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Abstract

We investigate the fast relaxation of internal energy in nonequilibrium gas models derived from

the kinetic theory of gases. We establish a priori estimates and existence theorems for symmetric

hyperbolic-parabolic systems of partial differential equations with small second order terms and stiff

sources. We also establish the stability of the corresponding equilibrium systems. We then prove

local in time error estimates between the out of equilibrium solution and the one-temperature

equilibrium fluid solution for well prepared data and justify the apparition of volume viscosity

terms. The situation of ill prepared data with initial layers is also addressed.

1 Introduction

The kinetic theory of polyatomic gases shows that the volume viscosity coefficient is related to the
time required for the internal and translational temperatures to come to equilibrium [6, 18, 39, 40, 3].
We establish in this paper local in time error estimates between the solution of an out of equilibrium
two-temperature model and the solution of a one-temperature equilibrium model—including volume
viscosity terms—when the relaxation time goes to zero.

The system of partial differential equations modeling fluids out of thermodynamic equilibrium as
derived from the kinetic theory of gases is first summarized [3, 4]. This system and its symmetrizability
properties have been investigated in previous work [30]. The symmetrizing normal variable w of the
out of equilibrium model is given by

w =
(
ρ,v,

1

Ttr
− 1

Tin
,− 1

T

)t

, (1.1)

where ρ denotes the gas density, v the fluid velocity, Ttr the translational temperature, Tin the internal
temperature, and T the local equilibrium temperature. The resulting system of partial differential
equations is in the general abstract form

A0(w)∂tw +
∑

i∈D

Ai(w)∂iw− ǫd
∑

i,j∈D

∂i
(
Bij(w)∂jw

)
+

1

ǫ
L(w)w = ǫdb(w, ∂xwii), (1.2)

where ∂t denotes the time derivative operator, ∂i the space derivative operator in the ith direction,
D = {1, . . . , d} the spatial directions, d the space dimension, ǫ, ǫd ∈ (0, 1] two positive parameters and
w = (wi,wii)

t is decomposed into its its hyperbolic components wi and parabolic components wii. The

matrix A0 is symmetric positive definite and bloc-diagonal, Ai are symmetric, B
t

ij = Bji, Bij have

nonzero components only into the right lower B
ii,ii

ij blocs, B
ii,ii

=
∑

i,j∈D B
ii,ii

ij (w)ξiξj is positive definite

for ξ ∈ Σd−1, L is positive semi-definite with a fixed nullspace E , and b(w, ∂
x
wii) is quadratic in the

gradients. Denoting by π the orthogonal projector onto E
⊥
, the normal variable w is such that we

have the commutation relation πA0 = A0π. The source term is also naturally in quasilinear form as
is typical in a relaxation framework and often encountered in mathematical physics [52]. The small
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parameter ǫ is associated with energy relaxation and the small parameter ǫd associated with second
order dissipative terms.

We then establish a priori estimates for abstract linearized symmetric hyperbolic-parabolic systems
(1.2). Symmetrized forms are important for analyzing hyperbolic as well as hyperbolic-parabolic sys-
tems of partial differential equations modeling fluids [31, 19, 49, 34, 36, 7, 43, 24, 20, 8, 17, 51, 37, 2, 45].
A priori estimates are obtained uniformly with respect to the parameters ǫd ∈ (0, 1] and ǫ ∈ (0, 1].
Denoting by w⋆ a constant equilibrium state and τ̄ a positive time, we estimate w − w⋆ in the space
C0

(
[0, τ̄ ], H l

)
as well as ∂tw and πw/ǫ in L2

(
(0, τ̄), H l−1

)
for l ≥ [d/2]+ 2 where H l denotes the usual

Sobolev space. A priori estimates notably require the commutation between the mass matrix and the
orthogonal projector onto the fast manifold πA0 = A0π. These estimates lead to local existence theo-
rems for well prepared initial conditions on a time interval independent of both parameters ǫd ∈ (0, 1]
and ǫ ∈ (0, 1]. Key points for local existence are notably to take into account stiff sources in the
linearized equations in order to build the successive approximation sequences as well as new estimates
for time derivatives. Stronger estimates for time derivatives are also established when the initial time
derivative is close to the equilibrium manifold. The situation of ill prepared data is also addressed with
inital layers.

We finally investigate the singular limit ǫ, ǫd → 0 in the system modeling fluids out of thermody-
namic equilibrium. Various relaxation models have also been investigated in the literature in different
physical and mathematical contexts [7, 8, 37, 41, 45, 50, 53]. In order to investigate the asymptotic
behavior of solutions as ǫ, ǫd → 0 we combine a priori estimates out of thermodynamic equilibrium with
stability results associated with the one-temperature equilibrium limit model. We establish in particular
that perturbed hyperbolic-parabolic systems with small second order terms and perturbing right hand
sides also admit local solutions that depend continuously on perturbations. Applying these general re-
sults to the situation of gas out of thermodynamic equilibrium, and denoting by we = (ρe,ve,−1/Te)

t

the solution of the equilibrium one-temperature model including the volume viscosity terms and by
ϕw = (ρ,v,−1/T )t the projection on the slow manifold of the normal variable w out of equilibrium,
we establish that ϕw− we = O

(
ǫ(ǫ + ǫd)

)
. This justifies the addition of the volume viscosity terms in

the one temperature equilibrium governing equations discarding O
(
ǫ(ǫ + ǫd)

)
Burnett type residuals.

To the author’s knowledge, it is the first time that the apparition of the volume viscosity coefficient
is justified rigorously with an error estimate and a convergence analysis. Note incidentally that ex-
perimental measurements [42, 47] as well as theoretical calculations [6, 18, 39, 3] have shown that the
volume viscosity coefficient is of the same order as the shear viscosity coefficient for polyatomic gases
and the impact of volume viscosity in fluid mechanics has also been established [9, 32, 1, 3].

The nonequilibrium two-temperature model and its symmetrization are summarized in Section 2.
A priori estimates and local existence results are established in Section 3. Stability for equilibrium
models and convergence of the nonequilibrium model towards the one-temperature model is established
in Section 4.

2 Governing equations

The system of equations modeling fluids out of thermodynamic equilibrium as derived from the kinetic
of gases is summarized and recast into a convenient normal form [3, 4, 30]. The local equilibrium
temperature, the volume viscosity coefficient, and the equations at equilibrium are also discussed.
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2.1 Conservation equations

In a nonequilibrium gas with internal degrees of freedom, the conservation of mass, momentum, internal
energy and total energy may be written in the form [3]

∂tρ+∇·(ρv) = 0, (2.1)

∂t(ρv) +∇·(ρv⊗v + pI) +∇·Π = 0, (2.2)

∂t(ρein) +∇·(ρvein) +∇·Qin = ωin, (2.3)

∂t
(
ρ(etr + ein +

1
2 |v|

2)
)
+∇·

(
ρv(etr + ein +

1
2 |v|

2) + vp
)

+ ∇·(Qtr +Qin +Π ·v) = 0, (2.4)

where ∇ denotes the space derivative operator, ρ the mass density, v the fluid velocity, ⊗ the tensor
product symbol, p the pressure, Π the viscous tensor, I the unit tensor in the physical space R

d, ein
the internal energy of internal origin per unit mass, Qin the heat flux of internal origin, ωin the energy
exchange rate, etr the internal energy of translational origin per unit mass, and Qtr the heat flux of
translational origin. The components of v and ∇ are written v = (v1, . . . , vd)

t and ∇ = (∂1, . . . , ∂d)
t

where vi denotes the velocity in the ith spatial direction, ∂i the derivation in the ith spatial direction
and bold symbols are used for vector or tensor quantities in the physical space R

d. The equations
(2.2)–(2.4) have to be completed by relations expressing the thermodynamic properties ein, etr, and p,
the rate of energy exchange ωin, and the transport fluxes Π, Qin and Qtr.

2.2 Thermodynamics

The pressure p, the total internal energy per unit mass e, the internal energy of translational origin
per unit mass etr, and the internal energy of internal origin per unit mass ein are in the form

p = ρrTtr, e = etr + ein, etr = cv,trTtr, ein = ein,st +

∫ Tin

Tst

cin(T
′) dT ′, (2.5)

where r denotes the gas constant per unit mass, cv,tr =
3
2r the translational heat at constant volume

per unit mass, Ttr the translational temperature, cin the internal heat per unit mass, Tin the internal
temperature, Tst the standard temperature, and ein,st the internal formation energy at the standard
temperature. We will also use in the following the translational heat at constant pressure per unit
mass cp,tr =

5
2r and the formation energy at zero temperature e0in = ein(0).

The rate of energy exchange between the translational and internal degrees of freedom ωin may
finally be written [3]

ωin =
ρcin
τin

(Ttr − Tin), (2.6)

where τin denotes the energy exchange time.

2.3 Transport fluxes

In the framework of the kinetic theory of polyatomic gases out of thermodynamic equilibrium, the
translational and internal heat fluxes are in the form [3]

Qtr =− λtr,tr∇Ttr − λtr,in∇Tin, (2.7)

Qin =− λin,tr∇Ttr − λin,in∇Tin, (2.8)

where λtr,tr, λtr,in, λin,tr, and λin,in denote thermal conductivities. On the other hand, the viscous
tensor is given by

Π = −η
(
∇v + (∇v)t − 2

d′
(∇·v)I

)
, (2.9)

where η denotes the shear viscosity and d′ the dimension of the velocity space in the underlying kinetic
framework. It will be assumed in the following that the dimension of the kinetic velocity space d′ is
such that 2 ≤ d′ and d ≤ d′. The assumption 1 ≤ d ≤ d′ means that the spatial dimension d of the

3

ha
l-0

10
06

27
5,

 v
er

si
on

 2
 - 

10
 O

ct
 2

01
4



model has eventually been reduced. The assumption 2 ≤ d′ is natural since d′ = 3 in our physical
world and since Π is identically zero when d′ = 1.

The thermal conductivities λtr,tr, λtr,in, λin,tr, and λin,in and the shear viscosity η are obtained
from the kinetic theory of non equilibrium gases [3]. From the expression (2.9) it is also noted that the
viscous tensor Π does not present a volume viscosity term and our aim is to investigate the apparition
of such a contribution in the one-temperature equilibrium limit model as the relaxation time τin goes
to zero.

2.4 Mathematical assumptions

The mathematical assumptions associated with the thermodynamic properties, the energy exchange
rate, and the transport coefficients are the following where κ ≥ 3 denotes the regularity class [26, 20,
3, 30].

(T1) The formation energy ein,st and formation entropies str,st and sin,st are real constants. The
mass per unit mole m, the gas constant R, and the gas constant per unit mass r = R/m are
positive constants. The internal species heat per unit mass cin(Tin) is a Cκ−1 function over
[0,∞) and there exist constants c and c such that 0 < c 6 cin(Tin) 6 c for all Tin > 0.

(T2) The energy exchange rate τin(p, Ttr, Tin) is in the form

τin = ǫτ̄in = ǫ
pstτ̄ stin
p

, (2.10)

where ǫ ∈ (0, 1] denotes a positive parameter, τ̄in(p, Ttr, Tin) = pstτ̄ stin/p the rescaled energy
exchange time and τ̄ stin (Ttr, Tin) the rescaled energy exchange time at the standard pressure pst

which only depends on Ttr and Tin. The rescaled time τ̄ stin is a positive Cκ function of the two
temperatures Ttr, Tin ∈ (0,∞).

(Tr1) The coefficients η, λtr,tr, λtr,in, λin,tr, and λin,in are in the form

η = ǫdη̄, λtr,tr =ǫdλ̄tr,tr, λtr,in = ǫdλ̄tr,in,

λin,tr = ǫdλ̄in,tr, λin,in = ǫdλ̄in,in, (2.11)

where ǫd ∈ (0, 1] denotes a positive parameter, and η̄, λ̄tr,tr, λ̄tr,in, λ̄in,tr, and λ̄in,in the rescaled

transport coefficients. The rescaled coefficients η̄, λ̄tr,tr, λ̄tr,in, λ̄in,tr, and λ̄in,in are Cκ func-
tions of the two temperatures Ttr, Tin ∈ (0,∞).

(Tr2) For any Ttr, Tin ∈ (0,∞), the matrix

[
T 2
inλ̄in,in T 2

trλ̄in,tr

T 2
inλ̄tr,in T 2

trλ̄tr,tr

]
, (2.12)

is symmetric positive definite. In the viscous tensor (2.9), the coefficient η is positive and the
dimension d′ of the kinetic velocity space is such that max(2, d) ≤ d′.

The rescaled energy exchange time τ̄in as well as the rescaled transport coefficients η̄, λ̄tr,tr, λ̄tr,in,

λ̄in,tr, and λ̄in,in have been introduced in order to investigate the fast relaxation limit.

2.5 Volume viscosity

The local thermal equilibrium temperature is defined as the unique scalar T such that

etr(T ) + ein(T ) = etr(Ttr) + ein(Tin), (2.13)

keeping in mind that etr(T )+ein(T ) is an increasing function of T . The temperature T is a Cκ function
of (Ttr, Tin) and is the temperature that would be obtained at local thermal equilibrium Ttr = Tin
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assuming that the internal energy etr+ein is kept fixed. Letting c̃in =
∫ 1

0 cin
(
Tin+s(T−Tin)

)
ds, we may

write ein(T )−ein(Tin) = (T −Tin)c̃in so that (Ttr−T )cv,tr = (T−Tin)c̃in and (Ttr−T )c̃v = (Ttr−Tin)c̃in
where c̃v = cv,tr + c̃in(T, Tin). Letting cv(Tin) = cv,tr + cin(Tin) and

κ = κ(Ttr, Tin) =
r c̃in pτin
cvc̃v

= ǫ
r c̃in p

stτ̄ stin
cvc̃v

, (2.14)

the following relation is obtained after some algebra

ρr(Ttr − T ) = −κ∇·v − κ

p

(
Π:∇v +∇·Qtr −

cv,tr
cin

∇·Qin

+ ρ∂t(Ttr − Tin) + ρv·∇(Ttr − Tin)
)
. (2.15)

Note also that we have κ = ǫκ̄ with κ̄ = r c̃in pτ̄in/(cvc̃v) from assumption (2.10). Equation (2.15) is a
relaxation equation that yields formally ρr(Ttr−T ) = −κ∇·v+O

(
ǫ(ǫ+ǫd)

)
so that both temperatures

Ttr and Tin should converge towards the local equilibrium temperature T . In the momentum equation,
the pressure tensor ρrTtrI +Π is thus asymptotically in the form

ρrTtrI +Π = ρrTI − κ (∇·v)I − η
(
∇v + (∇v)t − 2

d′
(∇·v)I

)
+O

(
ǫ(ǫ+ ǫd)

)
.

This is in agreement with classical one-temperature models where the pressure ρrT is evaluated at
the thermal equilibrium temperature T and the viscous tensor Π includes a volume viscosity term
−κ(∇·v)I. Such a physically intuitive derivation may be found in many physics papers and books
either in a molecular framework or in a macroscopic fluid framework usually around equilibrium states
[6, 18, 39, 40, 3, 4, 5]. Numerical simulations using Boltzmann equation have consistently established
that the limit one-temperature model is an accurate description of the two temperature fluid when the
relaxation time is small [3]. In previous work [30], it has further been established that the Chapman-
Enskog method exactly yields the one-temperature fluid equations with the volume viscosity terms in
the fast relaxation limit. One of the goals of this paper is to justify with an error estimate both the
above physically intuitive approximation as well as the accuracy of the two term Chapman-Enskog
expansion.

2.6 Quasilinear forms

Letting n = d+3, the conservative variable u ∈ R
n associated with equations (2.1)–(2.4) is found to be

u =
(
ρ, ρv, ρein, ρ(etr + ein +

1
2 |v|

2)
)t
,

and the natural variable z ∈ R
n is defined by z =

(
ρ,v, Tin, Ttr

)t
. For convenience, the velocity

components of vectors in R
n = R× R

d × R
2 are generally written as vectors of Rd. We introduce the

corresponding open sets Ou and Oz of R
n given by

Ou =
{
u = (uρ, uv, uin, utl)

t ∈ R
n; uρ > 0, uin > uρe

0
in, utl > f(uρ, uv, uin)

}
,

where f(uρ, uv, uin) = uin + 1
2uv ·uv/uρ and Oz = (0,∞)×R

d×(0,∞)2. The following proposition has
been established in our previous work [30].

Proposition 2.1. Assuming that (T1) holds, the map z 7−→ u is a Cκ diffeomorphism from the open
set Oz onto the open set Ou and the open set Ou is convex.

The equations modeling fluids out of thermodynamic equilibrium may then be written in the com-
pact form

∂tu+
∑

i∈D

∂iFi + ǫd
∑

i∈D

∂iF
diss
i − 1

ǫ
Ω = 0, (2.16)

where Fi denotes the convective flux in the ith direction, ǫd the Knudsen number, Fdiss
i the rescaled

dissipative flux in the ith direction, ǫ the relaxation parameter, and Ω the rescaled source term.
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From the governing equations (2.1)–(2.4) the convective flux Fi in the ith direction is given by

Fi =
(
ρvi, ρvvi + pei, ρeinvi, (ρetr + ρein +

1
2ρ|v|

2 + p)vi
)t
, (2.17)

where ei denotes the basis vectors of Rd. Similarly, the dissipative flux ǫdF
diss
i is given by

ǫdF
diss
i =

(
0, Πi, Qin,i, Qtr,i +Qin,i +Πi·v

)t
, (2.18)

where Qtr = (Qtr,1, . . . , Qtr,d)
t, Qin = (Qin,1, . . . , Qin,d)

t, Πij , 1 ≤ i, j ≤ d, are the components of the
viscous tensor Π , and Πi = (Π1i, . . . , Πdi)

t. The source term is finally given by

1

ǫ
Ω =

(
0,0, ωin, 0

)t
. (2.19)

From the expressions of the viscous tensor and of the heat fluxes we deduce that the dissipative fluxes
Fdiss
i may be written in the form Fdiss

i = −
∑

j∈D B̂ij(z)∂jz. Using Proposition 2.1, we may then write

that Fdiss
i = −∑

j∈D Bij(u)∂ju where the dissipation matrix Bij is defined as Bij = B̂ij∂uz. Further
introducing the Jacobian matrices of the convective fluxes Ai = ∂uFi the governing equations are finally
rewritten into the compact form

∂tu+
∑

i∈D

Ai(u)∂iu− ǫd
∑

i,j∈D

∂i
(
Bij(u)∂ju

)
− 1

ǫ
Ω(u) = 0. (2.20)

In previous work [30], all normal variables leading to a symmetric hyperbolic-parabolic structure

have been shown to be in the form
(
Fi(ρ),Fii(v, Tin, Ttr)

)t
where Fi and Fii are diffeomorphisms in R

and R
d+2, respectively. The natural variable z is in particular a normal variable but for convenience

the following normal variable will be used

w =
(
ρ,v,

1

Ttr
− 1

Tin
,− 1

T

)t

. (2.21)

The density wi = ρ is the hyperbolic variable, wii = (v, 1
Ttr

− 1
Tin

,− 1
T
)t the parabolic variable, and

the corresponding normal form has been evaluated [30]. The third component of w goes to zero with

the relaxation time and the other components
(
ρ,v,−1/T

)t
are expected to converge towards the

corresponding normal variable at thermodynamic equilibrium we =
(
ρe,ve,−1/Te

)t
.

Theorem 2.2. Assume that (T1)(T2) and (Tr1)(Tr2) hold. Then the map u → w is a Cκ−1 diffeomor-
phism from Ou onto the open set Ow = (0,∞)×R

d×R×(−∞, 0). The system written in the w variable
is in the normal form with a source term in quasilinear form

A0(w)∂tw+
∑

i∈D

Ai(w)∂iw− ǫd
∑

i,j∈D

∂i
(
Bij(w)∂jw

)
+

1

ǫ
L(w)w = ǫdb(w, ∂xwii), (2.22)

and the matrices A0, Ai, i ∈ D, Bij, i, j ∈ D, L, as well as the quadratic residual b and the source
term Ω are detailed in previous work [30]. The matrix A0 is symmetric positive definite, Ai, i ∈ D,

are symmetric, we have B
t

ij = Bji, i, j ∈ D, L is positive semi-definite with a fixed nullspace E, and

b(w, ∂
x
wii) is quadratic in the gradients. Using the bloc structure induced by the partitioning between

hyperbolic and parabolic variable, A0 is bloc diagonal, Bij has nonzero coefficients only in the right

lower bloc B
ii,ii

ij and for any ξ in the sphere Σd−1 the matrix B
ii,ii

(w, ξ) =
∑

i,j∈D Bij(w)ξiξj is positive

definite. The matrices Bij have the structure Bij =
1
r
B
λ
δij+

η̄
rTtr

B
η

ij where B
λ
is associated with thermal

conductivities and B
η

ij with shear viscous effects. The equilibrium linear manifold with respect to the

normal variable is the fixed subspace E = R×R
d×{0}×R and the normal variable w is quasilinear on

the fast manifold E
⊥

= Red+2. Finally, the normal variable is compatible with the fast manifold so
that πA0 = A0π.
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2.7 Equations at equilibrium

In order to investigate the fast relaxation limit ǫ→ 0 we will need to establish a stability theorem for
the equations governing fluids at thermodynamic equilibrium that are summarized in this section. The
equations modeling one-temperature fluids are in the form [20]

∂tρe +∇·(ρeve) = 0, (2.23)

∂t(ρeve) +∇·(ρeve⊗ve + peI) +∇·Πe = 0, (2.24)

∂t(ρee +
1
2ρ|ve|2) +∇·

(
ve(ρee +

1
2ρ|ve|2 + pe)

)
+∇·(Qe +Πe·ve) = 0, (2.25)

where the subscript e denotes thermodynamic equilibrium, ρe the mass density, ve the fluid velocity,
pe the pressure, Πe the viscous tensor involving the volume viscosity, ee the internal energy per unit
mass, and Qe the heat flux.

The pressure pe and the internal energy per unit mass ee are in the form pe = ρerTe ee = ee,st +∫ Te

Tst

cv(T
′) dT ′ where cv(Te) = cv,tr+ cin(Te) denotes the heat at constant volume per unit mass, Te the

equilibrium temperature, ee,st formation energy at the standard temperature and we have ee(Te) =
etr(Te) + ein(Te). The equilibrium viscous tensor is in the form

Πe = −κe(Te) (∇·ve)I − ηe(Te)
(
∇ve + (∇ve)

t − 2
d′
(∇·ve)I

)
, (2.26)

where ηe(Te) = η(Te, Te) and κe(Te) = κ(Te, Te) so that κe = r cin pτin/c
2
v, and the heat flux is given

by Qe = −λe(Te)∇Te, with λe(Te) = λtr,tr(Te, Te) + λtr,in(Te, Te) + λin,tr(Te, Te) + λin,in(Te, Te).
Letting ne = d + 2, the conservative variable ue ∈ R

ne associated with equations (2.23)–(2.25) is

ue =
(
ρe, ρeve, ρee +

1
2ρeve·ve

)t
and the corresponding natural variable reads ze =

(
ρe,ve, Te

)t
. The

corresponding open sets are given by Oue
=

{
ue = (uρ, uv, utl)

t ∈ R
ne ; uρ > 0, utl > f e(uρ, uv

}
where

f e(uρ, uv) = uρe
0
e +

1
2
uv ·uv
uρ

and Oze
= (0,∞)×R

d×(0,∞). The map ze → ue is easily shown to be a Cκ

diffeomorphism from Oze
onto Oue

. Introducing the convective and dissipative fluxes of the equilibrium
fluid model (2.23)–(2.25)

Fe
i =

(
ρevei, ρevevei + peei, (ρee + pe +

1
2ρe|ve|2)vei

)t
, (2.27)

ǫdF
e diss
i =

(
0, Πei, Qei +Πei·ve

)t
, (2.28)

using straighforward notation, the system at equilibrium may be rewritten in qualilinear form

∂tue +
∑

i∈D

Ae
i (ue)∂iue − ǫd

∑

i,j∈D

∂i
(
Be
ij(ue)∂jue

)
= 0, (2.29)

where Ae
i , i ∈ D, denote the Jacobian matrices Ae

i = ∂ueF
e
i and Be

ij , i, j ∈ D, the dissipation matrices

at equilibrium with Fe diss
i = −∑

j∈D Be
ij∂jue [34, 36, 20]. The equations of the one-temperature

equilibrium model may also be written in normal form [30] with the normal variable

we =
(
ρe,ve,−

1

Te

)t

, (2.30)

where the density wei = ρe is the hyperbolic variable and weii = (ve,− 1
Te
)t the parabolic variable.

Theorem 2.3. Assume that (T1)(T2) and (Tr1)(Tr2) hold. Then the map ve → we is a Cκ−1 dif-
feomorphism from Ove

onto the open set Owe
= (0,∞)×R

d×(−∞, 0). The system written in the we

variable is of the normal form

A
e

0(we)∂twe +
∑

i∈D

A
e

i (we)∂iwe − ǫd
∑

i,j∈D

∂i
(
B
e

ij(we)∂jwe

)
= ǫdbe(we, ∂xwiie), (2.31)

where A
e

0, A
e

i , i ∈ D, B
e

ij , are detailed in [30] and have regularity at least κ − 1, and be is a quadratic
residual. The matrices at equilibirum are related to the analog matrices out of equilibrium with the
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relations A
e

0 = ψtA0(ψwe)ψ, A
e

i = ψtAi(ψwe)ψ with

ψ =




1 01,d 0

0d,1 I 0d,1

0 01,d 0

0 01,d 1



. (2.32)

Moreover, the dissipation matrices B
e

ij have the structure B
e

ij = 1
r
B
λ,e
δij + κ̄e

rTe

B
κ,e

ij + η̄e

rTe

B
η,e

ij with

B
λ,e

= ψt B
λ
(ψwe)ψ and B

η,e

ij = ψt B
η

ij(ψwe)ψ whereas the matrices B
κ,e

ij , i, j ∈ D, are given in [30].

Denoting by ϕ the linear operator ϕ = ψt where ψ is the rectangular matrix (2.32), one of the
goal of this paper is to establish that the equilibrium projection ϕw of the normal variable w out of
thermodynamic equilibrium is close to the normal variable we at thermodynamic equilibrium so that
ϕw− we = O

(
ǫ(ǫ+ ǫd)

)
.

3 Hyperbolic-parabolic systems with stiff source terms

We investigate in this section local existence theorems for hyperbolic-parabolic systems of partial
differential equations in normal form with small second order terms and stiff sources.

3.1 Preliminaries

We consider an abstract hyperbolic-parabolic system with small second order terms and stiff sources
in normal form. The system is written

A0(w)∂tw +
∑

i∈D

Ai(w)∂iw − ǫd
∑

i,j∈D

∂i
(
Bij(w)∂jw

)
+

1

ǫ
L(w)w = ǫdb(w, ∂xwii), (3.1)

where w = (wi,wii)
t ∈ O

w
, O

w
is an open set of R

n, wi are the hyperbolic components, wii the
parabolic components, and ǫd, ǫ ∈ (0, 1] are two positive parameters. The dimensions of the hyperbolic
and parabolic components are denoted by ni and nii respectively so that n = ni+nii. The matrices A0,
Ai, Bij , and L are assumed to have at least regularity κ−2. We will generally assume that κ is as large
as required by the various theorems in the following, in particular that κ − 3 ≥ l + 1 ≥ l0 + 2 where

l0 = [d/2]+ 1. The matrix A0 is symmetric positive definite, the matrices Ai Bij satisfy B
t

ij = Bji, and

L is positive semi-definite with a fixed nullspace E . The matrices A0 and Bij , i, j ∈ D, have the bloc
structure

A0 =

[
A
i,i

0 0ni,nii

0nii,ni
A
ii,ii

0

]
, Bij =

[
0ni,ni

0ni,nii

0nii,ni
B
ii,ii

ij

]
,

and B
ii,ii

(w, ξ) =
∑

i,j∈D B
ii,ii

ij (w)ξiξj is positive definite for w ∈ O
w
and ξ ∈ Σd−1. The quadratic

source term is also in the form

b(w, ∂
x
wii) =

∑

i,j∈D

mij(w)∂iw∂jw =
(
0,

∑

i,j∈D

m
ii,ii,ii
ij (w)∂iwii∂jwii,

)t

(3.2)

where mij are third order tensors depending on w with at least regularity κ − 3. Denoting by π the

orthogonal projector onto the orthogonal of the equilibrium manifold E
⊥
, we assume that A0 satisfies

the compatibility condition
π A0(w) = A0(w)π, w ∈ O

w
. (3.3)

We are only interested in well prepared initial data in this section, that is, we assume that the initial
condition w0 is close to the equilibrium manifold E in such a way that πw0 is small. The situation of
ill prepared data will be investigated with initial layers.

We denote by u⋆, v⋆ and w⋆ corresponding constant equilibrium states in the u, v and w variables
respectively, so that v⋆ ∈ O

v
∩ E, w⋆ ∈ O

w
∩ E and πw⋆ = 0. We denote by | • |l the norm in the
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Sobolev space H l(Rd) and otherwise ‖•‖A in the functional space A. We will denote the Sobolev space
H l(Rd) by H l in order to alleviate notation. If α = (α1, . . . , αd) ∈ N

d is a multiindex, we denote as
usual by ∂α the differential operator ∂α1

1 · · ·∂αd

d and by |α| its order |α| = α1 + · · · + αd. The square
of kth derivatives of a scalar function φ, like T , ρ, or vi, 1 ≤ i ≤ d, is defined by

|∂kφ|2 =
∑

|α|=k

k!

α!
(∂αφ)2 =

∑

1≤i1,...,ik≤d

(∂i1 · · ·∂ikφ)2, (3.4)

where k!/α! are the multinomial coefficients and similarly, for a vector function like v we define |∂kv|2 =∑
1≤i≤d |∂kvi|2. Finally, for any map φ : [0, τ̄ ]×R

d → R
n where τ̄ > 0 is positive and for any τ ∈ [0, τ̄ ],

we denote by φ(τ) the partial map x → φ(τ, x) defined over Rd.

3.2 A priori estimates

We consider in this section linearized equations in the form

A0(w)∂tw̃ +
∑

i∈D

Ai(w)∂iw̃− ǫd
∑

i,j∈D

Bij(w)∂i∂jw̃+
1

ǫ
L(w)w̃ = f + ǫdg. (3.5)

Such linearized equations (3.5) are useful in order to build sequences of successive approximations that
converge towards solutions of the nonlinear equations (3.1) as well as to estimate the derivatives of
such solutions. For a given τ̄ > 0 and l ≥ l0 + 1 where l0 = [d/2] + 1, we assume that w is such that

{
wi − w⋆

i ∈ C0
(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−1

)
,

wii − w⋆
ii ∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−2

)
,

(3.6)

∂twii ∈ L2
(
(0, τ̄), H l−1

)
, (3.7)

and we define

sup
0≤τ≤τ̄

|w(τ) − w⋆|2l =M2,

∫ τ̄

0

|∂tw(τ)|
2
l−1 dτ =M2

1 . (3.8)

We consider O0 such that O0 ⊂ Ow, d1 such that 0 < d1 < d(O0, ∂Ow), and define

O1 = {w ∈ Ow; d(w,O0) < d1 }. (3.9)

It is also assumed that w0 and w are such that

w0(x) = w(0, x) ∈ O0, w(t, x) ∈ O1, t ∈ [0, τ̄ ], x ∈ R
d. (3.10)

The following priori estimates for linearized equations will be of fundamental importance for exis-
tence theorem of the full quasilinear system (3.1).

Theorem 3.1. Let l ≥ l0 + 1 with l0 = [d/2] + 1, consider the linearized system (3.5), and assume
that the solution w̃ is such that

w̃i − w̃⋆
i
∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−1

)
,

w̃ii − w̃⋆
ii
∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−2

)
∩ L2

(
(0, τ̄), H l+1

)
,

(3.11)

where w̃⋆ = (w̃⋆
i
, w̃⋆

ii
)t is a constant state w̃⋆ ∈ E. Further assume that

f ∈ C0
(
[0, τ̄ ], H l−1

)
∩ L1

(
[0, τ̄ ], H l

)
, (3.12)

g ∈ C0
(
[0, τ̄ ], H l−1

)
, gi = 0, (3.13)
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and denote by w̃0 the initial state w̃0(x) = w̃(0, x). Then there exists constants c1(O1) ≥ 1 and
c2(O1,M) ≥ 1, with c2(O1,M) increasing with M , such that for any t ∈ [0, τ̄ ]

sup
0≤τ≤t

{
|w̃(τ)− w̃⋆|2l +

1

ǫ
|πw̃(τ)|20

}
+ ǫd

∫ t

0

|w̃ii(τ) − w̃⋆
ii
|2l+1 dτ +

1

ǫ

∫ t

0

|πw̃(τ)|2l dτ

≤ c21 exp
(
c2(t+M1

√
t )
)(

|w̃0 − w̃⋆|2l +
1

ǫ
|πw̃0|20 + ǫdc2

∫ t

0

|gii(τ)|2l−1 dτ

+ c2

{∫ t

0

|f(τ)|l dτ
}2

+ c2

∫ t

0

|πf(τ)|20 dτ
)
, (3.14)

1

ǫ
sup

0≤τ≤t

|πw̃(τ)|2l−1 +
1

ǫ2

∫ t

0

|πw̃(τ)|2l−1 dτ +

∫ t

0

|∂tw̃(τ)|2l−1 dτ ≤ c2 exp
(
c2(t+M1

√
t )
)

×
(
|w̃0 − w̃⋆|2l +

1

ǫ
|πw̃0|2l−1 + ǫd

∫ t

0

|gii|2l−1 dτ +
{∫ t

0

|f|l dτ
}2

+

∫ t

0

|f|2l−1 dτ
)
. (3.15)

Proof. It is sufficient to establish these estimates for smooth solutions since we may use mollifiers and
convolution operators [34].

Step 0. Preliminaries. In the following δ1 = δ(O1) ≤ 1 denotes a generic small constant only depending
on O1, c1 = c1(O1) ≥ 1 a generic large constant only depending on O1, and c2 = c2(O1,M) ≥ 1 a
generic large constant depending on O1 and M . The various occurrences of these constants may be
distinguished and the minimum of all δ1 and the maxima of all c1 and c2 may be taken at the end of the
proof so that only single constants ultimately remain. The dependence on d, l, n of these estimating
constants, on the other hand, is left implicit. For k ≥ 0 and φ ∈ Hk we also define

E2
k(φ) =

∑

0≤|α|≤k

|α|!
α!

∫

Rd

〈
A0(w)∂

αφ, ∂αφ
〉
dx, (3.16)

Ê2
k(φ) =

∑

0≤|α|≤k

|α|!
α!

∫

Rd

〈
L(w)∂αφ, ∂αφ

〉
dx. (3.17)

In order to alleviate notation in the proof we denote for short δw̃ = w̃ − w̃⋆. We will use the classical
estimates

|f(φ)− f(0)|k ≤ c0‖f‖Ck(‖·‖≤‖φ‖L∞)(1 + ‖φ‖L∞)k−1 |φ|k, (3.18)

where k ≥ 1 and c0 denotes a generic constant independent of O1 and M , as well as the estimates

|uv|2k ≤ c0|u|2l |v|
2
k, 0 ≤ k ≤ l,

and ‖φ‖L∞ ≤ c0|φ|l valid for any l ≥ l0 = [d/2] + 1. We also have the commutator estimate

∑

0≤|α|≤l

∣∣[∂α, u]v
∣∣
0
≤ c0|∂xu|l−1|v|l−1,

valid for any l ≥ l0 + 1 where [∂α, u]v = ∂α(uv) − u∂αv denotes the commutator between ∂α and u.
Finally, we have the Garding inequality

δ1|φii|21 ≤
∑

i,j∈D

∫

Rd

〈Bii,ii

ij (w)∂iφii, ∂jφii〉dx+ c2|φii|20

for any vector valued function φii : R
d → R

nii in the space H1.

Step 1. The zeroth order estimate. Multiplying (3.5) by δw̃ = w̃− w̃⋆ and using the symmetry of A0

and Ai we first note that

〈
A0(w)∂tw̃, δw̃

〉
= 1

2∂t
〈
A0(w)δw̃, δw̃

〉
− 1

2

〈
∂t
(
A0(w)

)
δw̃, δw̃

〉
,
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〈
Ai(w)∂iw̃, δw̃

〉
= 1

2∂i
〈
Ai(w)δw̃, δw̃

〉
− 1

2

〈
∂i
(
Ai(w)

)
δw̃, δw̃

〉
,

as well as

〈Bij(w)∂i∂jw̃, δw̃〉 = ∂j〈Bij(w)∂iw̃, δw̃〉 − 〈Bij(w)∂iw̃, ∂jw̃〉 −
〈
∂j
(
Bij(w)

)
∂iw̃, δw̃

〉
.

Integrating over Rd we obtain

1
2∂tE

2
0(δw̃) + ǫd

∑

i,j∈D

∫

Rd

〈Bij(w)∂iw̃, ∂jw̃〉dx+
1

ǫ

∫

Rd

〈L(w)πw̃, πw̃〉dx ≤ |f|0|δw̃|0

+ǫd|gii|0|δw̃ii|0 + c1|∂tw|l−1|δw̃|20 + c1|∂xw|l−1|δw̃|20 + ǫdc1|∂xw|l−1|δw̃ii|1|δw̃ii|0.
Using the Garding inequality, noting that |∂xw|l−1 ≤ M , and that c2 may depend on M , we obtain
that

∂tE
2
0(δw̃) + ǫdδ1|δw̃ii|21 +

δ1
ǫ
|πw̃|20 ≤ c1|f|0|δw̃|0 + ǫdc1|gii|20 + c2(1 + |∂tw|l−1)E

2
0 (δw̃).

Letting

γ2(t) = sup
0≤τ≤t

E2
0

(
δw̃(τ)

)
+ δ1ǫd

∫ t

0

|δw̃ii|21 dτ +
δ1
ǫ

∫ t

0

|πw̃|20 dτ,

we have

γ2(t) ≤ γ2(0) +

∫ t

0

c2(1 + |∂tw|l−1)γ
2(τ) dτ + c1

∫ t

0

|f|0γ(τ) dτ + ǫdc1

∫ t

0

|gii|20 dτ.

We then note that γ is nondecreasing so that
∫ t

0
|f|0γ(τ) dτ ≤ γ(t)

∫ t

0
|f|0dτ and from the Gronwall

inequality we obtain

γ2(t) ≤ exp
(
c2(t+M1

√
t )
) (

γ2(0) + ǫdc1

∫ t

0

|gii|20 dτ + c1

{∫ t

0

|f|0 dτ
}2)

,

where we have used
∫ t

0
|∂tw|l−1 dτ ≤M1

√
t. This shows that

sup
0≤τ≤t

∣∣δw̃(τ)
∣∣2
0
+ ǫd

∫ t

0

|δw̃ii(τ)|21 dτ +
1

ǫ

∫ t

0

|πw̃|20 dτ

≤ c21 exp
(
c2(t+M1

√
t )
) (

|δw̃0|20 + ǫdc1

∫ t

0

|gii|20 dτ + c1

{∫ t

0

|f|0 dτ
}2)

.

Step 2. The zeroth order projected estimate. We now multiply the governing equation (3.5) by
(1/ǫ)πw̃ and using A0 π = π A0 and L = Lπ we note that

〈
A0(w)∂tw̃, πw̃

〉
=

〈
A0(w)∂tπw̃, πw̃

〉
= 1

2∂t
〈
A0(w)πw̃, πw̃

〉
− 1

2

〈
∂t
(
A0(w)

)
(πw̃), πw̃

〉
,

〈
L(w)w̃, πw̃

〉
=

〈
L(w)πw̃, πw̃

〉
.

Further integrating over Rd and proceeding as for the zeroth order estimate, we obtain that

1

2ǫ
∂tE

2
0(πw̃) +

δ1
ǫ2
|πw̃|20 ≤ 1

ǫ
|πf|0|πw̃|0 + ǫd

1

ǫ
|gii|0|πw̃|0 +

c1

ǫ
|∂tw|l−1|πw̃|20

+
c1

ǫ
|δw̃|1|πw̃|0 + ǫd

c1

ǫ
|δw̃ii|2|πw̃|0,

so that

1

ǫ
∂tE

2
0 (πw̃) +

δ1
ǫ2
|πw̃|20 ≤ c1|πf|20 + ǫ2dc1|gii|20 +

c1

ǫ
|∂tw|l−1E

2
0(πw̃) + c1|δw̃|21 + ǫ2dc1|δw̃ii|22. (3.19)

This inequality will be used in the following in order to establish the lth order estimate.
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Step 3. The zeroth order derived estimate. We multiply the governing equation by ∂tw̃ and we
integrate over Rd. Using the symmetry of L we note that

〈
L(w)w̃, ∂tw̃

〉
= 1

2∂t
〈
L(w)πw̃, πw̃

〉
− 1

2

〈
∂t
(
L(w)

)
πw̃, πw̃

〉
,

and we obtain by integrating over Rd and proceeding as for the zeroth order estimate that

δ1|∂tw̃|20 +
1

ǫ
∂tÊ

2
0 (πw̃) ≤ |f|0|∂tw̃|0 + ǫd|gii|0|∂tw̃|0 +

c1

ǫ
|∂tw|l−1|πw̃|20

+ c1|δw̃|1|∂tw̃|0 + ǫdc1|δw̃ii|2|∂tw̃|0.
After a little algebra, we also obtain that

δ1|∂tw̃|20 +
1

ǫ
∂tÊ

2
0 (πw̃) ≤ c1|f|20 + c1ǫ

2
d|gii|20 +

c1

ǫ
|∂tw|l−1Ê

2
0 (πw̃) + c1|δw̃|21 + ǫ2dc1|δw̃ii|22, (3.20)

and this inequality will be used in the following.

Step 4. The lth order estimate. We first differentiate the hyperbolic-parabolic system (3.5) with
respect to the space variable. Denoting by ∂α the αth derivative spatial operator, we obtain that

A0(w)∂t∂
αw̃ +

∑

i∈D

Ai(w)∂i∂
αw̃− ǫd

∑

i,j∈D

Bij(w)∂i∂j∂
αw̃+

1

ǫ
L(w)∂αw̃ = fα + ǫdg

α, (3.21)

with

fα = A0∂
α
(
A

−1

0 f
)
−

∑

i∈D

A0

[
∂α,A

−1

0 Ai

]
∂iw̃− 1

ǫ
A0

[
∂α,A

−1

0 L
]
πw̃, (3.22)

gα = A0∂
α
(
A

−1

0 g
)
+

∑

i,j∈D

A0

[
∂α,A

−1

0 Bij

]
∂i∂jw̃. (3.23)

Multiplying equation (3.21) by ∂αδw̃ and |α|!/α!, integrating over Rd, summing over 0 ≤ |α| ≤ l,
and proceeding as for the zeroth order estimate, we obtain that

∂tE
2
l (δw̃) + ǫdδ1|δw̃ii|2l+1 +

δ1
ǫ
|πw̃|2l ≤ c2(1 + |∂tw|l−1)E

2
l (δw̃)

+
∑

0≤|α|≤l

|α|!
α!

∫

Rd

〈fα, ∂αδw̃〉dx+ ǫd
∑

0≤|α|≤l

|α|!
α!

∫

Rd

〈gα, ∂αδw̃〉dx.

We next have to investigate the residuals associated with fα and gα. Keeping in mind that the zeroth
order terms with |α| = 0 have already been examined in Step1, we only have to analyze the terms such
that 1 ≤ |α| ≤ l.

The terms in fα in the form A0∂
α
(
A

−1

0 f
)
are estimated as

∣∣∣
∫

Rd

〈
A0∂

α
(
A

−1

0 f
)
, ∂αδw̃

〉
dx

∣∣∣ ≤ |A0|∞ |A−1

0 f|l |δw̃|l ≤ c2|f|l |δw̃|l.

The terms in the form A0

[
∂α,A

−1

0 Ai

]
∂iδw̃ are then estimated as

∣∣∣
∫

Rd

〈
A0

[
∂α,A

−1

0 Ai

]
∂iw̃, ∂

αδw̃
〉
dx

∣∣∣ ≤ |A0|∞
∣∣[∂α,A−1

0 Ai

]
∂iw̃

∣∣
0
|δw̃||α|,

and the right hand side is majorized with the commutators estimates

∣∣∣
∫

Rd

〈
A0

[
∂α,A

−1

0 Ai

]
∂iw̃, ∂

αδw̃
〉
dx

∣∣∣ ≤

c0|A0|∞
∣∣∂x(A

−1

0 Ai)
∣∣
l−1

|∂iw̃|l−1|δw̃|l ≤ c2|δw̃|2l .
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The terms in the form 1
ǫ
A0

[
∂α,A

−1

0 L
]
πw̃ are treated in a similar way and yields

1

ǫ

∣∣∣
∫

Rd

〈
A0

[
∂α,A

−1

0 L
]
πw̃, ∂αw̃

〉
dx

∣∣∣ ≤

c0

ǫ
|A0|∞

∣∣∂x(A
−1

0 L)
∣∣
l−1

|πw̃|l−1|πw̃|l ≤
c2

ǫ
|πw̃|l−1|πw̃|l.

The terms in gα in the form A0∂
α
(
A

−1

0 g
)
are estimated when |α| ≤ l − 1 as the terms A0∂

α
(
A

−1

0 f
)

for fα. On the other hand, when |α| = l, the corresponding terms are first integrated by part so as to

transfer one derivative from A
−1

0 g to A0∂
αδw̃. In all cases, it is obtained that

∣∣∣
∫

Rd

〈
A0∂

α
(
A

−1

0 g
)
, ∂αδw̃

〉
dx

∣∣∣ ≤ c2|gii|l−1 |δw̃ii|l+1.

Finally, the terms in the form A0

[
∂α,A

−1

0 Bij

]
∂i∂jw̃ are estimated as the convective terms and this

yields ∣∣∣
∫

Rd

〈
A0

[
∂α,A

−1

0 Bij

]
∂i∂jw̃, ∂

αδw̃
〉
dx

∣∣∣ ≤ c2 |δw̃ii|l+1 |δw̃ii|l.

Collecting all contributions we have established that

∂tE
2
l (δw̃) + ǫdδ1|δw̃ii|2l+1 +

δ1
ǫ
|πw̃|2l ≤ c2(1 + |∂tw|l−1)E

2
l (δw̃)

+c2|f|l |δw̃|l +
c2

ǫ
|πw̃|l−1|πw̃|l + ǫdc2|gii|l−1 |δw̃ii|l+1 + ǫdc2|δw̃ii|l+1 |δw̃ii|l,

so that

∂tE
2
l (δw̃) + ǫdδ1|δw̃ii|2l+1+

δ1
ǫ
|πw̃|2l ≤ c2(1 + |∂tw|l−1)E

2
l (δw̃)

+ c2|f|lEl(δw̃) +
c2

ǫ
|πw̃|2l−1 + ǫdc2|gii|2l−1. (3.24)

In order to handle the term (c2/ǫ)|πw̃|2l−1 in the right hand side we use the following classical conse-
quence of interpolation inequalities

|φ|2l−1 ≤ β|φ|2l + C(β)|φ|20,

valid for any φ ∈ H l, any β > 0 and where C(β) depends on β. We thus obtain that

∂tE
2
l (δw̃) + ǫdδ1|δw̃ii|2l+1 +

δ1
ǫ
|πw̃|2l ≤ c2(1 + |∂tw|l−1)E

2
l (δw̃)

+c2|f|lEl(δw̃) +
c2

ǫ
|πw̃|20 + ǫdc2|gii|2l−1,

and we may add this inequality to the projected zeroth order inequality (3.19) obtained in Step 2.
Keeping in mind that l ≥ l0 + 1 ≥ 2 we obtain that

∂t

(
E2

l (δw̃) +
1

ǫ
E2

0(πw̃)
)
+ ǫdδ1|δw̃ii|2l+1 +

δ1
ǫ
|πw̃|2l +

δ1
ǫ2
|πw̃|20 ≤

c2(1 + |∂tw|l−1)
(
E2

l (δw̃) +
1

ǫ
E2

0(πw̃)
)
+ c2|f|lEl(δw̃) + ǫdc2|gii|2l−1 + c1|πf|20.

Letting

γ2(t) = sup
0≤τ≤t

(
E2

l

(
δw̃(τ)

)
+

1

ǫ
E2

0

(
πw̃(τ)

))
+ δ1ǫd

∫ t

0

|δw̃ii|2l+1 dτ

+
δ1
ǫ

∫ t

0

|πw̃|2l dτ +
δ1
ǫ2

∫ t

0

|πw̃|20 dτ,
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we have

γ2(t) ≤ γ2(0) + c2

∫ t

0

(1 + |∂tw|l−1)γ
2(τ) dτ + c2 γ(t)

∫ t

0

|f|l dτ

+ ǫdc2

∫ t

0

|gii|2l−1 dτ + c1

∫ t

0

|πf|20dτ.

From the Gronwall inequality we get that

γ2(t) ≤ exp
(
c2(t+M1

√
t )
)(
γ2(0) + ǫdc2

∫ t

0

|gii|2l−1 dτ + c2

{∫ t

0

|f|l dτ
}2

+ c1

∫ t

0

|πf|20dτ
)
.

This shows that

sup
0≤τ≤t

(
E2

l

(
δw̃(τ)

)
+

1

ǫ
E2

0

(
πw̃(τ)

))
+ ǫd

∫ t

0

|δw̃ii(τ)|2l+1 dτ +
1

ǫ

∫ t

0

|πw̃|2l dτ +
1

ǫ2

∫ t

0

|πw̃|20 dτ

≤ c21 exp
(
c2(t+M1

√
t )
) (

|δw̃0|2l +
1

ǫ
|πw̃0|20 + ǫdc2

∫ t

0

|gii|2l−1 dτ

+c2

{∫ t

0

|f|l dτ
}2

+ c1

∫ t

0

|πf|20dτ
)
,

and this yields the first estimate (3.14). It is interesting to note that in the absence of stiff source
terms we may let π = 0 and we recover the usual estimates [34].

Step 5. The lth order derived estimate. Multiplying the equation (3.21) by ∂t∂
αw̃ and |α|!/α!,

integrating over R
d, summing over 0 ≤ |α| ≤ l − 1, and proceeding as for the zeroth order derived

estimate, we obtain that

δ1|∂tw̃|2l−1 +
1

ǫ
∂tÊ

2
l−1(πw̃) ≤ c1|δw̃|2l + c1ǫ

2
d|δw̃ii|2l+1 +

c1

ǫ
|∂tw|l−1Ê

2
l−1(πw̃)

+
∑

0≤|α|≤l−1

c1
|α|!
α!

(
|fα|20 + ǫ2d|gα|20

)
.

and we have to investigate the residuals associated with fα and gα. Keeping in mind that the zeroth
order terms with |α| = 0 have already been examined in Step 3 we only have to analyze the terms such
that 1 ≤ |α| ≤ l − 1.

The terms in fα in the form A0∂
α
(
A

−1

0 f
)
are estimated as

∫

Rd

∣∣A0∂
α
(
A

−1

0 f
)∣∣2 dx ≤ |A0|2∞ |A−1

0 f|2|α| ≤ c2|f|2l−1.

The terms in the form A0

[
∂α,A

−1

0 Ai

]
∂iδw̃ are estimated as

∫

Rd

∣∣A0

[
∂α,A

−1

0 Ai

]
∂iw̃

∣∣2 dx ≤ c0|A0|2∞
∣∣∂x(A

−1

0 Ai)
∣∣2
l−2

|∂iw̃|2l−2 ≤ c2|δw̃|2l−1.

The terms in the form 1
ǫ
A0

[
∂α,A

−1

0 L
]
πw̃ are treated in a similar way and yields

1

ǫ2

∫

Rd

∣∣A0

[
∂α,A

−1

0 L
]
πw̃

∣∣2 dx ≤ c0

ǫ2
|A0|2∞

∣∣∂x(A
−1

0 L)
∣∣2
l−2

|πw̃|2l−2 ≤ c2

ǫ2
|πw̃|2l−2.

The terms in gα in the form A0∂
α
(
A

−1

0 g
)
are estimated as the terms A0∂

α
(
A

−1

0 f
)
for fα so that

∫

Rd

∣∣A0∂
α
(
A

−1

0 g
)∣∣2 dx ≤ c2|gii|2l−1.

14

ha
l-0

10
06

27
5,

 v
er

si
on

 2
 - 

10
 O

ct
 2

01
4



Finally, the terms in the form A0

[
∂α,A

−1

0 Bij

]
∂i∂jw̃ are estimated as the convective terms and this

yields ∫

Rd

∣∣A0

[
∂α,A

−1

0 Bij

]
∂i∂jw̃

∣∣2 dx ≤ c2 |δw̃ii|2l .

Collecting all contributions we have established that

∑

0≤|α|≤l−1

|α|!
α!

(
|fα|20 + ǫ2d|gα|20

)
≤ c2|f|2l−1

+c2ǫ
2
d|gii|2l−1 + c2|δw̃|2l−1 + c2ǫ

2
d|δw̃ii|2l +

c2

ǫ2
|πw̃|2l−2,

so that

δ1|∂tw̃|2l−1 +
1

ǫ
∂tÊ

2
l−1(πw̃) ≤ c1|δw̃|2l + c1ǫ

2
d|δw̃ii|2l+1 +

c1

ǫ
|∂tw|l−1Ê

2
l−1(πw̃)

c2|f|2l−1 + c2ǫ
2
d|gii|2l−1 + c2|δw̃|2l−1 + c2ǫ

2
d|δw̃ii|2l +

c2

ǫ2
|πw̃|2l−2.

In order to control the last term (c2/ǫ
2)|πw̃|2l−2 we now have to write the (l − 1)th projected

equation. We multiplying equation (3.21) by 1
ǫ
∂απw̃ and |α|!/α!, we integrate over Rd, and sum over

0 ≤ |α| ≤ l − 1. This yields that

1

ǫ
∂tE

2
l−1(πw̃) +

δ1
ǫ2
|πw̃|2l−1 ≤ c1|δw̃|2l + c1ǫ

2
d|δw̃ii|2l+1 +

c1

ǫ
|∂tw|l−1E

2
l−1(πw̃)

+
∑

0≤|α|≤l−1

c1
|α|!
α!

(
|fα|20 + ǫ2d|gα|20

)
.

Using the previous estimates of |fα|0 and |gα|0, the inequality

|φ|2l−2 ≤ β|φ|2l−1 + C(β)|φ|20,

the equivalence of Ê2
l−1(πw̃) and E

2
l−1(πw̃), and combining the derived lth estimate with the projected

lth estimate, we now obtain that

δ1|∂tw̃|2l−1 +
1

ǫ
∂t

(
Ê2

l−1(πw̃) + E2
l−1(πw̃)

)
+
δ1
ǫ2
|πw̃|2l−1 ≤ c1|δw̃|2l + c1ǫ

2
d|δw̃ii|2l+1

+
c1

ǫ
|∂tw|l−1Ê

2
l−1(πw̃) + c2|f|2l−1 + c2ǫ

2
d|gii|2l−1 + c2|δw̃|2l−1 + c2ǫ

2
d|δw̃ii|2l +

c2

ǫ2
|πw̃|20.

We now combine this inequality to the lth order governing equation (3.24) multiplied by a large constant
k1 only depending on O1 so as to compensate the term c1ǫ

2
d|δw̃|2l+1 in the right hand side. We also

add the zeroth order derived equation (3.19) multiplied by a factor k2 in order to compensate for the
term (c2/ǫ

2)|πw̃|20. We have then obtained a governing inequality in the form

∂t

(1
ǫ
Ê2

l−1(πw̃) +
1

ǫ
E2

l−1(πw̃) + k1E
2
l (δw̃) +

k2

ǫ
E2

0 (πw̃)
)
+ δ1|∂tw̃|2l−1 +

δ1
ǫ2
|πw̃|2l−1

+ǫdδ1|δw̃ii|2l+1 +
δ1
ǫ
|πw̃|2l ≤ c2

ǫ
(1 + |∂tw|l−1)Ê

2
l−1(πw̃) + c2|f|2l−1

+ c2ǫd|gii|2l−1 + c2(1 + |∂tw|l−1)E
2
l (δw̃) + c2|f|lEl(δw̃).

Letting

γ2(t) = sup
0≤τ≤t

(1
ǫ
Ê2

l−1(πw̃) +
1

ǫ
E2

l−1(πw̃) + k1E
2
l (δw̃) +

k2

ǫ
E2

0(πw̃)
)

+δ1

∫ t

0

|∂tw̃|2l−1 dτ + δ1ǫd

∫ t

0

|δw̃ii|2l+1 dτ +
δ1
ǫ

∫ t

0

|πw̃|2l dτ +
δ1
ǫ2

∫ t

0

|πw̃|2l−1 dτ,
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we have

γ2(t) ≤ γ2(0) + c2

∫ t

0

(1 + |∂tw|l−1)γ
2(τ) dτ + c2

∫ t

0

|f|lγ(τ) dτ

+ǫdc2

∫ t

0

|gii|2l−1 dτ + c2

∫ t

0

|f|2l−1dτ.

From the Gronwall inequality we get that

γ2(t) ≤ exp
(
c2(t+M1

√
t )
)(
γ2(0) + ǫdc2

∫ t

0

|gii|2l−1 dτ + c2

{∫ t

0

|f|l dτ
}2

+ c1

∫ t

0

|f|2l−1dτ
)
.

This shows in particular that

sup
0≤τ≤t

1

ǫ
|πw̃|2l−1 +

∫ t

0

|∂tw̃|2l−1 dτ +
1

ǫ2

∫ t

0

|πw̃|2l−1 dτ ≤ c2 exp
(
c2(t+M1

√
t )
)

×
(
|δw̃0|2l +

1

ǫ
|πw̃0|2l−1 + ǫd

∫ t

0

|gii|2l−1 dτ +
{∫ t

0

|f|l dτ
}2

+

∫ t

0

|f|2l−1dτ
)
,

and this yields the second estimate (3.15).
Finally, the various occurencies of the constant c2 in the proof all involve simple polynomials in M

with positive coefficients, either arising as simple multiplication by M or through the estimate (3.18)
so that the final constant c2 is an increasing function of M and the proof is complete.

Remark 3.2. The linear estimates may easily be extended to the situation where there is a linear term
in the right member in the form

ǫd
∑

i,j∈D

mij(w)∂iw∂jw̃ = ǫd

(
0,

∑

i,j∈D

m
ii,ii,ii
ij (w)∂iwii∂jw̃ii

)
,

where mij are third order tensors depending smoothly on w.

3.3 Local existence

We first establish an existence theorem for the linearized equations (3.5) which is a coupled system of
hyperbolic-parabolic type. These linerarized coupled hyperbolic-parabolic solutions are then used in
order to establish the existence of local solutions for the full nonlinear system (3.1).

Proposition 3.3. Let l ≥ l0 + 1 where l0 = [d/2] + 1, τ̄ > 0, assume that w is such that (3.6), (3.7)
and (3.10) hold, that f and g satisfy (3.12) and (3.13), and that w̃0 is such that w̃0 − w̃⋆ ∈ H l for
some constant state w̃⋆ ∈ E. Then there exists a unique solution w̃ to the linearized equations (3.5)
with initial condition w̃0 and regularity (3.11).

Proof. Solutions of the linearized coupled system (3.5) are obtained as fixed points ˜̃w = w̃ of the

following linearized uncoupled system in the unknown ˜̃w = (˜̃wi, ˜̃wii) where w, ǫd and ǫ are kept fixed

A
i,i

0 (w)∂t
˜̃wi +

∑

i∈D

A
i,i

i (w)∂i
˜̃wi = f̃i(ǫ,w, w̃, ∂x

˜̃wii), (3.25)

A
ii,ii

0 (w)∂t
˜̃wii − ǫd

∑

i,j∈D

B
ii,ii

ij (w)∂i∂j ˜̃wii = f̃ii(ǫ, ǫd,w, w̃, ∂xw̃), (3.26)

with the initial condition
˜̃w(0, x) = w̃0(x).

In these equations we have denoted

f̃i = fi −
∑

i∈D

A
i,ii

i (w)∂i ˜̃wii,−
∑

i∈D

1

ǫ

(
L
i,ii

i (w)(w̃i − w̃⋆
i ) + L

i,ii

i (w)(w̃ii − w̃⋆
ii)
)
, (3.27)
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f̃ii = f
ii
+ ǫdgii −

∑

i∈D

(
A
ii,i

i (w)∂iw̃i + A
ii,ii

i (w)∂iw̃ii

)

−
∑

i∈D

1

ǫ

(
L
ii,i

i (w)(w̃i − w̃⋆
i
) + L

ii,ii

i (w)(w̃ii − w̃⋆
ii
)
)
. (3.28)

The system defining ˜̃wii is symmetric strongly parabolic and classical existence theorems [34] war-

rants the existence of ˜̃wii such that

˜̃wii − w̃⋆
ii ∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−2

)
∩ L2

(
(0, τ̄ ), H l+1

)
,

with the estimates for 0 ≤ t ≤ τ̄

sup
0≤τ≤t

|˜̃wii − w̃⋆
ii
|2l +

∫ t

0

|˜̃wii − w̃⋆
ii
|2l+1 dτ ≤

c̃21 exp
(
c̃2(t+M1

√
t )
)(

|w̃0,ii − w̃⋆
ii
|2l + c̃2

∫ t

0

|̃fii|2l−1 dτ
)
,

where here the constants c̃1 and c̃2 depend on ǫd and ǫ, that is, are such that c̃1(ǫd, ǫ,O1) and

c̃2(ǫd, ǫ,O1,M) where M and M1 are defined by (3.8). Similarly, the system defining ˜̃wi is symmetric

hyperbolic and classical existence theorems [34] warrants the existence of ˜̃wi such that

˜̃wi − w̃⋆
i
∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−1

)
,

with the estimates for 0 ≤ t ≤ τ̄

sup
0≤τ≤t

|˜̃wi − w̃⋆
i |2l ≤ c̃21 exp

(
c̃2(t+M1

√
t )
)(

|w̃0,i − w̃⋆
i |2l + c̃2 t

∫ t

0

|̃fi|2l dτ
)
.

We may now define the successive approximation sequence {w̃k}k≥0 with w̃0 = w̃⋆ and w̃k+1 = ˜̃wk

for k ≥ 0 and letting for short δk+1w̃ = w̃k+1− w̃k we have to estimate δk+1w̃ in order to establish that
(w̃k)k≥0 is a Cauchy sequence. Forming the difference between two iterations, letting δk+1 f̃i = f̃i

k+1− f̃i
k

and δk+1 f̃ii = f̃ii
k+1 − f̃ii

k, and using similar estimates for linear symmetric hyperbolic systems and linear
symmetric strongly parabolic systems, it is obtained that

sup
0≤τ≤τ̄

|δk+1w̃ii(τ)|2l +
∫ t

0

|δk+1w̃ii|2l+1 dτ ≤ c̃21 exp
(
c̃2(t+M1

√
t )
)(

c̃2

∫ t

0

|δk+1 f̃ii|2l−1 dτ
)
,

as well as

sup
0≤τ≤τ̄

|δk+1w̃i(τ)|2l ≤ c̃21 exp
(
c̃2(t+M1

√
t )
)(

c̃2 t

∫ t

0

|δk+1 f̃i|2l dτ
)
.

Letting
γk+1(t) = sup

0≤τ≤t

|δk+1w̃(τ)|2l ,

and combining these results with the estimates

|δk+1 f̃i|l ≤ c̃2
(
|δkw̃|l + |δk+1w̃ii|l+1

)
, |δk+1 f̃ii|l−1 ≤ c̃2|δkw̃|l,

we obtain that

γk+1(t) ≤ C

∫ t

0

γk(τ) dτ,

where C = C(ǫd, ǫ,O1,M,M1, τ̄) depends on ǫd, ǫ, O1, M , M1 and τ̄ . Since γ1 is bounded over [0, τ̄ ],
say γ1(t) ≤ K, is is easily obtained that

γk+1(t) ≤ K
Cntn

n!
, 0 ≤ t ≤ τ̄ , k ≥ 0,

so that (w̃k)k≥0 is a Cauchy sequence. The limit of this Cauchy sequence is then a fixed point of the
iteration system and thus a solution of the linearized system (3.5) with the desired regularity.
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We now establish a local existence theorem on a time interval τ̄ > 0 independent of ǫd and ǫ for the
system of partial differential equation in normal form (3.1). Such an existence theorem is a fundamental
step toward a convergence theorem for ǫ, ǫd → 0. Moreover, since we are interested in convergence
results on time intervals including the time origin t = 0, we assume in this section that the initial data
is well prepared or equivalently that πw0 is small.

Theorem 3.4. Let d ≥ 1 and l ≥ l0+1, be integers with l0 = [d/2]+ 1, and let b > 0 be given. Let O0

such that O0 ⊂ Ow, d1 such that 0 < d1 < d(O0, ∂Ow), and define O1 = {w ∈ Ow; d(w,O0) < d1 }.
There exists τ̄ > 0 depending on O1 and b, and independent on ǫd ∈ (0, 1] and ǫ ∈ (0, 1], such that for
any w0 with

|w0 − w⋆|2l +
1

ǫ
|πw0|2l−1 < b2, (3.29)

and w0 ∈ O0, there exists a unique local solution w to the system

A0(w)∂tw+
∑

i∈D

Ai(w)∂iw− ǫd
∑

i,j∈D

∂i
(
Bij(w)∂jw

)
+

1

ǫ
L(w)w = ǫdb(w, ∂xwii), (3.30)

with initial condition
w(0, x) = w0(x), x ∈ R

d,

such that
w(t, x) ∈ O1, t ∈ [0, τ̄ ], x ∈ R

d,

and
wi − w⋆

i ∈ C0
(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−1

)
,

wii − w⋆
ii
∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−2

)
∩ L2

(
(0, τ̄), H l+1

)
.

In addition, there exists C > 0 which only depend on O1 and b, such that

sup
0≤τ≤τ̄

(
|w(τ)− w⋆|2l +

1

ǫ
|πw(τ)|2l−1

)
+ ǫd

∫ τ̄

0

|wii(τ) − w⋆
ii|2l+1 dτ +

1

ǫ

∫ τ̄

0

|πw(τ)|2l dτ

+
1

ǫ2

∫ τ̄

0

|πw(τ)|2l−1 dτ +

∫ τ̄

0

|∂tw(τ)|2l−1 dτ ≤ C
(
|w0 − w⋆|2l +

1

ǫ
|πw0|2l−1

)
. (3.31)

Proof. Solutions to the nonlinear system (3.30) are fixed points w̃ = w of the linearized equations

A0(w)∂tw̃ +
∑

i∈D

Ai(w)∂iw̃ − ǫd
∑

i,j∈D

Bij(w)∂i∂jw̃+
1

ǫ
L(w)w̃ = ǫdg, (3.32)

with
g(w, ∂

x
w) =

∑

i,j∈D

∂i
(
Bij(w)

)
∂jw −

∑

i,j∈D

∂i(∂wv)
t (∂

v
w)tBij ∂jw. (3.33)

Fixed points are investigated in the space w ∈ Xl
τ̄

(
O1,M,M1

)
defined by wi−w⋆

i
∈ C0

(
[0, τ̄ ], H l

)
, ∂twi ∈

C0
(
[0, τ̄ ], H l−1

)
, wii−w⋆

ii ∈ C0
(
[0, τ̄ ], H l

)
∩L2

(
(0, τ̄), H l+1

)
, ∂twii ∈ C0

(
[0, τ̄ ], H l−2

)
∩L2

(
(0, τ̄), H l−1

)
,

w(t, x) ∈ O1,

sup
0≤τ≤τ̄

|w(τ) − w⋆|2l + ǫd

∫ τ̄

0

|wii(τ) − w⋆
ii
|2l+1 dτ +

1

ǫ

∫ τ̄

0

|πw(τ)|2l dτ ≤M2,

and
1

ǫ
sup

0≤τ≤τ̄

|πw(τ)|2l−1 +
1

ǫ2

∫ τ̄

0

|πw(τ)|2l−1 dτ +

∫ τ̄

0

|∂tw(τ)|2l−1 dτ ≤M2
1 .

For w in Xl
τ̄

(
O1,M,M1

)
, we may use the estimates established for linearized systems in Theorem 3.1

of Section 3.2. Noting also that f = 0, gi = 0, and that gii is quadratic in the gradients, we obtain
upper bounds in the form

|g(t)|2l−1 ≤ c2M
2, t ∈ [0, τ̄ ], (3.34)
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and the constants c2 of this estimate may be taken identical to the constant of the linear estimates,
upon taking the maximum of both constants. Using assumption (3.29) and combining these bounds
with the linear estimates (3.14) and (3.15), we obtain that

sup
0≤τ≤t

|w̃(τ) − w⋆(τ)|2l + ǫd

∫ t

0

|w̃ii(τ) − w⋆
ii|2l+1 dτ

+
1

ǫ

∫ t

0

|πw̃(τ)|2l dτ ≤ c21 exp
(
c2(t+M1

√
t )
)(
b2 + tǫdc

2
2M

2
)
, (3.35)

1

ǫ
sup

0≤τ≤t

|πw̃(τ)|2l−1 +
1

ǫ2

∫ t

0

|πw̃(τ)|2l−1 dτ +

∫ t

0

|∂tw̃(τ)|2l−1 dτ ≤

c2 exp
(
c2(t+M1

√
t )
)(
b2 + tǫdc2M

2
)
. (3.36)

We now define
Mb = 2c1(O1)b, M1b = c2(O1,Mb)2c1(O1)b.

Let then be τ̄ ≤ 1 small enough such that

exp
(
c2(O1,Mb)(τ̄ +M1b

√
τ̄ )
)
≤ 2,

c22(O1,Mb)τ̄
(
2c1(O1)

)2 ≤ 1,

c0M1b

√
τ̄ < d1,

where we have used ‖φ‖L∞ ≤ c0|φ|l−1. Then for any w ∈ Xl
τ̄

(
O1,Mb,M1b

)
, any w0(x) such that

w0 − w⋆ ∈ H l, w0 ∈ O0, and |w0 − w⋆|2l + |πw0|2l−1/ǫ < b2, and any ǫd, ǫ ∈ (0, 1], the solution w̃ to the

linearized equations with initial condition w0 stays in the space Xl
τ̄

(
O1,Mb,M1b

)
. More specifically,

letting M̃2 and M̃2
1 be the maximum of the left hand sides of (3.35) and (3.36) respectively, we obtain

from (3.35) that

M̃2 ≤ 2c21b
2
(
1 + 4ǫdc

2
1c

2
2τ̄
)
≤ 4c21b

2 =M2
b

and from (3.36) we deduce that

M̃2
1 ≤ 2c22b

2
(
1 + 4ǫdτ̄c

2
1

)
≤M2

1b,

since 4τ̄c21 ≤ 4τ̄c21c
2
2 ≤ 1 and finally that ‖w̃− w⋆‖L∞ ≤ c0M1α

√
τ̄ < d1 and we have established that

the space Xl
τ̄

(
O1,Mb,M1b

)
is stable.

Let w and ŵ be in Xl
τ̄

(
O1,Mb,M1b

)
, let w0(x) and ŵ0(x) such that w0 − w⋆ ∈ H l, ŵ0 − w⋆ ∈ H l,

w0, ŵ0 ∈ O0, |w0 − w⋆|2l + |πw0|2l−1/ǫ < b2, |ŵ0 − w⋆|2l + |πŵ0|2l−1/ǫ < b2, let ǫd, ǫ ∈ (0, 1], and define

δw = w− ŵ and δw̃ = w̃− ˜̂w. Forming the difference between the linearized equations, we obtain that

A0(ŵ)∂tδw̃ +
∑

i∈D

Ai(ŵ)∂iδw̃− ǫd
∑

i,j∈D

Bij(ŵ)∂i∂jδw̃+
1

ǫ
L(ŵ)δw̃ = δf + ǫdδg. (3.37)

Here

δf =−
∑

i∈D

(
A0(ŵ)

(
A0(w)

)−1
Ai(w)− Ai(ŵ)

)
∂iw̃

− 1

ǫ

(
A0(ŵ)

(
A0(w)

)−1
L(w)− L(ŵ)

)
πw̃, (3.38)

δg =A0(ŵ)
(
A0(w)

)−1
g(w, ∂

x
w)− g(ŵ, ∂

x
ŵ)

+
∑

i,j∈D

(
A0(ŵ)

(
A0(w)

)−1
Bij(w)− Bij(ŵ)

)
∂i∂jw̃, (3.39)
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and we have in particular δg = δg(w, ∂
x
wii) and δgi = 0. These expressions further imply that

|δfi|2l−1 + |δfii|2l−1 ≤ c2

ǫ
|δw|2l−1,

|δgii|2l−2 ≤ c2|δw|2l−1,

where the 1/ǫ factor arises from the nonlinear stiff sources. We defineN2
l−1(a, a

′, δw̃) when [a, a′] ⊂ [0, τ̄ ]
by

N2
l−1(a, a

′, δw̃) = sup
a≤τ≤a′

(
|δw̃(τ)|2l−1 +

1

ǫ
|πδw̃(τ)|2l−2

)
+ ǫd

∫ a′

a

|δw̃ii(τ)|2l dτ

+
1

ǫ

∫ a′

a

|πδw̃(τ)|2l−1 dτ +
1

ǫ2

∫ a′

a

|πδw̃(τ)|2l−2 dτ +

∫ a′

a

|∂tδw̃(τ)|
2
l−2 dτ.

In order to obtain fixed points, we introduce the sequence of successive approximations {wk}k≥0

starting at w0 = w⋆ with wk+1 = w̃k, i.e., wk+1 is obtained as the solution w̃ = wk+1 of linearized
equations with w = wk and with initial condition w0. We also denote by δkw the difference δkw =
wk+1 − wk for k ≥ 0. We first establish that the sequence of successive approximations {wk}k≥0 is
convergent for the norm Nl−1(0, τǫ, •) and thus also for the norm of C0([0, ǫ], H l−1) over [0, τǫ] for a
suitable τǫ small enough and we then gradually extend the convergence domain over each [jτǫ, (j +
1)τǫ] ⊂ [0, τ̄ ] by induction on j. We also establish uniqueness and regularity of solutions first over [0, τǫ]
and gradually over each [jτǫ, (j + 1)τǫ] included in [0, τ̄ ].

Using the linearized estimates and the difference equation (3.37) we first obtain

N2
l−1(0, τǫ, δw̃) ≤ c2

(
|δw0|2l−1 +

1

ǫ
|πδw0|2l−2

)
+
τǫc

′
2

ǫ
sup

0≤τ≤τǫ

|δw(τ)|2l−1. (3.40)

where c2 and c′2 depends on O1 and b and where δw0 = w0− ŵ0. Let now τǫ be small enough such that

c′2τǫ
ǫ

<
1

4
,

while τ̄ /τǫ is an integer denoted by Nǫ+1. From the estimates (3.40) and since the successive approx-
imations have the same initial condition, that is δw0 = 0, we obtain that

N2
l−1(0, τǫ, δ

k+1w) ≤ 1
4N

2
l−1(0, τǫ, δ

kw),

so that N2
l−1(0, τǫ, δ

kw) ≤ N2
l−1(0, τǫ, δ

0w)/4k and defining for convenience Γ0 = N2
l−1(0, τǫ, δ

0w), we

have established that 4kN2
l−1(0, τǫ, δ

kw) ≤ Γ0. Any fixed point is also unique from the difference
estimates (3.40) written between two fixed points.

Letting for convenience

βj
k = N2

l−1(jτǫ, (j + 1)τǫ, δ
kw), 0 ≤ k, 0 ≤ j ≤ Nǫ,

we have established that 2kβ0
k ≤ Γ0, for k ≥ 0, and we next consider the interval [τǫ, 2τǫ]. From the

difference equations and the linearized estimates over [τǫ, 2τǫ] we obtain that

N2
l−1(τǫ, 2τǫ, δ

k+1w) ≤ c2N
2
l−1(0, τǫ, δ

k+1w) +
τǫc

′
2

ǫ
N2

l−1(τǫ, 2τǫ, δ
kw), (3.41)

where we have used that |δw̃(τǫ)|2l−1 + 1
ǫ
|πδw̃(τǫ)|2l−2 ≤ N2

l−1(0, τǫ, δ
k+1w). This now implies that

β1
k+1 ≤ c2β

0
k+1 +

1
4β

1
k for k ≥ 0 and multiplying by 2k+1 and letting

γjk = 2kβj
k, 0 ≤ k, 0 ≤ j ≤ Nǫ,

we have
γ1k+1 ≤ c2γ

0
k+1 +

1
2γ

1
k, 0 ≤ k. (3.42)
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Since γ0k ≤ Γ0 it is easily deduced from (3.42) that γ1k ≤ 2c2Γ
0 + γ10 and defining Γ1 = 2c2Γ

0 + γ10 we
have γ1k ≤ Γ1 for k ≥ 0. We further deduce that any fixed point w is unique over [0, 2τǫ] since it is
already unique over [0, τǫ] and from (3.41) rewritten between two fixed points it is also unique over the
interval [τǫ, 2τǫ].

The same type of estimates may now be established by induction on j for 1 ≤ j ≤ Nǫ. More
specifically, assume that for 0 ≤ i ≤ j − 1 we have inequalities in the form γik ≤ Γi where the
majorizing bounds Γi are defined by Γ0 = N2

l−1(0, τǫ, δ
0w) and Γi = 2c2Γ

i−1 +N2
l−1(iτǫ, (i+1)τǫ, δ

0w)
for 1 ≤ i ≤ j− 1, and that uniqueness of fixed points holds over [0, jτǫ]. We then consider the sequence
of approximation over the interval [jτǫ, (j + 1)τǫ]. Using the difference equations and the linearized
estimates over [jτǫ, (j + 1)τǫ], we obtain that

N2
l−1

(
jτǫ, (j + 1)τǫ, δ

k+1w
)
≤ c2N

2
l−1

(
(j − 1)τǫ, jτǫ, δ

k+1w
)
+ 1

4N
2
l−1

(
jτǫ, (j + 1)τǫ, δ

kw
)
, (3.43)

where we have used |δw̃(jτǫ)|2l−1+
1
ǫ
|πδw̃(jτǫ)|2l−2 ≤ N2

l−1

(
(j−1)τǫ, jτǫ, δ

k+1w
)
, so that βj

k+1 ≤ c2β
j−1
k+1+

1
4β

j
k. Multiplying by 2k+1 we have therefore established that

γjk+1 ≤ c2γ
j−1
k+1 +

1
2γ

j
k, (3.44)

and since γj−1
k ≤ Γj−1 it is easily deduced from (3.44) that γjk ≤ 2c2Γ

j−1 + γj0 so that defining

Γj = 2c2Γ
j−1 + γj0 = 2c2Γ

j−1 + N2
l−1(jτǫ, (j + 1)τǫ, δ

0w) we have established that γjk ≤ Γj for k ≥ 0,
so that

N2
l−1

(
jτǫ, (j + 1)τǫ, δ

kw
)
≤ Γj

2k
. (3.45)

We also deduce that any fixed point w is unique over [jτǫ, (j + 1)τǫ] since it is already unique over
[0, jτǫ] and from (3.43) written between two fixed points it is also unique over [jτǫ, (j + 1)τǫ].

Letting for short cǫ =
∑

0≤j≤Nǫ
Γj , it is obtained from (3.45) that

N2
l−1(0, τ̄ , δ

kw) ≤ cǫ

2k
, 0 ≤ k, (3.46)

where cǫ depends on ǫ, O1, b, and the data but is independent of k. We thus conclude that the
sequence if successive approximation {wk}k≥0 is convergent over [0, τ̄ ] towards a fixed point w for the
norm Nl−1(0, τ̄ ,w

k − w). Since the sequence {wk}k≥0 is bounded in the space Xl
τ̄

(
O1,Mb,M1b

)
, it

follows from standard functional analysis arguments using weakly convergent subsequences that w is
the unique solution of the system of partial differential equations with the required regularity.

The estimates (3.31) are next established by using the fact that the solution is a fixed point w̃ = w.
Denoting by w the solution of the nonlinear system of equations, letting

M2
w
= sup

0≤τ≤τ̄

|w(τ) − w⋆(τ)|2l + ǫd

∫ τ̄

0

|wii(τ)− w⋆
ii
|2l+1 dτ +

1

ǫ

∫ τ̄

0

|πw(τ)|2l dτ,

the linearized estimate (3.14) now yields that

M2
w
≤ c21 exp

(
c2(τ̄ +M1

√
τ̄ )

)(
|w0 − w⋆|2l +

1

ǫ
|w0 − w⋆|20 + τ̄ ǫdc

2
2M

2
w

)
,

and since exp
(
c2(τ̄ +M1

√
τ̄ )

)
≤ 2 and 2c21c

2
2τ̄ ≤ 1/2 by definition of τ̄ we get that

M2
w
≤ C

(
|w0 − w⋆|2l +

1

ǫ
|w0 − w⋆|20

)
, (3.47)

where C only depends on O1 and b. On the other hand, from the linearized estimates (3.15) we further
get that

1

ǫ
sup

0≤τ≤τ̄

|πw̃(τ)|2l−1 +
1

ǫ2

∫ τ̄

0

|πw̃(τ)|2l−1 dτ +

∫ τ̄

0

|∂tw̃(τ)|2l−1 dτ

≤ c2 exp
(
c2(τ̄ +M1

√
τ̄ )

)(
|w0 − w⋆|2l +

1

ǫ
|w0 − w⋆|2l−1 + τ̄ ǫdM

2
w

)
. (3.48)

Combining (3.47) and (3.48) finally yields (3.31) and the proof is complete.
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3.4 Time derivative estimates

We now strengthen the estimates for ∂tw obtained with the local existence theorem. Such extra
estimates are relevant when the initial time derivative ∂tw0 at t = 0 is close to the equilibrium manifold
and will be needed in the convergence analysis of the fast relaxation limit.

Theorem 3.5. Keep the assumptions of Theorem 3.4 and further assume that l ≥ l0+4. There exists
C depending on O1 and b such that the following estimates hold

sup
0≤τ≤τ̄

(
|∂tw(τ)|2l−2 +

1

ǫ
|π∂tw(τ)|2l−3

)
+ ǫd

∫ τ̄

0

|∂twii(τ)|2l−1 dτ +
1

ǫ

∫ τ̄

0

|π∂tw(τ)|2l−2 dτ

+
1

ǫ2

∫ τ̄

0

|π∂tw(τ)|2l−3 dτ +

∫ τ̄

0

|∂2tw(τ)|
2

l−3 dτ

≤ C
(
|w0 − w⋆|2l +

1

ǫ
|πw0|2l−1 + |∂tw0|2l−2 +

1

ǫ
|π∂tw0|2l−3

)
. (3.49)

Proof. Since l ≥ l0 + 4 we deduce from the governing equations and the regularity of the solution w

that
∂twi ∈ C0

(
[0, τ̄ ], H l−1

)
∩ C1

(
[0, τ̄ ], H l−3

)
,

∂twii ∈ C0
(
[0, τ̄ ], H l−2

)
∩ C1

(
[0, τ̄ ], H l−4

)
∩ L2

(
(0, τ̄ ), H l−1

)
,

although we do not have uniform bounds in these function spaces because of the stiff sources. Letting
m̂ij(w) = mij + ∂wBij , i, j ∈ D, the third order tensors m̂ij have at least regularity κ − 3 and the
governing equations may then be written

A0(w)∂tw +
∑

i∈D

Ai(w)∂iw− ǫd
∑

i,j∈D

Bij(w)∂i∂jw+
1

ǫ
L(w)w = ǫd

∑

i,j∈D

m̂ij(w)∂iw∂jw.

Differenciating this system with respect to time we obtain that w̃ = ∂tw satisfies

A0(w)∂tw̃ +
∑

i∈D

Ai(w)∂iw̃ − ǫd
∑

i,j∈D

Bij(w)∂i∂jw̃+
1

ǫ
L(w)w̃ = ft + ǫdgt, (3.50)

where

ft = −
∑

i∈D

A0∂w(A
−1

0 Ai)w̃∂iw− 1

ǫ
A0∂w(A

−1

0 L)w̃ πw, (3.51)

gt =
∑

i,j∈D

A0∂w(A
−1

0 Bij)w̃∂i∂jw+
∑

i,j∈D

A0∂w(A
−1

0 m̂ij) w̃ ∂iw ∂jw

+
∑

i,j∈D

m̂ij ∂iw̃ ∂jw +
∑

i,j∈D

m̂ij ∂iw ∂jw̃. (3.52)

Step 0. The expressions (3.51)(3.52) are not convenient and are rewritten by using the generalized

inverse L
♯
of L such that L L

♯
= L

♯
L = π, L

♯
= (L

♯
)t, N(L

♯
) = E and R(L

♯
) = E

⊥. This pseudo inverse

L
♯
is the generalized inverse of L with prescribed range R(L

♯
) = E

⊥ and nullspace N(L
♯
) = E, and is a

smooth function of L [14, 30]. Using L
♯
we deduce from the governing equations that

πw

ǫ
= −L

♯
(
A0(w)πw̃ +

∑

i∈D

Ai(w)∂iw − ǫd
∑

i,j∈D

Bij(w)∂i∂jw− ǫdb
)
, (3.53)

keeping in mind that L
♯
= L

♯
π and πA0 = A0π. We may thus rewrite ft and gt in the form

ft = −
∑

i∈D

A0∂w(A
−1

0 Ai)w̃∂iw+
∑

i∈D

A0∂w(A
−1

0 L)w̃L
♯
Ai∂iw+ A0∂w(A

−1

0 L)w̃ L
♯
A0πw̃, (3.54)
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gt =
∑

i,j∈D

A0∂w(A
−1

0 Bij)w̃∂i∂jw+
∑

i,j∈D

A0∂w(A
−1

0 m̂ij) w̃ ∂iw ∂jw

−
∑

i,j∈D

A0∂w(A
−1

0 L)w̃L
♯
Bij∂i∂jw −

∑

i,j∈D

A0∂w(A
−1

0 L)w̃L
♯
mij∂iw∂jw

+
∑

i,j∈D

m̂ij ∂iw̃ ∂jw +
∑

i,j∈D

m̂ij ∂iw ∂j w̃. (3.55)

The equation (3.50) is thus formally ‘linearized’ except for the quadratic term A0∂w(A
−1

0 L)w̃ L
♯
A0πw̃

in ft arising from the stiff sources. In order to derive the new estimates, we use a similar notation as
in Theorem 3.1 and Theorem 3.4. In particular, δ1 = δ(O1) ≤ 1 denotes a generic small constant only
depending on O1, c1 = c1(O1) ≥ 1 a generic large constant only depending on O1, and c2 = c2(O1, b) ≥
1 a generic large constant depending on O1 and the constant b of Theorem 3.4.

Step 1. Zeroth order entropic estimates for w̃ = ∂tw. We multiply (3.50) by w̃ and proceed as in the
proof of Theorem 3.1. Using the symmetry of A0 and Ai, integrating over Rd, and using the Garding
inequality, we obtain that

∂tE
2
0 (w̃) + ǫdδ1|w̃ii|21 +

δ1
ǫ
|πw̃|20 ≤ c2(1 + |∂tw|l0)E

2
0(w̃) +

∫

Rd

〈ft + ǫdgt, w̃〉dx,

and we have to investigate the contributions associated with 〈ft, w̃〉 and 〈gt, w̃〉. All terms linear in w̃

in ft and gt yield contributions majorized by

c1|∂xw|l0 |w̃|20 + ǫdc1
(
|∂

x
w|2l0 + |∂2

x
wii|l0

)
|w̃|20 + ǫdc1|∂xw|l0 |w̃ii|1|w̃|0,

and the quadratic term is also majorized by c1|w̃|l0 |w̃|20. Using the estimates of Theorem 3.4 and
l0 = [d/2] + 1 > d, we obtain after some algebra

∂tE
2
0(w̃) + ǫdδ1|w̃ii|21 +

δ1
ǫ
|πw̃|20 ≤ c2(1 + |∂tw|l0)E

2
0(w̃).

From the Gronwall inequality and the estimates (3.31) we thus obtain that for 0 ≤ t ≤ τ̄

sup
0≤τ≤t

∣∣w̃(τ)
∣∣2
0
+ ǫd

∫ t

0

|w̃ii(τ)|21 dτ +
1

ǫ

∫ t

0

|πw̃|20 dτ ≤ c21 exp
(
c2(t+M1

√
t )
)
|w̃0|20,

which is the zeroth order estimate for w̃ = ∂tw.

Step 2. The projected zeroth order estimate. We multiply the governing equation (3.50) by (1/ǫ)πw̃
and proceed as in the proof of Theorem 3.1. Integrating over Rd we obtain that

1

2ǫ
∂tE

2
0 (πw̃) +

δ1
ǫ2
|πw̃|20 ≤ c1

ǫ
|∂tw|l0 |πw̃|

2
0 +

c1

ǫ
|w̃|1|πw̃|0

+ǫd
c1

ǫ
|w̃ii|2|πw̃|0 +

1

ǫ

∫

Rd

〈ft + ǫdgt, πw̃〉dx,

and we have to examine the contributions arising from 〈ft, πw̃〉 and 〈gt, πw̃〉. All terms linear in w̃ in
ft and gt yield contributions majorized by

c1

ǫ
|∂

x
w|l0 |w̃|0|πw̃|0 + ǫd

c1

ǫ

(
|∂

x
w|2l0 + |∂2

x
wii|l0

)
|w̃|0|πw̃|0 + ǫd

c1

ǫ
|∂xw|l0 |w̃ii|1|πw̃|0,

and the quadratic term is also majorized by (c1/ǫ)|w̃|l0 |πw̃|20. Using the Cauchy-Schwarz inequality
and the estimates (3.31) of Theorem 3.4 we obtain after some algebra

1

ǫ
∂tE

2
0(πw̃) +

δ1
ǫ2
|πw̃|20 ≤ c1

ǫ
|∂tw|l0E

2
0(πw̃) + c2|w̃|21 + ǫ2dc1|w̃ii|22. (3.56)

This inequality will be used in the following in order to establish the l′th order estimate for w̃.
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Step 3. The l′th zeroth order estimate. We let for short l′ = l − 2 so that l′ ≥ l0 + 2. Differentiating
the hyperbolic-parabolic system (3.50) with respect to the space variable and denoting by ∂α the αth
derivative spatial operator we obtain that

A0(w)∂t∂
αw̃ +

∑

i∈D

Ai(w)∂i∂
αw̃− ǫd

∑

i,j∈D

Bij(w)∂i∂j∂
αw̃+

1

ǫ
L(w)∂αw̃ = fαt + ǫdg

α
t , (3.57)

with

fαt = A0∂
α
(
A

−1

0 ft
)
−

∑

i∈D

A0

[
∂α,A

−1

0 Ai

]
∂iw̃− 1

ǫ
A0

[
∂α,A

−1

0 L
]
πw̃, (3.58)

gαt = A0∂
α
(
A

−1

0 gt
)
+

∑

i,j∈D

A0

[
∂α,A

−1

0 Bij

]
∂i∂jw̃. (3.59)

Multiplying equation (3.57) by ∂αw̃ |α|!/α!, integrating over R
d, summing over 0 ≤ |α| ≤ l′, and

proceeding as for the zeroth order estimate, we obtain that

∂tE
2
l′(w̃) + ǫdδ1|w̃ii|2l′+1 +

δ1
ǫ
|πw̃|2l′ ≤ c2(1 + |∂tw|l0)E

2
l′(w̃)

+
∑

0≤|α|≤l′

|α|!
α!

∫

Rd

〈fαt + ǫdg
α
t , ∂

αw̃〉dx,

and we have to investigate the residuals associated with fαt and gαt . Keeping in mind that the zeroth
order terms with |α| = 0 have already been examined in Step 1, we only have to analyze the terms
such that 1 ≤ |α| ≤ l′.

The terms in fαt and gαt arising from A0∂
α
(
A

−1

0 ft
)
and A0∂

α
(
A

−1

0 gt
)
yield contributions majorized

by
c2|w|l′ |∂xw|l′ |w̃|2l′ + ǫdc2|w|l′

(
|∂

x
w|2l′ + |∂2

x
wii|l′

)
|w̃|2l′

+ǫdc2|w|l′ |∂xw|l′ |w̃|l′ |w̃ii|l′+1 + c2|w|l′ |w̃|3l′
and thus by

c2
(
|w̃|2l′ + ǫd|w̃|l′ |w̃ii|l′+1 + |w̃|3l′

)
,

where the last term arise from the quadratic contribution in ft. On the other hand, the commutators
contributions are estimated as

∣∣∣
∫

Rd

〈
A0

[
∂α,A

−1

0 Ai

]
∂iw̃, ∂

αw̃
〉
dx

∣∣∣ ≤ c2|w|l′ |w̃|2l′ ,

1

ǫ

∣∣∣
∫

Rd

〈
A0

[
∂α,A

−1

0 L
]
πw̃, ∂αw̃

〉
dx

∣∣∣ ≤ c2

ǫ
|w|l′ |πw̃|l′−1|πw̃|l′ ,

∣∣∣
∫

Rd

〈
A0

[
∂α,A

−1

0 Bij

]
∂i∂jw̃, ∂

αw̃
〉
dx

∣∣∣ ≤ c2 |w|l′ |w̃ii|l′+1 |w̃ii|l′ .

Collecting all contributions and after some algebra we have established that

∂tE
2
l′ (w̃) + ǫdδ1|w̃ii|2l′ +

δ1
ǫ
|πw̃|2l′ ≤ c2(1 + |∂tw|l′−1)E

2
l′(w̃) +

c2

ǫ
|πw̃|2l′−1. (3.60)

In order to handle the term (c2/ǫ)|πw̃|2l−1 in the right hand side arising from the commutators we use
the inequality |φ|2l′−1 ≤ β|φ|2l′ +C(β)|φ|20 and add the resulting inequality to the projected zeroth order
inequality (3.56) obtained in Step 2. Assuming that l′ ≥ l0 + 1 ≥ 2 we obtain that

∂t

(
E2

l′(w̃) +
1

ǫ
E2

0 (πw̃)
)
+ ǫdδ1|w̃ii|2l′+1 +

δ1
ǫ
|πw̃|2l′

+
δ1
ǫ2
|πw̃|20 ≤ c2(1 + |∂tw|l′−1)

(
E2

l′(w̃) +
1

ǫ
E2

0 (πw̃)
)
,
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From the Gronwall inequality, we obtain that

sup
0≤τ≤t

(
E2

l′

(
w̃(τ)

)
+

1

ǫ
E2

0

(
πw̃(τ)

))
+ ǫd

∫ t

0

|w̃ii(τ)|2l′+1 dτ +
1

ǫ

∫ t

0

|πw̃|2l′ dτ +
1

ǫ2

∫ t

0

|πw̃|20 dτ

≤ c21 exp
(
c2(t+M1

√
t )
) (

|w̃0|2l′ +
1

ǫ
|πw̃0|20

)
,

which is the l′ order estimate for w̃ = ∂tw and l′ = l − 2.

Step 4. Application of linearized estimates to w̃ = ∂tw. Taking into account the l′ order estimate for
w̃ = ∂tw, it is now possible to apply the linearized estimates (3.15). From the expression (3.54) and
(3.55) of ft and gt, we indeed obtain that ft ∈ C0

(
[0, τ̄ ], H l−2

)
and gt ∈ C0

(
[0, τ̄ ], H l−3

)
so that

ft ∈ C0
(
[0, τ̄ ], H l−3

)
∩ L1

(
(0, τ̄ ), H l−2

)
, gt ∈ C0

(
[0, τ̄ ], H l−3

)
,

with uniform estimates in terms of

|w0 − w⋆|2l +
1

ǫ
|πw0|2l−1 + |w̃0|2l−2 +

1

ǫ
|πw̃0|2l−3.

The estimates (3.49) are then a direct consequence of (3.14) and (3.15) applied with l′ = l− 2 in place
of l and with w̃ = ∂tw.

Corollary 3.6. Keeping the assumptions of Theorem 3.5, there exists C only depending on O1 and b
such that

1

ǫ2
sup

0≤τ≤t

|πw(τ)|2l−2 ≤ C
(
|w0 − w⋆|2l +

1

ǫ
|πw0|2l−1 + |∂tw0|2l−2 +

1

ǫ
|π∂tw0|2l−3

)
. (3.61)

Moreover, if w and w′ corresponds to two initial conditions w0 and w′
0 as in Theorem 3.4 and if

|w0 − w⋆|2l + 1
ǫ
|πw0|2l−1+ |∂tw0|2l−2+

1
ǫ
|π∂tw0|2l−3 remains bounded by some constant only depending on

O1 and b, letting δw = w − w′ and δw0 = w0 − w′
0, then there exists C only depending on O1 and b

such that

sup
0≤τ≤τ̄

(
|δw(τ)|2l−1 +

1

ǫ
|πδw(τ)|2l−2

)
+ ǫd

∫ τ̄

0

|δwii(τ)|2l dτ +
1

ǫ

∫ τ̄

0

|πδw(τ)|2l−1 dτ

+
1

ǫ2

∫ τ̄

0

|πδw(τ)|2l−2 dτ +

∫ τ̄

0

|∂tδw(τ)|
2
l−2 dτ ≤ C

(
|δw0|2l−1 +

1

ǫ
|πδw0|2l−2

)
. (3.62)

Proof. The new estimate (3.61) is first a consequence of Theorem 3.5 and of the relation (3.53).
In order to establish the differential estimate (3.62) we now combine the linearized estimates

(3.37) for the difference δw̃ (where w̃ = w, ˜̂w = ŵ and δw̃ = δw) with the new estimates (3.61) of
sup

0≤τ≤t

|πw(τ)|l−2/ǫ. Keeping in mind the notation

N2
l−1(0, τ

′, δw̃) = sup
0≤τ≤τ ′

(
|δw̃(τ)|2l−1 +

1

ǫ
|πδw̃(τ)|2l−2

)
+ ǫd

∫ τ ′

0

|δw̃ii(τ)|2l dτ

+
1

ǫ

∫ τ ′

0

|πδw̃(τ)|2l−1 dτ +
1

ǫ2

∫ τ ′

0

|πδw̃(τ)|2l−2 dτ +

∫ τ ′

0

|∂tδw̃(τ)|2l−2 dτ,

for 0 ≤ τ ′ ≤ τ , we obtain from the linearized difference equations (3.37) that

N2
l−1(0, τ

′, δw̃) ≤c2

(
|δw0|2l−1 +

1

ǫ
|πδw0|2l−2

)

+ c2

(
ǫd

∫ τ ′

0

|δgii|2l−2 dτ +
{∫ τ ′

0

|δf|l−1 dτ
}2

+

∫ τ ′

0

|δf|2l−2 dτ
)
.
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From the expressions (3.38) and (3.39) of δf and δg, all terms are easily treated except the terms arising
from the stiff sources

−1

ǫ

(
A0(ŵ)

(
A0(w)

)−1
L(w)− L(ŵ)

)
πw̃,

which require the stronger estimates for the l − 2 norms with

{∫ τ ′

0

|δf|l−1 dτ
}2

≤ τ ′
{∫ τ ′

0

|δf|2l−1 dτ
}
≤ τ ′c2 sup

[0,τ ′]

|δw|2l−1,

since 1
ǫ2

∫ τ̄

0|πw(τ)|
2
l−1 dτ is bounded, and

∫ τ

0

|δf|2l−2 dτ ≤ τ ′ sup
[0,τ ]

|w|2l−2 sup
[0,τ ]

|δw|2l−1 ≤ τ ′c2 sup
[0,τ ]

|δw|2l−1,

thanks to the new estimates (3.61), and

∫ τ

0

|δgii|2l−2 dτ ≤ τ ′c2 sup
[0,τ ]

|δw|2l−1,

thanks to the a priori estimates obtained in the local existence theorem. Assuming then that τ ′ is
such that 3τ ′c22 <

1
2 , we obtain the estimates (3.62) over the interval [0, τ ′]. Reitering the linearized

estimates over the intervals [jτ ′, (j + 1)τ ′] whose number is independent of ǫ completes the proof.

Finally note that a priori estimates for πw/ǫ generally improve as w0 and its time derivatives ∂kt w0,
k ≥ 1, are closer to the equilibrium manifold E . We may in particular use the extra estimates for the
first time derivative itself and obtain the following new estimates.

Theorem 3.7. Keep the assumptions of Theorem 3.4 and assume that l ≥ l0 + 6. There exists C
depending on O1 and b such that the following estimates hold

sup
0≤τ≤τ̄

(
|∂2tw(τ)|2l−4 +

1

ǫ
|π∂2tw(τ)|2l−5

)
+ ǫd

∫ τ̄

0

|∂2twii(τ)|2l−3 dτ +
1

ǫ

∫ τ̄

0

|π∂2tw(τ)|
2

l−4 dτ

+
1

ǫ2

∫ τ̄

0

|π∂2tw(τ)|
2

l−5 dτ +

∫ τ̄

0

|∂3tw(τ)|
2

l−5 dτ ≤ C
(
|w0 − w⋆|2l +

1

ǫ
|πw0|2l−1

+ |∂tw0|2l−2 +
1

ǫ
|π∂tw0|2l−3 + |∂2tw0|

2

l−4 +
1

ǫ
|π∂2tw0|

2

l−5

)
. (3.63)

Corollary 3.8. Keeping the assumptions of Theorem 3.7, we have estimates in the form

1

ǫ2
sup

0≤τ≤t

|π∂tw(τ)|2l−4 ≤C
(
|w0 − w⋆|2l +

1

ǫ
|πw0|2l−1 + |∂tw0|2l−2

+
1

ǫ
|π∂tw0|2l−3 + |∂2tw0|

2

l−4 +
1

ǫ
|π∂2t w0|

2

l−5

)
. (3.64)

3.5 Initial layers

We investigate in this section the situation of ill prepared initial data. In order to bridge with the well
prepared data case, it is then necessary to take into account initial layer correctors. Such correctors
may notably be investigated by using composite expansions [50] but such a general study lay outside
the range of the present work. More simply, in this paper, we are looking for a corrector in the form
w0l(τ, x) + ǫw1l(τ, x) where τ = t/ǫ. This corrector must decrease exponentially to zero as τ → ∞, and
be such that the new variable

ŵ = w− (w0l + ǫw1l),

corresponds to a well prepared data case. In other words, we want w0l and w1l to decrease exponentially
with τ and ŵ to be such that (1/ǫ)|πŵ0|2l and (1/ǫ)|π∂tŵ0|2l−1 remain bounded for ǫ ∈ (0, 1]. Note that
the initial layer correctors are then only significant for small times since τ = t/ǫ.
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At zeroth order, the initial layer is along the fast manifold w0l = πw0l and is defined from the
simplified system of ordinary differential equations

A0(w0)∂τw
0l + L(w0)w

0l = 0, (3.65)

with initial condition w0l
0 (x) = πw(0, x) = πw0(x). The corresponding corrector wl

0 is given by

w0l = exp
(
−τ A−1

0 (w0)L(w0)
)
πw0, (3.66)

where A
−1

0 and L are evaluated at the inital value of the normal variable w0 = w0(x).
At first order, only the fast component is also taken into account w1l = πw1l, and we define w1l

from the system of ordinary differential equations

A0(w0)∂τw
1l + σπΞ + L(w0)w

1l = 0, (3.67)

with zero initial condition w1l(x) = 0. We have denoted here by Ξ the time independant vector

Ξ =
∑

i∈D

Ai(w0)∂iw0 − ǫd
∑

i,j∈D

∂i
(
Bij(w0)∂jw0

)
− ǫdb(w0, ∂xwii 0),

and by σ = σ(τ) an exponential function in the form σ(τ) = exp(−ατ) where α > 0 is a constant of

the order of magnitude of the (bounded) spectrum of A
−1

0 (w0)L(w0). The equation (3.67) may again
be integrated and yields the explicit solution

w1l = −
∫ τ

0

exp
(
−(τ − τ ′)A

−1

0 (w0)L(w0)
)
σ(τ ′) dτ ′ A

−1

0 πΞ. (3.68)

This corrector w1l is also readily seen to decrease exponentially to zero as τ → ∞.
The initial value ŵ0 of the modified variable ŵ then has its projection of the fast manifold πŵ0 such

that
πŵ0 = π

(
w0 − (w0l

0 + ǫw1l
0 )

)
= π(w0 − πw0) = 0,

and

A0(w0)∂tπŵ0 = πA0(w0)∂tŵ0 = πA0(w0)
(
∂tw0 −

1

ǫ
(∂τw

0l
0 + ǫ∂τw

1l
0 )

)

= π
(
−Ξ− 1

ǫ
L(w0)w0 −

1

ǫ
(−L(w0)w0 − ǫπΞ)

)
= 0,

so that (1/ǫ)|πŵ0|2l and (1/ǫ)|π∂tŵ0|2l−1 are bounded. This shows that the transformed problem in
terms of the modified variable ŵ corresponds to the situation of well prepared data.

4 Convergence analysis and volume viscosity

Denoting by ϕ the linear operator

ϕ =




1 01,d 0 0

0d,1 I 0d,1 0

0 01,d 0 1


 , (4.1)

the ‘equilibrium components’ ϕw of the normal variable w are given by ϕw = (ρ,v,−1/T )t. We first
estimate in this section to what extend this equilibrium projection ϕw of the normal variable w out of
equilibrium satisfies the equations of the normal variable we at thermodynamic equilibrium. We then
establish a stability theorem for the equations governing fluids at thermodynamic equilibrium. By
combining these results, we rigorously establish that the difference ϕw−we is O

(
ǫ(ǫ+ ǫd)

)
. This yields

a convergence theorem for the fast relaxation limit as well as a rigorous justification of the volume
viscosity term appearing in the equilibrium fluid model.
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4.1 Residual estimates

The equations governing fluids at thermodynamic equilibrium have been investigated in Section 2.7
and the corresponding equations in normal form read

A
e

0(we)∂twe +
∑

i∈D

A
e

i (we)∂iwe − ǫd
∑

i,j∈D

∂i
(
B
e

ij(we)∂jwe

)
− ǫdbe(we, ∂xweii) = 0, (4.2)

where we = (ρe,ve,−1/Te)
t denotes the normal variable at equilibrium. On the other hand, using

the Chapman-Enskog expansion, it has been established in previous work [30] that the equilibrium
projection ϕw = (ρ,v,−1/T )t of the normal variable out of equilibrium w is formally an O

(
ǫ(ǫ + ǫd)

)

approximate solution of the one-temperature governing equations.
We estimate rigorously in this section the residual h defined by

A
e

0(ϕw)∂t(ϕw) +
∑

i∈D

A
e

i (ϕw)∂i(ϕw) − ǫd
∑

i,j∈D

∂i
(
B
e

ij(ϕw)∂j(ϕw)
)

− ǫdbe
(
ϕw, ϕ∂

x
wii

)
= h, (4.3)

that is, we estimate the ‘default to equilibrium residual’ of the projection ϕw. Using estimates for h

we will deduce in the next section estimates for the difference ϕw − we and establish a convergence
theorem in the fast relaxation limit.

We begin by evaluating h in terms of fluid properties and this requires a few notation and technical
lemmas. We denote by θ the reduced temperature difference

θ =
Ttr − Tin

ǫ
, (4.4)

so that θ = −TtrTinπw/ǫ. The estimates for hyperbolic-parabolic systems with stiff sources obtained
in Section 3 yield in particular various estimates of θ uniformly with respect to ǫ, ǫd ∈ (0, 1]. We first
investigate the difference φ(Ttr, Tin) − φ(T, T ) for a smooth function of the translational and internal
temperatures.

Lemma 4.1. Let φ be a Cκ function φ(Ttr, Tin) of both temperatures Ttr and Tin. Then

φ(Ttr, Tin)− φ(T, T ) = ǫh̄φ(θ, Ttr, Tin), (4.5)

where h̄φ is a Cκ−1 function of Ttr and Tin and is also proportional to θ.

Proof. We may first write

h̄φ =
Ttr − T

ǫ

∫ 1

0

∂Ttr
φ(T + s(Ttr − T ), T ) ds+

Tin − T

ǫ

∫ 1

0

∂Tin
φ(Ttr, T + s(Tin − T )) ds,

and since Ttr − T = (Ttr − Tin)c̃in/c̃v and (Tin − T ) = −(Ttr − Tin)cv,tr/c̃v we obtain that

h̄φ = θ
{ c̃in
c̃v

∫ 1

0

∂Ttr
φ(T + s(Ttr − T ), T ) ds− cv,tr

c̃v

∫ 1

0

∂Tin
φ(Ttr, T + s(Tin − T )) ds

}
.

Finally h̄φ is Cκ−1 since c̃in and c̃v are Cκ−1 functions of (Ttr, Tin), since T is a Cκ function of (Ttr, Tin)
and since φ is Cκ .

We may now use this lemma in order to rewrite in a convenient form the various transport coefficients
appearing in the governing equations. Keeping in mind that the viscosity η is given by η = ǫdη̄ from
(2.11), and using Lemma 4.1 with φ = η̄, we obtain that η̄(Ttr, Tin)−η̄e(T ) = ǫh̄η̄ where η̄e(T ) = η̄(T, T ).
Further defining the total conductivity as λ = λtr,tr + λtr,in + λin,tr + λin,in, we may write from (2.11)
that λ = ǫdλ̄ where λ̄ = λ̄tr,tr + λ̄tr,in + λ̄in,tr + λ̄in,in, and using Lemma 4.1 with φ = λ̄, we then have

λ̄(Ttr, Tin)− λ̄e(T ) = ǫh̄
λ̄
where λ̄e(T ) = λ̄(T, T ). Finally, the volume viscosity may be written κ = ǫκ̄
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from (2.14) and using Lemma 4.1 with φ = κ̄ yields that κ̄(Ttr, Tin) − κ̄e(T ) where κ̄e(T ) = κ̄(T, T ).
The full transport coefficients are thus in the form

κ(Ttr, Tin)− κe(T ) = ǫ2h̄κ̄, η(Ttr, Tin)− ηe(T ) = ǫǫdh̄η̄,

λ(Ttr, Tin)− λe(T ) = ǫǫdh̄λ̄, (4.6)

with κe(T ) = ǫκ̄e(T ), ηe(T ) = ǫdη̄e(T ), and λe(T ) = ǫλ̄e(T ). We further define the reduced transport
fluxes

Qtr = −λ̄tr,tr∇Ttr − λ̄tr,in∇Tin, Qin = −λ̄in,tr∇Ttr − λ̄in,in∇Tin, (4.7)

Q = Qtr +Qin, Π = −η̄
(
∇v + (∇v)t − 2

d′
(∇·v)I

)
, (4.8)

in such a way that

Q = ǫdQ, Qtr = ǫdQtr, Qin = ǫdQin, Π = ǫdΠ . (4.9)

From the relation (2.15) we next obtain

ρr(Ttr − T ) = −κe(T )∇·v − ǫ2
(
h̄κ̄∇·v +

κ̄

rTtr
(∂tθ + v·∇θ)

)

−ǫǫd
κ̄

p

(
Π :∇v +∇·Qtr −

cv,tr
cin

∇·Qin

)
, (4.10)

and we are ready to investigate the structure of the residual h.

Proposition 4.2. The residual h may be written in the form

h = ǫ2hr + ǫǫdhd, (4.11)

with
hr =

(
(∂we

ve)(ϕw)
)t ∑

i∈D

∂ihr,i, hd =
(
(∂we

ve)(ϕw)
)t ∑

i∈D

∂ihd,i, (4.12)

and denoting by ξ = (ξ1, . . . , ξd)
t an arbitrary vector of Rd, the components hr,i and hd,i are given by

∑

i∈D

ξihr,i =
(
0, aξ, av·ξ

)t
, (4.13)

∑

i∈D

ξihd,i =
(
0, h̄η̄S·ξ + bξ, h̄η̄〈Sv, ξ〉+ bv·ξ + h̄

λ̄
∇T ·ξ + c

)t
, (4.14)

where
a = h̄κ̄∇·v + (κ̄/rTtr)(∂tθ + v·∇θ), (4.15)

b = (κ̄/p)
(
Π:∇v +∇·Qtr − (cv,tr/cin)∇·Qin

)
, (4.16)

ci = (λ̄tr,tr + λ̄in,tr)∂i(θc̃in/c̃v)− (λ̄tr,in + λ̄in,in)∂i(θcv,tr/c̃v), (4.17)

and where S = ∇v + (∇v)t − 2
d′
(∇·v)I and S = (Sij)i,j∈D.

Proof. The residual h associated with the normal form is directly related to the residual hu associated

with the conservative variable by the relation h =
(
∂we

ve(ϕw)
)t
hu. It is thus sufficient to establish that

hu = ǫ2
∑

i∈D

∂ihr,i + ǫǫd
∑

i∈D

∂ihd,i, (4.18)

by using the error functions h̄η̄, h̄κ̄, h̄λ̄, the reduced transport fluxes Π, Qtr, Qin, the coefficients κ̄, η̄,

λ̄, and the expression (4.10).
In order to evaluate the residual hu associated with the conservative formulation, we start from

the total mass, momentum and total energy conservation equations. In the momentum and energy
conservation equations, the translational temperature Ttr appearing in the state law is expressed in
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terms of T and the volume viscosity correction by using (4.10). All transport coefficients in the
momentum and energy conservation equations are also expressed using Lemma 4.1. In addition, the
temperatures Ttr and Tin in the heat fluxes are expressed as Ttr = T +ǫθc̃in/c̃v and Tin = T −ǫθcv,tr/c̃v.

More specifically, from (4.10) we first obtain the expression of hr,i as well as the contributions
proportional to (κ̄/p)

(
Π:∇v+∇·Qtr − (cv,tr/cin)∇·Qin

)
in hd,i. The remaining contributions in hd,i

then arise from the viscous tensor which is written

Π = −ηe(T )S− ǫǫdh̄η̄S,

and from the heat flux written

Q = −λe(T )∇T − ǫǫd

(
h̄
λ̄
∇T + (λ̄tr,tr + λ̄in,tr)

∇(Ttr − T )

ǫ
+ (λ̄tr,in + λ̄in,in)

∇(Tin − T )

ǫ

)
.

Using then Ttr = T+ǫθc̃in/c̃v and Tin = T−ǫθcv,tr/c̃v and regrouping the various error terms completes
the proof.

We now estimate the residuals hr and hd from (4.11)–(4.12) in the functional spaces L2
(
(0, τ̄), H l−4

)

and L2
(
(0, τ̄), H l−3

)
, respectively, uniformly with respect to the parameters ǫ, ǫd ∈ (0, 1].

Theorem 4.3. Assume that l ≥ l0 + 4 and that w0 is such that

|w0 − w⋆|2l +
1

ǫ
|πw0|2l−1 + |∂tw0|2l−2 +

1

ǫ
|π∂tw0|2l−3

is uniformly bounded independently of ǫ ∈ (0, 1]. Then the residual hr belongs to C0
(
[0, τ̄ ], H l−3

)

and is bounded in L2
(
(0, τ̄ ), H l−4

)
independently of ǫ, ǫd ∈ (0, 1], and the residual hd belongs to

C0
(
[0, τ̄ ], H l−3

)
and is bounded in L2

(
(0, τ̄), H l−3

)
independently of ǫ, ǫd ∈ (0, 1].

Proof. It is sufficient to establish the regularity property and the uniform estimates for the residuals∑
i∈D ∂ihr,i and

∑
i∈D ∂ihd,i associated with the conservative form hu since h = (∂we

ve)
thu. It is thus

sufficient to establish that hr,i ∈ C0
(
[0, τ̄ ], H l−2

)
is uniformly bounded in L2

(
(0, τ̄), H l−3

)
and that

hd,i ∈ C0
(
[0, τ̄ ], H l−2

)
is uniformly bounded in L2

(
(0, τ̄), H l−2

)
for i ∈ D.

Using the relations (4.13) and (4.15) for hr,i and the relations (4.14), (4.16) and (4.17) for hd,i, where
θ has been written (Ttr − Tin)/ǫ, a direct examination of their components shows that there are all in
the space C0

(
[0, τ̄ ], H l−2

)
since w−w⋆ ∈ C0

(
[0, τ̄ ], H l

)
, ∂

x
w ∈ C0

(
[0, τ̄ ], H l−1

)
, ∂tw ∈ C0

(
[0, τ̄ ], H l−2

)

and ∂2
x
w ∈ C0

(
[0, τ̄ ], H l−2

)
.

On the other hand, the uniform bound for hr,i in L
2
(
(0, τ̄), H l−3

)
is a consequence of the uniform

bound for first derivatives of w in L2
(
(0, τ̄), H l−1

)
, of the uniform bound for ∂

x
θ in L2

(
(0, τ̄), H l−2

)

due to (3.31), and of the uniform bounds of ∂tθ in L2
(
(0, τ̄ ), H l−3

)
obtained with (3.49). Similarly,

the uniform bounds for hd,i in L
2
(
(0, τ̄ ), H l−2

)
are consequences of the uniform bounds for first and

second derivatives in L2
(
(0, τ̄), H l−2

)
, and of the uniform bounds for ∂

x
θ in L2

(
(0, τ̄ ), H l−2

)
due to

(3.31). It is interesting to note that the most difficult term to estimate is the time derivative of the
fast variable ∂tθ.

4.2 Local stability at equilibrium and convergence

We first investigate a local existence theorem for an abstract perturbed hyperbolic-parabolic system
of partial differential equations in normal form with small second order terms and without sources.
These results are then applied to the limit one-temperature fluid model presented in Section 2.7. For
the sake of notational simplicity we keep the notation of previous sections even though these results
are to be applied to the normal variable we of equilibrium fluids.

Theorem 4.4. Let d ≥ 1 and l ≥ [d/2]+2 be integers and let b > 0 be given and consider the perturbed
system of equations

A0(w)∂tw+
∑

i∈D

Ai(w)∂iw− ǫd
∑

i,j∈D

∂i
(
Bij(w)∂jw

)
− ǫdb(w, ∂xw) = f + ǫdg, (4.19)
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where b = −∑
i,j∈D ∂i(∂wv)

t (∂
v
w)tBij ∂jw and where for some positive τ̄m > 0

f ∈ C0
(
[0, τ̄m], H

l−1
)
∩ L1

(
[0, τ̄m], H

l
)
, (4.20)

g ∈ C0
(
[0, τ̄m], H

l−1
)
, gi = 0. (4.21)

Let O0 be given such that O0 ⊂ Ow, d1 such that 0 < d1 < d(O0, ∂Ow), and define

O1 = {w ∈ Ow; d(w,O0) < d1 }.

There exists τ̄ with 0 < τ̄ ≤ τ̄m and χ > 0 depending on O1 and b, and independent on ǫd ∈ (0, 1], such
that for any w0 with w0 ∈ O0 and any f and g satisfying (4.20)(4.21) with

|w0 − w⋆|2l < b2,
{∫ t

0

|f|l dτ
}2

+

∫ t

0

|f|2l−1 dτ < χb2,

∫ t

0

|g|2l−1 dτ < χb2, (4.22)

there exists a unique local solution w to the perturbed system (4.19) with initial condition

w(0, x) = w0(x), x ∈ R
d,

such that
w(t, x) ∈ O1, t ∈ [0, τ̄ ], x ∈ R

d,

and
wi − w⋆

i
∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−1

)
,

wii − w⋆
ii
∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−2

)
∩ L2

(
(0, τ̄), H l+1

)
.

In addition, there exists C > 0 only depending on O1 and b, such that

sup
0≤τ≤τ̄

|w(τ)− w⋆|2l + ǫd

∫ τ̄

0

|wii(τ) − w⋆
ii|2l+1 dτ ≤

C
(
|w0 − w⋆|2l +

{∫ τ̄

0

|f|l dτ
}2

+ ǫd

∫ τ̄

0

|g|2l−1 dτ
)
, (4.23)

∫ t

0

|∂tw(τ)|
2
l−1 dτ ≤ C

(
|w0 − w⋆|2l +

{∫ τ̄

0

|f|l dτ
}2

+

∫ τ̄

0

|f|2l−1 dτ + ǫd

∫ τ̄

0

|g|2l−1 dτ
)
, (4.24)

Moreover, if w and w′ correspond to two different inital conditions and different perturbations, letting
δw = w − w′, δf = f − f′, δg = g − g′, then

sup
0≤τ≤τ̄

|δw(τ)|2l−1 + ǫd

∫ τ̄

0

|δwii(τ)|2l dτ ≤ C
(
|δw0|2l−1 +

{∫ τ̄

0

|δf|l−1 dτ
}2

+ ǫd

∫ τ̄

0

|δg|2l−2 dτ
)
. (4.25)

Proof. Solutions to the nonlinear system (4.19) are fixed points w̃ = w of the linearized equations

A0(w)∂tw̃ +
∑

i∈D

Ai(w)∂iw̃ − ǫd
∑

i,j∈D

Bij(w)∂i∂jw̃ = f̃ + ǫdg̃, (4.26)

with

f̃ = f, g̃ = g + g′, g′ =
∑

i,j∈D

∂i
(
Bij(w)

)
∂jw−

∑

i,j∈D

∂i(∂wv)
t (∂

v
w)tBij ∂jw. (4.27)

Fixed points are investigated in the space w ∈ Xl
τ̄

(
O1,M,M1

)
defined by wi−w⋆

i
∈ C0

(
[0, τ̄ ], H l

)
, ∂twi ∈

C0
(
[0, τ̄ ], H l−1

)
, wii−w⋆

ii
∈ C0

(
[0, τ̄ ], H l

)
∩L2

(
(0, τ̄), H l+1

)
, ∂twii ∈ C0

(
[0, τ̄ ], H l−2

)
∩L2

(
(0, τ̄), H l−1

)
,

w(t, x) ∈ O1,

sup
0≤τ≤τ̄

|w(τ)− w⋆|2l + ǫd

∫ τ̄

0

|wii(τ) − w⋆
ii|2l+1 dτ ≤M2,
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and ∫ τ̄

0

|∂tw(τ)|
2
l−1 dτ ≤M2

1 .

For w in Xτ̄

(
O1,M,M1

)
, we may use the estimates established for linearized systems in Theorem 3.1

of Section 3.2 without source terms, that is, with π = 0. Noting that gi = 0, and that g′ = g̃ − g is
quadratic in the gradients, we obtain upper bounds in the form

|g′(τ)|2l−1 ≤ c2M
2, τ ∈ [0, τ̄ ], (4.28)

so that
|̃f(τ)|2l ≤ |f(τ)|2l , |g̃(τ)|2l−1 ≤ |g(τ)|2l−1 + c2M

2, τ ∈ [0, τ̄ ], (4.29)

and the constant c2 of this estimate may be taken identical to the constant of the linear estimates,
upon taking the maximum of both constants. Assuming

|w0 − w⋆|2l < b2,
{∫ t

0

|f|l dτ
}2

+

∫ t

0

|f|2l−1 dτ < χb2,

∫ t

0

|g|2l−1 dτ < χb2,

and using the linear estimate (3.14) we obtain that

sup
0≤τ≤τ̄

|w̃(τ)− w⋆(τ)|2l + ǫd

∫ τ̄

0

|w̃ii(τ) − w⋆
ii|2l+1 dτ ≤

c21 exp
(
c2(τ̄ +M1

√
τ̄ )

)(
b2 + τ̄ ǫdc

2
2M

2 + c2χb
2 + ǫdc2χb

2
)
. (4.30)

Similarly, from the second linear estimate (3.15) we obtain that

∫ τ̄

0

|∂tw̃(τ)|
2
l−1 dτ ≤ c2 exp

(
c2(τ̄ +M1

√
τ̄ )

)(
b2 + τ̄ ǫdc2M

2 + χb2 + ǫdχb
2
)
. (4.31)

We now define
Mb = 2c1(O1)b, M1b = c2(O1,Mb)2c1(O1)b,

and we assume that τ̄ ≤ 1 is small enough such that

exp
(
c2(O1,Mb)(τ̄ +M1b

√
τ̄ )
)
≤ 2,

2c22(O1,Mb)τ̄
(
2c1(O1)

)2 ≤ 1,

c0M1b

√
τ̄ < d1,

where we have used ‖φ‖L∞ ≤ c0|φ|l−1. We also assume that χ = χ(O1,Mb) is small enough such that

4c2(O1,Mb)χ < 1.

Then, for any w ∈ Xl
τ̄

(
O1,Mb,M1b

)
, any w0, f and g such that (4.22) holds, and any ǫd ∈ (0, 1], the

solution w̃ to the linearized equations stays in the space Xl
τ̄

(
O1,Mb,M1b

)
. More specifically, letting

M̃2 and M̃2
1 the maximum of the left hand sides of (4.30) and (4.31) respectively, we obtain from (4.30)

that
M̃2 ≤ 2c21b

2
(
1 + 4ǫdc

2
1c

2
2τ̄ + c2χ+ ǫdc2χ

)
≤ 4c21b

2 =M2
b

since 4τ̄c21 ≤ 4τ̄c21c
2
2 ≤ 1 and χ < 1/4, and from (4.31), keeping in mind that c2 ≥ 1, we deduce that

M̃2
1 ≤ 2c22b

2
(
1 + 4ǫdτ̄c

2
1 + χ+ ǫdχ

)
≤M2

1b,

and finally that ‖w̃ − w⋆‖L∞ ≤ c0M1b

√
τ̄ < d1. We have thus established that the functional space

Xl
τ̄

(
O1,Mb,M1b

)
is invariant under the maping w → w̃.
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In order to obtain fixed points, we establish that for τ̄ small enough, the map w → w̃ is a contraction
in the space Xτ̄

(
O1,Mb,M1b

)
, for some weaker norm. Let w and ŵ be in Xl

τ̄

(
O1,Mb,M1b

)
, let w0(x),

ŵ0(x), f, f̂, g, ĝ, such that w0 − w⋆ ∈ H l, ŵ0 − w⋆ ∈ H l, w0, ŵ0 ∈ O0, and

|w0 − w⋆|2l < b2,
{∫ t

0

|f|l dτ
}2

+

∫ t

0

|f|2l−1 dτ < χb2,

∫ t

0

|g|2l−1 dτ < χb2,

|ŵ0 − w⋆|2l < b2,
{∫ t

0

|̂f|l dτ
}2

+

∫ t

0

|̂f|2l−1 dτ < χb2,

∫ t

0

|ĝ|2l−1 dτ < χb2.

Let ǫd ∈ (0, 1], and define δw = w− ŵ, δf = f − f̂, δg = g− ĝ, and δw̃ = w̃− ˜̂w. Forming the difference
between the linearized equations, we obtain that

A0(w)∂tδw̃ +
∑

i∈D

Ai(w)∂iδw̃ − ǫd
∑

i,j∈D

Bij(w)∂i∂jδw̃ = δf̃ + ǫdδg̃, (4.32)

where

δf̃i =δfi −
∑

i∈D

(
A
i,i

0 (ŵ)
(
A
i,i

0 (w)
)−1

A
i,i

i (w)− A
i,i

i (ŵ)
)
∂iw̃i

−
∑

i∈D

(
A
i,i

0 (ŵ)
(
A
i,i

0 (w)
)−1

A
i,ii

i (w)− A
i,ii

i (ŵ)
)
∂iw̃ii,

δf̃ii =δfii −
∑

i∈D

(
A
i,i

0 (ŵ)
(
A
i,i

0 (w)
)−1

A
i,i

i (w)− A
i,i

i (ŵ)
)
∂iw̃i

−
∑

i∈D

(
A
i,i

0 (ŵ)
(
A
i,i

0 (w)
)−1

A
i,ii

i (w)− A
i,ii

i (ŵ)
)
∂iw̃ii,

δg̃i = 0,

δg̃ii = δgii + A
ii,ii

0 (ŵ)
(
A
ii,ii

0 (w)
)−1

g′
ii
(w, ∂

x
w)− g′

ii
(ŵ, ∂

x
ŵ)

+
∑

i,j∈D

(
A
ii,ii

0 (ŵ)
(
A
ii,ii

0 (w)
)−1

B
ii,ii

ij (w)− B
ii,ii

ij (ŵ)
)
∂i∂jw̃ii.

These expressions imply that

|δf̃|2l−1 ≤ |δf|2l−1 + c2|δw|2l−1, |δf̃|2l−2 ≤ |δf|2l−2 + c2|δw|2l−2,

|δg̃ii|2l−2 ≤ |δgii|2l−2 + c2|δw|2l−1.

Using now the linear estimates we obtain that

sup
0≤τ≤τ̄

|δw̃(τ)|2l−1 + ǫd

∫ τ̄

0

|δw̃ii(τ)|2l dτ ≤

c2

(
|δw0|2l−1 +

{∫ τ̄

0

|δf|l−1 dτ
}2

+ ǫd

∫ τ̄

0

|δg|l−2 dτ}2
)
+ τ̄c2 sup

0≤τ≤τ̄

|δw(τ)|2l−1 (4.33)

where c2 depends on O1 and b. Now if τ̄ is small enough so that c2τ̄ < 1/2, by letting w0 = ŵ0, f = f̂,
and g = ĝ, we obtain, that the map w → w̃ is a contraction in the space Xl

τ̄

(
O1,Mb,M1b

)
. Introducing

the sequence of successive approximations {wk}k≥0, starting at w0 = w⋆ and such that w(k+1) = w̃k,
that is, w(k+1) is obtained as the solution of linearized equations, then the sequence {wk}k≥0 is easily
shown to be convergent to a local solution of the nonlinear equations with the desired regularity. The
differential estimates (4.25) are then obtained by passing to the limit in (4.33).
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The estimates (4.23) are now established by using the fact that the solution is a fixed point w̃ = w.
Denoting by w the solution of the nonlinear system of equations and letting

M2
w
= sup

0≤τ≤τ̄

|w(τ)− w⋆(τ)|2l + ǫd

∫ τ̄

0

|wii(τ) − w⋆
ii
|2l+1 dτ,

the linearized estimate (3.14) now yields that

M2
w
≤ c21 exp

(
c2(τ̄ +M1

√
τ̄ )

)(
|w0 − w⋆|2l +

{∫ τ̄

0

|f|l dτ
}2

+ ǫd

∫ τ̄

0

|g|l−1 dτ}2 + τ̄ ǫdc
2
2M

2
w

)
,

and since exp
(
c2(τ̄ +M1

√
τ̄ )

)
≤ 2 and 2c21c

2
2τ̄ ≤ 1/4 by definition of τ̄ we get that

M2
w
≤ C

(
|w0 − w⋆|2l +

{∫ τ̄

0

|f|l dτ
}2

+ ǫd

∫ τ̄

0

|g|l−1 dτ}2
)
, (4.34)

where C only depends on O1 and b. On the other hand, from the linearized estimates (3.15) we further
get that

∫ τ̄

0

|∂tw̃(τ)|2l−1 dτ ≤ c2 exp
(
c2(τ̄ +M1

√
τ̄ )

)(
|w0 − w⋆|2l +

{∫ τ̄

0

|f|l dτ
}2

+

∫ τ̄

0

|f|2l−1 dτ + ǫd

∫ τ̄

0

|g|l−1 dτ}2 + τ̄ ǫdM
2
w

)
. (4.35)

Combining (4.34) and (4.35) finally yields (4.23) and the proof is complete.

Remark 4.5. We have not included nonstiff source terms in the stability theorem since they are not
required for our application to fluids out of thermodynamical equilibrium. However, it is straightforward
to add such nonstiff extra sources in the stability analysis.

Remark 4.6. The decomposition of the right hand side in the form f+ǫdg with assumptions (4.20)(4.21)
is of course not unique. A right hand side in the form ǫdg

′ may be decomposed for instance into f = ǫdg
′

and g = 0 as well as f = 0 and g = g′. The interest of the g term is that only the lower regularity
g′ ∈ C0

(
[0, τ̄m], H

l−1
)
is needed, but the price to pay is a factor

√
ǫd since the dissipative terms are

O(ǫd) and there are correspondingly ǫd factors in the estimates of higher derivatives. In particular, in
the estimates (4.25), even though ǫdg

′ is O(ǫd), the perturbation δw is only shown to be O(
√
ǫd). On

the contrary, with the f factor, any scaling of f is fully tranmitted to δw, but we then need the stronger
relularity f ∈ C0

(
[0, τ̄m], H

l
)
.

We now combine the estimate of the residual h to the stability theorem at equilibrium in order to
obtain a convergence theorem.

Theorem 4.7. Let d ≥ 1, l ≥ l0+4, l0 = [d/2]+ 1, be integers and let b > 0 be given. Let O0 be given
such that O0 ⊂ Ow, d1 such that 0 < d1 < d(O0, ∂Ow), and define O1 = {w ∈ Ow; d(w,O0) < d1 }.
There exists τ̄ > 0 depending on O1 and b, and independent on ǫd ∈ (0, 1] and ǫ ∈ (0, 1], such that for
any w0 ∈ O0 with

|w0 − w⋆|2l +
1

ǫ
|πw0|2l−1 < b2, (4.36)

and such that

|w0 − w⋆|2l +
1

ǫ
|πw0|2l−1 + |∂tw0|2l−2 +

1

ǫ
|π∂tw0|2l−3,

is also bounded independently of ǫ, there exists a unique solution of the out of equilibrium system such
that the estimates (3.31) and (3.62) holds, as well as the estimates (3.49), and furthermore, there
exists a unique solution of the equilibrium system starting from ϕw0. Then there exists a constant C
depending on O1 and b and independent of ǫ, ǫd ∈ [0, 1) such that

sup
τ∈[0,τ̄]

|ϕw − we|l−4 ≤ Cǫ(ǫ+ ǫd).
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Proof. We may use the estimates of the residual term h in Theorem 4.3 and apply Theorem 4.4 with
f = h, g = 0, and use the differential estimates (4.25).

In particular, in the special case ǫd = ǫ, we have established that the two term Chapmen-Enskog
expansion derived in the companion paper [30], which includes the O(ǫ) volume viscosity terms, is
effectively of second order accuracy.

5 Conclusion

We have proved rigorously for the first time that the solution of the out of equilibrium gas model
converges towards the solution of the one-temperature model. We have further established that the
distance between these two solutions is of the order of Burnett type residuals. This is in full agreement
with previous work where it has been established that the volume viscosity coefficient is obtained with
a two term Chapman-Enskog expansion.
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