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Wiener criteria for existence of large solutions of
nonlinear parabolic equations with absorption in a
non-cylindrical domain
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Abstract
We obtain a necessary condition and a sufficient condition, both expressed in terms
of Wiener type tests involving the parabolic W;,’l— capacity, where ¢’ = q%l and ¢ > 1,
for the existence of large solutions to equation d:u — Au + u? = 0 in a non-cylindrical
domain. We provide also a sufficient condition for the existence of such solutions to
equation dru — Au+e" —1 = 0. Besides, we apply our results to equation: d:u — Au+
alVul? +bu? =0 for a,b>0,1 <p<2and g>1.

Keywords. Bessel capacities; Hausdorff capacities; parabolic boundary; Riesz potential;
maximal solutions.

2010 Mathematics Subject Classification. 35K58, 28A12, 46E35.

1 Introduction

The aim of this paper is to study the problem of existence of large solutions to some nonlinear
parabolic equations with superlinear absorption in an arbitrary bounded open set O C RV+1,
N > 2. These are functions u € C?1(0), solutions of

Ou — Au+ |u|9™u =0 in O,
lim inf w=o0 for all (z,t) € 0,0, (1.1)
5—0 0NQ;5 (1)
with ¢ > 1 and

Oru — Au + sign(u)(el*l —1) =0 in O,

lim inf wuw=o0 for all (z,t) € 0,0, (1.2)

6—=00NQs(z,t)
in which expressions 9,0 denotes the parabolic boundary of O, i.e. the set all points
X = (x,t) € 0O such that the intersection of the cylinder Qs(w,t) := Bs(z) x (t — 62,t)
with O¢ is not empty for any § > 0. By the maximal principle for parabolic equations we
can assume that all solutions of (1.1) and (1.2) are positive. Henceforth we consider only
positive solutions of the preceding equations.
In [23], we studied the existence and the uniqueness of solution of semilinear heat equations
in a cylindrical domain,

Ou— Au+ f(u) =0 in Qx (0,00),
u = 00

in 8, (Q x (0,00)), (1.3)
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where Q is a bounded open set in RY and f a continuous nondecreasing real-valued function
such that f(0) > 0 and f(a) > 0 for some a > 0. In order to obtain the existence of a
maximal solution of dyu — Au + f(u) = 0in £ x (0,00) there is need to introduce the

following assumptions
(i) / (/ f(T)dT) ds < o0,
“OO 0 (1.4)

(id) / (F(s)) ™" ds < oo.

a

=

Condition (i), due to Keller and Osserman, is a necessary and sufficient for the existence of
a maximal solution to

—Au+ f(u) =0 in Q. (1.5)

Condition (ii) is a necessary and sufficient for the existence of a maximal solution of the
differential equation

¢+ fle)=0  in (0,00), (1.6)

and this solution tends to oo at 0. In [23], it is shown that if for any m € R there exists
L = L(m) > 0 such that

for any z,y >m = f(x+y) > f(z) + f(y) - L,

and if (1.5) has a large solution, then (1.3) admits a solution.
It is not alway true that the maximal solution to (1.5) is a large solution. However, if f
satisfies

/ sTHN=D/WN=2) f(5)ds < 0o if N > 3,
1

or
inf{aZO:/ f(s)e™*ds < o0 }<oo if N =2,
0

then (1.5) has a large solution for any bounded domain €2, see [17].

When f(u) = u?, ¢ > 1 and N > 3, the first above condition is satisfied if and only if
q < qc:= %, this is called the sub-critical case. When g > q., a necessary and sufficient
condition for the existence of a large solution to

—Au+u?=0 in Q (1.7)
is expressed in term of a Wiener-type test,

/1 Capy ,(Q°N B,.(x)) dr
0

N3 =00 for all = € 0Q. (1.8)

In the case ¢ = 2 it is obtained by Dhersin and Le Gall [5], see also [13, 14], using
probabilistic methods involving the Brownian snake; this method can be extended for 1 <
g < 2 by using ideas from [8, 7]. In the general case the result is proved by Labutin, by

purely analytic methods [12]. Note that ¢' = ~%3 and Cap, ,, is the capacity associated to

q—1
the Sobolev space W7 (RV).
In [20] we obtain sufficient conditions for the existence of a large solution to

—Au+e*—1=0 in Q, (1.9)



expressed in terms of the Hausdorff ’H{V ~2_capacity in RY, and more precisely

/1 HN=2(Q¢ N B,.(z)) dr

N3 =00 for all = € 99. (1.10)
We refer to [18] for investigation of the initial trace theory of (1.3).

In [9], Evans and Gariepy establish a Wiener criterion for the regularity of a boundary
point (in the sense of potential theory) for the heat operator L = 9y — A in an arbitrary
bounded set of R¥*1. We denote by 9(RYV*1) the set of Radon measures in R¥+! and,
for any compact set K C RY*L by 9 (RVHL) the subset of M(RYHL) of measures with
support in K. Their positive cones are respectively denoted by 9+ (RN *1) and 93?} (RN,
The capacity used in this criterion is the thermal capacity defined by

Capg(K) = sup{u(K) : p € MRV Hx p < 1,

for any K C R¥*! compact, where H is the heat kernel in RN*!, It coincides with the
parabolic Bessel G;-capacity Capg, ,

Capg, o(K) = sup{/ |f|2dxdt : f € Lﬁ_(RN“), Gi*f> XK}7
]RN+1

here G; is the parabolic Bessel kernel of first order, see [21, Remark 4.12]. Garofalo and
Lanconelli [10] extend this result to the parabolic operator L = 9; — div(A(z,t)V), where
A(z,t) = (a;(z,t)), i,5 = 1,2,..., N is a real, symmetric, matrix-valued function on RV+!
with C'°° entries satisfying
N
CTHEP <> aijz, )& < CIEP* V(z,t) e RVT ve e RV,
i,j=1
for some constant C' > 0.

Much less is known concerning the equation
Ou—Au+ f(u)=0 (1.11)

in a bounded open set O C of RV*1 where f is a continuous function in R. Gariepy
and Ziemer [11, 24] prove that if there exist (zo,t0) € 9,0, | € R and a weak solution
u e W2(0) N L>®(0) of (1.11) such that n(—l — & +u)t,n(l —e —u)t € Wy*(O) for any
e >0and n € CX(B,(z0) x (=12 + to,r* + to)) for some r > 0, and if there holds

! Capy (0° N (By(wo) x (to — 2ap?,to — Sap?))) dp
0 pN 7

= oo for some o > 0,

then lim  w(z,t) = [. This result is not easy to use because it is not clear whether
(I,t)‘)(zo,to)

(1.11) has a weak solution v € W12(0). In this article we show that (1.11) admits a maximal
solution u € C%1(0) in an arbitrary bounded open set O, which is constructed by using an
approximation of O from inside by dyadic parabolic cubes, provided that f is as in (1.3)
and satisfies (1.4).

The main purpose of this article is to extend Labutin’s result [12] to the semilinear
parabolic equation (1.1). Namely, we give a necessary and a sufficient condition for the
existence of solutions to problem (1.1) in a bounded non-cylindrical domain O C RN+
expressed in terms of a Wiener test based upon the parabolic W;,’l—capacity in RVt We
also give a sufficient condition for solving problem (1.2) expressed in terms of a Wiener test
based upon the parabolic Hausdorff ’P/HIZJV -capacity. These capacities are defined as follows:

if K ¢ RN+ is a compact set, we set

Capy 1, (K) = inf{||<p||g/2;1(RN+l) € S(RVTY) o > 1 in a neighborhood of K},



where

||<P||W2 veuv4ny = [0l e @veny + || ot ||Lq @~+1) Vol Lo @nny + Z ”8:5 oz, Il La’ (mN+1)5

and for a Suslin set £ Cc RV*+1,
Cap, ; ,(E) = sup{Cap, ; (D) : D C E, D compact}.

This capacity has been used in order to obtain estimates expressed with the help of potential
that are most helpful for studying quasilinear parabolic equations (see e.g. [3, 4, 21]). Thanks
to a result due to Richard and Bagby [2], the capacities Cap, 1 , and Capg, ,, are equivalent
in the sense that, for any Suslin set K C RN*! there holds

C_lcap2,1,q’ (K> < Capgz,q' (K> < C’Cap2,1,q’ (K>a

for some C' = C(N, q), where Capg,  is the parabolic Bessel Gs-capacity, see [21].
For a set E C RNY*! we define ’PH;V(E) by

PHN = inf Zr :F C UBTj(acj) X (t; —r?,tj —|—r]2-), r; <p

It is easy to see that, for 0 < o < p and E C RV, there holds

PHY (E) < PHY (E) < C(N) (B)QPH,T(E). (1.12)

g

With these notations, we can state the two main results of this paper.

Theorem 1.1 Let N > 2 and q > q. := % Then
(i) The equation

ou—Au+u?=04in O (1.13)

admits a large solution if there holds

! Capy 1 o (0°N (By (x) x (t = 30p% t = p?))) dp
for any (z,t) € 0,0 and ¢ > g« or ¢ = g« when N > 3.
(i) If equation (1.13) admits a large solution, then
1 c
/0 Cap?,l,q’(OpNm Qp(xv t)) % = 0, (115)

for any (z,t) € 9,0, where Q,(z,t) = By(x) x (t — p,t).

It is an open problem to prove that the maximal solution is unique whenever it exists as
it holds in the elliptic case for equation (1.7), see Remark p. 25.

Theorem 1.2 Let N > 2. The equation
Ou—Au+e*—1=01in O (1.16)
admits a large solution if there holds

/1 PHY (0°N (B (x)  (t = 300>t — p%))) dp

for any (z,t) € 9,0.



From properties of the W;’l—capacity, relation (1.14) is satisfied if the following relations
hold in which | | denotes the Lebesgue measure in RV+1,

24’
HOS N (B (@) x (=307t = )N dp
; pN 7—oowenq>q*,

and

vl

—1\ —
(10w 0N (B ) x -0 2 ) T
/ ~ — =00 when q = g..
0 P p

Similarly, it follows from properties of the PH1 -capacity that identity (1.17) is verified if

N

L10° N (Bg (z) x (t—30p2,t — p?)| 42 g
J . y
0 14 p

= OQ.

When O = {(z,t) € RV+!: |x|2+¥ < 1} for some A > 0, we see that 0O = 9,0. Therefore
(1.15) holds for any (z,t) € 8,0, and (1.14)-(1.17) hold for any (z,t) € 9,0\{(0,vVA)}.
However, (1.14) and (1.17) are also valid at (z,t) = (0,v/)) if A > 18002, but not valid if
A < 18002,

As a consequence of Theorem 1.1 we derive a sufficient condition for the existence of a
large solution of a class of viscous parabolic Hamilton-Jacobi equations.

Theorem 1.3 Let g1 > 1. If there exists a large solution v € C*1(0) of
O —Av+vt =0 in O,

then, for any a,b>0,1<qg<gq; and 1 <p< q?‘ill, the problem

Ou — Au~+ a|VulP + bu? =0 in O,

U = 00 on 0,0, (1.18)

admits a solution u € C*(O) which satisfies

u(x,t) > C'min {a_ﬁngJra(qffl) , bTETR T Ewm D } (v(x,t))é,
for all (x,t) € O where R > 0 is such that O C QR(xo,to), C =C(N,p,q,q1) > 0 and
a:maX{M a-1 } €(0,1).

(1—=1)(2-p)’ 1 -1

2 Preliminaries

Throughout the paper, we denote

Qp(z,t) = By(z) x (t — p2,t],

and 5
Qp(l',t) = BP(:C) X (t - p2at+p2)a

for (z,t) € RN+ and p > 0, and 7, = 47% for all k € Z. We also denote

A 2)B if
A < (>)CB for some C depending on some structural constants, A < B if A <

S (
B<A.



Definition 2.1 Let R € (0,00] and u € M+ (RN+L). We define R—truncated Riesz parabolic
potential I of p by

R A
]Ig[u](x,t)/o W% for all (x,t) € RNTL

and the R—truncated fractional mazimal parabolic potential ML of u by

M?MW)OE“ERW for all (w,t) € RN,
P

We also set I3° = I, and M$° = My. We recall two results in [21].

Theorem 2.2 Let ¢ > 1,R > 0 and K be a compact set in RN There exists 1 := ux €
M (RVHL) with compact support in K such that

W) = Capy  (K) = [ (B[] dods

RN+1

where the constants of equivalence depend on N,q and R. The measure pr is called the
capacitary measure of K.

Theorem 2.3 For any R > 0, there exist positive constants Cy,Cs such that for any p €
ME(RVTY) such that ||M5 (]| o y+1) < 1, there holds

1
el / exp(Cr15 [xqu])dzdt = ][ exp(C115 [xqu])dzdt < Cs,
Q Q

for all Q = Qr(y, s) CRN*L » >0, where Xq 15 the indicator function of Q.

Frostman’s Lemma in [22, Th. 3.4.27] is at the core of the dual definition of Hausdorff
capacities with doubling weight. It is easy to see that it is valid for the parabolic Hausdorff
PH;V—capacity version. As a consequence we have

Theorem 2.4 There holds
sup {u(K) : p € MT RV, supp(p) C K, [[ME[1]]| poe (ravi1y < 1} < PHY (K),

for any compact set K C RNt and p > 0, where equivalent constant depends on N.

For our purpose, we need the some results about the behavior of the capacity with respect
to dilations.

Proposition 2.5 Let K C Qloo(o, 0) be a compact set and 1 < p < % Then

N
2

Capy 1 ,(K) 2 |K|'"%% and Cap,, wi2(K) 2 <log (%)) R
Furthermore

Capy ;1 ,(K,) < pN T2 Cap, 1 ,(K), (2.2)

1 L (log(2/p) ", (23)

Capy ;a2 () R Cap, ; xy2 (K)

for any 0 < p < 1, where K, = {(px, p*t) : (z,t) € K}.



Proposition 2.6 Let K C Q1(0,0) be a compact set and 1 < p < % Then, there exists

a function ¢ € CSO(QB/Q(O, 0)) with 0 < ¢ <1 and ¢|, =1 for some open set D D K such
that

[ (D26l VP + 0]+ [0l dad S Capy,, (). (2.4
R 1

We will give proofs of the above two propositions in the Appendix.
Let {e*2};>0 be the semigroup of contractions in LP (1 < p < co) generated by A. It is
wellknown that the solution w of the problem

Ou—Au=p in Qr(0,0),

] 2.
u=0 on 0,Qr(0,0), (2:5)
with € C*°(Qr(0,0)), can be expressed by Duhamel’s formula
t
u(z,t) = / (e(tfs)Au) (z,s)ds for all (z,t) € Qr(0,0).
0
We denote by H the Gaussian kernel in RV *1:
H(x,t) = L eJafiL2
) (47Tt)% Xt>0-
We have
lu(z,t)] < (H*p)(z,t) forall (z,t) € Qr(0,0).
In [21, Proof of Proposition 4.8] we show that
|(H % )| (z,t) < CyL(N)IZE[|uf](2,t) for all (z,t) € Qr(0,0).
Here i is extended by 0 in (Qx(0,0))¢. Thus,
t
| / (ewsmu) (z,8)ds| < CL(N)EE[|u|](z,£) for all (z,t) € Qr(0,0). (2.6)
0

Moreover, we also prove in [21], that if g > 0 then for (z,t) € Qr(0,0) and B,(z) C Br(0),

t i P \L,l — sPh
/ (e(t_s)Au) (2. $)ds > Ch(V) Z H(QT(:C tN 128pk))’ (2.7)
0 k=0 Pk

with pp =4 %p.

It is easy to see that estimates (2.6) and (2.7) also holds for any bounded Radon measure
w1 in Qgr(0,0). The following result is proved in [3] and [19], and also in [21] in a more general
framework.

Theorem 2.7 Let ¢ > 1, R > 0 and p be a bounded Radon measure in Qr(0,0).

(i) If p is absolutely continuous with respect to Capgq , in Qr(0,0), then there exists a
unique weak solution u to equation

Ou — Au+ |u|7tu = p in Qr(0,0),

u=0 on 0,Qr(0,0).

(ii) If exp (C1(N)I2E[|ul]) € LY (Qr(0,0)), then there evists a unique weak solution v to
equation

v — Av + sign(v)(el’l —1) = p in Qr(0,0),
v=0 on O

where the constant C1(N) is the one of inequality (2.6).



From estimates (2.6) and (2.7) and using comparison principle we get the estimates from
below of the solutions v and v obtained in Theorem 2.7.

Proposition 2.8 If u is nonnegative, then the functions u and v of the previous theorem
are nonnegative too and satisfy

00 ex (T, 35 2
u(z,t) > Co(N Z”QJS* tk 12500) o g (@R )) @0, (28
k=0
and
2 i(Qen (2, — $5507))
v(z,t) > Co(N) Y s o — C1(N)IZ® [exp (CL(N)ER[u]) — 1] (2, 1), (2.9)
k=0

for any (x,t) € Qr(0,0) and B,(x) C Br(0) and py =4~ %p.

3 Maximal solutions

In this section we assume that O is an arbitrary non-cylindrical and bounded open set in
RN*! and ¢ > 1. We will prove the existence of a maximal solution of

Ou—Au+u? =0 (3.1)

in O. We also get an analogous result when u? is replaced by e* — 1.

It is easy to see that if u satisfies (3.1) in Q-(0,0) (Q,(0,0)) then ug(z,t) = a2/ Vy(azx, at)
satisfies (3.1) in @,/4(0,0) (Q;/4(0,0)) for any a > 0. If X = (2,t) € O, the parabolic dis-
tance from X to the parabolic boundary 9,0 of O is defined by

A(X,0,0) = inf, > max{|z — yl, (t — s)7 }.
s<t

It is easy to see that there exists C' = C(N,q) > 0 such that the function V defined by
V(z,t)=C ((p2 +t)_q+1 + (W)‘ﬁ) in B,(0) x (—p?,0),
satisfies
OV — AV +V7>0 in B,(0) x (—p*,0). (3.2)
Proposition 3.1 There exists a mazimal solution u € C*1(0) of (3.1) and it satisfies
u(z,t) < C(d((z,1),8,0)) 71 for all (x,t) € O, (3.3)
for some C = C(N,q).

Proof. Let Dy, k € Z be the collection of all the dyadic parabolic cubes (abridged p-cubes)
of the form

{(,CCl, ...,.Z'N,t) : ij_k S Zj S (mj + 1)2_k,j = 1, ...,]\[7 mN+14_k S t S (mN+1 + 1)4_k}
where m; € Z. The following properties hold,

a. for each integer k, Dy is a partition of RN*! and all p-cubes in Dy have the same
sidelengths.



o o
b. if the interiors of two p-cubes @ in Dy, and P in Dy,, denoted @, P, have nonempty
intersection then either @ is contained in P or () contains P.

c. Each Q in Dy, is union of 2V+2 p-cubes in Dy with disjoint interiors.

Let ko € N be such that @ C O for some Q € Dy,. Set O, = | Q, Vk > ko, we

QEDy,
QCO
have O C Ogy1 and O = |J Oxr = | Ox. More precisely, there exist real numbers
k>ko k>ko
a1, a2, ..., (k) and open sets 21, s, .., Q) in R¥ such that

a; < a; +47k < ajy1 < ait1 +4k for i = 1, ,Tl(k) -1,

and
o n(k)—1
Ok = U (0 x (as,a; +47%)) U (i) X (nrys ey +477)) -

i=1

]
For k > ko, we claim that there exists a solution u € 02’1(Ok) to problem

Orup — Aup +ul =0 in 5k,

. (3.4)
ug(z,t) = 00 as d((z,t),0p,0x) — 0.

Indeed, by [6, 15] for m > 0, one can find nonnegative solutions v; € C*'(Q; x (a;, a; +
47F) N O x [a;,a; +47F]) for i = 1,..,n(k) to equations

o1 — Avy + ’Ug =0 in Q) x (al,al + 4_k),
vi(z,t) =m on 9 x (ar,a; +47F),
vi(z,a1) =m in Q,
and
Oy — Av; + ’Ug =0 in €; x (ai, a; + 4716),
vi(x,t) =m on 0Q; x (a;,a; +47F),
vi(x,a;) =m; in €,
where
- m in £ if a; > a;_1 +4ik,
Ol mxana, (@) Fvici(z a1 +47F)xa,_ (x)  otherwise .
Clearly,

Ukm = v 10 X (@i, a; + 47’“] for 1 =1,....,n(k)
is a solution in 02*1(5k) N C(Oy) to equation

o
Oetgm — AUgm + uzﬁm =0 in O,

o
Ug,m =M on OpOk.

Moreover, for (z,t) € 5k, we see that Ba (z) x (t — d;,t) C 5k where d = d((x,t),[?pék).
From (3.2), we verify that

Uly,s)=V(y—zs-t)=0C <(P2 +s —t)qull + (@)ql>



with p = d/2, satisfies

d
oU —-AU+U?>0 in B%(x)x(t—z,t). (3.5)
Applying the comparison principle we get
d2
uk,’m(yas> S U(yvs) in Bg (ZL') X (t - Zat]a
which implies
wem(2,1) < C (d((x,t),apék))_qj for all (z,t) € Ox. (3.6)

From this, we obtain also uniform local bounds for {ux m }m. By standard regularity theory
see, [6, 15], {tug.m}m is uniformly locally bounded in C?!'. Hence, up to a subsequence,

Ul — Uk Cll.gg (Or) as m — oco. We derive that uy, is a weak solution of (3.4) in Oy, which

satisfies uy(x,t) — oo as d((z, 1), a,,ék) — 0 and

up(z,t) < C (d((z,t),apék))iﬁ for all (z,t) € Ox.

Let m > 0 and k > ko. Since ugy1,,m < m in Op and O C Opy1, it follows by the

comparison principle applied to uk+1,m and uk ., in the following n(k) sub-domains of 5k:
Q1 x (ar,a1 +475), Q2 X (az, a2 +47%) 000, Qo) X (@) Gnry +47F), that ugg1m < tpm

in O, and thus ug4+1 < uy in Oy by letting m — oo. In particular, {uy}x is uniformly locally
bounded in L{$,. We use the same compactness property as above to infer that ur — u as
k — oco. Then w is a solution of (3.1) and it satisfies (3.3). By construction u is the maximal

solution. [ ]

Remark 3.2 Let R > 2r > 2, K be a compact subset in QT(O,O). As in the proof of
Proposition 3.1, we can show that there exists a maximal solution of

ou —Au+u? =0 n QRKO, 0\K, (3.7)
u=0 on  0,Qr(0,0), '
which satisfies
u(z,t) < C(d((:v,t),ap(QR(O,O)\K))fﬁ V (z,t) € Qr(0,0)\K, (3.8)

for some C = C(N,q). Furthermore, assume K1, Ka,,,, K, are compact subsets in QT(O, 0)
and K = K1 U...UKp,. Let u,uy, ..., um be the maximal solutions of (3.7) in Qr(0,0)\K,
QR(Oa 0)\K15 QR(Oa 0)\K25 IRR] QR(Oa 0)\Km; respectively, then

u < Zuj in Qr(0,0)\K. (3.9)

Remark 3.3 If the equation (3.1) admits a large solution for some q > 1, then for any
1 < ¢ < gq, the equation
O — Au+u? =04in O (3.10)

admits also a large solution.
Indeed, assume that u is a large solution of (3.1) and v the maximal solution of (3.10).
Take R > 0 such that O C Br(0) x (—R?, R?), then the function V defined by

Vit) = (g—1)" %1 (2R 1)1,

10



satisfies (3.1). It follows for all (z,t) € O

u(z,t) > inf V(x,t) > (¢ — 1)_<1+1R_q%1 =: qy.
(y,8)€0
9—491 a—4q1
Then @ = ag'~ " u is a subsolution of (3.10). Therefore v > ag' " w in O, thus v is a large
solution.

Remark 3.4 (Sub-critical case) Assume that 1 < q¢ < q.. It is easy to check that the
function

1\2

C :
Uz,t) = ——€e % Xt>0 (3.11)

is a subsolution of (3.1) in RN+*1\{(0,0)}, where C = (% - %) r
Therefore, the mazimal solution u of (3.1) in O verifies
1 le—yl?

u(z,t) > C————e =) x5, (3.12)
(t—s)a—T

for all (z,t) € O and (y, s) € O°.

If for any (z,t) € 0,0 there exist € € (0,1) and a decreasing sequence {6} C (0,1) con-
verging to 0 as n — oo such that (B(;n () x (=62 +t,—ed2 + t)) NO° # 0 for any n € N,
then u is a large solution. For proving this, we need to show that

lim inf U = 00
p=00N(By(z) X (—p2+t,p2+1))

Let 0 < p < \/5(51 and n € N such that \/§5n+1 <p< \/gén.
Since (Bs, (x) x (=02 +t,—ed2 + 1)) NO° # 0, there is (xy,t,) € O° such that |z, — x| <
6n and —62 +t < t, < —e62 +t. So if (y,s) € ON (By(x) x (—p* 4+ t,p? + 1)) then
ly — xn| < (VE+1)0, and 502 < s —t, < (¢ +1)62. Hence, thanks to (3.12) we have for
any (y,s) € ON (By(x) x (—p* +t,p* +1))
1 _ly—anl? 1
u(y,s) > C——— e G—t) >(Ce+1) 7 Te
(s —tp)a 1

_ (AT -2
2e 5,” q R
which implies

Ve+1)2 2
inf UZC(€+1)_‘I%1€_( 25,77 oo as p— 0.
ON(B,(z) % (=p?+t,p2+t))

Remark 3.5 Note that if u € C*Y(O) is a solution of (3.1) for some q > 1 then, for
a,b>0 and 1 <p <2, the function v = b Ty is a super-solution of

0w — Av+a|VolP +bv? =0 in O. (3.13)

Thus, we can apply the argument of the previous proof, with equation (3.1) replaced by (3.13),
and deduce that there exists a mazimal solution v € C*1(0) of (3.13) satisfying

vz, t) < beqfll(d((x,t),apO))fﬁ for all (z,t) € O.

Furthermore, if 1 < q < g4, q = p—Qf—l, a,b > 0 then the function U expressed by (5.11) in

Remark 8.4 is a subsolution of (3.13) in RNT1\{(0,0)}, provided the explicit constant C
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given therein is replaced by some C = C(N,p,q,a,b). Therefore, we conclude that every
mazximal solution of v € C*1(O) of (3.13) satisfy

1 | —y|?
v(z,t) > C—————e~ e Xt>s (3.14)
(t—s)a1

for all (z,t) € O and (y, s) € 9,0.
Arguing as in Remark 8.4, if for any (x,t) € 9,0 there exist ¢ € (0,1) and a decreasing
sequence {6, } C (0,1) converging to 0 as n — oo such that (Bs, (z) x (=62 +t,—e02 + 1)) N
O° £ for any n € N, then v is a large solution.

Next, we consider the following equation

Ou—Au+e* —1=0. (3.15)

It is easy to see that the two functions

2 2 102
Vl(t)10g<t+p > and vz(z)czlog<ﬂ>

14 p2

satisty
Vi+e"—1>0 in (—p?,0],

and
~AVa+e2—1>0 in B,(0),

for some C' = C(N). Using e® + e® < e®*t® — 1 for a,b > 0, we obtain that V; + V5 is a
supersolution of equation (3.15) in B,(0) x (—p?,0]. By the same argument as in Proposition
3.1 and the estimate of the above supersolution, we infer the following:

Proposition 3.6 There exists a mazimal solution u € C*(0) of
Ou—Au+e*—1=0in O, (3.16)
and it satisfies

(d((z, 1), 9,0))°
4+ (d((z,1),,0))2

u(z,t) < C —log ( ) for all (z,t) € O, (3.17)

for some C = C(N).

The next three propositions will be useful to prove Theorem 1.1-(ii).

Proposition 3.7 Let K C Ql(0,0) be a compact set and ¢ > 1, R > 100. Let u be a
solution of (3.7) in Qr(0,0)\K and ¢ as in Proposition 2.6 with p = q'. Set & = (1 — )27,
Then,

L wl1A¢]+ Vel +[016]) dade S Capsy (), (3.18)
QR(O,O)
’LL(.CC, t) 5 Cap?,l,q’ (K) + R_qi_l fOT any (:L', t) € QR/5(05 0)\Q2(07 0)5 (319>
and
/ uédrdt < Capy o (K) + R™7T, (3.20)
Q2(0,0)

where the constants in above inequalities depend only on N and q.

12



Proof. Step 1. We claim that

/ ulédrdt < Capy g o (K).
Qr(0,0)

Actually, using integration by parts and the Green formula, one has

/ wlédxdt = —/ Oruldxdt + / EAudxdt
Qr(0,0) Qr(0,0) Qr(0,0)

R? B
= / udyEdwdt + / ulAedzdt + / / <§—“ -
Qr(0,0) Qr(0,0) —r2 JoaBro) \ OV

where v is the outer normal unit vector on dBr(0). Clearly,

ou o0&
27 < = — .
5 = 0 and ey 0 on 0Bgr(0)
Thus,
/ ulédzdt §/ u|8t§|d:cdt+/ u|A¢|dzdt
Qr(0,0) Qr(0,0) Qr(0,0)

23

“ou

(3.21)

> dsdt,

< 2q’/~ u(l — )% 1| dyp|dadt + 2¢'(2¢' — 1)/ u(l — )% | V|2 dadt

Qr(0,0) Qr(0,0)

+ 2q’/@ ( )u(l — )2 Ap|dadt
(0,0

< 2q’/~ uét)\9,p|dxdt 4 2¢'(2¢' — 1)/~ uct 1\ V| 2dzdt
Qr(0,0) Qr(0,0)

+ 2q’/ u€t ) Ap|dxdt.
Qr(0,0)

(3.22)

In the last inequality, we have used the fact that (1 — ¢)2q/_1 <(1- ¢)2q/_2 =¢l/a,

Hence, by Holder’s inequality,

/ wIedadt < / 00| daxdt + / V|7 dadt
Qr(0,0) Qr(0,0) Qr(0,0)
+/ |Ap|? dadt.
Qr(0,0)

By the Gagliardo-Nirenberg inequality,
Vel dodt S 1Y gy [, D%l dod
/QR(O,O) (@r0.0) /5,0,0)

< / |D%p| dadt.
Qr(0,0)

Hence, we find

/ uéddt < / (9rp|" + D>l )dxdt,
Qr(0,0) 2r(0,0)
and derive (3.21) from (2.4). In view of (3.22), we also obtain

L u(agl+ oighdeds S Capyy (),
Qr(0,0)
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and
/ u|VE|dadt < Capy 1 (K),
Qr(0,0)
since

/ u|VE|dzdt = 2q// u§(2q/_1)/2q/|V<p|d:cdt
Qr(0,0) Qr(0,0)

< 2q’/ w1V p|dxdt
Qr(0,0)
< / wIEdzdt + / V| dad.
Qr(0,0) Qr(0,0)
It yields (3.18).

Step 2. Relation (3.19) holds. Let n be a cut off function on QR/4(O,O) with respect to
Qr/3(0,0) such that |9yn| + [D?*y| < B2 and |Vy| < R™'. We have

Oy (néu) — A(néu) = F € Ce(Qry3(0,0)).

Hence, we can write

_lz—yl?
(néu)(z,t) / / —————x€ 09 F(y,s)dsdy V(x,t) € RN+,
RN (4 (t — s)

Now, we fix (2,t) € Qr/5(0,0)\Q2(0,0). Since supp{|Vn|} Nsupp{|VE[} = 0 and
F=n€ (0u — Au) —2(nVE + EVn) Vu + (§0in + o€ — 2VnVE — An — nAf) u
< =2(nVE+EVn) Vu + (§0im + 10k — EAn — nA&) u
there holds

(e ) = () t) < 2 [ / ﬁe 525 (V€ + £Vi) Vudsdy

+f / L (ndug — nAE) udsdy
RN (4m(t — s)

_lz—yl®
76 4(1 5) 5 A Ude
/RN/ = )% (Oemé — EAn) Y.
=5+ I+ Is.

By integration by parts,
_le—yl?
2(4m) N/2/ /]RN 2(t — s) (N+2)/ e S) (V€ +EVn) udyds

-N/2 =
+ 2(4n) / /RN th)N/Ze =) (EAn + nAg) udyds.

Note that
1 _lz—y? 1/2 -N
Tt T S (maxlle —yl - s7)
(x—y)  _le—w®

—N-—-1
S (max{lz —yl, [t —s['/2})

e A(t—=)

‘2(t — 5)(N+2)/2
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and

max{|z — y|,[t — s|'?} 21 V(y,s) € supp{|D*¢|} Usupp{|0:&|},
max{|z — y|,[t — s|'?} 2 R V(y,s) € supp{|D*n|} Usupp{|dy|} V|a| > L.
We deduce

N-1

s [ (e gl e s7) " @IV + 60wy
RN+1
1/2 -N
+/ (maxﬂx—yl,lt—SI / }) (€| An| + 0] AE]) u dyds
RN+1

S [ (9 Ahudyds+ [ (RN RN Ay dyds
RN+1 Qr/3(0,00\Qr/4(0,0)

< / (Ve + 1A udyds + s
RN+1 Qry3(0,0)\Qr,4(0,0)

129N
L< / (max{fe = gl 1# = 51/2}) " (90€] + | AE]u dyds
RN+1

< / (18:€] + |AE])u dyds,
RN+1

and
2y N
135/ (max{|x—y|,|t—8| / }) (19enl + |An|)u dyds
]RN+1
SLo RN+ Aaudyds
QR/S(Ovo)\QR/él(O’O)
< sup u.
QR/S(Ovo)\QR/él(O’O)
Hence,
wat) < T+ L+ 15 < / (0] + V€| + [Aeudyds +  sup .
RN +1 Qr/3(0,0\Qr/4(0,0)

Combining this inequality with (3.18) and (3.8), we obtain (3.19). 3
Step 3. End of the proof. Let 6 be a cut off function on Q3(0,0) with respect to Q4(0,0).
As above, we have for any (z,t) € RV*!

(0u) (. 1) < /RNJmax{lx gl — 8|2}V (0]VE| + €]V6)u dyds
+ / (max{|z — y|, |t — s|'/2}) "N (0| AE| + £|A0))u dyds
RNA+1
4 / (max{]z — yl. [t — s|Y/2}) N (0]0,€] + 0| AL yu dyds
RN+1

*/ (max{|e — yl, |t — s|"/2}) N (£]046] + €| A6])u dyds.
RN+1

Hence, by Fubini theorem,

/ nudxdt = / Onudxdt
Q2(0,0) Q2(0,0)

< A/ (OIVE| + £[V0] + 0|A] + £|A0] + 010€] + £0,0]) w dyds
RN+1

5/ (0] + [VE| + |ADudyds +  sup
RN+1 Q4(0,0\Q3(0,0)

15



where

A= sup / ((max{|x—y|,|t—s|1/2})7N—|— (max{|x—y|,|t—s|1/2})7N71)dxdt.
(y,5)€Q4(0,0) / Q2(0,0)
Therefore we obtain (3.20) from (3.18) and (3.19). [

Proposition 3.8 Let 0 <e < 1, K C {(,t) : ¢ < max{|z], [t|'/2} < 1} be a compact set
and u the mazimal solution of (3.7) in Qr(0,0)\K with R > 100. Then

=2 Capy o (KN ij (0,0))

sup  u g ~ ViRTTT i g>q., (3.23)
Q</4(0,0) j=—2 Pj
and
Je Ca ’ K; 2
sup USmei}@(J)JrjaR’ﬁ if q¢=q. (3.24)
Q-/4(0,0) =0 Pj

where p; = 277, K;j = {(x/pj13,t/p3y3) : (x,1) € KN Qp;»(0,0)} and j. € N is such that
Pj. <€ < pj.—1.

Proof. For j € N, we define S; = {x : p; < max{|z|,[t|'/?} < pj_1}.

Fix any 1 < j < j.. We cover S; by L = L(N) € N* closed cylinders

QPjJrs (wk,jatk,j), k=1, ...,L(N),

where (:Ckﬁj,tkyj) € 95;.
For k = 1,...,L(N), let u;,us ; be the maximal solutions of (3.7) where K is replaced by

KnSjand KN ijﬁ_ (@k,j,tk,;), respectively. Clearly the function 4y ; defined by

_2
U j(z,t) = pii3un;(pjes® + T g, pryat + trj)

is the maximal solution of (3.7) provided (Kj_;, QR/,JHS (=rj/pje3, —thj/P3y3)) With

Kij ={(/pj+3,5/0313) : (4, 8) € —(wrj,try) + KN Qpyrs(Thjrtrg)} C Q1(0,0)

is replacing (K, Qr(0,0)). Let Ty ; be the maximal solution of (3.7) with (K, Qr(0,0
P g( 7QR(a )) »J ( ) ( ) )

replaced by (Kx,j, Q2ry/p,44(0,0)). Since Qryp,., (— T,/ pjts, —thj/Pres) C Qarypyss(0,0),
then, by the comparison principle as in the proof of Proposition 3.1, we get g ; < Uy ; in

QR/pyvs(—Tkj/Pjv3, —th j/P313)\Kk,j, and thus

ak,j (:C) t) 5 CapQ,l,q’ (KkJ) + (R/pj+3)_ﬁa
for any (z,t) € (Q2R/(5pj+3)(0a 0) N Qry/pyes (T j/Pitss —tk,j/p§+3)) \Q2(0,0) = D.
Fix (:Eo, to) S Q8/4(0, 0) Clearly, ((1'0 — xk,j)/ijrB; (to — tkyj)/p]urg) € D, hence

_ 2
uy, j(x0,t0) = piy% Uk (2o — Tk,5)/pjvas (to — i)/ P51s)

< Cap2,1,q2’(Kk7j) + _%.

~

P
Therefore, using (3.9) in Remark 3.2 and the fact that

Cap2,1,q'(Kk,j) = Cap2,1,q' (Kk,j + (k.5 /pj+3,s tk,j//)?Jrs)) < Cap2,1,q' (K5),
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we derive

. jo L(N)
(1‘0,150 < ZUJ Z'O,to Z Z SC(),tO

j=1 j=1 k=1
Je
Cap
Z 2, ,q )+JaR =
=0 p]
which yields (3.24). If ¢ > gx, then by (2.2) in Proposition 2.5, we have
—N—242¢' ~
Cap, o (K;) S pifs 72 Capyy o (KN Q,,_,(0,0)),

which implies (3.23). |

Proposition 3.9 Let K, u,& be as in Proposition 3.7. For any compact set Kq in Ql(O, 0)
with positive measure |Ky|, there exists € = (N, q, |Ko|) > 0 such that

Capy; (K) <e=infu g / uédzdt,
Q2(0,0)

0

where the constant in the inequality < depends on Kg. In particular,
Capy ¢ (K) < = infu S Capy 4 o (K) + R 7T, (3.25)
0

Proof. It is enough to prove that there exists € > 0 such that
Capy 1 o (K) <e = [Ki| > 1/2|Ky, (3.26)

where K1 = {(z,t) € Ko : {(x,t) > 1/2}. By (2.1) in Proposition 2.5, we have the following
estimates
24’
|[Ko\K1|'" %+ < Cap,  , (Ko\ K1),

if ¢ > g«, and

Y
<1og (%)) < Capa 1 (Ko\ ),
if ¢ = g«. On the other hand,
Cap, 1 o (Ko\K1) = Cap271,q,({K0 rp>1- (1/2)1/(2(1/)})

<=2 [ (1Dl 9l ol + 0l ) dade
S Capy 1 ¢/ (K),

where ¢ is in Proposition 3.7. Henceforth, one can find € = (N, ¢, |Ky|) > 0 such that

Capy ¢ (K) < &= |Ko\K1| <1/2 [Ko|.

This implies (3.26). |

4 Large solutions

In the first part of this section, we prove theorem 1.1-(ii), then we prove theorems 1.1-(i)
and 1.2. At end weapply our result to a parabolic viscous Hamilton-Jacobi equation.
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4.1 Proof of Theorem 1.1-(ii)

Let Ry > 4 such that O CC Qg,(0,0). Assume that the equation (1.13) has a large solution
u. We claim that (1.15) holds with (z,¢) € 9,0, and without loss of generality, we can
assume (z,t) = (0,0). Set K = Qar,(0,0)\O and define

Ty = {o: pyn < max{fe], 1]V} < pj,t < 0},
Tj = {a: pjys < max{|z|, |t|"/?} < pj_2,t <O}

Here p; = 277, For j > 3, let uy, us, us, us be the maximal solutions of (3.7) when K is
replaced by KNQ,, ,(0,0), Kﬂfj, (K N Q1(0, 0)) \Qp,_.(0,0) and K\Q1(0,0) respectively
and R > 100Ry. From (3.9) in Remark 3.2, we can assert that

u<u +us+us+ug in Oﬂ{(m,t)eRNH:th}.
Thus,

infu < [url|zoe (1) + [us|[Loo () + [|uallLoo(zy) + inf us. (4.1)
J J

Case 1: ¢ > ¢.. By (3.8) in Remark 3.2,
[wall oo (1) S 1- (4.2)
By (3.23) in Proposition 3.8,

T2 Capyy o (KN Q,,(0,0))

llusl[Loe(ry) S Y

N
i=—2 Pi

+jR 7T, (4.3)

Since (z,t) — up(z,t) = p?i(g_l)ul(pﬂgz,piﬁt) is the maximal solution of (3.7) when

(Ka QR(O’ 0)) is replaced by ({(y/pj+3a S/p?+3) : (ya 5) € KﬂQPjJrs (0’ 0)}’ QR/P]‘+3 (Oa 0))’ we
derive

_ Capy 1 (KN Qy,.,(0,0)) _ 2
[l e () S~ +(R/pjes) o1,
J

thanks to (3.19) in Proposition 3.7 and (2.2) in Proposition 2.5, from which follows

Capy 1 (KN Qp,,,(0,0)) 2
llurllLee(1y) S S N L + R a1, (4.4)
J

Since (z,t) — us(z,t) = p?i(g_l)m(pj,gz,pfdt) is the maximal solution of (3.7) when

the couple (K, Qr(0,0)) is replaced by ({(w/pi—2,5/p5_5) : (y,s) € KﬂTj},QR/pjfz(O,O)),
Proposition 3.9 and relation (2.2) in Proposition 2.5 yield

Cap, 4 /(Kﬁfj) R Cap, 4 /(KﬁTj) __2_
pN12—2q' se= %f U2 S N1272q’ + (R/pj—2)" 7T,
j—2 j—2

which implies
Ca (KNQ,._ (0,0
P21,¢ (NJFQES/J*“‘( )) <e=infuy 5 N
pj_2 T; p_]—2

C (KN (0,0 2
aPa 1.4 ( kas( )) 4+ R, (4-5)

for some € = (N, q) > 0.
First, we assume that there exists J € N, J > 10 such that

Capy 1 (KN Qp, 5(0,0)) <
Nt2-2¢ >¢€
j—2

V>
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Then, from (4.1) and (4.2), (4.3), (4.4), (4.5), we have

2 Capy 1 4 KQQPZ(O 0))

1nfu< Z

i=—2 pl

FIRTTT 41,

for any j > J, and letting R — oo,

3 Capy 1 ¢ Kﬂsz(O 0))

1nfu< Z

i=—2 pi

+ 1.

Since inf7; u — 0o as j — oo, we get

i Cap?,l,q’ (K n QP-; (07 0))
N

= 00,
i=0 Pi
which implies that (1.15) holds with (x,t) = (0,0).
Alternatively, assume that for infinitely many j
Cap?,l,q’ (K N ij73 (Oa 0))
Nt2—2q' > &
j—2

then,

Ca AKNQ,. (0,0
P21 ~ @r;-2(0,0)) > p? gq € — oo when j— oo.
Pj—2

We also derive that (1.15) holds with (z,t) = (0,0). This proves the case ¢ > ¢s.

Case 2: ¢ = q,. Similarly to Case 1, we have: for j > 6
|[ual| L (7;) S 1,
3 Ca aPg 1 )
\|us|| oo (1) gz —RLO I R,

Cap21 /(K) 2
||u1||Loo(Tj) 5 ’p+] + R T

J
Ca K
Cap2,1,qr (Kj—5) <e= i%lf U2 5 M

+RTT,

where K; = {(a/pj45,1/0%,3) : (5,6) € K N Q,,_,(0,0)} and & = £(N) > 0.
From (2.2) in Proposition 2.5, we have
1

c N/2
< +c
Capy 1,4 (K NQp, 5(0,0)) ~ Capy; v (Kj)

for any j > 4 where ¢ = ¢(N). If there are infinitely many j > 4 such that
1
CapQ,l,q’ (K N ij73 (05 0)) > 2Cj—N/2’
then (1.15) holds with (z,t) = (0,0) since

Cap?,l,q’ (K N ij,3 (030)) 2j_3

> - — o0 when j — o0.
P;Vfg QC]N/Q
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Now, we assume that there exists J > 6 such that
Capy 1 o (K NQp, 5(0,0)) < 9% 11\//2 Vij=J
Then,
Cap2,1,q' (KJ) < 2CCBLPQ,Lq/(K n ijfs(0,0)) V>
This leads to
Capy ;o (K;) < 2cCapy ; (KN Qp, ,(0,0)) <e YV j>J +J,
for some J' = J'(N). Hence, from (4.6)-(4.9) we have, for any j > J' + J + 3,

|uall oo (1) S 1
| —2
g Cap?,l,q’ (K N QPi—B (an))
> ~
i=J' +J+1 p'L

< Capag (KﬂQp] 5(0,0)) LR
y

Capy 1, (KN Qy,_5(0,0)) N R_q%,

<

/ Sy — 2
llus||L=(;) S +C(J +J)+jR a1,

l[ullpoe (1) S

infug <
~ N
Tj p]

where C(J' +.J) = 3757 SP2ag (),

Consequently we derive

J
1nfu§ Z Capzlq Kﬂpr(O 0))

F O +J)+1+jR T Vji>J +J+3
Pz‘

=

from (4.1). Letting R — oo and j — oo we obtain

= 00,

i Cap?,l,q’ (K N Qpi (07 0))

i=0 Pi

i.e. (1.15) holds with (z,¢) = (0,0). This completes the proof of Theorem 1.1-(ii).

4.2 Proof of Theorem 1.1-(i) and Theorem 1.2

Fix (x9,t9) € 0,0. We can assume that (xo,t9) = 0. Let ¢ € (0,1/100). For (yo,s0) €
(Bs(0) x (—62,62)) N O, we set

R 1 1
My = 0% (B  fso = (734 ko0 = (10+ k]

and
Se ={(z,t) : "e41 < max{|z — yol, |t — So|%} <rppfor k=1,2,..,

where r, = 47F, Note that My = 0 for k large enough and M, C Sy for all k. Let Rg > 4
such that O CC Qg,(0,0). By Theorems 2.2 and 2.4 and estimate (1.12) there exist two
sequences {py}r and {v}r of nonnegative Radon measures such that

supp(px) C My, supp(vi) C My, (4.10)

q
je(My) < Capy oo (My) = / (137 ” s (4.11)
RN+1
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and
Ui (M) < PHY (My), |[IMP™ [vi]|| oo mneny <1 for k=1,2, ..., (4.12)

where the constants of equivalence depend on NV, q, Ry.

Take ¢ > 0 such that exp (Clsﬂgp“’ >y z/k]) € L' (Qr,(0,0)), in which expression the

constant C; = C1(N) is the one of inequality (2.6). By Theorem 2.7 and Proposition 2.8,
there exist two nonnegative solutions Uj, Uy of problems

AUy =AU+ U =2 in Qr, (0,0),
k=1 )
Ui =0 on 9,Qr,(0,0),
and _
Oz — AUz +e —1=e) in Qr,(0,0),
k=1 )
Uz =0 on 9,Qr,(0,0),
respectively which satisfy
k(B (yo) X (s0 — 13577550 — 19577
Urnsz0) 2 3030 2B 0 > (o0 = a7 o0 = 1570))
i=0 k=1 T
[e%e] q
_ ]IgRo [(]IgRo [e Z uk]> ] (Yo, s0) =: A, (4.13)
k=1
and
& vk(Bri(yo) X (50— 1957750 — 1o5Ts
Ul z0) 2 303 e 00) X (0~ 1o o = i)
i=0 k=1 i
_ HgRo lexp <C1]I§R0 [EZyk]> — 1] (yo, 30) =: B, (4.14)
k=1

and Ul, U, € 02’1(0).
Let uy,us be the maximal solutions of equations (3.1) and (3.16) respectively.
We have u1(yo, so) > U1(yo, s0) and ua(yo, s0) > Ua(yo, s0). Now, we claim that

Cap2 1 q (M)

A> Z , (4.15)

and N
> PHY (M,
BZ_Cl(RO)'i‘Zi;]\(, k), (4.16)
k=1 k

Proof of assertion (4.15). From (4.11) we have

= C (M
Azgzapmizqvw — 94, (4.17)
r
k=1 k

with

et (50
k=1
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Take ig € Z such that r;;+1 < max{2Ry, 1} < r;,. Then

[e'e] [e’e) q
A Sy N / (H%Ro > m) dxdt
i (y(JaSO)

i=io Q k=1

700 oorl—N 2RUoo q:c
=X > /S (HQ [I;uko dadt

i=10 j=1

_ - : T-_N 2Ro - ! T
3 [ ()

j=ko i=1i0

[e%s} 0o q
<3y /5 <]I§R0[Z m) dud.
j=io i k=1

Here we have used the fact that Zg:io ri_N < %rj_N for all j.

If we set up =0 for all ig — 1 < k < 0, the previous inequality becomes

. q
fe’e) Jj—1 %)
Ay < er—N/S B+ Y e+ Y ]| dodt

j=io0 k=ig—1 k=j+1
> q
S [ (B h)" dode
— S,
J=10
oo j—1 a
3 (5 dlens)
j=io k=io—1
oo o0 4
+ > > I [l cs,)
j=io k=j+1
= A1 + As + As. (4.18)
Using (4.11) we obtain
— Capy 1 o (My,)
A, < LA TR 4.19
LT (1

2Ro N+1
t)) d R
HgRO[Mk](-T,t) :/ Mk(Qp]Sxa ))_p < ,Uk( - ) (4.20)
Tj+1 p p r_j
ifk>7+4+1, and
2Ro A N+1
t)) d R
151 [ (0, 1) :/ 7%@’35% D dp o pr(® ) - ) (4.21)
Trt1 P 14 "L

if k < j— 1. Thus,

j:io kzlo—l
and
q
oo oo
Az S N LN (RN
Jj=%0 k=j+1



Noticing that (a + b)? — a? < g(a + b)771b for any a,b > 0, we get

*)Zri( > )

j=io k=io—1
j—1 N1y oo i=2 N+1y ¢
(R ) 2 (R )
—Zr(Z—TN -y ey mE
J=to0 k=i9—1 k Jj=to+1 k=ip—1 k
00 j—1 Nany ) 9 N4+1
2 (R ) Mj—l(R )
<> 3 O Lika)
j=io k=io—1 k j-1
Similarly, we also have
q
o oo
(1— 427Nq) Z r]?*Nq Z Mk(RNH)
j=io k=j+1
<@ (RN pjr1 (RYHD).
j=io k=j+1

Therefore,

o0 J—1 Ny ! N+1
R i—1(R
A2+A35 § 7’?( E N’k( < )) N’] 1(]\[ )

j=io k=io—1 "k j-1
q—1
o0 o]
2—Ng N+1 N+1
+> > k(RN pj+1 (RTT0).
j=io k=j+1

Since pr(RVN*1) < T]ZCVH*Q‘II if ¢ > q. and pg(RYF1) < min{k_qi_l, 1} if ¢ = ¢. for any k,

we infer that )
J—1 Ny \
2 Z Mk (R )
7’]- ( T 5 1,

k=io—1

and

oo

2—N N -N .
ri Z (R S forany .
k=j+1

In the case ¢ = g, we assume N > 3 in order to ensure that

Z RY) <N k7T < oo,
=1 k=1
This leads to
pur(RY*1)
hran s
Combining this with (4.19) and (4.18), we deduce

AO<Z

Cap2 1 q Mk)
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Consequently, we obtain (4.15) from (4.17), for € small enough.
Proof of assertion (4.16). From (4.12) we get

where

By = I3 lexp <C’1]I§R° [sz z/k]> - 11 (Yo, S0)-

k=1
We show that

By < ¢(N,q, Ry) for e small enough. (4.22)

In fact, as above we have

By < Z T / exp (Clzs]IgR“ [Z Vk]> dxdt.
k=1

Jj=to
Consequently,
By < Z T N exp 301511 SHo [I/j]) dxdt
J=to Sj
j—1
+ Z r? exp (3015 > || [uk]||Lm(Sj)>
J=to k=ip—1
+> rfexp | 3Cie D I3 ]l sy
j=io k=j+1
= By + By + Bs. (4.23)

Here we have used the convexity inequality 3exp(a + b+ ¢) < exp(3a) + exp(3b) + exp(3c)
for all real numbers a, b, c.
By Theorem 2.3, we have

/ exp (301511330 [yj]) dadt S v+ for all j,
S

for £ > 0 small enough. Hence,

By <Y 17 S (max{2R, 1})°, (4.24)

Jj=to

Note that estimates (4.20) and (4.21) are also true with vy; we deduce

RN—i—l
BQ+Bg<Zr exp(cQE Z 2t )

J=t0 k=ip—1

RNJrl

+Z7’ exp | co€ Z Mk

Jj=to k=j+1 J
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From (4.12) we have ug(RN*1) <V for all k, therefore

By+ B3 S Y riexp(ese(j—io)) + » rjexp (cse)

Jj=to j=io
S exp(ese(j —do) — 4log(2)4) + 77,
J=to

< c4(N,q,Ry) for £ small enough.
Combining this with (4.24) and (4.23) we obtain (4.22).

This implies straightforwardly exp (C’ls]@R” > ey I/k]) e LY (Qr,(0,0)).
We conclude that for any (yo, so) € (Bs(0) x (—462,6%)) N O,

Cap Mk(yo,so))
1(Y0, s0) Z 2L

)

k=1 k

and

PHN (M, .8
u2(yo, S0) 2 —c1(Ro) +Z 1 (le\c[(yo o)),
k=1 k

where r, = 47F and
cn (T L 5 L 5
My (yo,50) = O° N | Bryyy(yo) X [so — (73 + §)Tk+27 so — (70 + 5)7’k+2] .

If we take ri;44 < 6 < 7,43, we have for 1 <k < ks

1 1
My (yo, s0) D O°N (BTHZ_(;(O) X (52 —(73+ §)ri+2, 5% — (70 + §)r,%+2))
D 0N (Bryys(0) X (731710, —T1r745))
=0°N (By, ,(0) x (11687, 5, —113677,3)) -

Finally,

inf u s
(y0,80)€(Bs(0)x(—62,62))NO 1(y0 O)

LoC /(0N (B,(0) x (—17bp?, —bp?
271+/ aDa,1,9 (070 (By(0) X (Z17bp%, —bp"))) dp .\ 1136

N
—_— p

> 1+

/1 Cap2,1,q’ (OC m (BSLU (0) X (730p2; ))) dp S 00 as 5 - 0
3

N
0Tk6+3 p p

and

. |
(90750)6(35(%)I)lx(fgzygz))mou2(y0 50)
N c )
2o [ PROOELO X R ) dp
3

~ p—)oo as 0 — 0.

0Tk6+3 p

This completes the proof of Theorem 1.1-(i) and Theorem 1.2.

Remark 4.1 (Uniqueness) In [16], Marcus and Véron prove that condition (1.8) is not
only a necessary and sufficient condition for the existence of a large solution to (1.7), but it
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implies the uniqueness of a such a large solution when it is fulfilled. The main step for this
proof is to show that there exists a constant ¢ = ¢(Q,q > 0) such that any couple of large
solutions (u,u) satisfies

u(z) < ci(x) Vo € (. (4.25)

The above estimate which is the key stone for proving uniqueness cannot be obtained in
the case of the parabolic equation (1.13) since the necessary condition and the sufficient
condition in Theorem 1.1 do not complement completely.

4.3 The viscous Hamilton-Jacobi parabolic equations

In this section we apply our previous result to the question of existence of a large solution
of the following type of parabolic viscous Hamilton-Jacobi equation

Ou — Au+ a|Vul? + bu? =0 in O,

u = 00 on 0,0, (4.26)

where @ > 0,b > 0 and 1 < p < 2, ¢ > 1. First, we show that such a large solution to (4.26)
does not exist when ¢ = 1. Equivalently, there is no function u € C?1(0) satisfying

Ou — Au + a|VulP > —bu in O,

U = 00 on 0,0. (4.27)

for a > 0, b > 0 and p > 1. Indeed, assuming that such a function u € C%1(0) exists, we
define .
U(SC,t) = u(zat)ebt - §|SC|2,

for £ > 0 and denote by (zo,to) € O\9,0 the point where U achieves it minimum in O, i.e.
U(zo,to) = inf{U(x,t) : (z,t) € O}. Clearly, we have

U (z0,t0) <0, AU(zg,t0) >0 and VU(zg,tg) =0.
Thus,
pu(zo, to) < —bu(zo, to), — Au(zo,tg) < —eNe % and a|Vu(zg,to)|P = aeP|xo[Pe P,
from which follows
Byu(zo, to) — Aulxo, to) + a|Vu(zo, to)[? < —bu(xo, to) + ee~ " (—N + aap_1|xo|pe_(p_1)bt°)
< —bu(zg, to)

for € small enough, which is a contradiction.
Proof of Theorem 1.3. By Remark 3.3, we have

inf{v(z,); (2,6) € O} > (qu — 1) @ TR a1

Take V = Ava € C21(0) for A > 0. Thus v = AV,

2

inf{V(z,t); (z,t) € O} > 0} > Xq1 — 1)_a<q11*1>R_“<q1*1),
and

Vv 2
O — Av + 01 = aX" Vo119V — ad VLAV 4+ a1 — a)xava—ly + ATonyen,

This leads to

|VV|2 —1y—a(qi—1)y,aq —a+1 :
(%V—AVJr(lfoz)TJra ATaTDyea =0 in O.
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Using Holder’s inequality we obtain

vV ?

a(fn*;)(Z*P) % a(fn*;)@ﬂﬂ) —(p—1)

(1—a) + (20) AT @ Dyea—atl > o gy P AT

2(p—1)

> | VVIPA= P D R™*PH et

and
(20)IA—el@—Dyen-atl > o=@ R aGT ya,
If we choose
A= min{cgﬁ,cﬁ}min {a_ﬁnger,b_qi_lRf%Jrﬁ} ,

then

62)\—(1)—1)R—2+p+% >,

esA~ @D RS > p,
from what follows

OV — AV +a|VVP+bVI <0 in O.

By Remark 3.5, there exists a maximal solution u € C%1(0) of

O — Au+a|VulP +bu? =0 in O.

Therefore, u > V = Ave and u is a large solution of (4.26). This completes the proof of
Theorem 1.3. u

5 Appendix

Proof of Proposition 2.5.
Step 1. We claim that the following relation holds:

L @)™ aies [ @) Fauan. )

In fact, we have for p; =277, j € Z,

Z/}RN+1(M(ij (:E,t)))2/Ndu(x,t) S /RNH/O (M(Qr(x,t)))Q/N%d,u(x,t)

3

J

S [ Q) V),

Il
=]

Note that for any j € Z
i / (1(@pyn (&, D)) VTN dwdt < | (@, (2, 1)) N dpa(x, )

S0 [ Qs )Y dad,
RN+1



Thus,

Zp / #Qp, ()N it S | / (u(@e ) L, 1)

S [ @ ) N
RN+1

j=—1

This yields

(N+2)/ 1
[ () ™ s [ [ @) L)
RN+1 RN+1 Jo
s/ e t))“v”wd .
RN+1

By [21, Theorem 4.2],

(N+2)/N N+2)/N
/ (MY ). 1)) dwdt = / (L, ) 2 dat,
RN+1 RN+1

thus we obtain (5.1).

Step 2. End of the proof. The first inequality in (2.1) is proved in [21]. We now prove the
second inequality. By Theorem 2.4 there is u € M (RNV*1) supp(u) C K such that

M 1] | eveny < 1 and pu(K) = PHY (K) 2 [K]N/ N+, (5.2)

Thanks to (5.1), we have for § = min{1, (u(K))*/N}

I N vy = [ [ 0@t Lt
</ .. ( / +f ) (u@T(x,t»P/N?du(x,w
<[ s [2( )

< (p(E) VN (1 + log, ((u(K)) ™))

< (K NN log (%) |

—N/(N+2)
)) i/ (), then ||| ovenrn anesy S 1

Set fi = (10g (@ZT}((?,OM

It is well known that
Capy ; xez (K) < sup{(w(K))N272 s w € M (K), Bl povenm@nay ST} (5.3)

see [21, Section 4]. This gives the second inequality in (2.1).
It is easy to prove (2.2) from its definition. Moreover, (5.3) implies that

1 . N+2)/N
G g = HIBEIEEE R g w0 € M (K), w(K) = 1},
2,1, 52

We deduce from (5.1) that

! = in ' w(O. (2 2/n 4T o t) W + w _
CapQ,l,#(K)z/N A f{/]RN+1/O ( (QT( ’t))) r d’u( ’t)' €M (K)’ (K) 1}-
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As in [12, proof of Lemma 2.2], it is easy to derive (2.3) from (5.4). |

Proof of Proposition 2.6. Thanks to the Poincaré inequality, it is enough to show that
there exists ¢ € C2°(Q3/2(0,0)) such that 0 < ¢ < 1, with ¢ = 1 in an open neighborhood
of K and

[ (D%l 4 oo )dadt S Capy () (55)
RN+
By definition, one can find 0 < ¢ € S(RV*1), ¢ > 1 in a neighborhood of K such that
[ (DR (90 + [o] + [arol? ot < 2Capy ().
RN +1

Let 1 be a cut off function on Ql(O, 0) with respect to Qg/g (0,0) and H € C*°(R) such that
0< H®E)<t", |t|H"t)| <1 forallteR, H(t)=0 fort <1/4 and H(t)=1 fort > 3/4.

We claim that

/ (|D?@[P + 8¢ p|P)dadt < / (|D?¢|P + |V oI + |¢|P + |0rp|P)dadt, (5.6)
]RN+1

]RN+1

where ¢ = nH(¢). Indeed, we have
D%l S |D*n[H () + [Vn|[H'(9)|[Ve| +nlH" (9)[IVo]* +n|H' (9)]| D¢,

and
0ol S |0 H ()) +nlH' (d)||¢e], H(¢) < ¢, ¢lH"(o)] 1.
Thus

)

/ (|D?@|P + [0y p|P)dadt < / (|D?|P + |Vo|P + |o|P + |0rp|P)dadt
]RN+1

RN+1

Vo[
+ dxdt.
/Rw o

This implies (5.6) since, according to [1], one has

/RN ((t))P d S/RN |D?(t)[Pdx Yt € R.
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