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We obtain a necessary condition and a sufficient condition, both expressed in terms of Wiener type tests involving the parabolic W 2,1 q ′ -capacity, where q ′ = q q-1 and q > 1, for the existence of large solutions to equation ∂tu -∆u + u q = 0 in a non-cylindrical domain. We provide also a sufficient condition for the existence of such solutions to equation ∂tu -∆u + e u -1 = 0. Besides, we apply our results to equation: ∂tu -∆u + a|∇u| p + bu q = 0 for a, b > 0, 1 < p < 2 and q > 1.

Introduction

The aim of this paper is to study the problem of existence of large solutions to some nonlinear parabolic equations with superlinear absorption in an arbitrary bounded open set O ⊂ R N +1 , N ≥ 2. These are functions u ∈ C 2,1 (O), solutions of

∂ t u -∆u + |u| q-1 u = 0 in O, lim δ→0 inf O∩Q δ (x,t) u = ∞ for all (x, t) ∈ ∂ p O, (1.1) 
with q > 1 and

∂ t u -∆u + sign(u)(e |u| -1) = 0 in O, lim δ→0 inf O∩Q δ (x,t) u = ∞ for all (x, t) ∈ ∂ p O, (1.2) 
in which expressions ∂ p O denotes the parabolic boundary of O, i.e. the set all points X = (x, t) ∈ ∂O such that the intersection of the cylinder Q δ (x, t) := B δ (x) × (tδ 2 , t) with O c is not empty for any δ > 0. By the maximal principle for parabolic equations we can assume that all solutions of (1.1) and (1.2) are positive. Henceforth we consider only positive solutions of the preceding equations.

In [START_REF] Véron | A note on maximal solutions of nonlinear parabolic equations with absorption[END_REF], we studied the existence and the uniqueness of solution of semilinear heat equations in a cylindrical domain,

∂ t u -∆u + f (u) = 0 in Ω × (0, ∞), u = ∞ in ∂ p (Ω × (0, ∞)) , (1.3) 
where Ω is a bounded open set in R N and f a continuous nondecreasing real-valued function such that f (0) ≥ 0 and f (a) > 0 for some a > 0. In order to obtain the existence of a maximal solution of ∂ t u -∆u + f (u) = 0 in Ω × (0, ∞) there is need to introduce the following assumptions (i) ˆ∞ a ˆs 0 f (τ )dτ

-1 2 ds < ∞, (ii) 
ˆ∞ a (f (s)) -1 ds < ∞.

(1.4) Condition (i), due to Keller and Osserman, is a necessary and sufficient for the existence of a maximal solution to

-∆u + f (u) = 0 in Ω. (1.5)
Condition (ii) is a necessary and sufficient for the existence of a maximal solution of the differential equation

ϕ ′ + f (ϕ) = 0 in (0, ∞), (1.6) 
and this solution tends to ∞ at 0. In [START_REF] Véron | A note on maximal solutions of nonlinear parabolic equations with absorption[END_REF], it is shown that if for any m ∈ R there exists L = L(m) > 0 such that for any x, y ≥ m ⇒ f (x + y) ≥ f (x) + f (y) -L, and if (1.5) has a large solution, then (1.3) admits a solution.

It is not alway true that the maximal solution to (1.5) is a large solution. However, if f satisfies ˆ∞ 1 s -2(N -1)/(N -2) f (s)ds < ∞ if N ≥ 3, or inf a ≥ 0 : ˆ∞ 0 f (s)e -as ds < ∞ < ∞ if N = 2, then (1.5) has a large solution for any bounded domain Ω, see [START_REF] Marcus | Nonlinear second order elliptic equations involving measures[END_REF]. When f (u) = u q , q > 1 and N ≥ 3, the first above condition is satisfied if and only if q < q c := N N -2 , this is called the sub-critical case. When q ≥ q c , a necessary and sufficient condition for the existence of a large solution to

-∆u + u q = 0 in Ω (1.7)
is expressed in term of a Wiener-type test,

ˆ1 0 Cap 2,q ′ (Ω c ∩ B r (x)) r N -2
dr r = ∞ for all x ∈ ∂Ω.

(1.8)

In the case q = 2 it is obtained by Dhersin and Le Gall [START_REF] Dhersin | Wieners test for super-Brownian motion and the Brownian snake[END_REF], see also [START_REF] Gall | Branching processes, random trees and superprocesses[END_REF][START_REF] Gall | Spatial branching processes, random snakes and partial differential equations[END_REF], using probabilistic methods involving the Brownian snake; this method can be extended for 1 < q ≤ 2 by using ideas from [START_REF] Dynkin | Fine topology and fine trace on the boundary associated with a class of semilinear differential equations[END_REF][START_REF] Dynkin | Superdiffusions and removable singularities for quasilinear partial differential equations[END_REF]. In the general case the result is proved by Labutin, by purely analytic methods [START_REF] Labutin | Wiener regularity for large solutions of nonlinear equations[END_REF]. Note that q ′ = q q-1 and Cap 2,q ′ is the capacity associated to the Sobolev space W 2,q ′ (R N ).

In [START_REF] Nguyen | Wiener criteria for existence of large solutions of quasilinear elliptic equations with absorption[END_REF] we obtain sufficient conditions for the existence of a large solution to -∆u + e u -1 = 0 in Ω, (1.9) expressed in terms of the Hausdorff H N -2

1

-capacity in R N , and more precisely

ˆ1 0 H N -2 1 (Ω c ∩ B r (x)) r N -2
dr r = ∞ for all x ∈ ∂Ω.

(1.10)

We refer to [START_REF] Marcus | Capacitary estimates of solutions of semilinear parabolic equations[END_REF] for investigation of the initial trace theory of (1.3).

In [START_REF] Evans | Wiener criterion for the heat equation[END_REF], Evans and Gariepy establish a Wiener criterion for the regularity of a boundary point (in the sense of potential theory) for the heat operator L = ∂ t -∆ in an arbitrary bounded set of R N +1 . We denote by M(R N +1 ) the set of Radon measures in R N +1 and, for any compact set K ⊂ R N +1 , by M K (R N +1 ) the subset of M(R N +1 ) of measures with support in K. Their positive cones are respectively denoted by M + (R N +1 ) and M + K (R N +1 ). The capacity used in this criterion is the thermal capacity defined by

Cap H (K) = sup{µ(K) : µ ∈ M + K (R N +1 ), H * µ ≤ 1}, for any K ⊂ R N +1 compact, where H is the heat kernel in R N +1 . It coincides with the parabolic Bessel G 1 -capacity Cap G1,2 , Cap G1,2 (K) = sup ˆRN+1 |f | 2 dxdt : f ∈ L 2 + (R N +1 ), G 1 * f ≥ χ K ,
here G 1 is the parabolic Bessel kernel of first order, see [START_REF] Nguyen | Potential estimates and quasilinear equations with measure data[END_REF]Remark 4.12]. Garofalo and Lanconelli [START_REF] Garofalo | Wiener's criterion for parabolic equations with variable coefficients and its consequences[END_REF] extend this result to the parabolic operator

L = ∂ t -div(A(x, t)∇), where A(x, t) = (a i,j (x, t)), i, j = 1, 2, ..., N is a real, symmetric, matrix-valued function on R N +1 with C ∞ entries satisfying C -1 |ξ| 2 ≤ N i,j=1 a i,j (x, t)ξ i ξ j ≤ C|ξ| 2 ∀(x, t) ∈ R N +1 , ∀ξ ∈ R N ,
for some constant C > 0.

Much less is known concerning the equation

∂ t u -∆u + f (u) = 0 (1.11) in a bounded open set O ⊂ of R N +1
, where f is a continuous function in R. Gariepy and Ziemer [START_REF] Gariepy | Thermal capacity and boundary regularity[END_REF][START_REF] Ziemer | Behavior at the boundary of solution of quasilinear parabolic equations[END_REF] prove that if there exist (x 0 , t 0 ) ∈ ∂ p O, l ∈ R and a weak solution

u ∈ W 1,2 (O) ∩ L ∞ (O) of (1.11) such that η(-l -ε + u) + , η(l -ε -u) + ∈ W 1,2 0 (O) for any ε > 0 and η ∈ C ∞ c (B r (x 0 ) × (-r 2 + t 0 , r 2 + t 0 )
) for some r > 0, and if there holds The main purpose of this article is to extend Labutin's result [START_REF] Labutin | Wiener regularity for large solutions of nonlinear equations[END_REF] to the semilinear parabolic equation (1.1). Namely, we give a necessary and a sufficient condition for the existence of solutions to problem (1.1) in a bounded non-cylindrical domain O ⊂ R N +1 , expressed in terms of a Wiener test based upon the parabolic W 2,1 q ′ -capacity in R N +1 . We also give a sufficient condition for solving problem (1.2) expressed in terms of a Wiener test based upon the parabolic Hausdorff PH N ρ -capacity. These capacities are defined as follows:

ˆ1 0 Cap H O c ∩ B ρ (x 0 ) × (t 0 -9 4 αρ 2 , t 0 -5 4 αρ 2 ) ρ N dρ ρ = ∞ for some α > 0, then lim (x,t)→(x0,t0) u(x, t) = l.
if K ⊂ R N +1 is a compact set, we set Cap 2,1,q ′ (K) = inf{||ϕ|| q ′ W 2,1 q ′ (R N +1 ) : ϕ ∈ S(R N +1 ), ϕ ≥ 1 in a neighborhood of K}, where ||ϕ|| W 2,1 q ′ (R N +1 ) = ||ϕ|| L q ′ (R N +1 ) + || ∂ϕ ∂t || L q ′ (R N +1 ) + ||∇ϕ|| L q ′ (R N +1 ) + i,j || ∂ 2 ϕ ∂x i ∂x j || L q ′ (R N +1 ) ,
and for a Suslin set

E ⊂ R N +1 , Cap 2,1,q ′ (E) = sup{Cap 2,1,q ′ (D) : D ⊂ E, D compact}.
This capacity has been used in order to obtain estimates expressed with the help of potential that are most helpful for studying quasilinear parabolic equations (see e.g. [START_REF] Baras | Problèmes paraboliques semi-linéaires avec données mesures[END_REF][START_REF] Baras | Critère d'existence des solutions positives pour des équations semilinéaires non monotones[END_REF][START_REF] Nguyen | Potential estimates and quasilinear equations with measure data[END_REF]). Thanks to a result due to Richard and Bagby [START_REF] Bagby | Lebesgue spaces of parabolic potentials[END_REF], the capacities Cap 2,1,p and Cap G2,p are equivalent in the sense that, for any Suslin set K ⊂ R N +1 , there holds

C -1 Cap 2,1,q ′ (K) ≤ Cap G2,q ′ (K) ≤ CCap 2,1,q ′ (K),
for some C = C(N, q), where Cap G2,q ′ is the parabolic Bessel G 2 -capacity, see [START_REF] Nguyen | Potential estimates and quasilinear equations with measure data[END_REF].

For a set E ⊂ R N +1 , we define PH N ρ (E) by

PH N ρ (E) = inf    j r N j : E ⊂ B rj (x j ) × (t j -r 2 j , t j + r 2 j ), r j ≤ ρ    .
It is easy to see that, for 0 < σ ≤ ρ and E ⊂ R N +1 , there holds

PH N ρ (E) ≤ PH N σ (E) ≤ C(N ) ρ σ 2 PH N ρ (E). (1.12) 
With these notations, we can state the two main results of this paper.

Theorem 1.1 Let N ≥ 2 and q ≥ q * := N +2 N . Then (i) The equation

∂ t u -∆u + u q = 0 in O (1.13)
admits a large solution if there holds

ˆ1 0 Cap 2,1,q ′ (O c ∩ (B ρ 30 (x) × (t -30ρ 2 , t -ρ 2 ))) ρ N dρ ρ = ∞, (1.14) 
for any (x, t) ∈ ∂ p O and q > q * or q = q * when N ≥ 3.

(ii) If equation (1.13) admits a large solution, then

ˆ1 0 Cap 2,1,q ′ (O c ∩ Q ρ (x, t)) ρ N dρ ρ = ∞, (1.15 
)

for any (x, t) ∈ ∂ p O, where Q ρ (x, t) = B ρ (x) × (t -ρ 2 , t).
It is an open problem to prove that the maximal solution is unique whenever it exists as it holds in the elliptic case for equation (1.7), see Remark p. 25.

Theorem 1.2 Let N ≥ 2. The equation ∂ t u -∆u + e u -1 = 0 in O (1.16)
admits a large solution if there holds

ˆ1 0 PH N 1 (O c ∩ (B ρ 30 (x) × (t -30ρ 2 , t -ρ 2 ))) ρ N dρ ρ = ∞, (1.17) 
for any (x, t) ∈ ∂ p O.

From properties of the W 2,1 q ′ -capacity, relation (1.14) is satisfied if the following relations hold in which | | denotes the Lebesgue measure in R N +1 ,

ˆ1 0 |O c ∩ (B ρ 30 (x) × (t -30ρ 2 , t -ρ 2 )| 1-2q ′ N +2 ρ N dρ ρ = ∞ when q > q * , and 
ˆ1 0 log + O c ∩ (B ρ 30 (x) × (t -30ρ 2 , t -ρ 2 ) -1 -N 2 ρ N dρ ρ = ∞ when q = q * .
Similarly, it follows from properties of the PH N 1 -capacity that identity (1.17) is verified if As a consequence of Theorem 1.1 we derive a sufficient condition for the existence of a large solution of a class of viscous parabolic Hamilton-Jacobi equations.

ˆ1 0 |O c ∩ (B ρ 30 (x) × (t -30ρ 2 , t -ρ 2 )| N N +2 ρ N dρ ρ = ∞. When O = {(x, t) ∈ R N +1 : |x| 2 + |t| 2 λ < 1}
Theorem 1.3 Let q 1 > 1. If there exists a large solution v ∈ C 2,1 (O) of ∂ t v -∆v + v q1 = 0 in O,
then, for any a, b > 0, 1 < q < q 1 and 1 < p < 2q1 q1+1 , the problem

∂ t u -∆u + a|∇u| p + bu q = 0 in O, u = ∞ on ∂ p O, (1.18 
)

admits a solution u ∈ C 2,1 (O) which satisfies u(x, t) ≥ C min a -1 p-1 R -2-p p-1 + 2 α(q 1 -1) , b -1 q-1 R -2 q-1 + 2 α(q 1 -1) (v(x, t)) 1 α ,
for all (x, t) ∈ O where R > 0 is such that O ⊂ QR (x 0 , t 0 ), C = C(N, p, q, q 1 ) > 0 and α = max

2(p-1) (q1-1)(2-p) , q-1 q1-1 ∈ (0, 1).

Preliminaries

Throughout the paper, we denote

Q ρ (x, t) = B ρ (x) × (t -ρ 2 , t],
and Qρ (x, t) = B ρ (x) × (tρ 2 , t + ρ 2 ), for (x, t) ∈ R N +1 and ρ > 0, and r k = 4 -k for all k ∈ Z. We also denote A ( )B if A ≤ (≥)CB for some C depending on some structural constants, A ≍ B if A B A.

Definition 2.1 Let R ∈ (0, ∞] and µ ∈ M + (R N +1 ). We define R-truncated Riesz parabolic potential I R 2 of µ by I R 2 [µ](x, t) = ˆR 0 µ( Qρ (x, t)) ρ N dρ ρ for all (x, t) ∈ R N +1 ,
and the R-truncated fractional maximal parabolic potential M R 2 of µ by

M R 2 [µ](x, t) = sup 0<ρ<R µ( Qρ (x, t)) ρ N for all (x, t) ∈ R N +1 .
We also set

I ∞ 2 = I 2 and M ∞ 2 = M 2 .
We recall two results in [START_REF] Nguyen | Potential estimates and quasilinear equations with measure data[END_REF].

Theorem 2.2 Let q > 1, R > 0 and K be a compact set in R N +1 . There exists µ :

= µ K ∈ M + (R N +1 ) with compact support in K such that µ(K) ≍ Cap 2,1,q ′ (K) ≍ ˆRN+1 I 2R 2 [µ] q dxdt
where the constants of equivalence depend on N, q and R. The measure µ K is called the capacitary measure of K.

Theorem 2.3 For any R > 0, there exist positive constants C 1 , C 2 such that for any

µ ∈ M + (R N +1 ) such that ||M R 2 [µ]|| L ∞ (R N +1 ) ≤ 1, there holds 1 |Q| ˆQ exp(C 1 I R 2 [χ Q µ])dxdt := Q exp(C 1 I R 2 [χ Q µ])dxdt ≤ C 2 ,
for all Q = Qr (y, s) ⊂ R N +1 , r > 0 , where χ Q is the indicator function of Q.

Frostman's Lemma in [START_REF] Tureson | Nonlinear Potential Theory and weighted Sobolev Spaces[END_REF]Th. 3.4.27] is at the core of the dual definition of Hausdorff capacities with doubling weight. It is easy to see that it is valid for the parabolic Hausdorff PH N ρ -capacity version. As a consequence we have Theorem 2.4 There holds

sup µ(K) : µ ∈ M + (R N +1 ), supp(µ) ⊂ K, ||M ρ 2 [µ]|| L ∞ (R N +1 ) ≤ 1 ≍ PH N ρ (K),
for any compact set K ⊂ R N +1 and ρ > 0, where equivalent constant depends on N .

For our purpose, we need the some results about the behavior of the capacity with respect to dilations.

Proposition 2.5 Let K ⊂ Q100 (0, 0) be a compact set and

1 < p < N +2 2 . Then Cap 2,1,p (K) |K| 1-2p N +2 and Cap 2,1, N +2 2 (K) log | Q200 (0, 0)| |K| -N 2 .
(2.1)

Furthermore Cap 2,1,p (K ρ ) ≍ ρ N +2-2p Cap 2,1,p (K), (2.2) 1 Cap 2,1, N +2 2 (K ρ ) ≍ 1 Cap 2,1, N +2 2 (K) + (log(2/ρ)) N/2 , (2.3) 
for any 0 < ρ < 1, where K ρ = {(ρx, ρ 2 t) : (x, t) ∈ K}.

Proposition 2.6 Let K ⊂ Q1 (0, 0) be a compact set and

1 < p ≤ N +2 2 . Then, there exists a function ϕ ∈ C ∞ c ( Q3/2 (0, 0)) with 0 ≤ ϕ ≤ 1 and ϕ| D = 1 for some open set D ⊃ K such that ˆRN+1 |D 2 ϕ| p + |∇ϕ| p + |ϕ| p + |∂ t ϕ| p dxdt Cap 2,1,p (K). (2.4)
We will give proofs of the above two propositions in the Appendix. Let {e t∆ } t≥0 be the semigroup of contractions in L p (1 ≤ p < ∞) generated by ∆. It is wellknown that the solution u of the problem

∂ t u -∆u = µ in QR (0, 0), u = 0 on ∂ p QR (0, 0), (2.5) 
with µ ∈ C ∞ ( QR (0, 0)), can be expressed by Duhamel's formula u(x, t) = ˆt 0 e (t-s)∆ µ (x, s)ds for all (x, t) ∈ QR (0, 0).

We denote by H the Gaussian kernel in R N +1 :

H(x, t) = 1 (4πt) N 2 e -|x| 2 4t χ t>0 .
We have

|u(x, t)| ≤ (H * µ)(x, t) for all (x, t) ∈ QR (0, 0).
In [21, Proof of Proposition 4.8] we show that

|(H * µ)|(x, t) ≤ C 1 (N )I 2R 2 [|µ|](x, t) for all (x, t) ∈ QR (0, 0).
Here µ is extended by 0 in ( QR (0, 0)) c . Thus,

| ˆt 0 e (t-s)∆ µ (x, s)ds| ≤ C 1 (N )I 2R 2 [|µ|](x, t) for all (x, t) ∈ QR (0, 0). (2.6)
Moreover, we also prove in [START_REF] Nguyen | Potential estimates and quasilinear equations with measure data[END_REF], that if µ ≥ 0 then for (x, t) ∈ QR (0, 0) and

B ρ (x) ⊂ B R (0), ˆt 0 e (t-s)∆ µ (x, s)ds ≥ C 2 (N ) ∞ k=0 µ(Q ρ k 8 (x, t -35 128 ρ 2 k )) ρ N k , (2.7) 
with

ρ k = 4 -k ρ.
It is easy to see that estimates (2.6) and (2.7) also holds for any bounded Radon measure µ in QR (0, 0). The following result is proved in [START_REF] Baras | Problèmes paraboliques semi-linéaires avec données mesures[END_REF] and [START_REF] Nguyen | Phuoc Parabolic equations with exponential nonlinearity and measure data[END_REF], and also in [START_REF] Nguyen | Potential estimates and quasilinear equations with measure data[END_REF] in a more general framework.

Theorem 2.7 Let q > 1, R > 0 and µ be a bounded Radon measure in QR (0, 0). (i) If µ is absolutely continuous with respect to Cap 2,1,q ′ in QR (0, 0), then there exists a unique weak solution u to equation

∂ t u -∆u + |u| q-1 u = µ in QR (0, 0), u = 0 on ∂ p QR (0, 0). (ii) If exp C 1 (N )I 2R 2 [|µ|] ∈ L 1 ( QR (0, 0))
, then there exists a unique weak solution v to equation

∂ t v -∆v + sign(v)(e |v| -1) = µ in QR (0, 0), v = 0 on ∂ p QR (0, 0),
where the constant C 1 (N ) is the one of inequality (2.6).

From estimates (2.6) and (2.7) and using comparison principle we get the estimates from below of the solutions u and v obtained in Theorem 2.7.

Proposition 2.8 If µ is nonnegative, then the functions u and v of the previous theorem are nonnegative too and satisfy

u(x, t) ≥ C 2 (N ) ∞ k=0 µ(Q ρ k 8 (x, t -35 128 ρ 2 k )) ρ N k -C 1 (N ) q+1 I 2R 2 I 2R 2 [µ] q (x, t), (2.8 
)

and v(x, t) ≥ C 2 (N ) ∞ k=0 µ(Q ρ k 8 (x, t -35 128 ρ 2 k )) ρ N k -C 1 (N )I 2R 2 exp C 1 (N )I 2R 2 [µ] -1 (x, t), (2.9) 
for any (x, t) ∈ QR (0, 0) and B ρ (x) ⊂ B R (0) and ρ k = 4 -k ρ.

Maximal solutions

In this section we assume that O is an arbitrary non-cylindrical and bounded open set in R N +1 and q > 1. We will prove the existence of a maximal solution of

∂ t u -∆u + u q = 0 (3.1)
in O. We also get an analogous result when u q is replaced by e u -1.

It is easy to see that if u satisfies (3.1) in Qr (0, 0

) ( Q r (0, 0) ) then u a (x, t) = a -2/(q-1) u(ax, a 2 t) satisfies (3.1) in Qr/a (0, 0) (Q r/a (0, 0)) for any a > 0. If X = (x, t) ∈ O, the parabolic dis- tance from X to the parabolic boundary ∂ p O of O is defined by d(X, ∂ p O) = inf (y,s)∈∂pO s≤t max{|x -y|, (t -s) 1 2 }.
It is easy to see that there exists C = C(N, q) > 0 such that the function V defined by

V (x, t) = C (ρ 2 + t) -1 q-1 + ρ 2 -|x| 2 ρ -2 q-1 in B ρ (0) × (-ρ 2 , 0), satisfies ∂ t V -∆V + V q ≥ 0 in B ρ (0) × (-ρ 2 , 0). (3.2) Proposition 3.1 There exists a maximal solution u ∈ C 2,1 (O) of (3.1) and it satisfies u(x, t) ≤ C(d((x, t), ∂ p O)) -2 q-1 for all (x, t) ∈ O, (3.3) 
for some C = C(N, q).

Proof. Let D k , k ∈ Z be the collection of all the dyadic parabolic cubes (abridged p-cubes) of the form

{(x 1 , ..., x N , t) : m j 2 -k ≤ x j ≤ (m j + 1)2 -k , j = 1, ..., N, m N +1 4 -k ≤ t ≤ (m N +1 + 1)4 -k }
where m j ∈ Z. The following properties hold, a. for each integer k, D k is a partition of R N +1 and all p-cubes in D k have the same sidelengths.

b. if the interiors of two p-cubes Q in D k1 and P in D k2 , denoted

• Q, • P , have nonempty intersection then either Q is contained in P or Q contains P . c. Each Q in D k is union of 2 N +2 p-cubes in D k+1 with disjoint interiors. Let k 0 ∈ N be such that Q ⊂ O for some Q ∈ D k0 . Set O k = Q∈D k Q⊂O Q, ∀k ≥ k 0 , we have O k ⊂ O k+1 and O = k≥k0 O k = k≥k0 •
Ok. More precisely, there exist real numbers

a 1 , a 2 , ...., a n(k) and open sets Ω 1 , Ω 2 , .., Ω n(k) in R N such that a i < a i + 4 -k ≤ a i+1 < a i+1 + 4 k for i = 1, ..., n(k) -1,
and

• Ok = n(k)-1 i=1 Ω i × (a i , a i + 4 -k ] Ω n(k) × (a n(k) , a n(k) + 4 -k ) .
For k ≥ k 0 , we claim that there exists a solution

u k ∈ C 2,1 ( • Ok) to problem ∂ t u k -∆u k + u q k = 0 in • Ok, u k (x, t) → ∞ as d((x, t), ∂ p • Ok) → 0. (3.4)
Indeed, by [START_REF] Dibenedetto | Degenerate parabolic equations[END_REF][START_REF] Lieberman | Second Order Parabolic Differential Equations[END_REF] for m > 0, one can find nonnegative solutions

v i ∈ C 2,1 (Ω i × (a i , a i + 4 -k ]) ∩ C(Ω i × [a i , a i + 4 -k ]) for i = 1, .., n(k) to equations ∂ t v 1 -∆v 1 + v q 1 = 0 in Ω 1 × (a 1 , a 1 + 4 -k ), v 1 (x, t) = m on ∂Ω 1 × (a 1 , a 1 + 4 -k ), v 1 (x, a 1 ) = m in Ω 1 ,
and

∂ t v i -∆v i + v q i = 0 in Ω i × (a i , a i + 4 -k ), v i (x, t) = m on ∂Ω i × (a i , a i + 4 -k ), v i (x, a i ) = m i in Ω i ,
where

m i = m in Ω i if a i > a i-1 + 4 -k , mχ Ωi\Ωi-1 (x) + v i-1 (x, a i-1 + 4 -k )χ Ωi-1 (x) otherwise . Clearly, u k,m = v i in Ω i × (a i , a i + 4 -k ] for i = 1, ..., n(k) is a solution in C 2,1 ( • Ok) ∩ C(O k ) to equation ∂ t u k,m -∆u k,m + u q k,m = 0 in • Ok, u k,m = m on ∂ p • Ok. Moreover, for (x, t) ∈ • Ok, we see that B d 2 (x) × (t -d 2 4 , t) ⊂ • Ok where d = d((x, t), ∂ p • Ok). From (3.2), we verify that U (y, s) := V (y -x, s -t) = C (ρ 2 + s -t) -1 q-1 + ρ 2 -|x -y| 2 ρ -2 q-1 (x) × (t - d 2 4 , t). (3.5)
Applying the comparison principle we get

u k,m (y, s) ≤ U (y, s) in B d 2 (x) × (t - d 2 4 , t],
which implies

u k,m (x, t) ≤ C d((x, t), ∂ p • Ok) -2 q-1 for all (x, t) ∈ • Ok. (3.6)
From this, we obtain also uniform local bounds for {u k,m } m . By standard regularity theory see, [START_REF] Dibenedetto | Degenerate parabolic equations[END_REF][START_REF] Lieberman | Second Order Parabolic Differential Equations[END_REF], {u k,m } m is uniformly locally bounded in C 2,1 . Hence, up to a subsequence,

u k,m → u k C 1,0 loc ( • Ok) as m → ∞. We derive that u k is a weak solution of (3.4) in • Ok, which satisfies u k (x, t) → ∞ as d((x, t), ∂ p • Ok) → 0 and u k (x, t) ≤ C d((x, t), ∂ p • Ok) -2 q-1 for all (x, t) ∈ • Ok. Let m > 0 and k ≥ k 0 . Since u k+1,m ≤ m in O k and O k ⊂ O k+1
, it follows by the comparison principle applied to u k+1,m and u k,m in the following n(k) sub-domains of

• Ok: Ω 1 × (a 1 , a 1 + 4 -k ), Ω 2 × (a 2 , a 2 + 4 -k ),..., Ω n(k) × (a n(k) , a n(k) + 4 -k ), that u k+1,m ≤ u k,m in • Ok, and thus u k+1 ≤ u k in • Ok by letting m → ∞. In particular, {u k } k is uniformly locally bounded in L ∞ loc .
We use the same compactness property as above to infer that u k → u as k → ∞. Then u is a solution of (3.1) and it satisfies (3.3). By construction u is the maximal solution.

Remark 3.2 Let R ≥ 2r ≥ 2, K be a compact subset in Qr (0, 0). As in the proof of Proposition 3.1, we can show that there exists a maximal solution of

∂ t u -∆u + u q = 0 in QR (0, 0)\K, u = 0 on ∂ p QR (0, 0), (3.7 
)

which satisfies u(x, t) ≤ C(d((x, t), ∂ p ( QR (0, 0)\K)) -2 q-1 ∀ (x, t) ∈ QR (0, 0)\K, (3.8) 
for some C = C(N, q). Furthermore, assume K 1 , K 2 , , , , K m are compact subsets in Qr (0, 0) and

K = K 1 ∪ ... ∪ K m . Let u, u 1 , ..., u m be the maximal solutions of (3.7) in QR (0, 0)\K, QR (0, 0)\K 1 , QR (0, 0)\K 2 , , , , QR (0, 0)\K m , respectively, then u ≤ m j=1 u j in QR (0, 0)\K. (3.9)
Remark 3.3 If the equation (3.1) admits a large solution for some q > 1, then for any 1 < q 1 < q, the equation

∂ t u -∆u + u q1 = 0 in O (3.10)
admits also a large solution. Indeed, assume that u is a large solution of (3.1) and v the maximal solution of (3.10).

Take R > 0 such that O ⊂ B R (0) × (-R 2 , R 2 ), then the function V defined by V (x, t) = (q -1) -1 q-1 (2R 2 + t) -1 q-1 , satisfies (3.1). It follows for all (x, t) ∈ O u(x, t) ≥ inf (y,s)∈O V (x, t) ≥ (q -1) -1 q-1 R -2 q-1 =: a 0 .
Then ũ = a q-q 1 q 1 -1 0 u is a subsolution of (3.10). Therefore v ≥ a q-q 1 q 1 -1 0 u in O, thus v is a large solution.

Remark 3.4 (Sub-critical case) Assume that 1 < q < q * . It is easy to check that the function

U (x, t) = C t 1 q-1 e -|x| 2 4t χ t>0 (3.11) is a subsolution of (3.1) in R N +1 \{(0, 0)}, where C = 2 q-1 -N 2 1 q-1 .
Therefore, the maximal solution u of

(3.1) in O verifies u(x, t) ≥ C 1 (t -s) 1 q-1 e -|x-y| 2 4(t-s) χ t>s , (3.12) 
for all (x, t) ∈ O and (y, s) ∈ O c . If for any (x, t) ∈ ∂ p O there exist ε ∈ (0, 1) and a decreasing sequence {δ n } ⊂ (0, 1) converging to 0 as n → ∞ such that B δn (x) × (-δ 2 n + t, -εδ 2 n + t) ∩ O c = ∅ for any n ∈ N, then u is a large solution. For proving this, we need to show that

lim ρ→0 inf O∩(Bρ(x)×(-ρ 2 +t,ρ 2 +t)) u = ∞. Let 0 < ρ < ε 2 δ 1 and n ∈ N such that ε 2 δ n+1 ≤ ρ < ε 2 δ n . Since B δn (x) × (-δ 2 n + t, -εδ 2 n + t) ∩ O c = ∅, there is (x n , t n ) ∈ O c such that |x n -x| < δ n and -δ 2 n + t < t n < -εδ 2 n + t. So if (y, s) ∈ O ∩ (B ρ (x) × (-ρ 2 + t, ρ 2 + t)) then |y -x n | < ( √ ε + 1)δ n and ε 2 δ 2 n < s -t n < (ε + 1)δ 2 n .
Hence, thanks to (3.12) we have for any (y, s)

∈ O ∩ (B ρ (x) × (-ρ 2 + t, ρ 2 + t)) u(y, s) ≥ C 1 (s -t n ) 1 q-1 e -|y-xn | 2 4(s-tn ) ≥ C(ε + 1) -1 q-1 e -( √ ε+1) 2 2ε δ -2 q-1 n , which implies inf O∩(Bρ(x)×(-ρ 2 +t,ρ 2 +t)) u ≥ C(ε + 1) -1 q-1 e -( √ ε+1) 2 2ε δ -2 q-1 n → ∞ as ρ → 0. Remark 3.5 Note that if u ∈ C 2,1 (O) is a solution of (3.1) for some q > 1 then, for a, b > 0 and 1 < p ≤ 2, the function v = b -1 q-1 u is a super-solution of ∂ t v -∆v + a|∇v| p + bv q = 0 in O. (3.13)
Thus, we can apply the argument of the previous proof, with equation (3.1) replaced by (3.13), and deduce that there exists a maximal solution

v ∈ C 2,1 (O) of (3.13) satisfying v(x, t) ≤ Cb -1 q-1 (d((x, t), ∂ p O)) -2 q-1
for all (x, t) ∈ O.

Furthermore, if 1 < q < q * , q = 2p p+1 , a, b > 0 then the function U expressed by (3.11) in Remark 3.4 is a subsolution of (3.13) in R N +1 \{(0, 0)}, provided the explicit constant C given therein is replaced by some C = C(N, p, q, a, b). Therefore, we conclude that every maximal solution of v ∈ C 2,1 (O) of (3.13) satisfy v(x, t) ≥ C 1 (ts) 

1 q-1 e -|x-
converging to 0 as n → ∞ such that B δn (x) × (-δ 2 n + t, -εδ 2 n + t) ∩ O c = ∅ for any n ∈ N, then v is a large solution.
Next, we consider the following equation

∂ t u -∆u + e u -1 = 0. (3.15)
It is easy to see that the two functions

V 1 (t) = -log t + ρ 2 1 + ρ 2 and V 2 (x) = C -2 log ρ 2 -|x| 2 ρ satisfy V ′ 1 + e V1 -1 ≥ 0 in (-ρ 2 , 0],
and

-∆V 2 + e V2 -1 ≥ 0 in B ρ (0), for some C = C(N ). Using e a + e b ≤ e a+b -1 for a, b ≥ 0, we obtain that V 1 + V 2 is a supersolution of equation (3.15) in B ρ (0)×(-ρ 2 , 0]
. By the same argument as in Proposition 3.1 and the estimate of the above supersolution, we infer the following: Proposition 3.6 There exists a maximal solution u ∈ C 2,1 (O) of

∂ t u -∆u + e u -1 = 0 in O, (3.16) 
and it satisfies

u(x, t) ≤ C -log (d((x, t), ∂ p O)) 3 4 + (d((x, t), ∂ p O)) 2 for all (x, t) ∈ O, (3.17) 
for some C = C(N ).

The next three propositions will be useful to prove Theorem 1.1-(ii).

Proposition 3.7 Let K ⊂ Q1 (0, 0) be a compact set and q > 1, R ≥ 100. Let u be a solution of (3.7) in QR (0, 0)\K and ϕ as in Proposition 2.6 with p = q ′ . Set ξ = (1ϕ) 2q ′ . Then,

ˆQR(0,0) u (|∆ξ| + |∇ξ| + |∂ t ξ|) dxdt Cap 2,1,q ′ (K), (3.18) u(x, t) Cap 2,1,q ′ (K) + R -2 q-1
for any (x, t) ∈ QR/5 (0, 0)\ Q2 (0, 0), (3.19) and

ˆQ2(0,0) uξdxdt Cap 2,1,q ′ (K) + R -2 q-1 , (3.20) 
where the constants in above inequalities depend only on N and q.

Proof.

Step 1. We claim that ˆQR(0,0) u q ξdxdt Cap 2,1,q ′ (K).

(3.21)

Actually, using integration by parts and the Green formula, one has ˆQR(0,0)

u q ξdxdt = - ˆQR(0,0) ∂ t uξdxdt + ˆQR(0,0) ξ∆udxdt = ˆQR(0,0) u∂ t ξdxdt + ˆQR(0,0) u∆ξdxdt + ˆR2 -R 2 ˆ∂BR(0) ξ ∂u ∂ν -u ∂ξ ∂ν dSdt,
where ν is the outer normal unit vector on ∂B R (0). Clearly, ∂u ∂ν ≤ 0 and ∂ξ ∂ν = 0 on ∂B R (0).

Thus,

ˆQR(0,0) u q ξdxdt ≤ ˆQR(0,0) u|∂ t ξ|dxdt + ˆQR(0,0) u|∆ξ|dxdt ≤ 2q ′ ˆQR(0,0) u(1 -ϕ) 2q ′ -1 |∂ t ϕ|dxdt + 2q ′ (2q ′ -1) ˆQR(0,0) u(1 -ϕ) 2q ′ -2 |∇ϕ| 2 dxdt + 2q ′ ˆQR(0,0) u(1 -ϕ) 2q ′ -1 |∆ϕ|dxdt ≤ 2q ′ ˆQR(0,0) uξ 1/q |∂ t ϕ|dxdt + 2q ′ (2q ′ -1) ˆQR(0,0) uξ 1/q |∇ϕ| 2 dxdt + 2q ′ ˆQR(0,0) uξ 1/q |∆ϕ|dxdt. (3.22)
In the last inequality, we have used the fact that (1φ) 2q ′ -1 ≤ (1φ) 2q ′ -2 = ξ 1/q . Hence, by Hölder's inequality, ˆQR(0,0) u q ξdxdt ˆQR(0,0) |∂ t ϕ| q ′ dxdt + ˆQR(0,0)

|∇ϕ| 2q ′ dxdt + ˆQR(0,0) |∆ϕ| q ′ dxdt.
By the Gagliardo-Nirenberg inequality,

ˆQR(0,0) |∇ϕ| 2q ′ dxdt ||ϕ|| q ′ L ∞ ( QR(0,0)) ˆQR(0,0) |D 2 ϕ| q ′ dxdt ˆQR(0,0) |D 2 ϕ| q ′ dxdt.
Hence, we find ˆQR(0,0) u q ξdxdt ˆQR(0,0) (|∂ t ϕ| q ′ + |D 2 ϕ| q ′ )dxdt, and derive (3.21) from (2.4). In view of (3.22), we also obtain

ˆQR(0,0) u(|∆ξ| + |∂ t ξ|)dxdt Cap 2,1,q ′ (K),
and

ˆQR(0,0) u|∇ξ|dxdt Cap 2,1,q ′ (K), since ˆQR(0,0) u|∇ξ|dxdt = 2q ′ ˆQR(0,0) uξ (2q ′ -1)/2q ′ |∇ϕ|dxdt ≤ 2q ′ ˆQR(0,0) uξ 1/q |∇ϕ|dxdt ˆQR(0,0) u q ξdxdt + ˆQR(0,0) |∇ϕ| q ′ dxdt.
It yields (3.18).

Step 2. Relation (3.19) holds. Let η be a cut off function on QR/4 (0, 0) with respect to QR/3 (0, 0) such that |∂ t η| + |D 2 η| R -2 and |∇η| R -1 . We have

∂ t (ηξu) -∆(ηξu) = F ∈ C c ( QR/3 (0, 0)).
Hence, we can write

(ηξu)(x, t) = ˆRN ˆt -∞ 1 (4π(t -s)) N 2 e -|x-y| 2 4(t-s) F (y, s)dsdy ∀(x, t) ∈ R N +1 .
Now, we fix (x, t) ∈ QR/5 (0, 0)\ Q2 (0, 0). Since supp{|∇η|} ∩ supp{|∇ξ|} = ∅ and

F = ηξ (∂ t u -∆u) -2 (η∇ξ + ξ∇η) ∇u + (ξ∂ t η + η∂ t ξ -2∇η∇ξ -∆ηξ -η∆ξ) u ≤ -2 (η∇ξ + ξ∇η) ∇u + (ξ∂ t η + η∂ t ξ -ξ∆η -η∆ξ) u, there holds u(x, t) = (ηξu)(x, t) ≤ -2 ˆRN ˆt -∞ 1 (4π(t -s))
N 2

e -|x-y| 2 4(t-s) (η∇ξ + ξ∇η) ∇udsdy

+ ˆRN ˆt -∞ 1 (4π(t -s))
N 2

e -|x-y| 2 4(t-s) (η∂ t ξ -η∆ξ) udsdy

+ ˆRN ˆt -∞ 1 (4π(t -s))
N 2

e -|x-y| 2 4(t-s) (∂ t ηξ -ξ∆η) udsdy.

= I 1 + I 2 + I 3 .
By integration by parts,

I 1 = 2(4π) -N/2 ˆt -∞ ˆRN (x -y) 2(t -s) (N +2)/2 e -|x-y| 2 4(t-s) (η∇ξ + ξ∇η) udyds + 2(4π) -N/2 ˆt -∞ ˆRN 1 (t -s) N/2 e -|x-y| 2 4(t-s) (ξ∆η + η∆ξ) u dyds. Note that 1 (t -s) N/2 e -|x-y| 2 4(t-s) max{|x -y|, |t -s| 1/2 } -N , (x -y) 2(t -s) (N +2)/2 e -|x-y| 2 4(t-s) max{|x -y|, |t -s| 1/2 } -N -1 , and max{|x -y|, |t -s| 1/2 } 1 ∀(y, s) ∈ supp{|D α ξ|} ∪ supp{|∂ t ξ|}, max{|x -y|, |t -s| 1/2 } R ∀(y, s) ∈ supp{|D α η|} ∪ supp{|∂ t η|} ∀|α| ≥ 1.
We deduce Combining this inequality with (3.18) and (3.8), we obtain (3.19).

I 1 ˆRN+1 max{|x -y|, |t -s| 1/2 } -N -1 (η|∇ξ| + ξ|∇η|)u dyds + ˆRN+1 max{|x -y|, |t -s| 1/2 } -N (ξ|∆η| + η|∆ξ|) u dyds ˆRN+1 (|∇ξ| + |∆ξ|)u dyds + ˆQ R/3 (0,0)\ QR/4 (0,0) (R -N -1 |∇η| + R -N |∆η|)u dyds ˆRN+1 (|∇ξ| + |∆ξ|)u dyds + sup QR/3 (0,0)\ QR/4 (0,0) u, I 2 ˆRN+1 max{|x -y|, |t -s| 1/2 } -N (|∂ t ξ| + |∆ξ|)u dyds ˆRN+1 (|∂ t ξ| + |∆ξ|)u dyds, and 
I 3 ˆRN+1 max{|x -y|, |t -s| 1/2 } -N (|∂ t η| + |∆η|)u dyds ˆQ R/3 (0,0)\ QR/4 (0,0) R -N (|∂ t η| + |∆η|)u dyds
Step 3. End of the proof. Let θ be a cut off function on Q3 (0, 0) with respect to Q4 (0, 0). As above, we have for any (x, t) ∈ R N +1

(θξu)(x, t)

ˆRN+1 (max{|x -y|, |t -s| 1/2 }) -N -1 (θ|∇ξ| + ξ|∇θ|)u dyds + ˆRN+1 (max{|x -y|, |t -s| 1/2 }) -N (θ|∆ξ| + ξ|∆θ|)u dyds + ˆRN+1 (max{|x -y|, |t -s| 1/2 }) -N (θ|∂ t ξ| + θ|∆ξ|)u dyds + ˆRN+1 (max{|x -y|, |t -s| 1/2 }) -N (ξ|∂ t θ| + ξ|∆θ|)u dyds.
Hence, by Fubini theorem,

ˆQ2(0,0) ηudxdt = ˆQ2(0,0) θηudxdt A ˆRN+1 (θ|∇ξ| + ξ|∇θ| + θ|∆ξ| + ξ|∆θ| + θ|∂ t ξ| + ξ|∂ t θ|) u dyds ˆRN+1 (|∂ t ξ| + |∇ξ| + |∆ξ|)u dyds + sup Q4(0,0)\ Q3(0,0) u, we derive u(x 0 , t 0 ) ≤ jε j=1 u j (x 0 , t 0 ) ≤ jε j=1 L(N ) k=1 u k,j (x 0 , t 0 ) jε j=0 Cap 2,1,q ′ (K j ) ρ 2 q-1 j + j ε R -2 q-1 ,
which yields (3.24). If q > q * , then by (2.2) in Proposition 2.5, we have

Cap 2,1,q ′ (K j ) ρ -N -2+2q ′ j+3 Cap 2,1,q ′ (K ∩ Qρj-2 (0, 0)),
which implies (3.23).

Proposition 3.9 Let K, u, ξ be as in Proposition 3.7. For any compact set K 0 in Q1 (0, 0)

with positive measure |K 0 |, there exists ε = ε(N, q, |K 0 |) > 0 such that Cap 2,1,q ′ (K) ≤ ε ⇒ inf K0 u ˆQ2(0,0) uξdxdt,
where the constant in the inequality depends on K 0 . In particular,

Cap 2,1,q ′ (K) ≤ ε ⇒ inf K0 u Cap 2,1,q ′ (K) + R -2 q-1 . (3.25)
Proof. It is enough to prove that there exists ε > 0 such that

Cap 2,1,q ′ (K) ≤ ε ⇒ |K 1 | ≥ 1/2|K 0 |, (3.26) 
where K 1 = {(x, t) ∈ K 0 : ξ(x, t) ≥ 1/2}. By (2.1) in Proposition 2.5, we have the following estimates

|K 0 \K 1 | 1-2q ′ N +2
Cap 2,1,q ′ (K 0 \K 1 ), if q > q * , and

log | Q200 (0, 0)| |K 0 \K 1 | -N 2 Cap 2,1,q ′ (K 0 \K 1 ), if q = q * . On the other hand, Cap 2,1,q ′ (K 0 \K 1 ) = Cap 2,1,q ′ ({K 0 : ϕ > 1 -(1/2) 1/(2q ′ ) }) ≤ (1 -(1/2) 1/(2q ′ ) ) -q ′ ˆRN+1 |D 2 ϕ| q ′ + |∇ϕ| q ′ + |ϕ| q ′ + |∂ t ϕ| q ′ dxdt Cap 2,1,q ′ (K),
where ϕ is in Proposition 3.7. Henceforth, one can find

ε = ε(N, q, |K 0 |) > 0 such that Cap 2,1,q ′ (K) ≤ ε ⇒ |K 0 \K 1 | ≤ 1/2 |K 0 |.
This implies (3.26).

Large solutions

In the first part of this section, we prove theorem 1.1-(ii), then we prove theorems 1.1-(i) and 1.2. At end weapply our result to a parabolic viscous Hamilton-Jacobi equation.

Proof of Theorem 1.1-(ii)

Let R 0 ≥ 4 such that O ⊂⊂ QR0 (0, 0). Assume that the equation (1.13) has a large solution u. We claim that (1.15) holds with (x, t) ∈ ∂ p O, and without loss of generality, we can assume (x, t) = (0, 0). Set K = Q2R0 (0, 0)\O and define

T j = {x : ρ j+1 ≤ max{|x|, |t| 1/2 } ≤ ρ j , t ≤ 0}, Tj = {x : ρ j+3 ≤ max{|x|, |t| 1/2 } ≤ ρ j-2 , t ≤ 0}.
Here ρ j = 2 -j . For j ≥ 3, let u 1 , u 2 , u 3 , u 4 be the maximal solutions of (3.7) when K is replaced by K ∩Q ρj+3 (0, 0), K ∩ Tj , K ∩ Q 1 (0, 0) \Q ρj-2 (0, 0) and K\Q 1 (0, 0) respectively and R ≥ 100R 0 . From (3.9) in Remark 3.2, we can assert that

u ≤ u 1 + u 2 + u 3 + u 4 in O ∩ {(x, t) ∈ R N +1 : t ≤ 0}. Thus, inf Tj u ≤ ||u 1 || L ∞ (Tj ) + ||u 3 || L ∞ (Tj ) + ||u 4 || L ∞ (Tj ) + inf Tj u 2 . (4.1)
Case 1: q > q * . By (3.8) in Remark 3.2,

||u 4 || L ∞ (Tj ) 1. (4.2)
By (3.23) in Proposition 3.8,

||u 3 || L ∞ (Tj ) j-4 i=-2 Cap 2,1,q ′ (K ∩ Q ρi (0, 0)) ρ N i + jR -2 q-1 . (4.3) Since (x, t) → u 1 (x, t) = ρ 2/(q-1) j+3 u 1 (ρ j+3 x, ρ 2 j+3 t)
is the maximal solution of (3.7) when (K, QR (0, 0)) is replaced by ({(y/ρ j+3 , s/ρ 2 j+3 ) : (y, s) ∈ K ∩ Q ρj+3 (0, 0)}, QR/ρj+3 (0, 0)), we derive

||u 1 || L ∞ (T-3) Cap 2,1,q ′ (K ∩ Q ρj+2 (0, 0)) ρ N +2-2q ′ j + (R/ρ j+3 ) -2 q-1 ,
thanks to (3.19) in Proposition 3.7 and (2.2) in Proposition 2.5, from which follows

||u 1 || L ∞ (Tj ) Cap 2,1,q ′ (K ∩ Q ρj+2 (0, 0)) ρ N j + R -2 q-1 . (4.4) Since (x, t) → u 2 (x, t) = ρ 2/(q-1) j-2 u 2 (ρ j-2 x, ρ 2 j-2 t)
is the maximal solution of (3.7) when the couple (K, QR (0, 0)) is replaced by ({(y/ρ j-2 , s/ρ 2 j-2 ) : (y, s) ∈ K ∩ Tj }, QR/ρj-2 (0, 0)), Proposition 3.9 and relation (2.2) in Proposition 2.5 yield Cap 2,1,q ′ (K ∩ Tj )

ρ N +2-2q ′ j-2 ≤ ε ⇒ inf T2 u 2 Cap 2,1,q ′ (K ∩ Tj ) ρ N +2-2q ′ j-2 + (R/ρ j-2 ) -2 q-1 , which implies Cap 2,1,q ′ (K ∩ Q ρj-3 (0, 0)) ρ N +2-2q ′ j-2 ≤ ε ⇒ inf Tj u 2 Cap 2,1,q ′ (K ∩ Q ρj-3 (0, 0)) ρ N j-2 + R -2 q-1 , (4.5) 
for some ε = ε(N, q) > 0. First, we assume that there exists J ∈ N, J ≥ 10 such that Cap 2,1,q ′ (K ∩ Q ρj-3 (0, 0))

ρ N +2-2q ′ j-2 ≤ ε ∀ j ≥ J.
Then, from (4.1) and (4.2), (4.3), (4.4), (4.5), we have inf

Tj u j+2 i=-2 Cap 2,1,q ′ (K ∩ Q ρi (0, 0)) ρ N i + jR -2 q-1 + 1,
for any j ≥ J, and letting R → ∞,

inf Tj u j+2 i=-2 Cap 2,1,q ′ (K ∩ Q ρi (0, 0)) ρ N i + 1. Since inf Tj u → ∞ as j → ∞, we get ∞ i=0 Cap 2,1,q ′ (K ∩ Q ρi (0, 0)) ρ N i = ∞,
which implies that (1.15) holds with (x, t) = (0, 0). Alternatively, assume that for infinitely many j

Cap 2,1,q ′ (K ∩ Q ρj-3 (0, 0)) ρ N +2-2q ′ j-2 > ε, then, Cap 2,1,q ′ (K ∩ Q ρj-3 (0, 0)) ρ N j-2 > ρ 2-2q ′ j-2 ε → ∞ when j → ∞.
We also derive that (1.15) holds with (x, t) = (0, 0). This proves the case q > q * . Case 2: q = q * . Similarly to Case 1, we have: for j ≥ 6

||u 4 || L ∞ (Tj ) 1, (4.6 
)

||u 3 || L ∞ (Tj ) j-2 i=0 Cap 2,1,q ′ (K j ) ρ N i + jR -2 q-1 , (4.7 
)

||u 1 || L ∞ (Tj ) Cap 2,1,q ′ (K j ) ρ N j + R -2 q-1 , (4.8) 
Cap 2,1,q ′ (K j-5 ) ≤ ε ⇒ inf Tj u 2 Cap 2,1,q ′ (K j-5 ) ρ N j + R -2 q-1 , (4.9) 
where

K j = {(x/ρ j+3 , t/ρ 2 j+3 ) : (x, t) ∈ K ∩ Q ρj-3 (0, 0)} and ε = ε(N ) > 0. From (2.2) in Proposition 2.5, we have 1 Cap 2,1,q ′ (K ∩ Q ρj-3 (0, 0)) ≤ c Cap 2,1,q ′ (K j ) + cj N/2
for any j ≥ 4 where c = c(N ). If there are infinitely many j ≥ 4 such that

Cap 2,1,q ′ (K ∩ Q ρj-3 (0, 0)) > 1 2cj N/2 , then (1.15) holds with (x, t) = (0, 0) since Cap 2,1,q ′ (K ∩ Q ρj-3 (0, 0)) ρ N j-3 > 2 j-3 2cj N/2 → ∞ when j → ∞.
Now, we assume that there exists J ≥ 6 such that Cap

2,1,q ′ (K ∩ Q ρj-3 (0, 0)) ≤ 1 2cj N/2 ∀ j ≥ J. Then, Cap 2,1,q ′ (K j ) ≤ 2cCap 2,1,q ′ (K ∩ Q ρj-3 (0, 0)) ∀ j ≥ J. This leads to Cap 2,1,q ′ (K j ) ≤ 2cCap 2,1,q ′ (K ∩ Q ρj-3 (0, 0)) ≤ ε ∀ j ≥ J ′ + J,
for some J ′ = J ′ (N ). Hence, from (4.6)-(4.9) we have, for any j ≥ J ′ + J + 3,

||u 4 || L ∞ (Tj ) 1, ||u 3 || L ∞ (Tj ) j-2 i=J ′ +J+1 Cap 2,1,q ′ (K ∩ Q ρi-3 (0, 0)) ρ N i + C(J ′ + J) + jR -2 q-1 , ||u 1 || L ∞ (Tj ) Cap 2,1,q ′ (K ∩ Q ρj-3 (0, 0)) ρ N j + R -2 q-1 , inf Tj u 2 Cap 2,1,q ′ (K ∩ Q ρj-8 (0, 0)) ρ N j + R -2 q-1 ,
where

C(J ′ + J) = J ′ +J i=0 Cap 2,1,q ′ (Kj ) ρ N i . Consequently we derive inf Tj u j i=0 Cap 2,1,q ′ (K ∩ Q ρi (0, 0)) ρ N i + C(J ′ + J) + 1 + jR -2 q-1 ∀ j ≥ J ′ + J + 3 from (4.1). Letting R → ∞ and j → ∞ we obtain ∞ i=0 Cap 2,1,q ′ (K ∩ Q ρi (0, 0)) ρ N i = ∞,
i.e. (1.15) holds with (x, t) = (0, 0). This completes the proof of Theorem 1.1-(ii).

Proof of Theorem 1.1-(i) and Theorem 1.2

Fix (x 0 , t 0 ) ∈ ∂ p O. We can assume that (x 0 , t 0 ) = 0. Let δ ∈ (0, 1/100). For (y 0 , s 0 ) ∈

(B δ (0) × (-δ 2 , δ 2 )) ∩ O, we set M k = O c ∩ B r k+2 (y 0 ) × [s 0 -(73 + 1 2 )r 2 k+2 , s 0 -(70 + 1 2 )r 2 k+2 ] ,
and

S k = {(x, t) : r k+1 ≤ max{|x -y 0 |, |t -s 0 | 1 2 } < r k } for k = 1, 2, ...,
where r k = 4 -k . Note that M k = ∅ for k large enough and M k ⊂ S k for all k. Let R 0 ≥ 4 such that O ⊂⊂ QR0 (0, 0). By Theorems 2.2 and 2.4 and estimate (1.12) there exist two sequences {µ k } k and {ν k } k of nonnegative Radon measures such that

supp(µ k ) ⊂ M k , supp(ν k ) ⊂ M k , (4.10) 
µ k (M k ) ≍ Cap 2,1,q ′ (M k ) ≍ ˆRN+1 I 2R0 2 [µ k ] q dxdt (4.11) 
and

ν k (M k ) ≍ PH N 1 (M k ), ||M 2R0 1 [ν k ]|| L ∞ (R N +1 ) ≤ 1 for k = 1, 2, ..., (4.12) 
where the constants of equivalence depend on N, q, R 0 .

Take ε > 0 such that exp

C 1 εI 2R0 2 [ ∞ k=1 ν k ] ∈ L 1 ( QR0 (0, 0)), in which expression the constant C 1 = C 1 (N )
is the one of inequality (2.6). By Theorem 2.7 and Proposition 2.8, there exist two nonnegative solutions U 1 , U 2 of problems

∂ t U 1 -∆U 1 + U q 1 = ε ∞ k=1 µ k in QR0 (0, 0), U 1 = 0 on ∂ p QR0 (0, 0), and 
∂ t U 2 -∆U 2 + e U2 -1 = ε ∞ k=1 ν k in QR0 (0, 0), U 2 = 0 on ∂ p QR0 (0, 0),
respectively which satisfy

U 1 (y 0 , z 0 ) ∞ i=0 ∞ k=1 ε µ k (B r i 8 (y 0 ) × (s 0 -37 128 r 2 i , s 0 -35 128 r 2 i )) r N i -I 2R0 2 I 2R0 2 [ε ∞ k=1 µ k ] q (y 0 , s 0 ) =: A, (4.13) 
and

U 2 (y 0 , z 0 ) ∞ i=0 ∞ k=1 ε ν k (B r i 8 (y 0 ) × (s 0 -37 128 r 2 i , s 0 -35 128 r 2 i )) r N i -I 2R0 2 exp C 1 I 2R0 2 [ε ∞ k=1 ν k ] -1 (y 0 , s 0 ) =: B, (4.14) 
and

U 1 , U 2 ∈ C 2,1 (O).
Let u 1 , u 2 be the maximal solutions of equations (3.1) and (3.16) respectively. We have u 1 (y 0 , s 0 ) ≥ U 1 (y 0 , s 0 ) and u 2 (y 0 , s 0 ) ≥ U 2 (y 0 , s 0 ). Now, we claim that

A ∞ k=1 Cap 2,1,q ′ (M k ) r N k , (4.15) 
and

B -c 1 (R 0 ) + ∞ k=1 PH N 1 (M k ) r N k . (4.16)
Proof of assertion (4.15). From (4.11) we have

A ε ∞ k=1 Cap 2,1q ′ (M k ) r N k -ε q A 0 , (4.17) 
with

A 0 = I 2R0 2 I 2R0 2 [ ∞ k=1 µ k ] q (y 0 , s 0 ). Take i 0 ∈ Z such that r i0+1 < max{2R 0 , 1} ≤ r i0 . Then A 0 ∞ i=i0 r -N i ˆQr i (y0,s0) I 2R0 2 [ ∞ k=1 µ k ] q dxdt = ∞ i=i0 ∞ j=i r -N i ˆSj I 2R0 2 [ ∞ k=1 µ k ] q dxdt = ∞ j=k0 j i=i0 r -N i ˆSj I 2R0 2 [ ∞ k=1 µ k ] q dxdt ∞ j=i0 r -N j ˆSj I 2R0 2 [ ∞ k=1 µ k ] q dxdt.
Here we have used the fact that

j i=i0 r -N i ≤ 4 3 r -N j
for all j. If we set µ k ≡ 0 for all i 0 -1 ≤ k ≤ 0, the previous inequality becomes

A 0 ∞ j=i0 r -N j ˆSj   I 2R0 2 [µ j + j-1 k=i0-1 µ k + ∞ k=j+1 µ k ]   q dxdt ∞ j=i0 r -N j ˆSj I 2R0 2 [µ j ] q dxdt + ∞ j=i0 r 2 j j-1 k=i0-1 ||I 2R0 2 [µ k ]|| L ∞ (Sj ) q + ∞ j=i0 r 2 j   ∞ k=j+1 ||I 2R0 2 [µ k ]|| L ∞ (Sj )   q = A 1 + A 2 + A 3 . (4.18) 
Using (4.11) we obtain

A 1 ≤ ∞ k=1 Cap 2,1,q ′ (M k ) r N k . (4.19) 
Next, using (4.10) we have for any (x, t) ∈ S j

I 2R0 2 [µ k ](x, t) = ˆ2R0 rj+1 µ k ( Qρ (x, t)) ρ N dρ ρ µ k (R N +1 ) r N j (4.20)
if k ≥ j + 1, and

I 2R0 2 [µ k ](x, t) = ˆ2R0 r k+1 µ k ( Qρ (x, t)) ρ N dρ ρ µ k (R N +1 ) r N k (4.21) if k ≤ j -1. Thus, A 2 ∞ j=i0 r 2 j j-1 k=i0-1 µ k (R N +1 ) r N k q , and 
A 3 ∞ j=i0 r 2-N q j   ∞ k=j+1 µ k (R N +1 )   q .
Noticing that (a + b) qa q ≤ q(a + b) q-1 b for any a, b ≥ 0, we get

(1 -4 -2 ) ∞ j=i0 r 2 j j-1 k=i0-1 µ k (R N +1 ) r N k q = ∞ j=i0 r 2 j j-1 k=i0-1 µ k (R N +1 ) r N k q - ∞ j=i0+1 r 2 j j-2 k=i0-1 µ k (R N +1 ) r N k q ≤ ∞ j=i0 qr 2 j j-1 k=i0-1 µ k (R N +1 ) r N k q-1 µ j-1 (R N +1 ) r N j-1
.

Similarly, we also have

(1 -4 2-N q ) ∞ j=i0 r 2-N q j   ∞ k=j+1 µ k (R N +1 )   q ≤ ∞ j=i0 qr 2-N q j   ∞ k=j+1 µ k (R N +1 )   q-1 µ j+1 (R N +1 ).
Therefore,

A 2 + A 3 ∞ j=i0 r 2 j j-1 k=i0-1 µ k (R N +1 ) r N k q-1 µ j-1 (R N +1 ) r N j-1 + ∞ j=i0 r 2-N q j   ∞ k=j+1 µ k (R N +1 )   q-1 µ j+1 (R N +1 ).
Since µ k (R N +1 ) r N +2-2q ′ k if q > q * and µ k (R N +1 ) min{k -1 q-1 , 1} if q = q * for any k, we infer that

r 2 j j-1 k=i0-1 µ k (R N +1 ) r N k q-1
1, and

r 2-N q j   ∞ k=j+1 µ k (R N +1 )   q-1 r -N j+1
for any j.

In the case q = q * we assume N ≥ 3 in order to ensure that

∞ j=1 µ k (R N +1 ) ∞ k=1 k -1 q-1 < ∞.
This leads to

A 2 + A 3 ∞ k=1 µ k (R N +1 ) r N k .
Combining this with (4.19) and (4.18), we deduce

A 0 ∞ k=1 Cap 2,1,q ′ (M k ) r N k .
From (4.12) we have µ k (R N +1 ) r N k for all k, therefore

B 2 + B 3 ∞ j=i0 r 2 j exp (c 3 ε(j -i 0 )) + ∞ j=i0 r 2 j exp (c 3 ε) ∞ j=i0 exp (c 3 ε(j -i 0 ) -4 log(2)j) + r 2 i0
≤ c 4 (N, q, R 0 ) for ε small enough.

Combining this with (4.24) and (4.23) we obtain (4.22).

This implies straightforwardly exp

C 1 εI 2R0 2 [ ∞ k=1 ν k ] ∈ L 1 ( QR0 (0, 0)). We conclude that for any (y 0 , s 0 ) ∈ (B δ (0) × (-δ 2 , δ 2 )) ∩ O, u 1 (y 0 , s 0 ) ∞ k=1 Cap 2,1,q ′ (M k (y 0 , s 0 )) r N k , and 
u 2 (y 0 , s 0 ) -c 1 (R 0 ) + ∞ k=1 PH N 1 (M k (y 0 , s 0 )) r N k , where r k = 4 -k and M k (y 0 , s 0 ) = O c ∩ B r k+2 (y 0 ) × [s 0 -(73 + 1 2 )r 2 k+2 , s 0 -(70 + 1 2 )r 2 k+2 ] . If we take r k δ +4 ≤ δ < r k δ +3 , we have for 1 ≤ k ≤ k δ M k (y 0 , s 0 ) ⊃ O c ∩ B r k+2 -δ (0) × δ 2 -(73 + 1 2 )r 2 k+2 , -δ 2 -(70 + 1 2 )r 2 k+2 ⊃ O c ∩ B r k+3 (0) × -73r 2 k+2 , -71r 2 k+2 = O c ∩ B r k+3 (0) × -1168r 2 k+3 , -1136r 2 k+3 . Finally, inf (y0,s0)∈(B δ (0)×(-δ 2 ,δ 2 ))∩O u 1 (y 0 , s 0 ) -1 + ˆ1 r k δ +3 Cap 2,1,q ′ (O c ∩ (B ρ (0) × (-17bρ 2 , -bρ 2 ))) ρ N dρ ρ with b = 1136 -1 + ˆ1 30r k δ +3 Cap 2,1,q ′ (O c ∩ (B ρ 30 (0) × (-30ρ 2 , -ρ 2 ))) ρ N dρ ρ → ∞ as δ → 0, and inf (y0,s0)∈(B δ (0)×(-δ 2 ,δ 2 ))∩O u 2 (y 0 , s 0 ) -1 + ˆ1 30r k δ +3 PH N 1 (O c ∩ (B ρ 30 (0) × (-30ρ 2 , -ρ 2 ))) ρ N dρ ρ → ∞ as δ → 0.
This completes the proof of Theorem 1.1-(i) and Theorem 1.2.

Remark 4.1 (Uniqueness) In [START_REF] Marcus | Maximal solutions for -∆u + u q = 0 in open and finely open sets[END_REF], Marcus and Véron prove that condition (1.8) is not only a necessary and sufficient condition for the existence of a large solution to (1.7), but it implies the uniqueness of a such a large solution when it is fulfilled. The main step for this proof is to show that there exists a constant c = c(Ω, q > 0) such that any couple of large solutions (u, û) satisfies u(x) ≤ cû(x) ∀x ∈ Ω. (4.25)

The above estimate which is the key stone for proving uniqueness cannot be obtained in the case of the parabolic equation (1.13) since the necessary condition and the sufficient condition in Theorem 1.1 do not complement completely.

The viscous Hamilton-Jacobi parabolic equations

In this section we apply our previous result to the question of existence of a large solution of the following type of parabolic viscous Hamilton-Jacobi equation

∂ t u -∆u + a|∇u| p + bu q = 0 in O, u = ∞ on ∂ p O, (4.26) 
where a > 0, b > 0 and 1 < p ≤ 2, q ≥ 1. First, we show that such a large solution to (4.26) does not exist when q = 1. Equivalently, there is no function u ∈ C 2,1 (O) satisfying

∂ t u -∆u + a|∇u| p ≥ -bu in O, u = ∞ on ∂ p O. (4.27) for a > 0, b > 0 and p > 1. Indeed, assuming that such a function u ∈ C 2,1 (O) exists, we define U (x, t) = u(x, t)e bt - ε 2 |x| 2 ,
for ε > 0 and denote by (x 0 , t 0 ) ∈ O\∂ p O the point where U achieves it minimum in O, i.e. U (x 0 , t 0 ) = inf{U (x, t) : (x, t) ∈ O}. Clearly, we have ∂ t U (x 0 , t 0 ) ≤ 0, ∆U (x 0 , t 0 ) ≥ 0 and ∇U (x 0 , t 0 ) = 0.

Thus, ∂ t u(x 0 , t 0 ) ≤ -bu(x 0 , t 0 ), -∆u(x 0 , t 0 ) ≤ -εN e -bt0 and a|∇u(x 0 , t 0 )| p = aε p |x 0 | p e -pbt0 , from which follows

∂ t u(x 0 , t 0 ) -∆u(x 0 , t 0 ) + a|∇u(x 0 , t 0 )| p ≤ -bu(x 0 , t 0 ) + εe -bt0 -N + aε p-1 |x 0 | p e -(p-1)bt0
< -bu(x 0 , t 0 ) for ε small enough, which is a contradiction.

Proof of Theorem 1.3. By Remark 3.3, we have

inf{v(x, t); (x, t) ∈ O} ≥ (q 1 -1) -1 q 1 -1 R -2 q 1 -1 . Take V = λv 1 α ∈ C 2,1 (O) for λ > 0. Thus v = λ -α V α , inf{V (x, t); (x, t) ∈ O} > 0} ≥ λ(q 1 -1) - 1 α(q 1 -1) R - 2 α(q 1 -1) , and 
∂ t v -∆v + v q1 = αλ -α V α-1 ∂ t V -αλ -α V α-1 ∆V + α(1 -α)λ -α V α-1 |∇V | 2 V + λ -αq1 V αq1 .
This leads to

∂ t V -∆V + (1 -α) |∇V | 2 V + α -1 λ -α(q1-1) V αq1-α+1 = 0 in O.
Using Hölder's inequality we obtain

(1 -α) |∇V | 2 V + (2α) -1 λ -α(q1-1) V αq1-α+1 ≥ c 1 |∇V | p λ -α(q 1 -1)(2-p) 2 V α(q 1 -1)(2-p) 2 -(p-1) ≥ c 2 |∇V | p λ -(p-1) R -2+p+ 2(p-1)
α(q 1 -1) , and (2α) -1 λ -α(q1-1) V αq1-α+1 ≥ c 3 λ -(q-1) R -2+ 2(q-1)

α(q 1 -1) V q .

If we choose λ = min{c

1 p-1 2 , c 1 q-1 3 } min a -1 p-1 R -2-p p-1 + 2 α(q 1 -1) , b -1 q-1 R -2 q-1 + 2 α(q 1 -1)
, then c 2 λ -(p-1) R -2+p+ 2(p-1) α(q 1 -1) ≥ a, c 3 λ -(q-1) R -2+ 2(q-1) α(q 1 -1) ≥ b, from what follows

∂ t V -∆V + a|∇V | p + bV q ≤ 0 in O.
By Remark 3.5, there exists a maximal solution u ∈ C 2,1 (O) of ∂ t u -∆u + a|∇u| p + bu q = 0 in O.

Therefore, u ≥ V = λv 1 α and u is a large solution of (4.26). This completes the proof of Theorem 1.3.

Appendix

Proof of Proposition 2.5.

Step 1. We claim that the following relation holds:

ˆRN+1

I 1 2 [µ](x, t) (N +2)/N dxdt ≍ ˆRN+1 ˆ1 0 (µ( Qr (x, t))) 2/N dr r dµ(x, t).

(5.1)

In fact, we have for ρ j = 2 -j , j ∈ Z, ∞ j=1 ˆRN+1

(µ( Qρj (x, t))) 2/N dµ(x, t) ˆRN+1 ˆ1 0 (µ( Qr (x, t))) 2/N dr r dµ(x, t)

∞ j=0 ˆRN+1 
(µ( Qρj (x, t))) 2/N dµ(x, t).

Note that for any j ∈ Z ρ -N -2 j ˆRN+1 (µ( Qρj+1 (x, t))) (N +2)/N dxdt ˆRN+1 (µ( Qρj (x, t))) 2/N dµ(x, t) ρ -N -2 j ˆRN+1 (µ( Qρj-1 (x, t))) (N +2)/N dxdt. Step 2. End of the proof. The first inequality in (2.1) is proved in [START_REF] Nguyen | Potential estimates and quasilinear equations with measure data[END_REF]. We now prove the second inequality. By Theorem 2.4 there is µ ∈ M + (R N +1 ), supp(µ) ⊂ K such that

||M 2 2 [µ]|| L ∞ (R N +1 ) ≤ 1 and µ(K) ≍ PH N 2 (K) |K| N/(N +2) . (5.2) 
Thanks to (5.1), we have for δ = min{1, (µ(K)) (5.4)

As in [12, 

  t) ≤ I 1 + I 2 + I 3 ˆRN+1 (|∂ t ξ| + |∇ξ| + |∆ξ|)u dyds + sup QR/3 (0,0)\ QR/4 (0,0)u.

( 2 (L

 2 N +2)/N (µ(K)) (N +2)/N 1 + log + (µ(K)) -1 (µ(K)) (N +2)/N log | Q200 (0, 0)| |K| . Set μ = log | Q200(0,0)| |K| -N/(N +2) µ/µ(K), then ||I 1 2 [μ]|| L (N +2)/N (R N +1 ) 1. It is well known that Cap 2,1, N +2 K) ≍ sup{(ω(K)) (N +2)/2 : ω ∈ M + (K), ||I 1 2 [ω]|| L (N +2)/N (R N +1 ) 1} (5.3)see[START_REF] Nguyen | Potential estimates and quasilinear equations with measure data[END_REF] Section 4]. This gives the second inequality in (2.1).It is easy to prove (2.2) from its definition. Moreover, (5(N +2)/N (R N +1 ) : ω ∈ M + (K), ω(K) = 1}.We deduce from (5.1) that1 Cap 2,1, N +2 2 (K) 2/N ≍ inf ˆRN+1 ˆ1 0(ω( Qr (x, t))) 2/N dr r dµ(x, t) : ω ∈ M + (K), ω(K) = 1 .

  for some λ > 0, we see that ∂O = ∂ p O.

	Therefore (1.15) holds for any (x, t) ∈ ∂ p O, and (1.14)-(1.17) hold for any (x, t) ∈ ∂ p O\{(0, √ λ)}. However, (1.14) and (1.17) are also valid at (x, t) = (0, √ λ) if λ > 1800 2 , but not valid if
	λ < 1800 2 .

  y| 2 4(t-s) χ t>s (3.14) for all (x, t) ∈ O and (y, s) ∈ ∂ p O. Arguing as in Remark 3.4, if for any (x, t) ∈ ∂ p O there exist ε ∈ (0, 1) and a decreasing sequence {δ n } ⊂ (0, 1)

  proof of Lemma 2.2], it is easy to derive (2.3) from(5.4).Proof of Proposition 2.6. Thanks to the Poincaré inequality, it is enough to show that there exists ϕ ∈ C ∞ c ( Q3/2 (0, 0)) such that 0 ≤ ϕ ≤ 1, with ϕ = 1 in an open neighborhood of K andˆRN+1(|D 2 ϕ| p + |∂ t ϕ| p )dxdt Cap 2,1,p (K).(5.5)By definition, one can find 0≤ φ ∈ S(R N +1 ), φ ≥ 1 in a neighborhood of K such that ˆRN+1 (|D 2 φ| p + |∇φ| p + |φ| p + |∂ t φ| p )dxdt ≤ 2Cap 2,1,p (K).Let η be a cut off function on Q1 (0, 0) with respect to Q3/2 (0, 0) andH ∈ C ∞ (R) such that 0 ≤ H(t) ≤ t + , |t||H ′′ (t)| 1 for all t ∈ R, H(t) = 0 for t ≤ 1/4 and H(t) = 1 for t ≥ 3/4. ϕ| p + |∂ t ϕ| p )dxdt ˆRN+1 (|D 2 φ| p + |∇φ| p + |φ| p + |∂ t φ| p )dxdt,(5.6)where ϕ = ηH(φ). Indeed, we have|D 2 ϕ| |D 2 η|H(φ) + |∇η||H ′ (φ)||∇φ| + η|H ′′ (φ)||∇φ| 2 + η|H ′ (φ)||D2 φ|, and |∂ t ϕ| |∂ t η|H(φ) + η|H ′ (φ)||φ t |, H(φ) ≤ φ, φ|H ′′ (φ)| 1. ˆRN+1 (|D 2 ϕ| p + |∂ t ϕ| p )dxdt ˆRN+1 (|D 2 φ| p + |∇φ| p + |φ| p + |∂ t φ| p )dxdt

	We claim that		
	ˆRN+1		
	(|D 2 Thus,		
		+	ˆRN+1	|∇φ| 2p φ p dxdt.
	This implies (5.6) since, according to [1], one has
	ˆRN	|∇φ(t)| 2p (φ(t))	

p dx ˆRN |D 2 φ(t)| p dx ∀t ∈ R.

with ρ = d/2, satisfies ∂ t U -∆U + U q ≥ 0 in B d where A = sup (y,s)∈ Q4(0,0) ˆQ2(0,0) ((max{|x -y|, |t -s| 1/2 }) -N + (max{|x -y|, |t -s| 1/2 }) -N -1 )dxdt.

Therefore we obtain (3.20) from (3.18) and (3.19).

Proposition 3.8 Let 0 < ε < 1, K ⊂ {(x, t) : ε < max{|x|, |t| 1/2 } < 1} be a compact set and u the maximal solution of (3.7) in QR (0, 0)\K with R ≥ 100. Then

and sup Qε/4 (0,0)

where

Proof. For j ∈ N , we define S j = {x :

where (x k,j , t k,j ) ∈ S j . For k = 1, ..., L(N ), let u j , u k,j be the maximal solutions of (3.7) where K is replaced by K ∩ S j and K ∩ Qρj+3 (x k,j , t k,j ), respectively. Clearly the function ũk,j defined by ũk,j (x, t) = ρ

is the maximal solution of (3.7) provided (K k,j , QR/ρj+3 (-x k,j /ρ j+3 , -t k,j /ρ 2 j+3 )) with

is replacing (K, QR (0, 0)). Let u k,j be the maximal solution of (3.7) with (K, QR (0, 0)) replaced by (K k,j , Q2R/ρj+3 (0, 0)). Since QR/ρj+3 (-x k,j /ρ j+3 , -t k,j /ρ 2 j+3 ) ⊂ Q2R/ρj+3 (0, 0), then, by the comparison principle as in the proof of Proposition 3.1, we get ũk,j ≤ u k,j in QR/ρj+3 (-x k,j /ρ j+3 , -t k,j /ρ 2 j+3 )\K k,j , and thus

Therefore, using (3.9) in Remark 3.2 and the fact that

Consequently, we obtain (4.15) from (4.17), for ε small enough.

Proof of assertion (4.16). From (4.12) we get

where

We show that

In fact, as above we have

Consequently,