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Abstract

We obtain a necessary and a sufficient condition expressed in terms of Wiener type

tests involving the parabolic W
2,1

q′
- capacity, where q′ = q

q−1
, for the existence of large

solutions to equation ∂tu−∆u+ uq = 0 in non-cylindrical domain, where q > 1. Also,

we provide a sufficient condition associated with equation ∂tu − ∆u + eu − 1 = 0 .

Besides, we apply our results to equation: ∂tu − ∆u + a|∇u|p + buq = 0 for a, b > 0,

1 < p < 2 and q > 1.

Keywords. Bessel capacities; Hausdorff capacities; parabolic boundary; Riesz potential;
maximal solutions.
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1 Introduction

The aim of this paper is to study large solutions to nonlinear parabolic equations in an
arbitrary bounded open set O ⊂ R

N+1, N ≥ 2. These are solutions u ∈ C2,1(O) of equations

∂tu−∆u+ |u|q−1u = 0 in O,
lim
δ→0

inf
O∩Qδ(x,t)

u = ∞ for all (x, t) ∈ ∂pO, (1.1)

and
∂tu−∆u+ sign(u)(e|u| − 1) = 0 in O,

lim
δ→0

inf
O∩Qδ(x,t)

u = ∞ for all (x, t) ∈ ∂pO, (1.2)

where q > 1 and ∂pO is the parabolic boundary of O, i.e, the set all points X = (x, t) ∈ ∂O
such that the intersection of the cylinder Qδ(x, t) := Bδ(x)× (t− δ2, t) with Oc is not empty
for any δ > 0. By the maximal principle for parabolic equations we can assume that all
solutions of (1.1) and (1.2) are positive. Hence we can consider only positive solutions of
preceding equations.
In [14], we studied the existence and the uniqueness of solution of general equations in a
cylindrical domain,

∂tu−∆u+ f(u) = 0 in Ω× (0,∞),
u = ∞ in ∂p (Ω× (0,∞)) ,

(1.3)

∗E-mail address: Hung.Nguyen-Quoc@lmpt.univ-tours.fr
†E-mail address: Laurent.Veron@lmpt.univ-tours.fr
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where Ω is a bounded open set in R
N and f is a continuous real-valued function, nonde-

creasing on R such that f(0) ≥ 0 and f(a) > 0 for some a > 0. In order to obtain the
existence of a maximal solution of ∂tu −∆u + f(u) = 0 in Ω × (0,∞) we need to assume
that

(i)

ˆ ∞

a

(
ˆ s

0

f(τ)dτ

)− 1
2

ds < ∞

(ii)

ˆ ∞

a

(f(s))
−1

ds < ∞.

(1.4)

Note that, condition (i) due to Keller-Osserman condition, is also a necessary and sufficient
for the existence of a maximal solution to

−∆u+ f(u) = 0 in Ω (1.5)

Condition (ii) is a necessary and sufficient for the existence of a solution of the ODE

ϕ′ + f(ϕ) = 0 in (0,∞). (1.6)

This solution tends to ∞ at 0. In [14], it is shown that if for any m ∈ R there exist
L = L(m) > 0 such that

for any x, y ≥ m ⇒ f(x+ y) ≥ f(x) + f(y)− L,

and if (1.5) has a large solution, then (1.3) admits a solution.
It is not alway true that the maximal solution to (1.5) is a large solution. However, if f

satisfies
ˆ ∞

1

s−2(N−1)/(N−2)f(s)ds < ∞ if N ≥ 3

or

inf

{

a ≥ 0

ˆ ∞

0

f(s)e−asds < ∞

}

if N = 2.

then (1.5) has a large solution for any bounded domain Ω.

When f(u) = uq, q > 1 and N ≥ 3, the first above condition is satisfied if and only if
q < qc := N

N−2 , this is called the sub-critical case. When q ≥ qc, a necessary and sufficient
condition for the existence of large solution of (1.5) expressed in term of Wiener test, is

ˆ 1

0

Cap2,q′(Ω
c ∩Br(x))

rN−2

dr

r
= ∞ for all x ∈ ∂Ω. (1.7)

In the case q = 2 it is obtained by probabilistic methods by Dhersin and Le Gall [4] and in
the general case by Labutin [6]. Here, q′ = q

q−1 and Cap2,q′ is the capacity associated to

the Sobolev space W 2,q′(RN ).
In [10] we obtain sufficient conditions when f(u) = eu − 1, involving the the Hausdorff

HN−2
1 −capacity in R

N , namely,

ˆ 1

0

HN−2
1 (Ωc ∩Br(x))

rN−2

dr

r
= ∞ for all x ∈ ∂Ω. (1.8)

In this article we give a necessary and a sufficient condition for the existence of solutions
to (1.1) in a bounded non-cylindrical domain O ⊂ R

N+1, expressed in terms of a Wiener
test based upon the parabolic W 2,1

q′ -capacity in R
N+1. We also give a sufficient condition
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associated (1.2) where the parabolicW 2,1
q′ -capacity is replaced the parabolic Hausdorff PHN

ρ -

capacity. These capacities are defined as follows: if K ⊂ R
N+1 is compact set, we set

Cap2,1,q′(K) = inf{||ϕ||q
′

W 2,1

q′
(RN+1)

: ϕ ∈ S(RN+1), ϕ ≥ 1 in a neighborhood of K},

where

||ϕ||W 2,1

q′
(RN+1) = ||

∂ϕ

∂t
||Lq′ (RN+1) + ||∇ϕ||Lq′ (RN+1) +

∑

i,j=1,2,...,N

||
∂2ϕ

∂xi∂xj
||Lq′ (RN+1).

and for Suslin set E ⊂ R
N+1,

Cap2,1,q′(E) = sup{Cap2,1,q′(D) : D ⊂ E,D compact}.

Thanks to a result due to Richard and Bagby, [2], the capacities Cap2,1,p and CapG2,p are

equivalent in the sense that, for any Suslin set K ⊂ R
N+1, there holds

C−1Cap2,1,q′(K) ≤ CapG2,q′(K) ≤ CCap2,1,p(K)

for some C = C(N, q), where CapG2,q′ is the parabolic Bessel G2−capacity, see [11].

For E ⊂ R
N+1, we define PHN

ρ (E) by

PHN
ρ (E) = inf







∑

j

rNj : E ⊂
⋃

Brj (xj)× (tj − r2j , tj + r2j ), rj ≤ ρ







.

It is easy to see that, for 0 < σ ≤ ρ and E ⊂ R
N+1, there holds

PHN
ρ (E) ≤ PHN

σ (E) ≤ C(N)
( ρ

σ

)2

PHN
ρ (E). (1.9)

Now we are ready to state the main two results of this paper.

Theorem 1.1 Let N ≥ 2 and q ≥ q∗ := N+2
N . Then

(i) The equation

∂tu−∆u+ uq = 0 in O (1.10)

admits a large solution if for any (x, t) ∈ ∂pO

∞
∑

k=1

Cap2,1,q′
(

Oc ∩
(

Brk(x)×
(

t− 1168r2k, t− 1136r2k
)))

rNk
= ∞, (1.11)

where rk = 4−k, and N ≥ 3 when q = q∗.

(ii) If equation (1.10) is a large solution, then

ˆ 1

0

Cap2,1,q′(O
c ∩Qρ(x, t))

ρN
dρ

ρ
= ∞ (1.12)

for any (x, t) ∈ ∂pO, where Qρ(x, t) = Bρ(x) × (t− ρ2, t).

Theorem 1.2 Let N ≥ 2. The equation

∂tu−∆u + eu − 1 = 0 in O (1.13)

admits a large solution if

∞
∑

k=1

PHN
1

(

Oc ∩
(

Brk(x) ×
(

t− 1168r2k, t− 1136r2k
)))

rNk
= ∞, (1.14)

for any (x, t) ∈ ∂pO, with rk = 4−k.
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From properties of the W 2,1
q′ −capacity and the PHN

1 −capacity, relation (1.11) holds if
q > q∗ and

∞
∑

k=1

r−N
k

∣

∣Oc ∩
(

Brk(x)×
(

t− 1168r2k, t− 1136r2k
))∣

∣

1− 2q′

N+2 = ∞.

Similarly, (1.14) is true if

∞
∑

k=1

r−N
k

∣

∣Oc ∩
(

Brk(x) ×
(

t− 1168r2k, t− 1136r2k
))∣

∣

N
N+2 = ∞.

As a consequence of Theorem 1.1 we derive a sufficient condition for the existence of
large solution of some viscous Hamilton-Jacobi parabolic equations.

Theorem 1.3 Let q1 > 1. If there exists a large solution v ∈ C2,1(O) of

∂tv −∆v + vq1 = 0 in O.

Then, for any a, b > 0, 1 < q < q1 and 1 < p < 2q1
q1+1 , problem

∂tu−∆u+ a|∇u|p + buq = 0 in O,
u = ∞ on ∂pO,

(1.15)

admits a solution u ∈ C2,1(O) which satisfies

u(x, t) ≥ Cmin
{

a−
1

p−1R
− 2−p

p−1+
2

α(q1−1) , b−
1

q−1R
− 2

q−1+
2

α(q1−1)

}

(v(x, t))
1
α

for all (x, t) ∈ O where R > 0 is such that O ⊂ Q̃R(x0, t0), C = C(N, p, q, q1) > 0 and

α = max
{

2(p−1)
(q1−1)(2−p) ,

q−1
q1−1

}

∈ (0, 1).

2 Preliminaries

Throughout the paper, we denote Qρ(x, t) = Bρ(x)× (t− ρ2, t] and Q̃ρ(x, t) = Bρ(x)× (t−
ρ2, t+ ρ2) for (x, t) ∈ R

N+1, ρ > 0 and rk = 4−k for all k ∈ Z. We also denote A . (&)B if
A ≤ (≥)CB for some C depending on some structural constants, A ≍ B if A . B . A.

Definition 2.1 Let R ∈ (0,∞] and µ ∈ M
+(RN+1), the set of positive Radon measures in

R
N+1. We define R−truncated Riesz parabolic potential I2 of µ by

I
R
2 [µ](x, t) =

ˆ R

0

µ(Q̃ρ(x, t))

ρN
dρ

ρ
for all (x, t) ∈ R

N+1,

and the R−truncated fractional maximal parabolic potential of µ by

M
R
α [µ](x, t) = sup

0<ρ<R

µ(Q̃ρ(x, t))

ρN+2−α
for all (x, t) ∈ R

N+1.

We recall two results in [11].

Theorem 2.2 Let R > 0, K be a compact set in R
N+1. There exists µ := µK ∈ M

+(RN+1)
with compact support in K such that

µ(K) ≍ Cap2,1,q′(K) ≍

ˆ

RN+1

(

I
2R
2 [µ]

)q
dxdt

where the constants of equivalence depend on N and R. The measure µK is called the
capacitary measure of K
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Theorem 2.3 Let µ ∈ M
+(RN+1) and R > 0. There exist positive constants C1, C2 such

that
 

Q

exp(C1I
R
2 [µQ]) ≤ C2,

for all Q = Q̃r(y, s) ⊂ R
N+1, r > 0 such that ||MR

2 [µ]||L∞(RN+1)dxdt ≤ 1.

It is easy to see that Frostman’s Lemma in [13, Th. 3.4.27], which is at the basis of the dual
definition of Hausdorff capacities with doubling weight, is valid for the parabolic Hausdorff
PHN

ρ −capacity version. Therefore there holds

Theorem 2.4 There holds

sup
{

µ(K) : µ ∈ M
+(RN+1), supp (µ) ⊂ K, ||Mρ

2[µ]||L∞(RN+1) ≤ 1
}

≍ PHN
ρ (K)

for any compact set K ⊂ R
N+1, where equivalent constant depends on N

For our purpose, we need the some results about the behavior of the capacity with respect
to dilations.

Proposition 2.5 Let K be a compact set, K ⊂ Q̃100(0, 0) and 1 < p < N+2
2 . Then

Cap2,1,p(K) & |K|1−
2p

N+2 ,Cap2,1,N+2
2

(K) &

(

log

(

|Q̃200(0, 0)|

|K|

))−N
2

, (2.1)

and

Cap2,1,p(Kρ) ≍ ρN+2−2pCap2,1,p(K), (2.2)

1

Cap2,1,N+2
2

(Kρ)
≍

1

Cap2,1,N+2
2

(K)
+ (log(2/ρ))N/2 (2.3)

for any 0 < ρ < 1, where Kρ = {(ρx, ρ2t) : (x, t) ∈ K}.

Proposition 2.6 Let K ⊂ Q̃1(0, 0) be a compact set and 1 < p ≤ (N + 2)/2. Then, there
exists a function ϕ ∈ C∞

c (Q̃2(0, 0)), 0 ≤ ϕ ≤ 1 and ϕ|D = 1 for some open set D ⊃ K such
that

ˆ

RN+1

(

|D2ϕ|p + |∇ϕ|p + |ϕ|p + |∂tϕ|
p
)

dxdt . Cap2,1,p(K). (2.4)

We will give proofs of the above two propositions in the Appendix.
It is well know that there exists a semigroup et∆ corresponding to equation

∂tu−∆u = µ in Q̃R(0, 0),

u = 0 on ∂pQ̃R(0, 0)
(2.5)

with µ ∈ C∞(BR(0)× (0, R2)), i.e, we can write a solution u of (2.5) as follows

u(x, t) =

ˆ t

0

(

e(t−s)∆µ
)

(x, s)ds for all (x, t) ∈ Q̃R(0, 0).

We denote by H the heat kernel:

H(x, t) =
1

(4πt)
N
2

e−
|x|2

4t χt>0.

We have

|u(x, t)| ≤ (H ∗ µ)(x, t) for all (x, t) ∈ Q̃R(0, 0).

5



In [11] we show that

|(H ∗ µ)|(x, t) ≤ C1(N)I2R2 [|µ|](x, t) for all (x, t) ∈ Q̃R(0, 0).

Here µ is extended by 0 in (Q̃R(0, 0))
c. Thus,

|

ˆ t

0

(

e(t−s)∆µ
)

(x, s)ds| ≤ C1(N)I2R2 [|µ|](x, t) for all (x, t) ∈ Q̃R(0, 0). (2.6)

Moreover, we also prove in [11], that if µ ≥ 0 then for (x, t) ∈ Q̃R(0, 0) and Bρ(x) ⊂ BR(0),

ˆ t

0

(

e(t−s)∆µ
)

(x, s)ds ≥ C2(N)

∞
∑

k=0

µ(Q ρk
8
(x, t− 35

128ρ
2
k))

ρNk
, (2.7)

with ρk = 4−kρ.
It is easy to see that estimates (2.6) and (2.7) also holds for any bounded Radon measure µ
in Q̃R(0, 0). The following result is proved in [3] and [8], also see [11].

Theorem 2.7 Let q > 1, R > 0 and µ be bounded Radon measure in Q̃R(0, 0).

(i) If µ is absolutely continuous with respect to Cap2,1,q′ in Q̃R(0, 0), then there exists a
unique weak solution u to equations

∂tu−∆u+ |u|q−1u = µ in Q̃R(0, 0),

u = 0 on ∂pQ̃R(0, 0).

(ii) If exp
(

C1(N)I2R2 [|µ|]
)

∈ L1(Q̃R(0, 0)) then there exists a unique weak solution v to
equations

∂tv −∆v + sign(v)(e|v| − 1) = µ in Q̃R(0, 0),

v = 0 on ∂pQ̃R(0, 0).

where the constant C1(N) is the one of inequality (2.6).

From estimates (2.6) and (2.7) and using comparison principle we get the estimates from
below of the solutions u and v obtained in Theorem 2.7.

Proposition 2.8 If µ ≥ 0 then the functions u and v of the previous theorem are nonneg-
ative and satisfy

u(x, t) ≥ C2(N)

∞
∑

k=0

µ(Q ρk
8
(x, t− 35

128ρ
2
k))

ρNk
− C1(N)q+1

I
2R
2

[

(

I
2R
2 [µ]

)q
]

(x, t) (2.8)

and

v(x, t) ≥ C2(N)

∞
∑

k=0

µ(Q ρk
8
(x, t− 35

128ρ
2
k))

ρNk
−C1(N)I2R2

[

exp
(

C1(N)I2R2 [µ]
)

− 1
]

(x, t). (2.9)

for any (x, t) ∈ Q̃R(0, 0) and Bρ(x) ⊂ BR(0) and ρk = 4−kρ.

3 Maximal solutions

In this section we assume that O is a arbitrary, non-cylindrical and bounded open set in
R

N+1 and q > 1. We will prove the existence of a maximal solution of

∂tu−∆u+ uq = 0 (3.1)
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in O. We also get analogous result where uq is replace by eu − 1.
It is easy to see that if u satisfies (3.1) in Q̃r(0, 0) (Qr(0, 0) ) then ua(x, t) = a−2/(q−1)u(ax, a2t)
satisfies (3.1) in Q̃r/a(0, 0) (Qr/a(0, 0)) for any a > 0.
If X = (x, t) ∈ O, the parabolic distance from X to the parabolic boundary ∂pO of O is
defined by

d(X, ∂pO) = inf
(y,s)∈∂pO

s≤t

max{|x− y|, (t− s)
1
2 }.

It is easy to see that there exists C = C(N, q) > 0 such that the function V defined by

V (x, t) = C

(

(ρ2 + t)−
1

q−1 +

(

ρ2 − |x|2

ρ

)− 2
q−1

)

in Bρ(0)× (−ρ2, 0)

satisfies

∂tV −∆V + V q ≥ 0 in Bρ(0)× (−ρ2, 0) (3.2)

Proposition 3.1 There exists a maximal solution u ∈ C2,1(O) of (3.1) and it satisfies

u(x, t) ≤ C(d((x, t), ∂pO))−
2

q−1 for all (x, t) ∈ O. (3.3)

for some C = C(N, q)

Proof. Let Dk, k ∈ Z be the collection of all the dyadic parabolic cubes (abridged p-cubes)
of the form

{(x1, ..., xN , t) : mj2
−k ≤ xj ≤ (mj + 1)2−k, j = 1, ..., N,mN+14

−k ≤ t ≤ (mN+1 + 1)4−k}

where mj ∈ Z. The following properties hold,

a. for each integer k, Dk is a partition of R
N+1 and all p-cubes in Dk have the same

sidelengths.

b. if the interiors of two p-cubes Q in Dk1 and P in Dk2 , denoted
◦

Q,
◦

P , have nonempty
intersection then either Q is contained in R or Q contains R.

c. Each Q in Dk is union of 2N+2 p-cubes in Dk+1 with disjoint interiors.

Let k0 ∈ N be such that Q ⊂ D for some Q ∈ Dk0 . Set Ok =
⋃

Q∈Dk
Q⊂O

Q ∀k ≥ k0, we

have Ok ⊂ Ok+1 and O =
⋃

k≥k0

Ok =
⋃

k≥k0

◦

Ok. More precisely, there exist real numbers

a1, a2, ...., an(k) and open sets Ω1,Ω2, ..,Ωn(k) in R
N such that

ai < ai + 4−k ≤ ai+1 < ai+1 + 4k for i = 1, ..., n(k)− 1

and

◦

Ok =

n(k)−1
⋃

i=1

(

Ωi × (ai, ai + 4−k]
)

⋃

(

Ωn(k) × (an(k), an(k) + 4−k)
)

.

For k ≥ k0, we will show that there exist a solution uk ∈ C2,1(
◦

Ok) to problem

∂tuk −∆uk + uq
k = 0 in

◦

Ok,

uk(x, t) → ∞ as d((x, t), ∂p
◦

Ok) → 0.
(3.4)
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Indeed, by [5, 7] for m > 0 one can find nonnegative solutions vi ∈ C2,1(Ωi× (ai, ai+4−k])∩
C(Ωi × [ai, ai + 4−k]) for i = 1, .., n(k) to equations

∂tv1 −∆v1 + vq1 = 0 in Ω1 × (a1, a1 + 4−k),
v1(x, t) = m on ∂Ω1 × (a1, a1 + 4−k),
v1(x, t1) = m in Ω1,

and

∂tvi −∆vi + vqi = 0 in Ωi × (ai, ai + 4−k),

vi(x, t) = m on ∂Ωi × (ai, ai + 4−k),

vi(x, ti) =

{

m in Ωi if ai > ai−1 + 4−k,
mχΩi\Ωi−1

(x) + vi−1(x, ai−1 + 4−k)χΩi−1(x) otherwise .

Clearly,

uk,m = vi in Ωi × (ai, ai + 4−k] for i = 1, ..., n(k)

is a solution in C2,1(
◦

Ok) ∩ C(Ok) to equation
{

∂tuk,m −∆uk,m + uq
k,m = 0 in

◦

Ok,

uk,m = m on ∂p
◦

Ok.

Moreover, for (x, t) ∈
◦

Ok, we can see that B d
2
(x)×(t− d2

4 , t) ⊂
◦

Ok where d = d((x, t), ∂p
◦

Ok).

From (3.2), we verify that

U(y, s) = V (y − x, s− t) = C

(

(ρ2 + s− t)−
1

q−1 +

(

ρ2 − |x− y|2

ρ

)− 2
q−1

)

with ρ = d/2, satisfies

∂tU −∆U + U q ≥ 0 in B d
2
(x)× (t−

d2

4
, t). (3.5)

Applying the comparison principle we get

uk,m(y, s) ≤ U(y, s) in B d
2
(x)× (t−

d2

4
, t],

which implies

uk,m(x, t) ≤ C
(

d((x, t), ∂p
◦

Ok)
)− 2

q−1

for all (x, t) ∈
◦

Ok. (3.6)

From this, we also obtain uniform local bounds for {uk,m}m. By standard regularity theory
see [5, 7], {uk,m}m is uniformly locally bounded in C2,1. Hence, up to a subsequence,

uk,m → uk C1,0
loc (

◦

Ok) . Passing the limit, we derive that uk is a weak solution of (3.4) in
◦

Ok,

which satisfies uk(x, t) → ∞ as d((x, t), ∂p
◦

Ok) → 0 and

uk(x, t) ≤ C
(

d((x, t), ∂p
◦

Ok)
)− 2

q−1

for all (x, t) ∈
◦

Ok.

Let m > 0 and k ≥ k0. Since uk+1,m ≤ m in Ok and Ok ⊂ Ok+1, it follows by the
comparison principle applied to uk+1,m and uk,m in the sub-domains Ω1 × (a1, a1 + 4−k),

Ω2 × (a2, a2 + 4−k),..., Ωn(k) × (an(k), an(k) + 4−k) of
◦

Ok to obtain at end that uk+1,m ≤

uk,m in
◦

Ok, and thus uk+1 ≤ uk in
◦

Ok. In particular, {uk}k is uniformly locally bounded in
L∞
loc. We use the same compactness property as above to obtain that uk → u where u is a

solution of (3.1) and satisfies (3.3). By construction u is the maximal solution.
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Remark 3.2 Let R ≥ 2r ≥ 2, K be a compact subset in Q̃r(0, 0). Arguing as one can easily
it is clear that there exists a maximal solution of

∂tu−∆u+ uq = 0 in Q̃R(0, 0)\K,

u = 0 on ∂pQ̃R(0, 0),
(3.7)

which satisfies

u(x, t) ≤ C(d((x, t), ∂p(Q̃R(0, 0)\K))−
2

q−1 ∀ (x, t) ∈ Q̃R(0, 0)\K, (3.8)

for some C = C(N, q). Furthermore, assume K1,K2, , , ,Km are compact subsets in Q̃r(0, 0)
and K = K1 ∪ ... ∪Km. Let u, u1, ..., um be the maximal solutions of (3.7) in Q̃R(0, 0)\K,
Q̃R(0, 0)\K1, Q̃R(0, 0)\K2, , , , Q̃R(0, 0)\Km, respectively, then

u ≤
m
∑

j=1

uj in Q̃R\K. (3.9)

Remark 3.3 If the equation (3.1) admits a large solution for some q > 1 then for any
1 < q1 < q, equation

∂tu−∆u+ uq1 = 0 in O (3.10)

admits also a large solution.
Indeed, assume that u is a large solution of (3.1) and v is the maximal solution of (3.10).
Take R > 0 such that O ⊂ BR(0)× (−R2, R2), then the function V defined by

V (x, t) = (q − 1)−
1

q−1 (2R2 + t)−
1

q−1 ,

satisfies (3.1). It follows for all (x, t) ∈ O

u(x, t) ≥ inf
(y,s)∈O

V (x, t) ≥ (q − 1)−
1

q−1R− 2
q−1 =: a0.

Thus, ũ = a
−

q−q1
q1−1

0 u is a subsolution of (3.10). Therefore v ≥ a
−

q−q1
q1−1

0 u in O, thus v is a
large solution.

Remark 3.4 (Sub-critical case) Assume that 1 < q < q∗. One easily see that the func-
tion

U(x, t) =
C

t
1

q−1

e
|x|2

4t χt>0 (3.11)

is a subsolution of (3.1) in R
N+1\{(0, 0)}, where C =

(

2
q−1 − N

2

)
1

q−1

.

Therefore, the maximal solutions u of (3.1) in O verify

u(x, t) ≥ C
1

(t− s)
1

q−1

e
|x−y|2

4(t−s) χt>s, (3.12)

for all (x, t) ∈ O and (y, s) ∈ ∂pO.

Remark 3.5 Note that if u ∈ C2,1(O) is a solution of (3.1) for some q > 1 then, for

a, b > 0 and 1 < p ≤ 2, v = b−
1

q−1 u is a super-solution of

∂tv −∆v + a|∇v|p + bvq = 0 in O. (3.13)
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Thus, we can apply the argument of the previous proof, with equation (3.13) replaced by
(3.1), to deduce that there exists a maximal solution v ∈ C2,1(O) of (3.13) satisfying

v(x, t) ≤ Cb−
1

q−1 (d((x, t), ∂pO))−
2

q−1 for all (x, t) ∈ O.

Furthermore, if 1 < q < q∗, q = 2p
p+1 , a, b > 0 then the function U in Remark 3.4 is

a subsolution of (3.13) in R
N+1\{(0, 0)}, for some C = C(N, p, q, a, b). Therefore, we

conclude that every maximal solution of v ∈ C2,1(O) of (3.13) satisfy

u(x, t) ≥ C
1

(t− s)
1

q−1

e
|x−y|2

4(t−s) χt>s (3.14)

for all (x, t) ∈ O and (y, s) ∈ ∂pO.

Next, we consider the following equation

∂tu−∆u+ eu − 1 = 0. (3.15)

It is easy to see that the two functions

V1(t) = − log

(

t+ ρ2

1 + ρ2

)

and V2(x) = C1 − 2 log

(

ρ2 − |x|2

ρ

)

satisfy
V ′
1 + eV1 − 1 ≥ 0 in (−ρ2, 0]

and
−∆V2 + eV2 − 1 ≥ 0 in Bρ(0)

for some C = C(N). Using ea + eb ≤ ea+b − 1 for a, b ≥ 0, we obtain that V1 + V2 is a
supersolution of equation (3.15) in Bρ(0)×(−ρ2, 0]. By the same argument as in Proposition
3.1 and the estimate of the above supersolution, we obtain

Proposition 3.6 There exists a maximal solution u ∈ C2,1(O) of

∂tu−∆u + eu − 1 = 0 in O (3.16)

and it satisfies

u(x, t) ≤ C − log

(

(d((x, t), ∂pO))3

4 + (d((x, t), ∂pO))2

)

for all (x, t) ∈ O, (3.17)

for some C = C(N).

The next three propositions will be useful to prove Theorem 1.1-(ii).

Proposition 3.7 Let K ⊂ Q̃1(0, 0) be a compact set and q > 1, R ≥ 100. Let u be a
solution of (3.7) in Q̃R(0, 0)\K and ϕ as in Proposition 2.6 with p = q′. Set ξ = (1−ϕ)2q

′

.
Then,

ˆ

Q̃R(0,0)

u (|∆ξ|+ |∇ξ|+ |∂tξ|) dxdt . Cap2,1,q′(K) (3.18)

and

u(x, t) . Cap2,1,q′(K) +R− 2
q−1 for any (x, t) ∈ Q̃R/5(0, 0)\Q̃2(0, 0), (3.19)

ˆ

Q̃2(0,0)

uξdxdt . Cap2,1,q′(K) +R− 2
q−1 (3.20)

where constants in above inequalities only depend on N, q.
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Proof. Step 1. First, we need to show that

ˆ

Q̃R(0,0)

uqξdxdt . Cap2,1,q′(K). (3.21)

Actually, using by parts integration and the Green formula, one has

ˆ

Q̃R(0,0)

uq
Rξdxdt = −

ˆ

Q̃R(0,0)

∂tuξdxdt+

ˆ

Q̃R(0,0)

(∆u)ξdxdt

=

ˆ

Q̃R(0,0)

u∂tξdxdt+

ˆ

Q̃R(0,0)

u∆ξdxdt+

ˆ R2

−R2

ˆ

∂BR(0)

(

ξ
∂u

∂ν
− u

∂ξ

∂ν

)

dSdt

where ν is the outer normal unit vector on ∂BR(0). Clearly,

∂u

∂ν
≤ 0 and

∂ξ

∂ν
= 0 on ∂BR(0).

Thus,

ˆ

Q̃R(0,0)

uqξdxdt ≤

ˆ

Q̃R(0,0)

u|∂tξ|dxdt +

ˆ

Q̃R(0,0)

u|∆ξ|dxdt

≤ 2q′
ˆ

Q̃R(0,0)

u(1− ϕ)2q
′−1|∂tϕ|dxdt + 2q′(2q′ − 1)

ˆ

Q̃R(0,0)

u(1− ϕ)2q
′−2|∇ϕ|2dxdt

+ 2q′
ˆ

Q̃R(0,0)

u(1− ϕ)2q
′−1|∆ϕ|dxdt

≤ 2q′
ˆ

Q̃R(0,0)

uξ1/q|∂tϕ|dxdt + 2q′(2q′ − 1)

ˆ

Q̃R(0,0)

uξ1/q|∇ϕ|2dxdt

+ 2q′
ˆ

Q̃R(0,0)

uξ1/q|∆ϕ|dxdt. (3.22)

In the last inequality, we have used the fact that (1− φ)2q
′−1 ≤ (1− φ)2q

′−1 = ξ1/q.
Hence, by Hölder inequality,

ˆ

Q̃R(0,0)

uqξdxdt .

ˆ

Q̃R(0,0)

|∂tϕ|
q′dxdt +

ˆ

Q̃R(0,0)

|∇ϕ|2q
′

dxdt

+

ˆ

Q̃R(0,0)

|∆ϕ|q
′

dxdt.

By the Gagliardo-Nirenberg inequality,

ˆ

Q̃R(0,0)

|∇ϕ|2q
′

dxdt . ||ϕ||q
′

L∞(Q̃R(0,0))

ˆ

Q̃R(0,0)

|D2ϕ|q
′

dxdt

.

ˆ

Q̃R(0,0)

|D2ϕ|q
′

dxdt.

Hence, we find

ˆ

Q̃R(0,0)

uqξdxdt .

ˆ

Q̃R(0,0)

(|∂tϕ|
q′ + |D2ϕ|q

′

)dxdt

and derive (3.21) from (2.4). In view of (3.22), we also obtain

ˆ

Q̃R(0,0)

u(|∆ξ|+ |∂tξ|)dxdt,. Cap2,1,q′(K)
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and
ˆ

Q̃R(0,0)

u|∇ξ|dxdt,. Cap2,1,q′(K),

since
ˆ

Q̃R(0,0)

u|∇ξ|dxdt = 2q′
ˆ

Q̃R(0,0)

uξ(2q
′−1)/2q′ |∇ϕ|dxdt

≤ 2q′
ˆ

Q̃R(0,0)

uξ1/q|∇ϕ|dxdt

.

ˆ

Q̃R(0,0)

uqξdxdt +

ˆ

Q̃R(0,0)

|∇ϕ|q
′

dxdt.

It yields (3.18).
Step 2. Let η be a cut off function on Q̃R/4(0, 0) with respect to Q̃R/3(0, 0) such that
|∂tη|+ |D2η| . R−2 and |∇η| . R−1. We have

∂t(ηξu)−∆(ηξu) = F ∈ Cc(Q̃R/3(0, 0)).

Hence, we can write

(ηξu)(x, t) =

ˆ

RN

ˆ t

−∞

1

(4π(t− s))
N
2

e−
|x−y|2

4(t−s) F (y, s)dsdy ∀(x, t) ∈ R
N+1.

Now, we fix (x, t) ∈ Q̃R/5(0, 0)\Q̃2(0, 0). Since supp {|∇η|} ∩ supp {|∇ξ|} = ∅ and

F = ηξ (∂tu−∆u) + 2 (η∇ξ + ξ∇η)∇u+ (ξ∂tη + η∂tξ + 2∇η∇ξ +∆ηξ + η∆ξ) u

≤ 2 (η∇ξ + ξ∇η)∇u + (ξ∂tη + η∂tξ + ξ∆η + η∆ξ) u,

there holds

u(x, t) = (ηξu)(x, t) ≤ 2

ˆ

RN

ˆ t

−∞

1

(4π(t− s))
N
2

e−
|x−y|2

4(t−s) (η∇ξ + ξ∇η)∇udsdy

+

ˆ

RN

ˆ t

−∞

1

(4π(t− s))
N
2

e−
|x−y|2

4(t−s) (η∂tξ + η∆ξ) udsdy

+

ˆ

RN

ˆ t

−∞

1

(4π(t− s))
N
2

e−
|x−y|2

4(t−s) (∂tηξ + ξ∆η) udsdy.

= I1 + I2 + I3.

By parts integration

I1 = −2(4π)−N/2

ˆ t

−∞

ˆ

RN

(x− y)

2(t− s)(N+2)/2
e−

|x−y|2

4(t−s) (η∇ξ + ξ∇η) udyds

− 2(4π)−N/2

ˆ t

−∞

ˆ

RN

1

(t− s)N/2
e−

|x−y|2

4(t−s) (ξ∆η + η∆ξ) u dyds.

Note that
1

(t− s)N/2
e−

|x−y|2

4(t−s) .
(

max{|x− y|, |t− s|1/2}
)−N

,

∣

∣

∣

∣

(x− y)

2(t− s)(N+2)/2
e−

|x−y|2

4(t−s)

∣

∣

∣

∣

.
(

max{|x− y|, |t− s|1/2}
)−N−1

,
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and

max{|x− y|, |t− s|1/2} & 1 ∀(y, s) ∈ supp {|Dαξ|} ∪ supp {|∂tξ|},

max{|x− y|, |t− s|1/2} & R ∀(y, s) ∈ supp {|Dαη|} ∪ supp {|∂tη|} ∀|α| ≥ 1.

We deduce

I1 .

ˆ

RN+1

(

max{|x− y|, |t− s|1/2}
)−N−1

(η|∇ξ| + ξ|∇η|)u dyds

+

ˆ

RN+1

(

max{|x− y|, |t− s|1/2}
)−N

(ξ|∆η| + η|∆ξ|)u dyds

.

ˆ

RN+1

(|∇ξ|+ |∆ξ|)u dyds+

ˆ

Q̃R/3(0,0)\Q̃R/4(0,0)

(R−N−1|∇η|+R−N |∆η|)u dyds

.

ˆ

RN+1

(|∇ξ|+ |∆ξ|)u dyds+ sup
Q̃R/3(0,0)\Q̃R/4(0,0)

u,

I2 .

ˆ

RN+1

(

max{|x− y|, |t− s|1/2}
)−N

(|∂tξ|+ |∆ξ|)u dyds

.

ˆ

RN+1

(|∂tξ|+ |∆ξ|)u dyds,

and

I3 .

ˆ

RN+1

(

max{|x− y|, |t− s|1/2}
)−N

(|∂tη|+ |∆η|)u dyds

.

ˆ

Q̃R/3(0,0)\Q̃R/4(0,0)

R−N(|∂tη|+ |∆η|)u dyds

. sup
Q̃R/3(0,0)\Q̃R/4(0,0)

u.

Hence,

u(x, t) ≤ I1 + I2 + I3 .

ˆ

RN+1

(|∂tξ|+ |∇ξ|+ |∆ξ|)u dyds+ sup
Q̃R/3(0,0)\Q̃R/4(0,0)

u.

Combining this with (3.18) and (3.8), we obtain (3.19).
Step 3. Let θ be a cut off function on Q̃3(0, 0) with respect to Q̃4(0, 0). As above, we have
for any (x, t) ∈ R

N+1

(θξu)(x, t) .

ˆ

RN+1

(max{|x− y|, |t− s|1/2})−N−1(θ|∇ξ| + ξ|∇θ|)u dyds

+

ˆ

RN+1

(max{|x− y|, |t− s|1/2})−N(θ|∆ξ| + ξ|∆θ|)u dyds

+

ˆ

RN+1

(max{|x− y|, |t− s|1/2})−N(θ|∂tξ|+ θ|∆ξ|)u dyds

+

ˆ

RN+1

(max{|x− y|, |t− s|1/2})−N(ξ|∂tθ|+ ξ|∆θ|)u dyds.

Hence, by Fubini theorem,
ˆ

Q̃2(0,0)

ηudxdt =

ˆ

Q̃2(0,0)

θηudxdt

. A

ˆ

RN+1

(θ|∇ξ|+ ξ|∇θ|+ θ|∆ξ| + ξ|∆θ|+ θ|∂tξ|+ ξ|∂tθ|)u dyds

.

ˆ

RN+1

(|∂tξ|+ |∇ξ|+ |∆ξ|)u dyds+ sup
Q̃4(0,0)\Q̃3(0,0)

u
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where

A = sup
(y,s)∈Q̃4(0,0)

ˆ

Q̃2(0,0)

((max{|x− y|, |t− s|1/2})−N + (max{|x− y|, |t− s|1/2})−N−1)dxdt

Therefore we obtain (3.20) from (3.18) and (3.19).

Proposition 3.8 Let K ⊂ {(x, t) : ε < max{|x|, |t|1/2} < 1} be a compact set, 0 < ε < 1
and let u be the maximal solution of (3.7) in Q̃R(0, 0)\K with R ≥ 100. Then

sup
Q̃ε/4(0,0)

u .

jε−2
∑

j=−2

Cap2,1,q′(K ∩ Q̃ρj (0, 0))

ρNj
+ jεR

− 2
q−1 if q > q∗, (3.23)

and

sup
Q̃ε/4(0,0)

u .

jε
∑

j=0

Cap2,1,q′(Kj)

ρNj
+ jεR

− 2
q−1 if q = q∗, (3.24)

where ρj = 2−j, Kj = {(x/ρj+3, t/ρ
2
j+3) : (x, t) ∈ K ∩ Q̃ρj−2(0, 0)} and jε ∈ N is such that

ρjε ≤ ε < ρjε−1.

Proof. For j ∈ N , we define Sj = {x : ρj ≤ max{|x|, |t|1/2} ≤ ρj−1}.
Fix any 1 ≤ j ≤ jε. We cover Sj by L = L(N) ∈ N

∗ closed cylinders

Q̃ρj+3 (xk,j , tk,j), k = 1, ..., L(N)

where (xk,j , tk,j) ∈ Sj .
For k = 1, ..., L(N), let uj , uk,j be the maximal solutions of (3.7) where K is replaced by

K ∩ Sj and K ∩ Q̃ρj+3(xk,j , tk,j), respectively. Clearly the function ũk,j defined by

ũk,j(x, t) = ρ
2

q−1

j+3uk,j(ρj+3x+ xk,j , ρ
2
j+3t+ tk,j)

is the maximal solution of (3.7) when (K, Q̃R(0, 0)) is replaced by (Kk,j , Q̃R/ρj+3
(−xk,j ,−tk,j)),

with

Kk,j = {(y/ρj+3, s/ρ
2
j+3) : (y, s) ∈ −(xk,j , tk,j) +K ∩ Q̃ρj+3(xk,j , tk,j)} ⊂ Q̃1(0, 0).

Let uk,j be the maximal solution of (3.7) with (K, Q̃R(0, 0)) replaced by (Kk,j , Q̃2R/ρj+3
(0, 0)).

Since Q̃R/ρj+3
(−xk,j ,−tk,j) ⊂ Q̃2R/ρj+3

(0, 0), thus using the comparison principle as in the

proof of Proposition 3.1 we obtain ũk,j ≤ uk,j in Q̃R/ρj+3
(−xk,j ,−tk,j)\Kk,j and thus

ũk,j(x, t) . Cap2,1,q′(Kk,j) + (R/ρj+3)
− 2

q−1 ,

for any (x, t) ∈
(

Q̃R/(5ρj+3)(0, 0) ∩ Q̃R/ρj+3
(−xk,j ,−tk,j)

)

\Q̃2(0, 0) = D.

Fix (x0, t0) ∈ Q̃ε/4(0, 0). Clearly, ((x0 − xk,j)/ρj+3, (t0 − tk,j)/ρj+3) ∈ D, hence

uk,j(x0, t0) = ρ
− 2

q−1

j+3 ũk,j((x0 − xk,j)/ρj+3, (t0 − tk,j)/ρ
2
j+3) .

Cap2,1,q′(Kk,j)

ρ
2

q−1

j

+R− 2
q−1 .

Therefore, using (3.9) in Remark (3.2) and the fact that

Cap2,1,q′(Kk,j) = Cap2,1,q′(Kk,j + (xk,j/ρj+3, tk,j/ρ
2
j+3)) ≤ Cap2,1,q′(Kj),
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we derive

u(x0, t0) ≤

jε
∑

j=1

uj(x0, t0) ≤

jε
∑

j=1

L(N)
∑

k=1

uk,j(x0, t0)

.

jε
∑

j=0

Cap2,1,q′(Kj)

ρ
2

q−1

j

+ jεR
− 2

q−1 ,

which yields (3.24). If q > q∗, then by (2.2) in Proposition (2.5), we have

Cap2,1,q′(Kj) . ρ−N−2+2q′

j+3 Cap2,1,q′(K ∩ Q̃ρj−2 (0, 0)),

which implies (3.23).

Proposition 3.9 Let K,u, ξ be in Lemma 3.7. For any compact set K0 in Q̃1(0, 0) with
positive measure |K0|, there exists ε = ε(N, q, |K0|) > 0 such that

Cap2,1,q′(K) ≤ ε ⇒ inf
K0

u .

ˆ

Q̃2(0,0)

uξdxdt.

where the constant in the inequality . depends on K0. In particular,

Cap2,1,q′(K) ≤ ε ⇒ inf
K0

u . Cap2,1,q′(K) +R− 2
q−1 . (3.25)

Proof. It is enough to assert that there is ε > 0 such that

Cap2,1,q′(K) ≤ ε ⇒ |K1| ≥ 1/2|K0| (3.26)

where K1 = {(x, t) ∈ K0 : ξ(x, t) ≥ 1/2}. By (2.1) in Proposition (2.5), we have

|K0\K1|
1− 2q′

N+2 . Cap2,1,q′(K0\K1) if q > q∗, and
(

log

(

|Q̃100(0, 0)|

|K0\K1|

))−N
2

. Cap2,1,q′(K0\K1) if q = q∗.

On the other hand,

Cap2,1,q′(K0\K1) = Cap2,1,q′({K0 : ϕ > 1− (1/2)1/(2q
′)})

≤ (1− (1/2)1/(2q
′))−q′

ˆ

RN+1

(

|D2ϕ|q
′

+ |∇ϕ|q
′

+ |ϕ|q
′

+ |∂tϕ|
q′
)

dxdt

. Cap2,1,q′(K)

So, one can find ε = ε(N, q, |K0|) > 0 such that

Cap2,1,q′(K) ≤ ε ⇒ |K0\K1| ≤ 1/2 |K0|.

This implies (3.26).

4 Large solutions

In the first part of this section, we prove theorem 1.1-(ii), then we prove theorems 1.1-(i)
and 1.2, at end we consider a parabolic viscous Hamilton-Jacobi equation.
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4.1 Proof of Theorem 1.1-(ii)

Let R0 ≥ 4 such that O ⊂⊂ Q̃R0(0, 0). Assume that the equation (1.10) is a large solution
u. Take any (x, t) ∈ ∂pO. We will to prove that (1.12) holds. We can assume (x, t) = (0, 0).

Set K = Q̃2R0(0, 0)\O and define

Tj = {x : ρj+1 ≤ max{|x|, |t|1/2} ≤ ρj , t ≤ 0},

T̃j = {x : ρj+3 ≤ max{|x|, |t|1/2} ≤ ρj−2, t ≤ 0}.

Here ρj = 2−j. For j ≥ 3, let u1, u2, u3, u4 be the maximal solutions of (3.7) when K is

replaced byK∩Qρj+3(0, 0), K∩T̃j,
(

K ∩Q1(0, 0)
)

\Qρj−2(0, 0) and K\Q1(0, 0) respectively

and R ≥ 100R0. From (3.9) in Remark (3.2), we can assert that

u ≤ u1 + u2 + u3 + u4 in O ∩ {(x, t) ∈ R
N+1 : t ≤ 0}.

Thus,

inf
Tj

u ≤ ||u1||L∞(Tj) + ||u3||L∞(Tj) + ||u4||L∞(Tj) + inf
Tj

u2. (4.1)

Case 1: q > q∗. By (3.8) in Remark 3.2,

||u4||L∞(Tj) . 1. (4.2)

By Proposition 3.8,

||u3||L∞(Tj) .

j−4
∑

i=−2

Cap2,1,q′(K ∩Qρi(0, 0))

ρNi
+ jR− 2

q−1 . (4.3)

Since (x, t) 7→ u1(x, t) = ρ
2/(q−1)
j+3 u1(ρj+3x, ρ

2
j+3t) is the maximal solution of (3.7) when

(K, Q̃R(0, 0)) is replaced by ({(y/ρj+3, s/ρ
2
j+3) : (y, s) ∈ K∩Qρj+3(0, 0)}, Q̃R/ρj+3

(0, 0)), we
derive, thanks to (3.19) in Proposition 3.7 and (2.2) in Proposition 2.5,

||u1||L∞(T−3) .
Cap2,1,q′(K ∩Qρj+2(0, 0))

ρN+2−2q′

j

+ (R/ρj+3)
− 2

q−1 ,

from which follows

||u1||L∞(Tj) .
Cap2,1,q′(K ∩Qρj+2(0, 0))

ρNj
+R− 2

q−1 . (4.4)

Since, (x, t) 7→ u2(x, t) = ρ
2/(q−1)
j−2 u2(ρj−2x, ρ

2
j−2t) is the maximal solution of (3.7) when

the couple (K, Q̃R(0, 0)) is replaced by ({(y/ρj−2, s/ρ
2
j−2) : (y, s) ∈ K ∩ T̃j}, Q̃R/ρj−2

(0, 0)),
Proposition 3.9 and relation (2.2) in Proposition 2.5 yield

Cap2,1,q′(K ∩ T̃j)

ρN+2−2q′

j−2

≤ ε ⇒ inf
T2

u2 .
Cap2,1,q′(K ∩ T̃j)

ρN+2−2q′

j−2

+ (R/ρj−2)
− 2

q−1 ,

which implies

Cap2,1,q′(K ∩Qρj−3 (0, 0))

ρN+2−2q′

j−2

≤ ε ⇒ inf
Tj

u2 .
Cap2,1,q′(K ∩Qρj−3(0, 0))

ρNj−2

+R− 2
q−1 . (4.5)

for some ε = ε(N, q) > 0.
First, we assume that there exists J ∈ N, J ≥ 10 such that

Cap2,1,q′(K ∩Qρj−3 (0, 0))

ρN+2−2q′

j−2

≤ ε ∀ j ≥ J.
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Then, from (4.1) and (4.2), (4.3), (4.4), (4.5) we have

inf
Tj

u .

j+2
∑

i=−2

Cap2,1,q′(K ∩Qρi(0, 0))

ρNi
+ jR− 2

q−1 + 1,

for any j ≥ J . Letting R → ∞,

inf
Tj

u .

j+2
∑

i=−2

Cap2,1,q′(K ∩Qρi(0, 0))

ρNi
+ 1.

Since infTj u → ∞ as j → ∞, we get

∞
∑

i=0

Cap2,1,q′(K ∩Qρi(0, 0))

ρNi
= ∞

which implies that (1.12) holds with (x, t) = (0, 0).
Alternatively, assume that for infinitely many j

Cap2,1,q′(K ∩Qρj−3(0, 0))

ρN+2−2q′

j−2

> ε

Then,

Cap2,1,q′(K ∩Qρj−3(0, 0))

ρNj−2

> ρ2−2q′

j−2 ε → ∞ when j → ∞.

We also achieve that (1.12) holds with (x, t) = (0, 0). Therefore, case q > q∗ proved.
Case 2: q = q∗. Similarly to Case 1, we have: for j ≥ 5

||u4||L∞(Tj) . 1, (4.6)

||u3||L∞(Tj) .

j−2
∑

i=0

Cap2,1,q′(Kj)

ρNi
+ jR− 2

q−1 , (4.7)

||u1||L∞(Tj) .
Cap2,1,q′(Kj)

ρNj
+R− 2

q−1 , (4.8)

Cap2,1,q′(Kj) ≤ ε ⇒ inf
Tj

u2 .
Cap2,1,q′(Kj)

ρNj
+R− 2

q−1 , (4.9)

where Kj = {(x/ρj+3, t/ρ
2
j+3) : (x, t) ∈ K ∩Qρj−3(0, 0)} and ε = ε(N) > 0.

Note that, from (2.2) in Proposition 2.5 we have

1

Cap2,1,q′(K ∩Qρj−3 (0, 0))
≤

c

Cap2,1,q′(Kj)
+ cjN/2

for any j ≥ 4 where c = c(N). If there are infinitely many j ≥ 4 such that

Cap2,1,q′(K ∩Qρj−3(0, 0)) >
1

2cjN/2
,

then (1.12) holds with (x, t) = (0, 0) since

Cap2,1,q′(K ∩Qρj−3 (0, 0))

ρNj−3

>
2j−3

2cjN/2
→ ∞ when j → ∞.
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Now, we assume that there exists J ≥ 5 such that

Cap2,1,q′(K ∩Qρj−3(0, 0)) ≤
1

2cjN/2
.

Then,

Cap2,1,q′(Kj) ≤ 2cCap2,1,q′(K ∩Qρj−3 (0, 0)) ∀ j ≥ J.

This leads to

Cap2,1,q′(Kj) ≤ 2cCap2,1,q′(K ∩Qρj−3(0, 0)) ≤ ε ∀ j ≥ J ′ + J,

for some J ′ = J ′(N, q). Hence, from (4.6)-(4.9) we have, for any j ≥ J ′ + J + 3,

||u4||L∞(Tj) . 1,

||u3||L∞(Tj) .

j−2
∑

i=J′+J+1

Cap2,1,q′(K ∩Qρi−3(0, 0))

ρNi
+ C(J ′ + J) + jR− 2

q−1 ,

||u1||L∞(Tj) .
Cap2,1,q′(K ∩Qρj−3 (0, 0))

ρNj
+R− 2

q−1 ,

inf
Tj

u2 .
Cap2,1,q′(K ∩Qρj−3 (0, 0))

ρNj
+R− 2

q−1 ,

where C(J ′ + J) =
∑J′+J

i=0

Cap2,1,q′ (Kj)

ρN
i

.

Consequently, from (4.1) we derive

inf
Tj

u .

j
∑

i=0

Cap2,1,q′(K ∩Qρi(0, 0))

ρNi
+ C(J ′ + J) + 1 + jR− 2

q−1 ∀ j ≥ J ′ + J + 3.

Letting R → ∞ and j → ∞ we obtain

∞
∑

i=0

Cap2,1,q′(K ∩Qρi(0, 0))

ρNi
= ∞,

i.e (1.12) holds with (x, t) = (0, 0). This completes the proof of Theorem 1.1-(ii).

4.2 Proof of Theorem 1.1-(i) and Theorem 1.2

Fix (x0, t0) ∈ ∂pO. We can assume that (x0, t0) = 0. Let δ ∈ (0, 1/100). For (y0, s0) ∈
(Bδ(0)× (−δ2, δ2)) ∩O, we set

Mk = Oc ∩

(

Brk+2
(y0)× [s0 − (73 +

1

2
)r2k+2, s0 − (70 +

1

2
)r2k+2]

)

and

Sk = {(x, t) : rk−1 ≤ max{|x− y0|, |t− s0|
1
2 } < rk} for k = 1, 2, ...

where rk = 4−k. Note that Mk = ∅ for k large enough and Mk ⊂ Sk for all k. Let R0 ≥ 4
such that O ⊂⊂ Q̃R0(0, 0). By Theorem 2.2 and 2.4 and estimate (1.9) there exist two
sequences {µk}k and {νk}k of nonnegative Radon measures such that

supp (µk) ⊂ Mk, supp (νk) ⊂ Mk and (4.10)

µk(Mk) ≍ Cap2,1,q′(Mk) ≍

ˆ

RN+1

(

I
2R0
2 [µk]

)q

dxdt and (4.11)

νk(Mk) ≍ PHN
1 (Mk), ||M2R0

1 [νk]||L∞(RN+1) ≤ 1 for k = 1, 2, ... (4.12)
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where equivalent constants depend on N, q,R0.

Take ε > 0 such that exp
(

C1εI
2R0
2 [

∑∞
k=1 νk]

)

∈ L1(Q̃R0(0, 0)) where the constant C1 =

C1(N) is the one of inequality (2.6). By Theorem 2.7 and Proposition 2.8, there exist two
nonnegative solutions U1, U2 of problems

∂tU1 −∆U1 + U q
1 = ε

∞
∑

k=1

µk in Q̃R0(0, 0),

U1 = 0 on ∂pQ̃R0(0, 0).

and

∂tU2 −∆U2 + eU2 − 1 = ε

∞
∑

k=1

νk in Q̃R0(0, 0),

U2 = 0 on ∂pQ̃R0(0, 0),

respectively which satisfy

U1(y0, z0) &

∞
∑

i=0

∞
∑

k=1

ε
µk(B ri

8
(y0)× (s0 −

37
128r

2
i , s0 −

37
128r

2
i ))

rNi

− I
2R0
2

[(

I
2R0
2 [ε

∞
∑

k=1

µk]

)q]

(y0, s0) =: A (4.13)

and

U2(y0, z0) &

∞
∑

i=0

∞
∑

k=1

ε
νk(B ri

8
(y0)× (s0 −

37
128r

2
i , s0 −

37
128r

2
i ))

rNi

− I
2R0

2

[

exp

(

C1I
2R0

2 [ε
∞
∑

k=1

νk]

)

− 1

]

(y0, s0) =: B (4.14)

and U1, U2 ∈ C2,1(O).
Let u1, u2 be the maximal solutions of equations (3.1) and (3.16) respectively.
We have u1(y0, s0) ≥ U1(y0, s0) and u2(y0, s0) ≥ U2(y0, s0).
Now, we claim that

A &

∞
∑

k=1

Cap2,1,q′(Mk)

rNk
(4.15)

and

B & −c1(R0) +

∞
∑

k=1

PHN
1 (Mk)

rNk
. (4.16)

Proof of assertion (4.15). From (4.11) we have

A & ε

∞
∑

k=1

Cap2,1q′(Mk)

rNk
− εqA0 (4.17)

with

A0 = I
2R0
2

[(

I
2R0
2 [

∞
∑

k=1

µk]

)q]

(y0, s0).
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Take i0 ∈ Z such that ri0+1 < max{2R0, 1} ≤ ri0 . We have

A0 .

∞
∑

i=i0

r−N
i

ˆ

Q̃ri
(y0,s0)

(

I
2R0
2 [

∞
∑

k=1

µk]

)q

dxdt

=

∞
∑

i=i0

∞
∑

j=i

r−N
i

ˆ

Sj

(

I
2R0
2 [

∞
∑

k=1

µk]

)q

dxdt

=

∞
∑

j=k0

j
∑

i=i0

r−N
i

ˆ

Sj

(

I
2R0
2 [

∞
∑

k=1

µk]

)q

dxdt

.

∞
∑

j=i0

r−N
j

ˆ

Sj

(

I
2R0
2 [

∞
∑

k=1

µk]

)q

dxdt.

Here we used
∑j

i=i0
r−N
i ≤ 4

3r
−N
j for all j in the last inequality.

Setting µk ≡ 0 for all i0 − 1 ≤ k ≤ 0, the previous inequality becomes

A0 .

∞
∑

j=i0

r−N
j

ˆ

Sj



I
2R0
2 [µj +

j−1
∑

k=i0−1

µk +

∞
∑

k=j+1

µk]





q

dxdt

.

∞
∑

j=i0

r−N
j

ˆ

Sj

(

I
2R0
2 [µj ]

)q

dxdt

+

∞
∑

j=i0

r2j

(

j−1
∑

k=i0−1

||I2R0
2 [µk]||L∞(Sj)

)q

+

∞
∑

j=i0

r2j





∞
∑

k=j+1

||I2R0
2 [µk]||L∞(Sj)





q

= A1 +A2 +A3. (4.18)

Using (4.11) we obtain

A1 ≤
∞
∑

k=1

Cap2,1,q′(Mk)

rNk
. (4.19)

Next, using (4.10) we have for any (x, t) ∈ Sj if k ≥ j + 1,

I
2R0
2 [µk](x, t) =

ˆ 2R0

rj+1

µk(Q̃ρ(x, t))

ρN
dρ

ρ
.

µk(R
N+1)

rNj
(4.20)

and if k ≤ j − 1

I
2R0
2 [µk](x, t) =

ˆ 2R0

rk+1

µk(Q̃ρ(x, t))

ρN
dρ

ρ
.

µk(R
N+1)

rNk
. (4.21)

Thus,

A2 .

∞
∑

j=i0

r2j

(

j−1
∑

k=i0−1

µk(R
N+1)

rNk

)q

and A3 .

∞
∑

j=i0

r2−Nq
j





∞
∑

k=j+1

µk(R
N+1)





q

.

20



Noticing that (a+ b)q − aq ≤ q(a+ b)qb for any a, b ≥ 0, we get

(1− 4−2)

∞
∑

j=i0

r2j

(

j−1
∑

k=i0−1

µk(R
N+1)

rNk

)q

=

∞
∑

j=i0

r2j

(

j−1
∑

k=i0−1

µk(R
N+1)

rNk

)q

−
∞
∑

j=i0+1

r2j

(

j−2
∑

k=i0−1

µk(R
N+1)

rNk

)q

≤
∞
∑

j=i0

qr2j

(

j−1
∑

k=i0−1

µk(R
N+1)

rNk

)q−1

µj−1(R
N+1)

rNj−1

.

Similarly, we also have

(1− 42−Nq)

∞
∑

j=i0

r2−Nq
j





∞
∑

k=j+1

µk(R
N+1)





q

≤
∞
∑

j=i0

qr2−Nq
j





∞
∑

k=j+1

µk(R
N+1)





q−1

µj+1(R
N+1).

Thus,

A2 +A3 .

∞
∑

j=i0

r2j

(

j−1
∑

k=i0−1

µk(R
N+1)

rNk

)q−1

µj−1(R
N+1)

rNj−1

+

∞
∑

j=i0

r2−Nq
j





∞
∑

k=j+1

µk(R
N+1)





q−1

µj+1(R
N+1).

Since µk(R
N+1) . rN+2−2q′

k if q > q∗ and µk(R
N+1) . min{k−

1
q−1 , 1} if q = q∗ for any k,

we always assert that

r2j

(

j−1
∑

k=i0−1

µk(R
N+1)

rNk

)q−1

. 1 and

r2−Nq
j





∞
∑

k=j+1

µk(R
N+1)





q−1

. r−N
j+1 for any j.

In the case q = q∗ we assume N ≥ 3 in order ro to verify that

∞
∑

j=1

µk(R
N+1) .

∞
∑

k=1

k−
1

q−1 < ∞.

This leads to

A2 +A3 .

∞
∑

k=1

µk(R
N+1)

rNk
.

Combining this with (4.19) and (4.18), we deduce

A0 .

∞
∑

k=1

Cap2,1,q′(Mk)

rNk
.
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Consequently, we obtain (4.15) from (4.17), for ε small enough.
Proof of assertion (4.16). From (4.12) we get

B & ε

∞
∑

k=1

PHN
1 (Mk)

rNk
−B0

where

B0 = I
2R0
2

[

exp

(

C1I
2R0
2 [ε

∞
∑

k=1

νk]

)

− 1

]

(y0, s0).

We show that

B0 ≤ c(N, q,R0) for ε small enough. (4.22)

In fact, as above we have

B0 .

∞
∑

j=i0

r−N
j

ˆ

Sj

exp

(

C1εI
2R0
2 [

∞
∑

k=1

νk]

)

dxdt.

Thus,

B0 .

∞
∑

j=i0

r−N
j

ˆ

Sj

exp
(

3C1εI
2R0
2 [νj ]

)

dxdt

+

∞
∑

j=i0

r2j exp

(

3C1ε

j−1
∑

k=i0−1

||I2R0
2 [νk]||L∞(Sj)

)

+

∞
∑

j=i0

r2j exp



3C1ε

∞
∑

k=j+1

||I2R0
2 [νk]||L∞(Sj)





= B1 +B2 +B3. (4.23)

Here we used an inequality exp(a+ b+ c) ≤ exp(3a) + exp(3b) + exp(3c) for all a, b, c.
By Theorem 2.3, we have

ˆ

Sj

exp
(

3C1εI
2R0
2 [νj ]

)

dxdt . rN+2
j for all j,

for ε > 0 small enough. Hence,

B1 .

∞
∑

j=i0

r2j . (max{2R0, 1})
2. (4.24)

Note that estimates (4.20) and (4.21) are also true with νk; we deduce

B2 +B3 .

∞
∑

j=i0

r2j exp

(

c2ε

j−1
∑

k=i0−1

µk(R
N+1)

rNk

)

+

∞
∑

j=i0

r2j exp



c2ε

∞
∑

k=j+1

µk(R
N+1)

rNj



 .

22



From (4.12) we have µk(R
N+1) . rNk for all k, therefore

B2 +B3 .

∞
∑

j=i0

r2j exp (c3ε(j − i0)) +

∞
∑

j=i0

r2j exp (c3ε)

.

∞
∑

j=i0

exp (c3ε(j − i0)− 4 log(2)j) + r2i0

≤ c4(N, q,R0) for ε small enough.

Combining this with (4.24) and (4.23) we obtain (4.22).

This implies straightforwardly exp
(

C1εI
2R0
2 [

∑∞
k=1 νk]

)

∈ L1(Q̃R0(0, 0)).

We conclude that for any (y0, s0) ∈ (Bδ(0)× (−δ2, δ2)) ∩O,

u1(y0, s0) &

∞
∑

k=1

Cap2,1q′ (Mk(y0, s0))

rNk

and

u2(y0, s0) & −c1(R0) +
∞
∑

k=1

PHN
1 (Mk(y0, s0))

rNk
,

where rk = 4−k and

Mk(y0, s0) = Oc ∩

(

Brk+2
(y0)× [s0 − (73 +

1

2
)r2k+2, s0 − (70 +

1

2
)r2k+2]

)

.

Take rkδ+4 ≤ δ < rkδ+3, we have for 1 ≤ k ≤ kδ

Mk(y0, s0) ⊃ Oc ∩

(

Brk+2−δ(0)×

(

δ2 − (73 +
1

2
)r2k+2,−δ2 − (70 +

1

2
)r2k+2

))

⊃ Oc ∩
(

Brk+3
(0)×

(

−73r2k+2,−71r2k+2

))

= Oc ∩
(

Brk+3
(0)×

(

−1168r2k+3,−1136r2k+3

))

.

Finally

inf
(y0,s0)∈(Bδ(0)×(−δ2,δ2))∩O

u1(y0, s0)

&

kδ+3
∑

k=4

Cap2,1,q′
(

Oc ∩
(

Brk(0)×
(

−1168r2k,−1136r2k
)))

rNk
→ ∞ as δ → 0,

and

inf
(y0,s0)∈(Bδ(0)×(−δ2,δ2))∩O

u2(y0, s0) & −c1(R0)

+

kδ+3
∑

k=4

PHN
1

(

Oc ∩
(

Brk(0)×
(

−1168r2k,−1136r2k
)))

rNk
→ ∞ as δ → 0.

This completes the proof of Theorem 1.1-(i) and Theorem 1.2.

4.3 The viscous Hamilton-Jacobi parabolic equations

In this section we apply our previous result to the question of existence of a large solution
of the following type of parabolic viscous Hamilton-Jacobi equation

∂tu−∆u+ a|∇u|p + buq = 0 in O,
u = ∞ on ∂pO,

(4.25)
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where a > 0, b > 0 and 1 < p ≤ 2, q ≥ 1. First, we show that such a large solution to (4.25)
does not exist when q = 1. Equivalently namely, for a > 0, b > 0 and p > 1 there exists no
function u ∈ C2,1(O) satisfying

∂tu−∆u+ a|∇u|p ≥ −bu in O,
u = ∞ on ∂pO.

(4.26)

Indeed, assuming that such a function u ∈ C2,1(O), exists, we define

U(x, t) = u(x, t)ebt −
ε

2
|x|2,

for ε > 0 and denote by (x0, t0) ∈ O\∂pO the point where U achieves it minimum in O, i.e.
U(x0, t0) = inf{U(x, t) : (x, t) ∈ O}. Clearly, we have

∂tU(x0, t0) ≤ 0, ∆U(x0, t0) ≥ 0 and ∇U(x0, t0) = 0.

Thus,

∂tu(x0, t0) ≤ −bu(x0, t0), −∆u(x0, t0) ≤ −εNe−bt0 and a|∇u(x0, t0)|
p = aεp|x0|

pe−pbt0 ,

from which follows

∂tu(x0, t0)−∆u(x0, t0) + a|∇u(x0, t0)|
p ≤ −bu(x0, t0) + εe−bt0

(

−N + aεp−1|x0|
pe−(p−1)bt0

)

< −bu(x0, t0)

for ε small enough, we obtain contradiction.
Proof of Theorem 1.3. By Remark 3.3, we have

inf{v(x, t); (x, t) ∈ O} ≥ (q1 − 1)
− 1

q1−1R
− 2

q1−1 .

Take V = λv
1
α ∈ C2,1(O) for λ > 0. Thus v = λ−αV α,

inf{V (x, t); (x, t) ∈ O} > 0} ≥ λ(q1 − 1)
− 1

α(q1−1)R
− 2

α(q1−1) ,

and

∂tv −∆v + vq1 = αλ−αV α−1∂tV − αλ−αV α−1∆V + α(1 − α)λ−αV α−1 |∇V |2

V
+ λ−αq1V αq1 .

This leads to

∂tV −∆V + (1− α)
|∇V |2

V
+ α−1λ−α(q1−1)V αq1−α+1 = 0 in O.

Using Hölder’s inequality,

(1 − α)
|∇V |2

V
+ (2α)−1λ−α(q1−1)V αq1−α+1 ≥ c1|∇V |pλ−

α(q1−1)(2−p)
2 V

α(q1−1)(2−p)
2 −(p−1)

≥ c2|∇V |pλ−(p−1)R
−2+p+ 2(p−1)

α(q1−1)

and

(2α)−1λ−α(q1−1)V αq1−α+1 ≥ c3λ
−(q−1)R

−2+
2(q−1)
α(q1−1) V q.

Clearly, if we choose

λ = min{c
1

p−1

2 , c
1

q−1

3 }min
{

a−
1

p−1R
− 2−p

p−1+
2

α(q1−1) , b−
1

q−1R
− 2

q−1+
2

α(q1−1)

}
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then

c2λ
−(p−1)R

−2+p+ 2(p−1)
α(q1−1) ≥ a,

c3λ
−(q−1)R

−2+ 2(q−1)
α(q1−1) ≥ b,

it follows

∂tV −∆V + a|∇V |p + bV q ≤ 0 in O

By Remark 3.5, there exists a maximal solution u ∈ C2,1(O) of

∂tu−∆u+ a|∇u|p + buq = 0 in O

Therefore, u ≥ V = λv
1
α and u is a large solution of (4.25). This is complete the proof of

Theorem.

5 Appendix

Proof of Proposition 2.5. First we have the following equivalence,

ˆ

RN+1

(

I
1
2[µ](x, t)

)(N+2)/N
dxdt ≍

ˆ

RN+1

ˆ 1

0

(µ(Q̃r(x, t)))
2/N dr

r
dµ(x, t). (5.1)

In fact, we have for ρj = 2−j, j ∈ Z,

∞
∑

j=1

ˆ

RN+1

(µ(Q̃ρj (x, t)))
2/Ndµ(x, t) .

ˆ

RN+1

ˆ 1

0

(µ(Q̃r(x, t)))
2/N dr

r
dµ(x, t)

.

∞
∑

j=0

ˆ

RN+1

(µ(Q̃ρj (x, t)))
2/Ndµ(x, t).

Note that for any j ∈ Z

ρ−N−2
j

ˆ

RN+1

(µ(Q̃ρj+1 (x, t)))
(N+2)/Ndxdt .

ˆ

RN+1

(µ(Q̃ρj (x, t)))
2/Ndµ(x, t)

. ρ−N−2
j

ˆ

RN+1

(µ(Q̃ρj−1 (x, t)))
(N+2)/Ndxdt.

Thus,

∞
∑

j=2

ρ−N
j

ˆ

RN+1

(µ(Q̃ρj (x, t)))
(N+2)/Ndxdt .

ˆ

RN+1

ˆ 1

0

(µ(Q̃r(x, t)))
2/N dr

r
dµ(x, t)

.

∞
∑

j=−1

ρ−N
j

ˆ

RN+1

(µ(Q̃ρj (x, t)))
(N+2)/Ndxdt.

This yields

ˆ

RN+1

(

M
1/4
2 [µ](x, t)

)(N+2)/N

dxdt .

ˆ

RN+1

ˆ 1

0

(µ(Q̃r(x, t)))
2/N dr

r
dµ(x, t)

.

ˆ

RN+1

(

I
4
2[µ](x, t)

)(N+2)/N
dxdt.
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By [11, Theorem 4.2],

ˆ

RN+1

(

M
1/4
2 [µ](x, t)

)(N+2)/N

dxdt ≍

ˆ

RN+1

(

I
4
2[µ](x, t)

)(N+2)/N
dxdt,

thus we obtain (5.1).
Now we come back proof of proposition. The first inequality in (2.1) was proved in [11]. We
now prove the second inequality. By Theorem 2.4 there is µ ∈ M

+(RN+1), supp (µ) ⊂ K
such that

||M2
2[µ]||L∞(RN+1) ≤ 1 and µ(K) ≍ PHN

2 (K) & |K|N/(N+2). (5.2)

Thanks to (5.1), we have for δ = min{1, (µ(K))1/N}

||I12[µ]||
(N+2)/N

L(N+2)/N (RN+1)
≍

ˆ

RN+1

ˆ 1

0

(µ(Q̃r(x, t)))
2/N dr

r
dµ(x, t)

. δ2
ˆ

RN+1

dµ(x, t) + log(1/δ)

(
ˆ

RN+1

dµ(x, t)

)(N+2)/N

. (µ(K))(N+2)/N
(

1 + log+
(

(µ(K))−1
))

. (µ(K))(N+2)/N log

(

|Q̃200(0, 0)|

|K|

)

.

Set µ̃ =
(

log
(

|Q̃200(0,0)|
|K|

))−N/(N+2)

µ/µ(K), then ||I12[µ̃]||L(N+2)/N(RN+1) . 1.

It is well known that

Cap2,1,N+2
2

(K) ≍ sup{(ω(K))(N+2)/2 : ω ∈ M
+(K), ||I12[ω]||L(N+2)/N (RN+1) . 1} (5.3)

see [11, Section 4]. This gives the second inequality in (2.1).
It is easy to prove (2.2) from its definition. Moreover, (5.3) implies that

1

Cap2,1,N+2
2

(K)2/N
≍ inf{||I12[ω]||

(N+2)/N

L(N+2)/N (RN+1)
: ω ∈ M

+(K), ω(K) = 1}

We deduce from (5.1) that

1

Cap2,1,N+2
2

(K)2/N
≍ inf

{
ˆ

RN+1

ˆ 1

0

(µ(Q̃r(x, t)))
2/N dr

r
dµ(x, t) : ω ∈ M

+(K), ω(K) = 1

}

.

(5.4)

As in [6, proof of Lemma 2.2], it is easy to derive (2.3) from (5.4).
Proof of Proposition 2.6. Thanks to the Poincaré inequality, it is enough to show that
there exists ϕ ∈ C∞

c (Q̃2(0, 0)) such that 0 ≤ ϕ ≤ 1, with ϕ = 1 in an open neighborhood of
K and

ˆ

RN+1

(|D2ϕ|p + |∂tϕ|
p)dxdt . Cap2,1,p(K). (5.5)

By definition, one can find 0 ≤ φ ∈ S(RN+1), φ ≥ 1 in a neighborhood of K such that

ˆ

RN+1

(|D2φ|p + |∇φ|p + |φ|p + |φt|
p)dxdt ≤ 2Cap2,1,p(K).

Let η be a cut off function on Q̃1(0, 0) with respect to Q̃3/2(0, 0) and H ∈ C∞(R) such that

0 ≤ H(t) ≤ t+, |t||H ′′(t)| . 1 for all t ∈ R, H(t) = 0 for t ≤ 1/4 and H(t) = 1 for t ≥ 3/4.
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We claim that
ˆ

RN+1

(|D2ϕ|p + |∂tϕ|
p)dxdt .

ˆ

RN+1

(|D2φ|p + |∇φ|p + |φ|p + |φt|
p)dxdt (5.6)

where ϕ = ηH(φ). Indeed, we have

|D2ϕ| . |D2η|H(φ) + |∇η||H ′(φ)||∇φ| + η|H ′′(φ)||∇φ|2 + η|H ′′(φ)||D2φ|

and
|∂tϕ| . |∂tη|H(φ) + η|H ′(φ)||φt|, H(φ) ≤ φ, φ|H ′′(φ)| . 1.

Thus,
ˆ

RN+1

(|D2ϕ|p + |∂tϕ|
p)dxdt .

ˆ

RN+1

(|D2φ|p + |∇φ|p + |φ|p + |φt|
p)dxdt

+

ˆ

RN+1

|∇φ|2p

φp
dxdt.

This implies (5.6) since, according to [1], one has

ˆ

RN

|∇φ(t)|2p

φ(t)p
dx .

ˆ

RN

|D2φ(t)|pdx ∀t ∈ R.
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