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nonlinear parabolic equations with absorption in a
non-cylindrical domain.
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Abstract
We obtain a necessary condition and a sufficient condition, both expressed in terms
of Wiener type tests involving the parabolic WqQ,’l- capacity, where ¢/ = ﬁ7 for the

existence of large solutions to equation dyu — Au + u? = 0 in non-cylindrical domain,
where ¢ > 1. Also, we provide a sufficient condition associated with equation Oiu —
Au+e*—1=0. Besides, we apply our results to equation: dru—Au+a|Vul|? +bu? =0
for a,b>0,1<p<2andq>1.

Keywords. Bessel capacities; Hausdorff capacities; parabolic boundary; Riesz potential;
maximal solutions.
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1 Introduction

The aim of this paper is to study the problem of existence of large solutions to nonlinear
parabolic equations with superlinear absorption in an arbitrary bounded open set O € RV+1,
N > 2. These are solutions u € C*!(O) of equations

Ou — Au+ |u|9™u =0 in O,
lim inf w=o0 for all (z,t) € 0,0, (1.1)
5—0 0NQ;s (1)

and
Opu — Au + sign(u) (el —1) =0 in O,

lim inf w=o0 for all (z,t) € 0,0, (1.2)

5—0 ONQs(x,t)
where ¢ > 1 and 9,0 is the parabolic boundary of O, i.e, the set all points X = (z,t) € 90
such that the intersection of the cylinder Qs(z,t) := Bs(x) x (t —§2,t) with O° is not empty
for any 6 > 0. By the maximal principle for parabolic equations we can assume that all
solutions of (1.1) and (1.2) are positive. Henceforth we consider only positive solutions of
the preceding equations.
In [22], we studied the existence and the uniqueness of solution of general equations in a
cylindrical domain,

Ou — Au+ f(u) =0 in Q x (0,00),

w=oo in 8, (2 x (0,00)), (1.3)
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where 2 is a bounded open set in R and f is a continuous real-valued function, nondecreas-
ing on R such that f(0) > 0 and f(a) > 0 for some a > 0. In order to obtain the existence
of a maximal solution of d;u — Au+ f(u) =0in Q x (0,00) there is need to assume

0 /: (/O f(T)dT) s < oo, -

(i) / (f(s)) "V ds < oo.

a

=

Condition (i), due to Keller and Osserman, is a necessary and sufficient for the existence of
a maximal solution to

—Au+ f(u) =0 in Q. (1.5)

Condition (ii) is a necessary and sufficient for the existence of a maximal solution of the
differential equation

¢+ fle)=0  in (0,00), (1.6)

and this solution tends to co at 0. In [22], it is shown that if for any m € R there exists
L = L(m) > 0 such that

for any 2,y > m = f(z +y) > f(z) + f(y) — L,

and if (1.5) has a large solution, then (1.3) admits a solution.
It is not alway true that the maximal solution to (1.5) is a large solution. However, if f
satisfies

/ sT2N=D/WN=2) f(5)ds < 0o if N > 3,
1

or
inf{aZO:/ f(s)e™*ds < o0 }<oo if N =2,
0

then (1.5) has a large solution for any bounded domain €2, see [16].

When f(u) = u?, ¢ > 1 and N > 3, the first above condition is satisfied if and only if
q < qc:= %, this is called the sub-critical case. When g > q., a necessary and sufficient
condition for the existence of a large solution to

—Au+u?=0 in Q; (1.7)
is expressed in term of a Wiener-type test,

NG ,(Q°N B,
aP2 4 ( () ﬁ =00 forall x € 90. (1.8)
o TN72 r

In the case ¢ = 2 it is obtained by probabilistic methods involving the Brownian snake by
Dhersin and Le Gall [5], also see [13, 14]; this method can be extended for 1 < ¢ < 2 by
using ideas from [7, 8]. In the general case the result is proved by Labutin, by using purely

analytic methods [12]. Here, ¢’ = qqu and Cap, ., is the capacity associated to the Sobolev
space W24 (RV).
In [19] we obtain sufficient conditions when f(u) = e* — 1, involving the Hausdorff

HIV =2 _capacity in RV, namely,

/1 ”H{V’Q(QC N By(z)) dr

-0 T —x forall zedQ. (1.9)
r T



We refer to [17] for investigation of the initial trace theory of (1.3). In [9], Evans and Gariepy
establish a Wiener criterion for the regularity of a boundary point (in the sense of potential
theory) for the heat operator L = d; — A in an arbitrary bounded set of RV*1. We denote
by MM(RN*1) the set of Radon measures in R¥*1 and, for any compact set K C RN *1 by
My (RVHL) the subset of M(RY*1) of measures with support in K. Their positive cones
are respectively denoted by 9+ (RV*1) and 9} (RN F1). The capacity used in this criterion
is the thermal capacity defined by

Capg(K) = sup{u(K) : p € M RV Hx p < 13,

for any K C RN*! compact, where H is the heat kernel in RN*!. It coincides with the
parabolic Bessel G —capacity Capg, o,

Capg, o(K) = sup{/ |f|2dxdt : f € Lﬁ_(RN“), Gi*f> XK}7
]RN+1

here G is the parabolic Bessel kernel of first order, see [20, Remark 4.12]. Garofalo and
Lanconelli [10] extend this result to the parabolic operator L = 9; — div(A(z,t)V), where
A(x,t) = (a; j(z,t)), i,5 = 1,2,..., N is a real, symmetric, matrix-valued function on RV+1
with C°° entries for which there holds
N
CTHEP <> aijz, )& < CIEP° V(z,t) e RV ve e RY,
i,j=1
for some constant C' > 0.
Less is known concerning the equation

Ou — Au+ f(u)=0 (1.10)

in a bounded open set O C of RN¥T! where f is a continuous function in R, Gariepy
and Ziemer [11, 23] prove that if there are (zg,t9) € 9,0, | € R and a weak solution
u e W2(0) N L>®(0) of (1.10) such that n(—l — & +u)t,n(l —e —u)t € Wy*(O) for any
e >0and n € C°(By(z0) X (—r? + to,r* + to)) for some r > 0 and if

/1 Capy (0°N (Bp(wo) x (to — Fap? to — Fap®))) dp
0 PN P

= 00 for some o > 0

then lim  w(x,t) = . This result is not easy to use because it is not clear whether
(z,t)—=(zo,to)

(1.10) has a weak solution v € W12(0). In this article we show that (1.10) admits a
maximal solution u € C%!(O) in an arbitrary bounded open set O, by approximation by
dyadic parabolic cubes from inside O, provided that f is as in (1.3) and satisfies (1.4).
Our main purpose of this article is to extend the result of Labutin [12] to nonlinear
parabolic equation (1.1). Namely, we give a necessary and a sufficient condition for the
existence of solutions to (1.1) in a bounded non-cylindrical domain O C R¥*1 expressed
in terms of a Wiener test based upon the parabolic W;’l—capacity in RV*1. We also give

a sufficient condition associated (1.2) where the parabolic W;,’l—capacity is replaced the

parabolic Hausdorff PH;V—capacity. These capacities are defined as follows: if X ¢ RV*! is
compact set, we set

Capy 1, (K) = inf{||<p||$/{/2;1(RN+l) cp € S(RNTY), » > 1 in a neighborhood of K},

where

Oy D¢
el sy = 1gollie @ + Vel v @+ D0 gl @veny:
i,j=1,2,...,.N v



and for Suslin set £ C RN+,

Capy 1 o (E) = sup{Cap, ; (D) : D C E, D compact}.

This capacity has been used in in order to obtain potential theory estimates that are most
helpful for studying quasilinear parabolic equations (see e.g. [3, 4, 20]). Thanks to a result
due to Richard and Bagby [2], the capacities Cap, 1 , and Capg, ,, are equivalent in the sense

that, for any Suslin set X C RN*! there holds

C_lcapz,qu (K) < CaPQZ,q' (K) < CC&pQ,l,p(K)’

for some C' = C(N, q), where Capg, ./ is the parabolic Bessel G —capacity, see [20].

For E C RN*!, we define PH) (E) by

PHY(E) =inf Y " rV - EC| By, (x;) x (t; — 13, t; +77), r; <p
J

It is easy to see that, for 0 < o < p and E C RV*!, there holds

PHY(E) < PHY (E) < C(N) (B)QPH;V ().

g

With these notations, we can state the two main results of this paper.

Theorem 1.1 Let N > 2 and q > ¢, := % Then
(i) The equation

oru—Au+u?=0in O
admits a large solution if

. Capy. 1 o (0°N (Bry () x (t — 116872, — 1136r7)))

Z N =0

k=1 "k

for any (z,t) € 0,0, where r, = 47%, and N > 3 when q = g..
(i) If equation (1.12) admits a large solution, then

/1 Capz,l,q' (0°NQy(x,1)) dp
0

pN R

for any (z,t) € 8,0, where Q,(z,t) = B,(x) x (t — p2,t).

Theorem 1.2 Let N > 2. The equation
ou—Au+e*—1=01in O

admits a large solution if

§ P07 (Brufe) x (¢ - 168, ¢~ 1136r7))
N
k=1 g

for any (z,t) € 0,0, with 1, = 47F.

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)



From properties of the Wq%’lfcapacity and the PHY —capacity, relation (1.13) holds if

Zrk_N ‘OC N (Brk (x) x (t — 11687t — 11367’,%))‘1_23L+2 = oo when q > q.,
k=1

and

Zr;Nlong (‘Oc N (B, (z) x (t — 1168r7,t — 11367‘,%))‘71) =00 when g = g,.
k=1

Similarly, identity (1.16) is verified if

oo
N

> N[00 (B () x (£ — 116817, ¢ — 113617) )| 72 = o
k=1

Therefore, when O = {(z,t) € RN*+1: |x|2+$ < 1} for some A > 0, we see that 90 = 9,0,
(1.14) holds for any (z,t) € 9,0, (1.13) and (1.16) hold for any (z,t) € 9,0\{(0,V)}.
However, (1.13) and (1.16) are also true at (x,t) = (0,v/A) if A > 22722 and not true if
A < 22722,

As a consequence of Theorem 1.1 we derive a sufficient condition for the existence of
large solution of some viscous Hamilton-Jacobi parabolic equations.

Theorem 1.3 Let g1 > 1. If there exists a large solution v € C*1(0) of
Ow—Av+vt =0 in O,

then, for any a,b>0,1<qg<qy and1 <p< q?‘ill, problem

Ou — Au+ a|Vul|P +bu? =0 in O,
U = 00 on 0,0,

(1.17)

admits a solution u € C*(O) which satisfies
u(zx,t) > C'min {aiﬁR_%Jra(qffl) , bETR T T a@m D } (v(x, t))i,

for all (x,t) € O where R > 0 is such that O C QR(xo,to), C =C(N,p,q,q1) > 0 and
_ 2(p—1) -1
(0% —max{ﬁm,h} S (0,1)

2 Preliminaries

Throughout the paper, we denote Q,(z,t) = B,(x) x (t — p?,t] and Q,(z,t) = B,(x) x (t —
p%,t+ p?) for (z,t) € RN p >0 and ry, = 47* for all k € Z. We also denote A < (2)B if

~

A < (>)CB for some C depending on some structural constants, A < B if A < B < A.
Definition 2.1 Let R € (0,00] and u € M+ (RN+L). We define R—truncated Riesz parabolic
potential Is of p by

R~

t)) d

Iy ) (. 1) Z/ M(Qpiw_p for all (x,t) € RN
0 P P

and the R—truncated fractional mazximal parabolic potential My of u by

ME [ p](z,t) = ojuER w for all (x,t) € RNTL,
p



We recall two results in [20].

Theorem 2.2 Let ¢ > 1,R > 0 and K be a compact set in RNTL. There exists 1 := g €
M (RNVHL) with compact support in K such that

() = Capg () = [ (8" o

where the constants of equivalence depend on N,q and R. The measure uy is called the
capacitary measure of K.

Theorem 2.3 For any R > 0, there exist positive constants Cy,Cs such that for any p €
M (RVFY) such that ||MgF[p]|| o mr+1) < 1, there holds

][ exp(Crl5 [xqpul)dzdt < Cs,
Q

for all Q = QT(y, s) CRNTL r >0, where xq is the indicator function of Q.

Frostman’s Lemma in [21, Th. 3.4.27] is at the basis of the dual definition of Hausdorff
capacities with doubling weight. It is easy to see that it is valid for the parabolic Hausdorff
’PH;V—capacity version. As a consequence we have

Theorem 2.4 There holds
sup {pu(K) - p € M (RY), supp() C K, |IME[]|| e mvery < 1} = PH) (K)
for any compact set K C RN+ and p > 0, where equivalent constant depends on N

For our purpose, we need the some results about the behavior of the capacity with respect
to dilations.

Proposition 2.5 Let K C Qloo(o 0) be a compact set and 1 < p < N”. Then

N
2

. 2200(0,0)] \ |
Capy 1 ,(K) 2 |K[" 52, Capy y wia (K) 2 <1og (%)) RNCRY
and
Capz,l,p(Kp) = PN+2_2P Capz,l,p(K)a (2.2)
1 1
= + (log(2/p))N/? (2.3)

Cap2711¥(KP) B Oapm,%(K)
for any 0 < p < 1, where K, = {(px, p*t) : (x,t) € K}.

Proposition 2.6 Let K C Ql(O, 0) be a compact set and 1 < p < % Then, there exists
a function ¢ € C;’O(Qg/Q(O, 0)),0<¢ <1and ¢|, =1 for some open set D D K such that

[ (D% + 9l + [ol? + 00 dad S Caps (). (24)

We will give proofs of the above two propositions in the Appendix.
It is well know that there exists a semigroup e*® corresponding to equation

(2.5)

Ou—Au=p in Qr(0,0),
(0,0

u=~0 on 0@



with p € C>°(Qr(0,0)), i.e, we can write a solution u of (2.5) as follows

u(z,t) = /t (e(tfs)Au) (z,s)ds for all (z,t) € Qr(0,0).

0
We denote by H the heat kernel:

We have
lu(z,t)] < (H*p)(z,t) forall (z,t) € Qr(0,0).

In [20, Th. 2.5 ] (with A replaced by a a uniformly elliptic quasilinear operator) we show
that

|(H % p)|(,8) < CL(N)EE[|ul](2,t)  for all (z,t) € Qr(0,0).
Here 1 is extended by 0 in (Q(0,0))¢. Thus,

t
| / (ewsmu) (z,8)ds| < CL(N)EE[|u|](z,£) for all (z,t) € Qr(0,0). (2.6)
0
Moreover, we also prove in [20], that if x> 0 then for (z,t) € Qr(0,0) and B,(z) C Bg(0),
t > 2 Qp z,t— 25 p2
/ (e(t—s)AM) (x,s)ds > CQ(N)Z ( %( o 128 k)), (2.7)
0 k=0 k

with p, = 4 %p.

It is easy to see that estimates (2.6) and (2.7) also holds for any bounded Radon measure j
in Qg(0,0). The following result is proved in [3] and [18], and also in [20] in a more general
framework.

Theorem 2.7 Let ¢ > 1, R > 0 and pu be bounded Radon measure in QR(O, 0).

(i) If u is absolutely continuous with respect to Capy 1 o in QR(O,O), then there exists a
unique weak solution u to equation

Ou — Au+ |u|tu = p n QREO,O),
u=0 on 0,Qr(0,0).

(ii) If exp (C1(N)IBE[|u]]) € LY (Qr(0,0)) then there exists a unique weak solution v to
equation

v — Av + sign(v)(el’l —1) = p in Qr(0,0),
v=20 on 9,Qr(0,0),
where the constant C1(N) is the one of inequality (2.6).

From estimates (2.6) and (2.7) and using comparison principle we get the estimates from
below of the solutions u and v obtained in Theorem 2.7.

Proposition 2.8 If u > 0 then the functions u and v of the previous theorem are nonneg-
ative and satisfy

00 x,t— 35 2
oot 2 €0 S HEE I g et (@) ) 29
k=0
and
> 1% Qﬂ& z,t— 13258p%))
v(z,t) > Co(N) Y s — C1(N)IE® [exp (CL(N)ER[u]) — 1] (2,t). (2.9)

k=0
for any (x,t) € Qr(0,0) and B,(x) C Br(0) and py =4~ %p.



3 Maximal solutions

In this section we assume that O is an arbitrary non-cylindrical and bounded open set in
RN*! and ¢ > 1. We will prove the existence of a maximal solution of

Ou—Au+u? =0 (3.1)

in O. We also get analogous result where u? is replaced by e* — 1.

It is easy to see that if u satisfies (3.1) in Q,(0,0) ( Q,(0,0) ) then u,(x,t) = a2/ @ Du(azx, a?t)
satisfies (3.1) in Q,/4(0,0) (Q,,4(0,0)) for any a > 0.

If X = (x,t) € O, the parabolic distance from X to the parabolic boundary 9,0 of O is
defined by

d(X,0,0) = inf —y|,(t— )7}
(X,0,0) RS max{|z —y|, (t — )2}
s<t

It is easy to see that there exists C' = C(N,q) > 0 such that the function V defined by

V(z,t)=0C ((p2 +t)_<z+1 + <p27p|z|2)_q_l> in B,(0) x (—p?,0)
satisfies
OV — AV +V1>0 in B,(0) x (—p*,0). (3.2)
Proposition 3.1 There exists a mazimal solution u € C*1(0) of (3.1) and it satisfies
u(z,t) < C(d((x,1),8,0)) "1 for all (x,t) € O (3.3)
for some C = C(N,q).

Proof. Let Dy, k € Z be the collection of all the dyadic parabolic cubes (abridged p-cubes)
of the form

{(.’L‘l, ...,,CCN,t) : mj2_k S Zj S (mj + 1)2_k,j = 1, ...,N, mN+14_k S t S (mN+1 + 1)4_k}
where m; € Z. The following properties hold,

a. for each integer k, Dy is a partition of RN*! and all p-cubes in Dy have the same
sidelengths.

o o
b. if the interiors of two p-cubes @ in Dy, and P in Dy,, denoted @, P, have nonempty
intersection then either @) is contained in R or @) contains R.

c. Each Q in Dy, is union of 2V*2 p-cubes in Dy with disjoint interiors.

Let ky € N be such that @ C O for some Q € Dy,. Set O, = |J Q Vk > kg, we

QEDy,
QCO
[e]
have O C Og41 and O = |J Or = |J Og. More precisely, there exist real numbers
k>ko k>ko
a1, ag, ..., (k) and open sets 21, .., Q1) In RY such that

a; < a; + 4=k < ai+1 < Qjy1 + 4% for i= 1, ,n(k:) —1
and
. n(k)—1
Ok = U (% x (ai,a; +47%)) U (i) X (Onrys angry +477)) -

i=1



[e]
For k > ko, we claim that there exists a solution uj € 02’1(Ok) to problem

]
Opur, — Aup +ui =0 in Ok,

o (3.4)
ug(x,t) = 00 as d((z,t),0,0k) — 0.

Indeed, by [6, 15] for m > 0 one can find nonnegative solutions v; € C**(€ x (a;, a; +
47*) N O x [a;,a; +47F]) for i = 1,..,n(k) to equations

Oyv1 — Avg +’Ug:0 in Q) x (al,al +4_k),
vi(z,t) =m on 9 x (ar,a; +47F),
vi(x,t1) =m in Q,
and
Gtvi—Avi—i—vf:O in Q; x (ai,ai—l—éfk),
vi(xz,t) =m on 9Q; x (a;,a; +47F),
m in € if a; >a;—1 +47%,
vi(x,t;) = k .
mxo\Q,_, (%) +vi—1(z,ai-1 +47%)xq,_, () otherwise .
Clearly,

Ugm = v; I Q; X (a;,a —|—4_k] for i=1,...,n(k)
is a solution in 02*1(5k) N C(Oy) to equation

]

Optug,m — Augm +uf,, = 0in O,

(e}
Uk,m =M o OpOk.

o

Moreover, for (z,t) € 5k, we can see that Ba (z) x (t— d;, t) C 5k where d = d((z,t), 0pOr).
From (3.2), we verify that

Uly,s):=V(y—zs-1)=C <<p2 ts— )T 4 <%>>

with p = d/2, satisfies

oU —-AU+U?>0 in B%(x)x(tfdg,t). (3.5)
Applying the comparison principle we get
Up,m(y,s) <U(y,s) in Bg(z) x (t — ;,t],
which implies
W (2,1) < C (d(@;,t),apé,c)fqu for all (z,) € O (3.6)

From this, we also obtain uniform local bounds for {ux m }m. By standard regularity theory
see [6, 15], {ug.m}m is uniformly locally bounded in C*!. Hence, up to a subsequence,

(o)

Ukym, — Uk Clt’g(Ok) . Passing the limit, we derive that uy, is a weak solution of (3.4) in Ox,

which satisfies ug(z,t) = oo as d((z,t), apék) — 0 and

2

ur(z,t) < C (d((x,t),apék))”” for all (z,) € O



Let m > 0 and k > ko. Since ugy1,,m < m in Op and O C Opy1, it follows by the

comparison principle applied to uk41., and ug, in the sub-domains Qy x (ay,a; +47F),

Qo x (ag,as +47F),..., Q) X (n ) Qn(i) +47%) of Ok to obtain at end that ugi1,m <
o o

uk m in Ok, and thus ugy1 < ug in Ok. In particular, {uy}y is uniformly locally bounded in

L. We use the same compactness property as above to obtain that up — u where u is a
solution of (3.1) and satisfies (3.3). By construction v is the maximal solution. ]

Remark 3.2 Let R > 2r > 2, K be a compact subset in QT(O, 0). Arguing as one can easily
it is clear that there exists a maximal solution of

Ou—Au+ui=0 in Qr(0,0)\K
u=0 on 8RQ (0, ) (37)
which satisfies
u(z, t) < Cd((x,1), 3 (Qr(0,0\K)) ™7 ¥ (x,1) € Qr(0,0)\K, (3.8)

for some C = C(N,q). Furthermore, assume K1, Ka,,,, Kn, are compact subsets in QT(O, 0)
and K = K1 U...UKp,. Let u,uy, ..., un, be the maximal solutions of (3.7) in Qr(0,0)\K,
QR(Oa 0)\K15 QR(07 0)\K25 IER) QR(Oa 0)\Km7 TESpECtiU@ly, then

u < Zuj in Qr(0,0)\K. (3.9)
j=1
Remark 3.3 If the equation (3.1) admits a large solution for some q > 1 then for any
1 < g1 < q, equation
Ou —Au+u? =04in O (3.10)

admits also a large solution.
Indeed, assume that u is a large solution of (3.1) and v is the maximal solution of (3.10).
Take R > 0 such that O C Br(0) x (—R?, R?), then the function V defined by

V(e,t) = (q— 1) 77 (2R - ) 7
satisfies (3.1). It follows for all (z,t) € O

u(z,t) > inf V(x,t) > (q— 1)7711R7% =: ag.
(y,5)€0

q— Q1 9—aq1
Thus, @ = ai*~"u is a subsolution of (3.10). Therefore v > ag* " w in O, thus v is a large
solution.

Remark 3.4 (Sub-critical case) Assume that 1 < q < g.. One easily see that the func-
tion

C ETE
Ulz,t) = ——€ % Xi>0 (3.11)

is a subsolution of (3.1) in RNTIN\{(0,0)}, where C = (Ll - %) o

Therefore, the maximal solutions u of (3.1) in O wverify

1 _lz—y?
wawZCG_Tzﬂ T Xy, (3.12)
— g)a—1

10



for all (z,t) € O and (y,s) € O°.

If for any (x,t) € 0,0 there exist € € (0,1) and a decreasing sequence {6,,} C (0,1) converg-
ing to 0 asn — oo such that (Bs, (x) X (=02 +t,—e0z 4+ 1))NO° # O for anyn € N, then u is
a large solution. For proving this, we need to show that ;ig%) Infon(B, (x)x (—p24t,p2+1)) U = 00.

Let0 < p < 61, andn € N such that \/ebn41 < p < \/20,. Since (Bs, (x) x (=02 +t,—e07 +t))N
O°¢ # 0, there is (zn,t,) € O° such that |z,| < 8, and —6% +t < t, < —ed2 +t. Hence,
from (3.12) we have

1 lz—zn|?

o) 2 Ol R Y (010 £ 0N (Byla) X (1. 1)
t—ty)TT
which implies
. 1 _oeen?
inf u>C——e 2 — oo as p—0.
ON(B, () % (—p2+t,p2+1)) 5T

Remark 3.5 Note that if u € C*Y(O) is a solution of (3.1) for some q > 1 then, for
a,b>0andl <p<2,v= b" T s a super-solution of

0w — Av+a|VolP + =0 in O. (3.13)

Thus, we can apply the argument of the previous proof, with equation (3.1) replaced by (3.13),
and deduce that there exists a mazimal solution v € C**(O) of (3.13) satisfying

v(z,t) < Cb_ﬁ(d((x,t),apO))_q%l for all (z,t) € O.

Furthermore, if 1 < q¢ < q«, ¢ = %, a,b > 0 then the function U in Remark 3.4 is
a subsolution of (3.13) in RNT1\{(0,0)}, for some C = C(N,p,q,a,b). Therefore, we
conclude that every mazimal solution of v € C*(O) of (3.13) satisfy

1 le—y|?

v(x,t) > C———F—e 309 xy5s (3.14)
(t—s)a1

for all (z,t) € O and (y, s) € 0,0.

As in Remark 8.4, if for any (z,t) € 0,0 there exist € € (0,1) and a decreasing sequence
{6} C (0,1) converging to 0 as n — oo such that (Bs, (x) x (=62 +t,—e62 +1)) NO° #
for any n € N, then v is a large solution.

Next, we consider the following equation
Ou—Au+e* —1=0. (3.15)

It is easy to see that the two functions

b2 2 _ (2
Vﬂt)log(li;) and %(z)0210g<%>

satisfy
V/i4+er—1>0 in (—p% 0]

and
—~AVa+e2-1>0 in B,(0)

for some C' = C(N). Using e® + e* < e®*® — 1 for a,b > 0, we obtain that V3 + V5 is a
supersolution of equation (3.15) in B,(0) x (—p?,0]. By the same argument as in Proposition
3.1 and the estimate of the above supersolution, we obtain

11



Proposition 3.6 There exists a mazimal solution u € C*(0) of
Ou—Au+e*—1=0in O (3.16)
and it satisfies

(d((x,1),0,0))°
4+ (d((x,1),8,0))>

u(z,t) < C —log < > for all (z,t) € O, (3.17)

for some C = C(N).

The next three propositions will be useful to prove Theorem 1.1-(ii).

Proposition 3.7 Let K C Ql(0,0) be a compact set and ¢ > 1, R > 100. Let u be a
solution of (3.7) in Qr(0,0)\K and ¢ as in Proposition 2.6 withp = q'. Set £ = (1 — ).
Then,

L (a8 + V€] + 10 dodt 5 Cayy,(K) (3.18)
Qr(0,0)
’LL(SC,t) 5 CapQ,l,q’ (K) + R_% fOT any (:L', t) € QR/5(05 0)\Q2(07 0)5 (319>
and
[ uédrdt < Capy y o (K) + R™77 (3.20)
Q2(0,0)

where the constants in above inequalities depend only on N, q.

Proof. Step 1. We claim that

/ ulédrdt < Capy g o (K). (3.21)
Qr(0,0)

Actually, using by parts integration and the Green formula, one has

/ wltdxdt = —/ Oyuédadt +/ (Au)édxdt
Qr(0,0) Qr(0,0) Qr(0,0)

RZ
= / uOEdxdt +/ uA&dxdt +/ / (5@ — u%) dSdt
Qr(0,0) Qr(0,0) —R? JOBR(0) v ov

where v is the outer normal unit vector on dBg(0). Clearly,

ou o0&

-~ < - = .
5 = 0 and ey 0 on 0Bgr(0)
Thus,
/ ulédxdt S/ u|0¢&|dadt +/ u|A&|dxdt
Qr(0,0) Qr(0,0) Qr(0,0)
<2¢ / u(l — )% | Oypldadt + 2¢'(2¢' — 1) / u(l — )% 2|Vl dadt
Qr(0,0) Qr(0,0)

Loy /Q o AP
R )

< 2q’/~ u€Y 1 opp|dadt + 2¢' (24 — 1)/ w9V | dadt
Qr(0,0) Qr(0,0)

- 2q’/~ u€M | Ayp|dadt. (3.22)
QR(O,O)

12



In the last inequality, we have used the fact that (1 — ¢)2¢'~1 < (1 — ¢)2¢' ~2 = ¢l/q,
Hence, by Holder’s inequality,

/ wIEdzdt < / |0y 0|9 dadt + / V|2 dadt
Qr(0,0) 2r(0,0) Qr(0,0)

+ / |Ap|? dadt.
Qr(0,0)

By the Gagliardo-Nirenberg inequality,
Vel dodt S 617 g ny [ D%l dod
/QR(O,O) E=(Qr(0.0) /50,00

< / |D2p|? dadt.
Qr(0,0)

Hence, we find

/ wI¢dndt 5/ (18¢0|9 + | D?@|9 )dadt
Qr(0,0) 2r(0,0)
and derive (3.21) from (2.4). In view of (3.22), we also obtain
| u(agl+ oiededs S Capyy ()
Qr(0,0)

and

/ u|VE|dzdt < Capy 1 o (K),

Qr(0,0)

since

/ u|VE|dzdt = 2q’/ u§(2q/71)/2q/|V<p|d:cdt
Qr(0,0) Qr(0,0)

< 2q’/ u€ 1V p|dxdt

Qr(0,0)

< / uIdadt + / [Veo|? dadt.
Qr(0,0) Qr(0,0)

It yields (3.18). _
Step 2. Relation (3.19) holds. Let 1 be a cut off function on Qg/4(0,0) with respect to
Qr/3(0,0) such that |9yn| + [D?*y| < B2 and |Vy| < R™'. We have

O (néu) — A(néu) = F € C.(Qry3(0,0)).
Hence, we can write

lo—

— ' 71 *% N+1
(néu)(z,t) = /]RN /_Oo (= S))%e == F(y, s)dsdy V(z,t) € R )

Now, we fix (2,t) € Qr/5(0,0)\Q2(0,0). Since supp{|Vn|} Nsupp{|VE|} = 0 and
F=n¢ (0 — Au) = 2(nVE + EVn) Vu + (£0pm + 00§ — 2VnVE — An§ — nAg) u
< —2(VE+EVn) Vu + (§0im + n0i§ — EAn — nAg) u,

13



there holds

u(w, ) = (nEu)(a, ) < —

_|z—y|®
/ ——e o S> (nVE + £Vn) Vudsdy
(4w (t — s)

_l=
N~ 4t5 A
(4m( t—g)) Te S )(778,5,5 nAE) udsdy

)

b O - eAn) udsdy.

),
L)

" /]RN /—oo (4r(t —s))=
-1

N
+ I + Is.

By parts integration

_lz—y?

| = 2(4n) N/2/ /RN T s) (N+2)/ e T (nVE 4 EVn) udyds

_lz—yl?
2(4m) = / /RN me T (€An +nAE) udyds.

Note that
1 _le—yl? 12 N
Tt S (max{le =yl =)
— S
(x—y) ey -N-1
}me HGONDS (max{lz —y|, |t — SI”Q}) ,
and

max{|z — yl, [t — s['/?} 21 V(y,s) € supp{|D*¢|} Usupp{|9:£]},
max{|z — y|,[t — s|'*} 2 R V(y,s) € supp{|D*n|} Usupp{|dwn|} V|a| > 1.

We deduce
1/2 —N-1
I 5/ (max{|$—y|,|t—s| }) (77|V€| +€|V77|)udyds
RN+1
1/2 -N
+/ (maX{lw—yI,lt—SI }) (€| An| + n|A€]) u dyds
RN+1

< / (V€] + | A€ u dyds + / (B + RV Al udyds
RN+1 Qr/3(0,0\Qr/4(0,0)

< / (Ve + 1A udyds + s
RN+1 Qry3(0,0)\Qr,4(0,0)

-N
L< / (max{fe gl 1# = 51/2}) " (90€] + | AE]u dyds
RN+1
< / (19:€] + |AE N u dyds,
RN+1
and
12\ N
B [ (max(le—ylle=s2)) " (o + [Anudyds
RN+1
N (10| + |An|)u dyds

<
QR/S(an)\QR/4(010)
< sup u.

~

Qr/3(0,0\Qr/4(0,0)
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Hence,

W) ST+ I+ 15 < / (106 + V€| + A udyds +  swp
RN+1 Qry/3(0,00\Qr,4(0,0)

Combining this with (3.18) and (3.8), we obtain (3.19).

Step 3. End of the proof. Let 6 be a cut off function on Qg(O, 0) with respect to Q4(0, 0).
As above, we have for any (x,t) € RVN*!

GSDICDRS / . (masc{z = yl, [t = s'/2H) =V O1VE] + €[ V0])u dyds
+ [ maxtle = ol e = s 0188] + €20 udvds
# [ (e =l o= oD V6100 + 1A dyds
#5720 (€00 + €200 dyds.

Hence, by Fubini theorem,

/ nudxdt = / Onudzdt
Q2(0,0) Q2(0,0)

< A/ (OIVE| + £[V0] + 0|A] + £|A0] + 010,€| + £0,0]) w dyds
RN+1

S [ 00+ Vel + Achudyds + swp
RN+1 Q4(0,0)\Q5(0,0)

where

A= sup / ((max{|z — y|, [t — s|"*})™N + (max{|z — y|, [t — s|'/*}) "N~ ")dzdt.
(y,5)€Q4(0,0) Y Q2(0,0)

Therefore we obtain (3.20) from (3.18) and (3.19). |

Proposition 3.8 Let K C {(z,t) : ¢ < max{|z|, [t|'/?} < 1} be a compact set, 0 < e < 1
and u be the mazimal solution of (3.7) in Qr(0,0)\K with R > 100. Then

Ca (KN 0,0
sup u < Z P2 Q,(0,0) 1R if g> g, (3.23)
Q.4(0,0) j=—2 Py
and
Ca K;
sup u < %17]3() + jeR™ 4 = if q=qx, (3.24)
Qe4(0,0) j=0 f

where p; =277, Kj = {(x/pjt3,t/p5y3) : (x,1) € KN ijfz(0,0)} and j. € N is such that
Pj. <€ < pj.—1.

Proof. For j € N, we define S; = {z : p; < max{|z|, |t|'/?} < p;j_1}.
Fix any 1 < j < j.. We cover S; by L = L(N) € N* closed cylinders

ij+3 (k5. thj;), k=1,...,L(N)
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where (:Ckﬁj,tkyj) € 95;.
For k = 1,...,L(N), let u;, us ; be the maximal solutions of (3.7) where K is replaced by

KnNnS;and KN QP1+3 (xk,j,tk;), respectively. Clearly the function 4y ; defined by

2
Uk, (2, 1) = s un (0487 + Th g, P st + tr j)

is the maximal solution of (3.7) when (Kj ;, QR/pHS(f:ck,j/p]—Jrg, —tkj/p7y3)) is replacing
(K, Qr(0,0)), with

Kk,j = {(y/pj+3a S/pg+3) (ya ) (:Tk,j, tk,j) +KnN QP;‘+3 (‘Tk,jatk,j)} C Ql(oa O)-

Let Ty, ; be the maximal solution of (3.7) with (K, Qr(0,0)) replaced by (K}, QQR/,JHS (0,0)).
Since QR/p].+3(—:Ek7j/pj+3, —tr,j/p3y3) C QQR/,JHS (0,0), then, by the comparison principle

as in the proof of Proposition 3.1 we get t, ; < Uk j in Qryp; ., 5 (—k,;/pj+s, ftkﬁj/p?Jrg)\KkJ-
and thus

~ __2

Uk, ((E, t) 5 CapQ,l,q’ (Kk,_]) + (R/pj+3) -1,
for any (x,t) € (QQR/(5pj+3)(Oa 0) N Qr/pyes(—Th/Pjvs, *tk,j/P?Jrs)) \@2(0,0) = D
Fix (:Eo, to) € Q8/4(0, 0) Clearly, ((1'0 — xk,j)/ijrg, (to — tkyj)/p]urg) € D, hence

__2
uk,j(zo,to) = pjis k(20 — k) /pj43s (to — thj)/PFys)
< Cap2,1,q/(Kk,j)

~ 2

—1
Pj

+RTTT

Therefore, using (3.9) in Remark 3.2 and the fact that

Cap2,1,q/(Kk,j) = Cap2,1,q' (Kk,j + (k5 /pj+3s tk,j//’?+3>> < Cap2,1,q' (K;),
we derive

Je Je N
U(Z‘O,t0> S ZUj(zo,to Z Z xo,to

j=1 j=1 k=1
Je
Cap
> g et
=0 p]
which yields (3.24). If ¢ > ., then by (2.2) in Proposition 2.5, we have
—N-—2+2¢ A
Cap271,q’ (KJ) 5 pj+3 2 CapQ,l,q/(K n ijfz (05 0))7
which implies (3.23). ]
Proposition 3.9 Let K, u,& be as in Proposition 3.7. For any compact set Kq in Ql(O, 0)

with positive measure |Ko|, there exists € = (N, q, |Ko|) > 0 such that

Ko

Capyy o (K) <e=infu S / uédxdt,
Q2(0,0)

where the constant in the inequality < depends on Kg. In particular,

Capyq 4 (K) <e= i}I{lfU S Capy o (K) + R o1, (3.25)
0
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Proof. It is enough to prove that there exists € > 0 such that
Capy 1 o (K) <& = |Ki| > 1/2|Ko| (3.26)

where K1 = {(z,t) € Ko : {(x,t) > 1/2}. By (2.1) in Proposition 2.5, we have the following
estimates ,
|Ko\K1|'~ %+ < Capy o (Ko\K1)

if ¢ > ¢., and

~ -5
<1og (W» < Capy 1 (Ko\K)
if ¢ = ¢«. On the other hand,
Capy 1 o (Ko\K1) = Capyy o ({Ko: 9> 1— (1/2)1/(2(1/)})
<=2 [ (1Dl Tl ol + 0l ) dade
< Capz,l,q' (K)
where ¢ is in Proposition 3.7. Henceforth, one can find € = (N, ¢, |Ky|) > 0 such that

Cap2’17q/(K) S £ = |KO\K1| S 1/2 |KO|

This implies (3.26). |

4 Large solutions

In the first part of this section, we prove theorem 1.1-(ii), then we prove theorems 1.1-(i)
and 1.2, at end we consider a parabolic viscous Hamilton-Jacobi equation.

4.1 Proof of Theorem 1.1-(ii)

Let Ry > 4 such that O CC Qg,(0,0). Assume that the equation (1.12) has a large solution
u. Take any (x,t) € 9,0. We will to prove that (1.14) holds. We can assume (z,t) = (0,0).
Set K = Q2r,(0,0)\O and define

T; = {x : pjp1 < max{|zl, ]/} < p;,t < 0},
Ty = {x: pjys < max{al, [t|'/*} < p;s,t <O}

Here p; = 2, For j > 3, let uy, ua, us, uqy be the maximal solutions of (3.7) when K is
replaced by KNQ,, ,(0,0), Kﬂfj, (K N Q1(0, 0)) \@p,_.(0,0) and K\Q1(0,0) respectively
and R > 100Ry. From (3.9) in Remark 3.2, we can assert that

u<uy+us+ustug in ON{(x,t) e RN+ 1t <0}
Thus,

1%fu < urllpee (1y) + lus||poe (1)) + ||uallLoe (1) + i%fuz- (4.1)
Case 1: ¢ > ¢.. By (3.8) in Remark 3.2,

[uall oo (1) S 1- (4.2)
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By (3.23) in Proposition 3.8,

Z Cap2 1,q' (KN Qpl(o 0))

i=—2 pz

Cy— 2
[us|| Lo (1) S +JR 1. (4.3)

Since (z,t) — wi(z,t) = p?i(g )ul(pj+3z,p§+3t) is the maximal solution of (3.7) when

(K, QR(O, 0)) is replaced by ({(y/p;+3, s/p?+3) 1 (y,5) € KNQ,,,,(0,0)}, QR/Pj+3 (0,0)), we
derive, thanks to (3.19) in Proposition 3.7 and (2.2) in Proposition 2.5,

Cap2 1,9 (KNQp, ,(0,0)) __2
[r]lpee (s S e + (R/pjs)” "1,
j
from which follows
Ca'p ’(Kﬂ Q j 2(050)) ——2_
|| (z) S ——2 o e + R (4.4)
J

Since, (z,t) — Ta(z,t) = pf/(g uz(pj,gz,p?dt) is the maximal solution of (3.7) when

the couple (K, Qr(0,0)) is replaced by ({(w/pi—2,5/p5_5) : (y,s) € KﬂTj},QR/pjfz(O,O)),
Proposition 3.9 and relation (2.2) in Proposition 2.5 yield

Capy 1 (K NTj)  Cap,, (K NTy) s
Ni2 o <eg= mf Uy < 1]\;3-2—2(1/ + (R/pj_a)” 7T,
Pj—2 e Pj—2

which implies

Capy 1 o (fvfg C»gpj 5(0,0)) <eoinfug < Cap, (K NQ,,_,(0,0))
q’ T.

__2_
, - +RTT,  (4.5)
Pj—2 i Pj—2

for some € = (N, q) > 0.
First, we assume that there exists J € N, J > 10 such that

Cap2,1,q’ (K N ijfs (Oa 0)) <

N+2—2q' <e VizJ
j—2
Then, from (4.1) and (4.2), (4.3), (4.4), (4.5), we have
Jj+2
Ca (KN ; 0,0 2
i;lfu 5 P2.1,q ( pN Qpl( )) Y jRTTT 41,
I i=—2 i

for any j > J. Letting R — oo,

2 Capy o (K NQ,,(0,0))

1nfu< Z

1=—2 pz

+ 1.

Since inf7; u — 00 as j — oo, we get

i Capgylﬂqz (K N Qpi (Oa 0))

= OO,
i—o Pi
which implies that (1.14) holds with (x,t) = (0,0).
Alternatively, assume that for infinitely many j
Ca‘p271 q’ (K N QPJ 3 (07 0))
Nt2—2q > €
pj 2
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Then,

Ca (KNQ,._,(0,0
P2 1,4 ( - ijfz( )) > p2 2q' € =00 when j— oo.
Pj—2

We also derive that (1.14) holds with (z,¢) = (0,0). This proves the case ¢ > ..
Case 2: ¢ = q,. Similarly to Case 1, we have: for j > 6

[uall Lo (1) S 1

P21, )
l[us||Loo (1) S Z d + iR+ 1

C apg 1 /(K) __2_
lullpo(ry) S ——3— + BT,

J

Ca K
Capy o (Kj—5) <e= i;lf uz S M +RTT,

J P]-
where K, = {(#/pys3.t/%ya) : (5,8) € K 1@y, (0,0)} and £ = £(N) > 0.
From (2.2) in Proposition 2.5, we have
1 c
<
Capy 1,4 (K NQp, 5(0,0)) = Capy; o (Kj)
for any j > 4 where ¢ = ¢(N). If there are infinitely many j > 4 such that

1
QCjN/2 ’

4 eN/2

Capy 1 o (KN Qp, 5(0,0)) >

then (1.14) holds with (x,t) = (0, 0) since

Capy 1o (KNQ)p,_,(0,0)) - 2i—3
pj‘v_g QCjN/2

— o0 when j — o0.

Now, we assume that there exists J > 6 such that

Capa 1 (K 1Qy, 4(0,0) < 57
Then,
Capy 1 ¢ (K;) < 2cCap2117q,(K NQp,_5(0,0)) Vj=>J

This leads to

Cap, 1 (K;) < 2cCapyy (KN Q,,_,(0,0)) <e Viji>J +J
for some J' = J'(N). Hence, from (4.6)-(4.9) we have, for any j > J' + J + 3,

lluallLoe (1) S 1,
j—2

< Z Cap2,1,q’ (K TVQPF;’. (0,0))

lusl| Lo (1)) S

i=J +J+1 Pi

Capy 1 o (KﬁQp] 5(0,0)) JrR_q%l,
Py

inf ug 5 Cap?,l,q’([(m ij—s (070)) +R7%,

N
T; pj

lull Lo (1) S

19

+C(J 4+ J)+ jR 7T,



Where O+ J) = Y31 Copaag )
Consequently we derive

5 i Cap2117q/ (K N Qpi (Oa 0))

= +OJ + D)+ 1+ R 7T Vi>J +J+3
; P;
=0 ?

infu
T;

from (4.1). Letting R — oo and j — oo we obtain

i Cap?,l,q’ (K N Qpi (07 0))

N
i=0 Pi

= Cx),
i.e (1.14) holds with (z,t) = (0,0). This completes the proof of Theorem 1.1-(ii).

4.2 Proof of Theorem 1.1-(i) and Theorem 1.2

Fix (xo,t9) € 9,0. We can assume that (xo,t9) = 0. Let ¢ € (0,1/100). For (yo,s0) €
(Bs(0) x (—62,6%)) N O, we set

_ 1 1
M, =0°N (BTk+2(y0) X [50 — (73+ 5)T}%+2,SO — (70 + 5)T%+2]>

and
Sk = {(2,t) : i1 < max{|z — yol, |t — s0|2} <} for k=1,2, ...,
where 7, = 47F. Note that My, = 0 for k large enough and My C Sy for all k. Let Ry > 4

such that O cC Qg,(0,0). By Theorem 2.2 and 2.4 and estimate (1.11) there exist two
sequences {py}r and {vy}r of nonnegative Radon measures such that

supp(pxr) C My, supp(vg) C My, (4.10)
q
1 (M) = Capy ;o (My) = / i (ﬂgRo [Mk]) dzdt (4.11)
RN+1
and
k(M) < PHY (M), |IM;™ [vi]|| ooy < 1 for k=1,2, .., (4.12)

where the constants of equivalence depend on N, ¢, Ry.

Take £ > 0 such that exp (C’ls]lgR” >y I/k]) € LY(Qg,(0,0)) where the constant C; =

C1(N) is the one of inequality (2.6). By Theorem 2.7 and Proposition 2.8, there exist two
nonnegative solutions Uy, Us of problems

QU — AUy + Ui =€ g in Qr, (0,0),
k=1 _
Uy =0 on 0,Qr,(0,0).

and -

atUQ _AU2+6U2 -1 :Ezyk in QRO(O)O)?

k=1 .
U2 =0 on GPQRO(O,O),
respectively which satisfy
> k(B (yo) X (S0 — 13577550 — 15877))
U zZ g
1(y0720)~;;5 N

- I [(HgRU [Eiﬂk]> ] (4o, 50) =t A (4.13)
k=1
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and

0 2 v(Bri (yo) X (50 — 577,50 — 1577))
Us (40, 20) > Z ZE £ N128 128
i=0 k=1 T
HgRo [exp (Cl]IgRo [EZ Vk]) — 1‘| (yo, So) =B
k=1

and Ul, U, € 02’1(0).
Let uy, us be the maximal solutions of equations (3.1) and (3.16) respectively.
We have u1(yo, so) > U1(yo, s0) and ua(yo, s0) > Ua(yo, s0). Now, we claim that

A> Cap21q (My)

~

and
PHN( %)

B>761R0 +Z N
k

k=1
Proof of assertion (4.15). From (4.11) we have

with

Ag =13

(HgRO[Z Hk]) ] (Yo, s0)-
k=1

Take ig € Z such that r;;+1 < max{2Ry, 1} < r;,. Then

[e'e] [e’e) q
Ao < Z r N 127 [Z k] | dadt
Qm (y0,50)

1=10 k=1

722 —N/ (HZRUZM> dxdt

=19 j=1
0o 7 00 q
= Z Z ri_N/ <]I§R“ [Z ,uk]> dxdt
G=ko i=io Sj k=1
[e%s) 0o q
s>t <]I§R“[Z m) dudt.
J=io Sj k=1
Here we have used the fact that Z fN < %T N for all j.
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Setting pg = 0 for all ig — 1 < k < 0, the previous inequality becomes

AOSZ‘N/ 350 [y + Zuk+2uk dxdt

J=10 k=ip—1 k=j+1

> q
527“;]\7/ (]IgR“[uj]) dzdt

J=0

j—1 a
R

+z@<§:mommﬂw)

j=io k=io—1

oo o 4
+ D R [l e s

j=io k=j+1
=A; + Ay + As.

Using (4.11) we obtain

= Ca (M
A, < P2,1,J¢\1[( k).
k=1 "k
Next, using (4.10) we have for any (z,t) € S; it k> j + 1,
2R 20 (@pl, ) dp _ (RN
I “[uk](x,t):/ Bp B g e
p

Tj+1 p

and if k < j—1

2Ro A N+1
1e(Qp(,t) dp _ pe(RYT)
B ul(z.0) = | @ <
e PN i
Thus,
o0 Jj—1 N1y \
RYTH)
Ay < 2 me(R7T)
2~Z%(Z o
Jj=%0 k=ip—1
and v
153 (Y e
Jj=to k=j+1

Noticing that (a + b)? — a? < g(a + b)771b for any a,b > 0, we get

By mEy

J=1io k=ip—1

j=io k=io—1 G=io+1 k=io—1
00 j—1 N+ \ 1 N4+1

< 2 (R ) Mj—l(R + )

= 2 :q j E : N N :
j=io k=ip—1 k i—1
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Similarly, we also have

o0 o0
— -N
(1— 42 Nq) Z 7,]2 q Z Mk(RNH)
J=io k=j+1
qg—1
(o] o0
<Y VYT (RN pjr1 (RVF).

J=io k=j+1

Therefore,

q—1
pur(RNF1) -1 (RVH)
A2+A3<Z (Z N N

j=io k=ip—1 Jj—1
q—1
oo oo
2—Ng N+1 N+1
+> 7 > k(RN pj+1 (RTT0).
j=io k=j+1

Since pi(RVN*1) < T]ZCVH*Q‘II if ¢ > q. and pg(RYFY) < min{k_q%l, 1} if ¢ = g. for any k,

we infer that
) 7j—1 Mk(RN'H) qg—1
Tj Z N Sl

r
k=ip—1 k
and
qg—1
o0
2—Ngq N+1 N .
T E pr(RYTH) Sy forany
k—j+1

In the case ¢ = g. we assume N > 3 in order ro to ensure that

iﬂk(RN"H ik =1 < 00.
j=1 k=1

This leads to

RNJrl
Ao+ A5 < Z ”ki)
k=1 rk
Combining this with (4.19) and (4.18), we deduce
Cap2 1 q Mk)

A0<Z

Consequently, we obtain (4.15) from (4.17), for € small enough.
Proof of assertion (4.16). From (4.12) we get

o~ PHY (My)
Bze)y. v — B,

where

By = HgRO lexp <C1]I§R“ EZVk ) ] (Yo, s0)-
k=1
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We show that
By < ¢(N,q,Ry) for e small enough.
In fact, as above we have

BQSiTJ_N/

J=to S

exp (Clzs]IgR“

i Vk]> dxdt.

[
k=1
Consequently,

By < Z r;N/ exp (301511330 [I/j]) dzdt
Sj

Jj=to

00 Jj—1
+ > rlexp (3015 >t [uk]||Lm(Sj)>

j=io k=ig—1
oo o0
+ > riexp (3Cie > B [llL(s))
j=to k=j+1
= By + By + Bs.

(4.22)

(4.23)

Here we have used the inequality exp(a+ b+ ¢) < exp(3a) + exp(3b) + exp(3c¢) for all a, b, c.

By Theorem 2.3, we have

/ exp (301511330 [yj]) dedt < rN*? for all j,
Sj
for € > 0 small enough. Hence,

o0

By <) 17 S (max{2R, 1})°,

J=to

Note that estimates (4.20) and (4.21) are also true with vy; we deduce

> j—1 N+1
Z 2 Z pi (R )
BQ + Bg 5 T]- exp <CQE T)

Jj=tio k=io—1
2 o~ ARV

+ Z T3 exp | ca€ Z T

Jj=io k=j+1 J
From (4.12) we have p,(RVT1) < 7} for all k, therefore
By+ B3 S Y riexp(cse(j—io)) + »_ rfexp (cse)
Jj=to j=io
S exp(ese(j —do) — 4log(2)4) + 77,

Jj=to

< c4(N,q,Ry) for £ small enough.

Combining this with (4.24) and (4.23) we obtain (4.22).

This implies straightforwardly exp (Cls]lgR“ > ey l/k]) € L' (Qr,(0,0)).

We conclude that for any (yo, so) € (Bs(0) x (—46%,6%)) N O,

=, Capy 1, (My(y0,50))
u1 (Yo, 50) 2 e
k=1 "k
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and

= PHY (M (yo, s
u2 (Yo, s0) 2 —c1(Ro) + Z 1 ( rjl\c[(yo 0)),
k=1 k

where 7, = 47% and

S 1 1
Muyor50) = 01 B on) x o = (73 + 5 a0 = (10 k]

Take 7,44 < 0 < rg543, we have for 1 <k < k;
1 1
My (yo, 50) D O°N (BTHZ_(;(O) X (52 — (73 + §)r§+2, —6% — (70 + §)r,§+2))
D 0N (B, (0) x (=73r7 5, —T1r7.5))
=0°N (By, ,(0) x (11687, 5, —113677,3)) -

Finally

inf u , 8
(30,50)€(B5(0) X (—62,62))NO (g0, 50)
ks+3 c
- o Capy 1 o (0°N (B, (0) x (—1168r7, —113677)))

~ N
r
k=4 k

— o0 as 6 — 0,

and

inf w s0) > —c1(R
(y0,50)€(B5(0)x (—62,62))NO 2(Y0, S0) 1(Ro)

ks+3 N (e — 2 2

P N (B, 11 ,—11
Z A (O ( :0) Xj\g iy 36rk))) — o0 as 6 — 0.
k=4 T

This completes the proof of Theorem 1.1-(i) and Theorem 1.2.

4.3 The viscous Hamilton-Jacobi parabolic equations

In this section we apply our previous result to the question of existence of a large solution
of the following type of parabolic viscous Hamilton-Jacobi equation

0w — Au + a|VulP 4+ bu? = 0 in O,

U = 00 on 0,0, (4.25)

where @ > 0,b > 0 and 1 < p < 2, ¢ > 1. First, we show that such a large solution to (4.25)
does not exist when ¢ = 1. Equivalently namely, for ¢ > 0, b > 0 and p > 1 there exists no
function u € C*!(0) satisfying

Ou — Au + a|VulP > —bu in O,

U = 00 on 0,0. (4.26)

Indeed, assuming that such a function u € C?1(0), exists, we define
bt &y 2
U(z,t) = u(z, t)e” — §|x| ,

for e > 0 and denote by (zo,to) € O\9,0 the point where U achieves it minimum in O, i.e.
U(zo,to) = inf{U(x,t) : (z,t) € O}. Clearly, we have

6tU(x0,t0) S 0, AU(mo,to) Z 0 and VU(mo,to) =0.
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Thus,

Opu(zo, to) < —bu(xo,to), — Au(xg,to) < —eNe " and alVu(zg,to)|? = a€p|x0|p6_pbt°,

from which follows

Oru(xo,t0) — Au(zg, to) + a|Vu(zo, to)|? < —bu(xo,to) + ge~bto (—N + aap_1|xo|pe_(p_1)bt°)
< —bu(zg, to)

for € small enough, which is a contradiction.
Proof of Theorem 1.3. By Remark 3.3, we have

inf{v(z,1); (2,1) € O} > (qu — 1) 7T TR @1,

Take V = hva € C21(0) for A > 0. Thus v = A=V,

2

inf{V(z,1); (x,t) € O} > 0} > A(q1 — 1)"a@ 0 R ata 1,
and

2
8v — Av + 0T = aATVYLIHV — aNTVETIAY + a(l — a))rava*@ F ATy en,

This leads to

|VV|2 —1y—a(qi—1)y,aq —a+1 :
atV—AV—i—(l—a)T—l—a AT yaen =0 in O.

Using Holder’s inequality,

VV[?

a(qlfé)(Z*P) C‘(’-Il*;)(z*?)_(p_l)

(1—a) + (20) A a-Dyan—atl 5 gy P -

2(p—1)

> ¢o| VVIPA= (P D R™HPF ata =

and
(20) T A— @ Dyea—atl 5 A =(0-1) RSt h
If we choose
A= min{cé’%,cg%}min {a_ﬁngJrﬁ,b_ﬁRf%er}

then

CQ}\i(pil)R_2+p+% > aq,

esA~ @D RS > b,
from what follows

8V — AV +alVV[P + bV <0 in O.
By Remark 3.5, there exists a maximal solution u € C*1(O) of
O — Au+a|VulP +bu? =0 in O.

Therefore, u > V = Ava and u is a large solution of (4.25). This completes the proof of
Theorem 1.3. u
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5 Appendix

Proof of Proposition 2.5.
Step 1. We claim that the following relation holds:

(2, ) NN dpdr < (0 x 2/N 47 x
Lo @)™ N s [ @) L. (5

In fact, we have for p; =277, j € Z,

Z/RNH(,U(QPJ' (zat)))2/NdM(:C,t> /S /]RN+1/O (M(Qr(z,t)))2/Nd—:du(z,t)

Z/RN+1 (Qp, (z, 1)) N dp(a, t).

J=

Note that for any j € Z

it / (1(@pya (NN N dadt 5 [ (u(Qp, (2, 0) (1)

R
SoiN (@, (1) NI N dgat,
RN+1
Thus,
d
ZPJ / Qp (z, t)))(N+2)/Ndxdt</ / 2/N_Tdu(z,t)
RN+1 I "

Z / (1O, (0, £))) NN .
J—— 1 RN+1
This yields

(N+2)/N L dr
Lo ()™ e s [ [ @) et
RN+1 RN+1 Jo T
S [ @)™ dod
RN+1

By [20, Theorem 4.2],

(N+2)/N N2l /N
/Rm (M§/4[u](w,t)) dmdtx/ (@ ) NP dedr,

RN+1

thus we obtain (5.1).

Step 2. End of the proof. The first inequality in (2.1) is proved in [20]. We now prove the
second inequality. By Theorem 2.4 there is u € 9T (RV*1), supp(p) C K such that

M 1] | vy < 1 and pu(K) = PHY (K) 2 [K|N/ N+, (5.2)
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Thanks to (5.1), we have for § = min{1, (u(K))*/N}

1
5 d
I e = [, [ 0@ ot

’ ! ~ dr
= 2/N O
a /]RN+1 (/ +/ ) (1(Qr(z,1))) . dp(x,t)

2 dr dr (N+2)/N
/ /]RN+1 .T t / r (/RN+1 dﬂ(ﬂﬁ,t))

< (RE) NN (1 4 log, ((u(K))™))

< ((E) NN Tog (%) |

—N/(N+2) .
)) 1/ i(K), then [ Lovsamany S 1

Set Q= (log (|Q270(‘0 ,0)|

It is well known that
Cap, w2 (K) = sup{(w(K)) V72 1w € MF(K), |IG[w]l[Lovenm@noy S 11 (53)

see [20, Section 4]. This gives the second inequality in (2.1).
It is easy to prove (2.2) from its definition. Moreover, (5.3) implies that

1

. N N
Cap, | n+2 (K)2/N = inf {13 [w] |2 fweMT(K),w(K) =1}.
2,1, 52

L(N+2)/N ]RN+1)

We deduce from (5.1) that

T N;(K)?/N = inf {/RN+1/0 (w(QT(:C,t)))WN%du(:E,t) W € MH(K), w(K) = 1} .
o (5.4)

As in [12, proof of Lemma 2.2], it is easy to derive (2.3) from (5.4). [
Proof of Proposition 2.6. Thanks to the Poincaré inequality, it is enough to show that

there exists ¢ € Céx’(Qg/Q(O, 0)) such that 0 < ¢ < 1, with ¢ =1 in an open neighborhood
of K and
[ (D26 +10ugl7) st S Capy () (55)
RN+1
By definition, one can find 0 < ¢ € S(RV*1), ¢ > 1 in a neighborhood of K such that
[ (DR (90 + [o] + [arol? ot < 2Capy ().
RN+1

Let 7 be a cut off function on Q;(0,0) with respect to Qg/g (0,0) and H € C*°(R) such that
O0< H@) <t [t||H'(t)] <1 forallt e R, H(t)=0 fort<1/4 and H(t)=1 fort > 3/4.

We claim that
/ (ID?lP + 10yol?)dadt < / (D[P + VP + |6 + [0i6P)dadt,  (5.6)
]RN+1 ]RN+1

where ¢ = nH(¢). Indeed, we have

D] S |D*n[H (9) + [Vl |H'(9)|[V 6] +nlH" (9)|[Vo]* + n|H'(¢)]| D*¢|
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and
0cp| < 10 H(d) +n|H (D)l|ge], H(d) <, ¢lH"(9)] S1.
Thus,

/ (|D?p|? + |0yp|P)dzdt < / (|D?¢P + |Vo|P + |¢|F + |0cp|P)dadt
RN+1

RN+1

2p
+ / Vel dxdt.
RN+1 OP

This implies (5.6) since, according to [1], one has

Vo) 2
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