* 4 e48”, (A.6)
i€D i,j€D
with 1
Aoaa AO f Z AO o“ AO 1] 81v~v - —KO [8a, K(;l E} 7TVTI, (A?)
i€D €
= Koa AO g Z AQ 8‘“ AO ij} 616]0\7 (AS)
i,j€D

Multiplying equation (A.6) by 9%0w and |a|!/a!, integrating over R?, summing over 0 < |a| < I,
and proceeding as for the zeroth order estimate, we obtain that

- - 01, - -
OLEF (5) + eadr|0Wnlfyy + —mW[} < ca(1+ [Oow],_y) EF(6W)

o al! ~
+ Z Jol! fo‘ ,0%0W) dx + €4 Z |a! /}Rd<g°‘,8o‘5w>dx

CY.
0<|al<I 0<|a|<l

We next have to investigate the residuals associated with f* and g®. Keeping in mind that the zeroth
order terms with |a| = 0 have already been examined in Stepl, we only have to analyze the terms such
that 1 < |a| <.

The nonstiff terms are estimated in the classical way [29] using commutator estimates (and inte-

gration by parts for the terms AgO® (Ko_lg) when |a| = 1) and we obtain that

_ — 1 . ~
< Aol [Ag fl; [6wW]; < coffs [dwl,

| / (Rod” (Bg 'F), 0°6i) dx
Rd
‘/d<ﬂo[8a,ﬂglﬂi]8iv~v,8a6v~v> dx‘ < [Aolso Haavﬂo_lﬂﬂaﬁv‘o 6.
R
[ Aol Ry R0 05w) | <
CO|KO|00 |8X(K071Ki)}l_1|ai"~"|l—1|5‘/~‘/|z < C2|5v~v|l2,
’/ <K060¢(K0*1g),8046v~v>dx’ < colgnli_1 |0Wulp1,
Rd

’/Rd@ (07 Ag " Big] 0:0;#, 0°0W) dx| < ca |01 6l
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On the other hand, for the stiff terms %Ko [(’90‘,K()_1 E]TFW it is obtained that

1

€

/ (Rol0" Ry " T, 0°) x| <
Rd

Co — ——1— ~ ~ Co, - ~
L [Roloo DRy D)y Iy |wly < < fi]_y 7],

Collecting all contributions we have established that
- - 01, ~ -
OREE (6W) + €ady| 6|y + |7 W7 < ca(1+ Orwl,_y) EF (W)
. Co
+ o[, £y (6w) + ?2|7TW|1271 + €qCalgul- (A.9)

In order to handle the term (c2/€)|mw|? | in the right hand side we use the following classical conse-
quence of interpolation inequalities |¢|? | < B|¢|? + C(B)|¢|3 valid for any ¢ € H', any 8 > 0 and
where C(3) depends on 3, and we may also add the projected zeroth order inequality (A.4). Keeping
in mind that [ > [y + 1 > 2 we obtain that

5

_ 0, ~
L el + el <

~ 1 ~ ~
) (Ef(éw) + EEg(WW)) + €401 0Wu 74y +

. 1 - -
co(1+ |8tw|l,1)(El2(6W) + ZEg(ww)) + Colf|, Ei(6W) + eqcalgnl? | + c1|7rf|(2).

From Gronwall inequality we obtain after some algebra the first estimate (3.14). It is interesting to
note that in the absence of stiff source terms we may let 7 = 0 and we recover the usual estimates [29)].

Step 3. The Ilth order derived estimate. Multiplying the equation (A.6) by 9;0°Ww and |«a|!/a!,
integrating over R?, summing over 0 < |a| < I — 1, and proceeding as for the zeroth order derived
estimate, we obtain that

~ 1.~ . _ - C ~ _
81]0ew(7, + ;athQ—l(WW) < c1|oWl} + credléwnl?y, + ?1|atW|l—1Ez2—1(7TW)
|ov]!
+ Z C1?(|fa|g + €3|ga|(2J)'
0<al<i—1

and we have to investigate the residuals associated with f* and g®. Keeping in mind that the zeroth
order terms with |a] = 0 have already been examined in Step 3 we only have to analyze the terms such
that 1 <|a| <1-1.

The nonstiff terms in f* and g are estimated as usual whereas the stiff terms are estimated with

1 * e =177 ~(2 o\~ ~—12 ~ C2\
6—2/Rd|A0[8 A L]ﬂ'w} dx < 6—2|A0|gO }8X(A0 L)|l_2|7TW|12—2 < 6—2|7TW|l2_2,

and collecting all contributions we have established that

all ~ ~ Co, -
S R oz el 2) < collFPy + eBlanlzy + 10y + Blowm?) + il

|
0<]al<i—1""

In order to control the last term (ca/e?)|mw|? , we now have to write the (I — 1)th projected
equation. Multiplying equation (A.6) by %80‘77\% and |a|!/a!, integrating over R?, and summing over
0 <la| <1—1, yields that

1 - 01, ~ - - C -
;atEf—l(WW) + E_;|7TW|12—1 < 1 |0W|} + creg|ownl7y, + ?1|atW|z—1E12—1(7TW)

al!
+ 3 a1 Gl
0<lal<i—1
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Using the previous estimates of |f*|o and |g®|o, the inequality |¢|7 , < Bl¢|7 | + C(B)|9]3, the equiv-

alence of EZ | (7w) and E? ,(7w), and combining the derived Ith estimate with the projected lth
estimate, we now obtain that

~ 1, /4 - ~ 01, ~ ~ ~
011007, + =00 (B (v) + BEy (w0) ) + S |nwl, < caloWl? + cel o,

C =~ ~ ~ ~ C ~
0w,y B} (1) + ealf[fy + caclgulf -y + caldWI7y + caed|oWulf + =5 w5,

We now combine this inequality to the lth order governing equation (A.9) multiplied by a large constant
K1 only depending on O so as to compensate the term c163|6v~v|l2Jr1 in the right hand side. We also
add the zeroth order derived equation (A.4) multiplied by a factor K5 in order to compensate for the
term (ca/€?)|mw|3. We have then obtained a governing inequality in the form

1 01
0u(LBEy (x) + LB () + Ky B (W) + 23 () + 1Ol + 2ty

_ 01, ~ c ~ ~
+€d51|5WH|12+1 + ?1|7TW|12 < ?2(1 + 0wl ) B} (W) + col f[74

+ C2€d|g11|l271 + C2(1 + |atW|l,1)El2(6Vf\V/) + C2|f|lEl(5W).

From the Gronwall inequality we get after some algebra the second estimate (3.15).

Finally, the various occurencies of the constant cs in the proof all involve simple polynomials in M
with positive coefficients, either arising as simple multiplication by M or through the estimate (A.3)
so that the final constant ¢, is an increasing function of M and the proof is complete.

B Time derivatives estimates

We present in Appendix B the proof of the extra time derivative estimates of Theorem 3.4. Since
I > lp+ 4 we first deduce from the governing equations and the regularity of the solution w that

dww, € CO([0, 7], H=Y) nct([o, 7], H'=3),
dewy € CO([0, 7], H'=2) nct ([0, 7], H=*) N L2((0,7), H'™1),
although we do not have uniform bounds in these spaces because of the stiff sources. Letting M;;(w) =

M;; + 8W§ij, i,j € D, the third order tensors M;; have at least regularity s — 3 and the governing
equations may then be written

w)0,w —I—ZA 8W—edZB” )0; 05w + — L w—edZM” )O;wO;w.

i€D ,j€ED i,J€D

Differenciating this system with respect to time we obtain that w = 9;w satisfies

)O,W —I—ZA Bw—edZBU )0;0,W + — L( W = f, + eqg;, (B.1)
i€D i,j€D
where
ZAoa A0 AWO;w — —Aoa Ay L)W7Tw (B.2)
i€D

g, = Z Koaw(ﬂo_lﬁij)vﬁ@@jw—i— Z Koaw(ﬂo_ll/\\/lu)walw ojw

1,j€D 1,j€ED
+ ) My W oW+ Y Ny Qiw 0w, (B.3)
1,j€D 1,jE€ED
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Step 0. The expressions (B.2)(B.3) are not convenient and are rewritten by using the generalized
inverse L' of L such that LL' = 'L = T, L= (Eﬁ)t, N(Eﬁ) = and R(Eﬁ) = 1. This pseudo inverse
T is the generalized inverse of L with prescribed range R(Eﬁ) = £+ and nullspace N (Eﬁ) =Z,and is a
smooth function of L [14, 25]. Using L' we deduce from the governing equations that

™m_ L( 7TW+ZA 8W—€dZB” 88w—edb) (B.4)

€D i,j€D
keeping in mind that ' =T'r and Ao = Agm. We may thus rewrite f, and g, in the form

= =3 Rotu(By AwOw + > Aodu(Ry WL A 0w + Agdu(Ay Lyw L Agm, (B.5)
€D 1€D

g = Z KO(?W(KOAEJ-)\TV&@W + Z Koaw(ﬂ(;llv[”)\?vazw 8jW
i,jED i,jED
— Z Koaw(ﬂoflf)v?[ﬂgijaiajw - Z Koaw(ﬂoilf)ﬁfﬁﬁijaz—wiﬂjw
i,jED i,jED
+ Z 1/\\/11‘]‘ 81\7v 6jw + Z l/\\/Iij &»w 6Jv~v (B6)
i,jED i,jED
The equation (B.1) is thus formally ‘linearized’ except for the quadratic term Koaw(ﬂo_lf)ﬁ/ Euﬂ(ﬂrva in
f; arising from the stiff sources. In order to derive the new estimates, we use a similar notation as in
Theorem 3.1 and Theorem 3.3. In particular, ;1 = §(O;1) < 1 denotes a generic small constant only
depending on O1, c¢; = ¢1(O1) > 1 a generic large constant only depending on Oy, and co = ¢c3(01,b) >
1 a generic large constant depending on O; and the constant b of Theorem 3.3.
Step 1. Zeroth order entropic estimates for w = dyw. We multiply (B.1) by w and proceed as in the

proof of Theorem 3.1. Using the symmetry of Ay and A;, integrating over R?, and using the Garding
inequality, we obtain that

0L ) + cat [iaf? + L3 < a(1 -+ |oowl, ) EZ@) + [+ cage ) ax
R4
All terms linear in w in f; and g; yield contributions majorized by c1|d,w|i, |W[§ + eqc1 (|0, w[7 +
102w, ) [W[3 + €act|Oxw|io[Wi|1|W|o and the quadratic term is also majorized by c1|Wl;,|w|3. Using the
estimates of Theorem 3.3 and Iy = [d/2] + 1 > d, we obtain after some algebra
OER) + eabifn 2 + —ImW[G < co1 + [Duwly, ) B (W).

From the Gronwall inequality and the estimates (3.18) we thus obtain that for 0 <¢ < 7

t t
~ 2 ~ 1 ~ ~
sup |W(r)|y+ 6al/olwu(T)lf dr + = /O|7TW|3 dr < cf exp(ca(t + Miv1)) [Wols-

0<r<t

Step 2. The projected zeroth order estimate. We multiply the governing equation (B.1) by (1/e)mw
and proceed as in the proof of Theorem 3.1. Integrating over R¢ we obtain that

1 ~ 01 - C . C1 - .
2 O (70) + S3lml3 < Lol ol + (il

Cy . 1 .
+6d—1|w“|2|7rw|0+—/(ft+edgt,7rw> dx.
€ € R4
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All terms linear in w in f; and g; yield contributions majorized by
C o~ c o~ c ~ -
flaxWIlOIWI(JIWWIo + Ed?l(laxWI?0 + [0 wliy ) [Wlo|mw]o + Ed?1|axw|l0|wu|1|7"w|07

and the quadratic term is also majorized by (c1/€)|w|;, |7w|3. Using the Cauchy-Schwarz inequality
and the estimates (3.18) of Theorem 3.3 we obtain after some algebra

1 ~ 01 ~ C ~ - -
gatEg(WW) + ;;IWW% < flatWIzoES(WW) + Co W[} + e [Wy3. (B.7)

Step 3. The I'th zeroth order estimate. We let for short I’ =1 — 2 so that I” > Iy + 2. Differentiating
the hyperbolic-parabolic system (B.1) with respect to the space variable and denoting by 9% the ath
derivative spatial operator we obtain that

1_
0,0°W + Y Ai(W)D;0"W —€q Y Bij(w)d;0;,0W + = L( )OW = + €48, (B.8)
i€D i,j€D

with 1
fr =R (Ag 1) = > Ao[0™, Ay Aj)oiw — —Ag[0”, A, L|mw, (B.9)

€D €
g?‘ :KQ@ AO gt Z AQ 8“ AO ij} 616]0\7 (BlO)

i,j€D

Multiplying equation (B.8) by 9°w |a|!/a!, integrating over R?, summing over 0 < |a| < I/, and
proceeding as for the zeroth order estimate, we obtain that

OB (W) + eady [Wul? 41 + 1|7Tv~v|l2/ < co(1+ |Bywl,, ) B2 (W)

+ Z |CY|/ fa+€dgt7aa >

0< || <l

and we have to investigate the residuals associated with f;* and gi*. Keeping in mind that the zeroth
order terms with |a| = 0 have already been examined in Step 1, we only have to analyze the terms
such that 1 < |a| < I'.

The terms in ff* and gf* arising from Ag9® ( A, 1ft ) and Agd* (Ko_lgt) yield contributions majorized
by c2(|W[? + €q|W[y [Wlir41 4+ [W[} ), where the last term arise from the quadratic contribution in f;. On
the other hand, the commutators contributions are estimated as

| / (Ro[0°, Ay A 0id, 0°) dx| < ol
R

1

/ (A0, Ay L}WVNV,(‘?O‘VN\O dx‘ < C—2|w|l/|7rv~v|l,71|7rv~v|l/,
R4 €
- 1= ~ ma~ ~ ~
‘/d<A0 (0%, A, By;]0;0;w,0"W) dx‘ < co |Wp Wty [Wap-
R
Collecting all contributions and after some algebra we have established that
01, o 2y €2y _~o
6tE[/( ) + €d61|W“|l/ |7TW|[/ S CQ(]. + |atW|l/_1)El/(W) + ?|7TW|l/_1. (B].].)

In order to handle the term (cz/€)|mw|?_; in the right hand side arising from the commutators we use
the inequality |¢|Z _, < 8|4l + C(8)|¢|3 and add the resulting inequality to the projected zeroth order
inequality (B.7) obtained in Step 2. Assuming that I’ > lp + 1 > 2 we obtain that

_ 5y
8t(El/( ) + Eo(ww)) + €ad Wl 1 + il
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01, ~ . 1 ~
S5l < o1+ Oy ) (ER (W) + Z B3 (xi0))
From the Gronwall inequality, we obtain that

_ 1 _ . 1 L[
sup (Eﬁ (W(r)) + =E§ (ﬂ'w(T))) + €a | [WulT)|f 4y dT + —/|7Tw|12, dr + —2/|71'W|(2J dr
0<7<t € 0 €Jo €“Jo

- 1
<c? exp(cQ(t + Mlx/%)) (|w0|12/ + E|7TW0|(2J),
which is the I’ order estimate for w = 9w and I’ =1 — 2.

Step 4. Application of linearized estimates to w = d;w. Taking into account the I’ order estimate
for w = dyw, it is now possible to apply the linearized estimates (3.15). From the expression (B.5)
and (B.6) of f, and g,, we indeed obtain that f, € C°([0,7], H'=2) and g, € C°([0,7], H'"?) so that
f, € C°([0,7], H=®) N L*((0,7), H'~?) and g, € C°([0, 7], H'~3) with uniform estimates in terms of

2 1 2 ~ 2 1 ~ 2
lwo — w*[; + E|7TW0|1—1 + [Wolj_s + z|7TW0|l—3'

The estimates (3.37) are then a direct consequence of (3.14) and (3.15) applied with I’ = — 2 in place
of [ and with w = J,w.
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