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Wiener criteria for existence of large solutions of
nonlinear parabolic equations with absorption in a
non-cylindrical domain.
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Quoc-Hung Nguyen
Laurent Véron'

Laboratoire de Mathématiques et Physique Théorique,
Université Francois Rabelais, Tours, FRANCE

Abstract

We obtain a necessary and a sufficient condition expressed in terms of Wiener type
tests involving the parabolic WqQ,’l— capacity, where ¢’ = —L, for the existence of large
solutions to equation 0:u — Au + u? = 0 in non-cylindrical domain, where g > 1. Also,
we provide a sufficient condition associated with equation Oiu — Au +¢e* —1 =0 .
Besides, we apply our results to equation: dru — Au + a|Vul|? 4+ bu? = 0 for a,b > 0,

l1<p<2andgq>1.

Keywords. Bessel capacities; Hausdorff capacities; parabolic boundary; Riesz potential;
maximal solutions.
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1 Introduction

The aim of this paper is to study large solutions to nonlinear parabolic equations in an
arbitrary bounded open set O C RV N > 2. These are solutions u € C**(O) of equations

Ou — Au+ ul?tu =0 in O,

lim inf w=o0 for all (z,t) € 0,0, (1.1)
50 ONQs (z,t)

and
Oru — Au + sign(u)(el*l —1) =0 in O,

lim inf w=o0 for all (z,t) € 0,0, (1.2)

5—00NQ; (w,t)
where ¢ > 1 and 9,0 is the parabolic boundary of O, i.e, the set all points X = (z,t) € 90
such that the intersection of the cylinder Qs(z,t) := Bs(x) x (t —§2,t) with O° is not empty
for any 6 > 0. By the maximal principle for parabolic equations we can assume that all
solutions of (1.1) and (1.2) are positive. Hence we can consider only positive solutions of
preceding equations.
In [14], we studied the existence and the uniqueness of solution of general equations in a
cylindrical domain,

(1.3)

*E-mail address: Hung.Nguyen-Quoc@lmpt.univ-tours.fr
TE-mail address: Laurent.Veron@lmpt.univ-tours.fr



where  is a bounded open set in RY and f is a continuous real-valued function, nonde-
creasing on R such that f(0) > 0 and f(a) > 0 for some a > 0. In order to obtain the
existence of a maximal solution of d;u — Au + f(u) = 0in Q x (0,00) we need to assume
that

1
1

(i) [ ([ o) »
(i) | ds <o,

Note that, condition (i) due to Keller-Osserman condition, is also a necessary and sufficient
for the existence of a maximal solution to

—Au+ f(u) =0 in Q (1.5)
Condition (ii) is a necessary and sufficient for the existence of a solution of the ODE

¢ +f(p)=0  in (0,00). (1.6)

This solution tends to co at 0. In [14], it is shown that if for any m € R there exist
L = L(m) > 0 such that

for any z,y > m = f(z+y) > f() + /(y) - L,

and if (1.5) has a large solution, then (1.3) admits a solution.
It is not alway true that the maximal solution to (1.5) is a large solution. However, if f
satisfies

/ sTAN-D/IN=2) £()ds < 00 if N >3
1

or
inf {a > 0/ f(s)e™*ds < o0 } if N =2.
0

then (1.5) has a large solution for any bounded domain €.

When f(u) = u%, ¢ > 1 and N > 3, the first above condition is satisfied if and only if
q<qc:= %, this is called the sub-critical case. When g > q., a necessary and sufficient
condition for the existence of large solution of (1.5) expressed in term of Wiener test, is

1C (£2¢N B, d
/ aP2,q (N_2 (=) a_ oo for all =z € 99Q. (1.7)
0 r "

In the case ¢ = 2 it is obtained by probabilistic methods by Dhersin and Le Gall [4] and in

the general case by Labutin [6]. Here, ¢ = —43 and Cap, , is the capacity associated to

q
the Sobolev space W24 (RN).

In [10] we obtain sufficient conditions when f(u) = e* — 1, involving the the Hausdorff
Hiv ~2_capacity in R, namely,

1 N-2 Q¢ B
/ fasut Ng r(z)) dr =oo0 forall z € 00Q. (1.8)
0 T T

In this article we give a necessary and a sufficient condition for the existence of solutions
to (1.1) in a bounded non-cylindrical domain O € RN¥*! expressed in terms of a Wiener
test based upon the parabolic W;,’l-capacity in R¥*1, We also give a sufficient condition



associated (1.2) where the parabolic W;,’l—capacity is replaced the parabolic Hausdorff P’Hfjv -
capacity. These capacities are defined as follows: if K C RV*! is compact set, we set

Capg 1, (K) = inf{||<p||g/2;1(RN+l) € S(RVTY) o > 1 in a neighborhood of K},

where
Op D¢
||<P||Wq2;1(RN+1) = ||E||Lq’(RN+1) + ||V<P||Lq’(1RN+1) + Z ||m||Lq’(RN+1)-
i,j=1,2,...,.N v
and for Suslin set £ Cc RN+,
Capsy ;o (E) = sup{Cap, ; ,(D) : D C E, D compact}.

Thanks to a result due to Richard and Bagby, [2], the capacities Cap, ; , and Capg, , are
equivalent in the sense that, for any Suslin set X C RV*1, there holds

Cilcapmyq/ (K) < Capg, (K) < C’Capzm(K)

for some C' = C(N, q), where Capg, ./ is the parabolic Bessel Go—capacity, see [11].
For E C RNV*1, we define PH) (E) by

PHY(E) =inf Y " rV - EC| By, (x;) x (t; — 13, t; +77), r; <p
J

It is easy to see that, for 0 < 0 < p and E C RV, there holds

PHY (E) < PHY (E) < C(N) (5)2 PHY (E). (1.9)

Now we are ready to state the main two results of this paper.
Theorem 1.1 Let N > 2 and ¢ > ¢, := % Then
(i) The equation
Ou—Au+u?=04in O (1.10)
admits a large solution if for any (z,t) € 0,0
>, Capyy o (0° N (By, (x) x (t —1168rF,t — 113617)))

> N (1.11)
k

k=1

I
3

where r, =47F, and N > 3 when q = ¢..
(i) If equation (1.10) is a large solution, then

A -
0 P p
for any (z,t) € 9,0, where Q,(z,t) = By(x) x (t — p,t).
Theorem 1.2 Let N > 2. The equation
ou—Au+e*—1=0in O (1.13)

admits a large solution if

§° P (0°0 (Brola) x (¢~ 1G8rf 1 = 136r))) _ (114)
k=1 T

for any (z,t) € 0,0, with 1, = 47F.



From properties of the Wq%’lfcapacity and the PHY —capacity, relation (1.11) holds if
q > g« and

o0 24"

> N0 (B (@) x (t— 116877, t — 11367@))’1—%” .
k=1

Similarly, (1.14) is true if

oo
N

> N[00 (B (@) x (£ — 116817, — 113613) )| 72 = oc.
k=1

As a consequence of Theorem 1.1 we derive a sufficient condition for the existence of
large solution of some viscous Hamilton-Jacobi parabolic equations.

Theorem 1.3 Let g1 > 1. If there exists a large solution v € C*1(0) of
ov—Av+v8 =0 in O.

Then, for any a,b>0,1<gq<q and1 <p < 24 problem

q1+1’
0w — Au+ a|VulP + bu? =0 in O, (1.15)
U= 00 on 0,0, '

admits a solution u € C*(O) which satisfies
u(z,t) > C'min {LfﬁR—%Jr“(qf*” ; ba T R Tt am D } (v(z, If))i

for all (x,t) € O where R > 0 is such that O C QR(xo,to), C = C(N,p,q,q1) > 0 and

_ 2(p—1) -1
(0% —max{ﬁm,h} S (0,1)

2 Preliminaries

Throughout the paper, we denote Q,(z,t) = B,(x) x (t — p?,t] and Q,(z,t) = B,(x) x (t —
0%t + p?) for (z,t) € RN p >0 and r, = 47% for all k € Z. We also denote A < (2)B if

~

A < (>)CB for some C depending on some structural constants, A < B if A < B < A.

Definition 2.1 Let R € (0,00] and pp € MT(RN*Y), the set of positive Radon measures in
RN+, We define R—truncated Riesz parabolic potential Iy of p by

o
e = [ MDD o i 0,1y e RV,
0

and the R—truncated fractional mazximal parabolic potential of p by

M [u)(z,t) = sup CHCAI) for all (z,t) € RNV,

0<p<r pNtETe
We recall two results in [11].

Theorem 2.2 Let R > 0, K be a compact set in RN+L. There exists p := pr € MT(RV+L)
with compact support in K such that

() = Capg () = [ (87" o

where the constants of equivalence depend on N and R. The measure ug is called the
capacitary measure of K



Theorem 2.3 Let u € M (RNHL) and R > 0. There exist positive constants Cy1,Cy such
that

F eapC@itfug)) < Ca
Q
for all Q = Qr(y,s) C RN*L, 1 >0 such that ||ME[u]|| oo @v+1ydadt < 1.

It is easy to see that Frostman’s Lemma in [13, Th. 3.4.27], which is at the basis of the dual
definition of Hausdorff capacities with doubling weight, is valid for the parabolic Hausdorff
’PHf)V—capacity version. Therefore there holds

Theorem 2.4 There holds
sup {p(K) : p € MH(RYH), supp (1) C K, ||M5[u][| oo mr+1) < 1} = PHL(K)
for any compact set K C RNT1 where equivalent constant depends on N

For our purpose, we need the some results about the behavior of the capacity with respect
to dilations.

Proposition 2.5 Let K be a compact set, K C Qmo(0,0) and 1 <p< % Then

_N
p )200(0,0 :
Capy 1 (K) 2 1K1, Capyy wae (K) 2 (10g (%)) RNCRY
and
Capy 1 ,(Kp) < PN+272PC‘1P2,1,;)(K), (2.2)
1 1
= + (log(2/p)N/? (2.3)

Capm,%([(p) B Cap2,1,¥(K)
for any 0 < p < 1, where K, = {(px, p*t) : (x,t) € K}.

Proposition 2.6 Let K C~Q1(O,O) be a compact set and 1 < p < (N +2)/2. Then, there
ezists a function p € C(Q2(0,0)), 0 < ¢ <1 and ¢|, =1 for some open set D D K such
that

[ (D26l 19 40+ [0uP) ddt S Capy (). (2.4
R 1

We will give proofs of the above two propositions in the Appendix.
It is well know that there exists a semigroup e*® corresponding to equation

dru—Au=p  in Qr(0,0),
u=20 on 8PQR(O, 0)

with u € C°(Bgr(0) x (0, R?)), i.e, we can write a solution u of (2.5) as follows

u(z,t) = /Ot (e(t_s)Au) (z,s)ds for all (z,t) € Qr(0,0).

We denote by H the heat kernel:

1 ]2
H(z,t) = e .
( ) (47#)% Xt>0

We have

lu(z,t)] < (H* p)(xz,t) forall (z,t) € Qr(0,0).



In [11] we show that
|(H* )| (2, ) < CLUN)B[|ul)(x,t)  for all (x,t) € Qr(0,0).

Here 1 is extended by 0 in (Q(0,0))¢. Thus,

| /0 (ewsmu) (z,8)ds| < CL(N)EE[|u|](z,£) for all (z,t) € Qr(0,0). (2.6)

Moreover, we also prove in [11], that if & > 0 then for (z,t) € Qr(0,0) and B,(z) C Bg(0),

35 2

/0 (e(t—s)AM) (x,s)ds > Ca(N) Z M(Q%k(% Ni mpk)), (2.7)
k=0

Pk

with p, = 4 %p.

It is easy to see that estimates (2.6) and (2.7) also holds for any bounded Radon measure
in Qr(0,0). The following result is proved in [3] and [8], also see [11].

Theorem 2.7 Let ¢ > 1, R > 0 and pu be bounded Radon measure in QR(O, 0).

(i) If p is absolutely continuous with respect to Capyq . in Qr(0,0), then there erists a
unique weak solution u to equations

Ou — Au+ |ulTlu = p in Qr(0,0),
u=0 on  9,Qr(0,0).

(it) If exp (C1(N)I3E[|ul]) € LY(Qgr(0,0)) then there exists a unique weak solution v to
equations

v — Av + sign(v)(el’l = 1) = p in Qr(0,0),
v=20 on  9,Qr(0,0).

where the constant Cy(N) is the one of inequality (2.6).

From estimates (2.6) and (2.7) and using comparison principle we get the estimates from
below of the solutions u and v obtained in Theorem 2.7.

Proposition 2.8 If u > 0 then the functions u and v of the previous theorem are nonneg-
ative and satisfy

00 35 2
ule,t) > Co(N 2“ e o —m) g [ @ 29
=0
and
) o 35 2
o(z,t) > Co(N Z“ (Qp (.1~ 1504)) — C1(N)BE [exp (C1(N)BE[u]) — 1] (z,1). (2.9)

k=0

for any (z,t) € Qr(0,0) and B,(z) C Br(0) and pr, = 4~ *p.

3 Maximal solutions

In this section we assume that O is a arbitrary, non-cylindrical and bounded open set in
RN+ and ¢ > 1. We will prove the existence of a maximal solution of

Ou—Au+u?=0 (3.1)



in O. We also get analogous result where u? is replace by e* — 1.

It is easy to see that if u satisfies (3.1) in Q,(0,0) ( Q,(0,0) ) then u,(x,t) = a2/ @ Du(azx, a?t)
satisfies (3.1) in QT/G(O, 0) (Qr/4(0,0)) for any a > 0.

If X = (x,t) € O, the parabolic distance from X to the parabolic boundary 9,0 of O is
defined by

d(X,0,0) = inf —y|,(t— )7}
(X,0,0) LS max{|z —y|, (t — )2}
s<t

It is easy to see that there exists C' = C(N,q) > 0 such that the function V defined by

V(z,t)=0C ((p2 +t)_<z+1 + <p27p|z|2)_q_l> in B,(0) x (—p?,0)
satisfies
OV — AV +V1>0 in B,(0)x (—p*0) (3.2)
Proposition 3.1 There exists a mazimal solution u € C*1(0) of (3.1) and it satisfies
u(z,t) < C(d((x,1),0,0)) 71 for all (x,t) € O. (3.3)
for some C = C(N,q)

Proof. Let Dy, k € Z be the collection of all the dyadic parabolic cubes (abridged p-cubes)
of the form

{(xla "'aszt) : mj2_k < Zj < (mj + 1)2_k7] = 15 "'aN; mN+14_k <t< (mN+1 + 1)4_k}
where m; € Z. The following properties hold,

a. for each integer k, Dy is a partition of RN¥*! and all p-cubes in Dy have the same
sidelengths.

o o
b. if the interiors of two p-cubes @ in Dy, and P in Dy,, denoted @, P, have nonempty
intersection then either @) is contained in R or @) contains R.

c. Each Q in Dy, is union of 2V*2 p-cubes in Dy with disjoint interiors.

Let ky € N be such that @ C D for some Q € Dg,. Set O, = |J Q Vk > ko, we

QEDy,
QCO
have O C Ogy1 and O = |J Or = |J Ok. More precisely, there exist real numbers
k‘Zko kao
a1, a2, ..., (k) and open sets 21, s, .., Q1) in RY such that

a; < a; + 47k < ajy1 < aiy1 + 4k for i = 1, ,n(k) -1

and
o n(k)—1
Ok = U ( x (as,a; +47%]) U (i) X (nkys angry +477)) -

i=1

For k > ko, we will show that there exist a solution uj, € 02’1(5k) to problem

Orup, — Auy + uZ =0 in 5k,

. (3.4)
up(x,t) = 00 as d((z,t),0,0k) — 0.



Indeed, by [5, 7] for m > 0 one can find nonnegative solutions v; € C**(Q; x (as,a;+47*])N
C(Q; x laj,a; +47F%)) for i = 1,..,n(k) to equations

Oyv1 — Avg +’Ug:0 in Qq x (al,al +4ik),
vi(x,t) =m on 0O x (ay,a; +47%),
vi(x,t1) =m in Q,
and
Owv; — Av; + vl =0 in Q; x (ai,ai+4_k),
vi(x,t) =m on 98 x (a;,a; +47F),
m in € if a;>a;_1+47F,
vi(x,ti) = —k .
mxa\Q,_, () +vi—1(z,a;-1 +47")xq,_, (x) otherwise .
Clearly,

Upm = v; I Q; X (a;,a —|—4_k] for i=1,...,n(k)
is a solution in 02*1(5k) N C(Oy) to equation

]
{ Oetgm — AUgm + “Z,m =0in O,

Uk, m = 1M ON 8p5k.
Moreover, for (z,t) € 5k, we can see that Ba (x)x (t— d;, t) C 5k where d = d((x, 1), a,,ék).

From (3.2), we verify that

Uly:s) =Vly—z,s-t)=C ((pQ—l—s—t)ﬁ + (@))

with p = d/2, satisfies

d2
U —AU+U?>0 in B%(x)x(tfz,t). (3.5)
Applying the comparison principle we get
d2
uk,’m(yas) S U(yvs) in B% (ZL') X (t - Zat]a
which implies
_ 2 R
Wem(2,1) < C(d((m,t),(’)pok)) ! forall (a,t) € Og. (3.6)

From this, we also obtain uniform local bounds for {ug m }m. By standard regularity theory
see [5, 7], {uk,m}m is uniformly locally bounded in C?!. Hence, up to a subsequence,

o o
Uk,m — Uk C’lt’g(Ok) . Passing the limit, we derive that uy is a weak solution of (3.4) in O,

which satisfies ug(z,t) — oo as d((z, ), 8p5k) — 0 and

_ 2 .
wp(@, t) < C(d((m,t),apOk)) ! forall (a,t) € Og.

Let m > 0 and k > ko. Since ugy1,,m < m in Op and O C Opy1, it follows by the

comparison principle applied to uk41., and ug, in the sub-domains Q1 x (ay,a; +47F),

Qo x (ag, a9 +47F),..., Q) X (n ) Wn(i) +47F) of 5k to obtain at end that upy1m <

[e] [e]
Uk,m 0 O, and thus ug41 < ug in Ok. In particular, {ux}x is uniformly locally bounded in
L. We use the same compactness property as above to obtain that up — u where u is a
solution of (3.1) and satisfies (3.3). By construction v is the maximal solution. ]



Remark 3.2 Let R > 2r > 2, K be a compact subset in QT(O, 0). Arguing as one can easily
it is clear that there exists a maximal solution of

Ou—Au+u?=0 in Qr(0,0)\K,

u=0 on 8},@713(0, 0), (3.7)

which satisfies

u(z, t) < C(d((2,1),0p(Qr(0,0\K))"7T ¥ (x,t) € Qr(0,0)\K, (3.8)

for some C = C(N, q). Furthermore, assume K1, Ka,,,, Kn, are compact subsets in QT(O, 0)
and K = K1 U...UK,,. Let u,uq,...,un be the mazximal solutions of (3.7) in Qr(0,0)\K,

QR(Oa 0)\K15 QR(Ov 0)\K25 IER} QR(Oa 0)\Km7 TESpECtiU@ly, then

u < Zuj in Qr\K. (3.9)
j=1

Remark 3.3 If the equation (3.1) admits a large solution for some q > 1 then for any
1 < q1 < q, equation

Oy — Au+u? =04in O (3.10)

admits also a large solution.
Indeed, assume that u is a large solution of (3.1) and v is the maximal solution of (3.10).
Take R > 0 such that O C Br(0) x (—R?, R?), then the function V defined by

Vir,t) = (g = 1) 7T (2R +)77T,
satisfies (3.1). It follows for all (z,t) € O

u(z,t) > inf V(x,t) > (¢— 1)7711R7% =: ag.
(y,5)€0

_49-91 _4-q1
Thus, @ = ay " 'u is a subsolution of (3.10). Therefore v > ag ™ " w in O, thus v is a
large solution.

Remark 3.4 (Sub-critical case) Assume that 1 < q < q.. One easily see that the func-
tion
E

C
U('Tat) = fl eTXt>O (311)

toT

is a subsolution of (3.1) in RNTI\{(0,0)}, where C = (% - %) o

Therefore, the mazimal solutions u of (3.1) in O wverify

|z —y|?

1
u(z,t) > C——— €30 xy5, (3.12)
(t—s)aTt

for all (z,t) € O and (y, s) € 0,0.

Remark 3.5 Note that if u € C*Y(O) is a solution of (3.1) for some q > 1 then, for
a,b>0andl <p<2,v= bmTTu ds a super-solution of

0w — Av+a|VolP +bv? =0 in O. (3.13)



Thus, we can apply the argument of the previous proof, with equation (3.13) replaced by
(3.1), to deduce that there exists a mazimal solution v € C*(O) of (3.13) satisfying

v(z,t) < Cb_q%l(d((x,t),apO))_q%l for all (z,t) € O.

Furthermore, if 1 < q¢ < qx, ¢ = %, a,b > 0 then the function U in Remark 3.4 is
a subsolution of (3.13) in RNTI\{(0,0)}, for some C = C(N,p,q,a,b). Therefore, we

conclude that every mazimal solution of v € C*(O) of (3.13) satisfy

u(z,t) > C’%e “i:lg Xt>s (3.14)
(t—s)aT
for all (z,t) € O and (y, s) € 9,0.
Next, we consider the following equation
Ou—Au+e* —1=0. (3.15)

It is easy to see that the two functions

b2 2 .02
%(t):—log(li/;?) and Vg(ac):Cl—Qlog(%)

satisfy
Vi4+e"—1>0 in (—p2,0]

and
~AVp+e2-1>0 in B,(0)

for some C' = C(N). Using e® + e® < e®*t® — 1 for a,b > 0, we obtain that V; + V5 is a
supersolution of equation (3.15) in B,(0) x (—p?,0]. By the same argument as in Proposition
3.1 and the estimate of the above supersolution, we obtain

Proposition 3.6 There exists a mazimal solution u € C*(0) of
u—Au+e*—1=0in O (3.16)
and it satisfies

(d((x,1),0,0))°
4+ (d((x,1),8,0))>

u(z,t) < C —log < > for all (z,t) € O, (3.17)

for some C' = C(N).

The next three propositions will be useful to prove Theorem 1.1-(ii).

Proposition 3.7 Let K C Ql(0,0) be a compact set and ¢ > 1, R > 100. Let u be a
solution of (3.7) in Qr(0,0)\K and ¢ as in Proposition 2.6 with p = q'. Set & = (1 — )7,
Then,

[ w(|AE] + V€| + [04€]) dedt < Capy ;o (K) (3.18)
Qr(0,0)
and
u,t) S Capyy o (K)+R™a7 for any (x,t) € Qrys(0,0)\Q2(0,0), (3.19)
[ uédrdt < Capy y o (K) + R™77 (3.20)
Q2(0,0)

where constants in above inequalities only depend on N, q.

10



Proof. Step 1. First, we need to show that

/ ulédrdt < Capy g o (K).
Qr(0,0)

Actually, using by parts integration and the Green formula, one has

/ uhEddt = f/ Oyuldxdt Jr/ (Au)édxdt
Qr(0,0) Qr(0,0) Qr(0,0)

R2
= / wOEdxdt +/ uA&dxdt +/ / <§@ — u%
Qr(0,0) Qr(0,0) —r2JoBroy \ Ov  Ov

where v is the outer normal unit vector on dBr(0). Clearly,

ou 5]
s <0 and a—f =0 on 0Bg(0).
Thus,
/ ulédzdt §/ u| 0 |dxdt +/ u|A¢|dzdt
Qr(0,0) Qr(0,0) Qr(0,0)

(3.21)

<2¢ / u(l — )2 ~Hdyp|dwdt + 24' (24" — 1) / u(l — )* 2|V p|2dwdt

Qr(0,0) Qr(0,0)

+ 2q’/@ 00 u(l — )% Y Ap|dadt
R\Y,

< 2q’/~ u€t )9y p|dxdt + 2¢'(2¢" — 1)/~ w1\ V| 2dadt
Qr(0,0) Qr(0,0)

+ 2q'/~ w1 Ap|dadt.
QR(O,O)

In the last inequality, we have used the fact that (1 — ¢)2¢'~1 < (1 — ¢)2¢' ~1 = ¢l/a,

Hence, by Holder inequality,

/ wIcdadt < / 0| daxdt + / V|7 dadt
Qr(0,0) Qr(0,0) Qr(0,0)

+ / |Aga|q/dzdt.
Qr(0,0)

By the Gagliardo-Nirenberg inequality,

Vil dadt S 015 g, 00 [ Dl dudt
/@R(om 2 @rO) Jgn(0,0)

< / |D2p|9 dxdt.

Qr(0,0)

Hence, we find
/ ui€drdt 5/ (19epl? + D% p|" )dadt
Qr(0,0) 2r(0,0)
and derive (3.21) from (2.4). In view of (3.22), we also obtain

/ W(|AE) + [0,€])dadt, < Capy,y o (K)
QR(O,O)

11
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and

/ u[VE|drdt, < Capy 1 o (K),
Qr(0,0)

since

/ u|VE|dadt = 2q// u§(2q/_1)/2q/|V<p|d:cdt
Qr(0,0) Qr(0,0)

< Qq’/~ u€t 1V p|dxdt
Qr(0,0)

< / wIEdzdt + / V| dad.
Qr(0,0) Qr(0,0)

It yields (3.18). 3 ~
Step 2. Let n be a cut off function on Qg/4(0,0) with respect to Qg/3(0,0) such that
0] + |D?*n| < R~ and |Vn| < R~'. We have

O (néu) — A(néu) = F € C.(Qry3(0,0)).

Hence, we can write
_le—yl?
(néu)(z,t) / / ——e i ) F(y,s)dsdy ¥(z,t) € RNFL,
RN (4m(t — s)

Now, we fix (z,t) € Qg/5(0,0)\Q2(0,0). Since supp {|Vn|} Nsupp {|VE|} = 0 and
F =08 (0w — Au) + 2 (nVE +EVn) Vu + (0 + 10:§ + 2VnVE + Ané + nA) u
< 2(nVE+EVD) Vu + (§0em + 1de€ + EA1 + nAg) u

there holds

u(z,t) = (néu)(z,t) < 2/ / —e€ “f(f 3 (nVE 4 £Vn) Vudsdy
RN (4w (t — s)

_lz—y|®
— 4 t s A
/RN / (4 (t — s)) we T > (19:& + nAE) udsdy

1 |o—
=+ 76_4@75) Oné + EAN) udsdy.
/RN/_OO ey (9 + EAn) udsdy
=L+ L+,

By parts integration

_lz—y?
A N/Q/ / v 2( t s) <N+2>/ e” 1= (nVE 4 EVn) udyds
" -

_|z—y|®
2(4”)#/2/ /RN (t—S)N/Qe S (ean + nAE) udyds.

Note that )

z—yl? —N
i < (max{|e —yl, |t — 5|/

(z—y)
}2(1& —5)(N+2)/2

_lz—y?
e 4(t—s)

—-N-1
< (max{le =gl Je = s2})
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and

max{|z —y|, [t — s|'"/?} 21 V(y,s) € supp {|D*¢|} Usupp {|0:¢]},

max{|z —y|, |t — s|'/?} Z R V(y,s) € supp {|D™n|} Usupp {|den|} V|a| > 1.
We deduce

1/2 —N-l
I 5/ (maX{leyl,ltfsl }) (n|VE| + &[Vnl)u dyds
RN+1
1/2 -N
+/ (max{|$—y|,|t—s| }) (&|An| 4 n]AE)) u dyds
RN+1

S [ (9 Ahudyds+ [ (RN RN Ay dyds
RN+1 Qr/3(0,00\Qr/4(0,0)

< / (Ve + 1A udyds + s
RN+1 Qry3(0,0)\Qr,4(0,0)

129N
L< / (max{fe gl 1# = 51/2}) " (90€] + | AE]u dyds
RN+1

< / (186€] + |AE])u dyds,
RN+1

and
2y N
135/ (max{|x—y|,|t—8| / }) (19enl + |An|)u dyds
]RN+1
SLo RN+ Aaudyds
QR/S(Ovo)\QR/él(O?O)
< sup u.
QR/S(Ovo)\QR/él(O?O)
Hence,
wat) < T+ L+ 15 < / (0] + V€| + [Aeudyds +  sup .
RN +1 Qr/3(0,0)\Qr/4(0,0)

Combining this with (3.18) and (3.8), we obtain (3.19). 3
Step 3. Let 0 be a cut off function on Q3(0,0) with respect to Q4(0,0). As above, we have
for any (r,t) € RVN*+!

(Bu) (1) < / (max{]z — y|, |t — s["/2}) "N "L(8VE| + £[V6])u dyds
RN+1
+/ (max{|z — y|, [t — s|*/2}) "N (0] A¢| + £|A0))u dyds
RN+1
4 / (max{|z — g, [t — s|"/2}) "N (6]4¢] + )AL yu dyds
]RN+1

*/ (max{fz — yl, |t — s|"/2}) "N (£]046] + €| A6])u dyds.
]RN+1

Hence, by Fubini theorem,

/ nudxdt = / Onudzxdt
32(0,0) Q2(0,0)

< A/ (O|VE| + EIVO| 4 O|AE| + E|AO] + 0|0:€| + £|0:0]) u dyds
RN+1
S

[ 00+ Vel 4 adudyds + sup
RN+1 Q4(0,0)\Q3(0,0)
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where

A= sup / ((max{|z — y|, [t — s|'/*}) ™V + (max{|z — y|, [t — s|'/*}) "N~ ")dzdt
(y,5)€Q4(0,0) / Q2(0,0)

Therefore we obtain (3.20) from (3.18) and (3.19). [

Proposition 3.8 Let K C {(z,t) : ¢ < max{|z|, [t|'/?} < 1} be a compact set, 0 < & < 1
and let u be the maximal solution of (3.7) in Qr(0,0)\K with R > 100. Then

Ca (KN 0,0
sup u < Z P2 1a 0, (0,0) 1R if g> g, (3.23)
Q.4(0,0) j=—2 Py
and
e Ca (K
sup uS Yy ])2’17}3(]) +jeRTTT if q=q., (3.24)

Q./4(0,0) =0 Pj

where p; = 277, K;j = {(x/pj13,t/p3y3) : (x,1) € KN Qp;»(0,0)} and j. € N is such that
Pj. <€ < pj.—1.

Proof. For j € N, we define S; = {z : p; < max{|z|, |t|'/?} < p;j_1}.

Fix any 1 < j < j.. We cover S; by L = L(N) € N* closed cylinders

ij+3 (k. thj;), k=1,...,L(N)

where (2 ;,tk,;) € S;.
For k = 1,...,L(N), let u;, us ; be the maximal solutions of (3.7) where K is replaced by

KnS;and KN QP1+3 (k.5 tk,;), respectively. Clearly the function 4y ; defined by
- = 2
Uk, j(x,t) = pii3uh;(pj+s® + Thj, Pjyal + tk,j)

is the maximal solution of (3.7) when (K, Q(0,0)) is replaced by (K j, QR/,JHS (—%k,j, —tr4)),
with

Ky ; ={(y/pj+s S/P?Jrs) (Y, 8) € —(Thjythg) + K N Qo (hjote)} € Q1(0,0).

Let Uy, ; be the maximal solution of (3.7) with (K, QR(O, 0)) replaced by (K ;, QQR/,JHS (0,0)).
Since QR/,JHS (=2, —tr;) C QQR/pHB (0,0), thus using the comparison principle as in the
proof of Proposition 3.1 we obtain @y ; < Uy, ; in QR/pHB(—ka, —t,;)\ Kk, ; and thus

2

0 (5:0) € oy (i) + (R py0) 7,
for any (z,t) € (QR/(S/)J-+3)(0’0) NQr/p; s (—Thij, —tm)) \02(0,0) = D.
Fix (20,t0) € Q=/4(0,0). Clearly, ((xo — x,;)/pj+3, (to — tr,j)/pj+3) € D, hence
“TTg Capy 1,4 (Kk,j) 2
ug,j (o, t0) = P, Y (w0 — 2r,5)/pigss (to — tkyj)/p?%) < %ﬂ + R,
P

Therefore, using (3.9) in Remark (3.2) and the fact that

Capz,l,q'(Kk,j) = Capz,l,q' (Kk,j + (xk,j/PHBa tk,j//’?+3)) < Capz,l,q' (Kj)7
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we derive

Je je L(N)
u(xo,to) < Zuj(zo,to) < ur,j (<o, to)
j=1 j=1 k=1
jE Ca / K
S R
j=0 P](‘FI

which yields (3.24). If ¢ > g., then by (2.2) in Proposition (2.5), we have
—N— / ~
Capy o (Kj) S pids 272 Capyy o (K N Qp,_,(0,0)),
which implies (3.23). ]

Proposition 3.9 Let K, u,& be in Lemma 3.7. For any compact set Ko in Q1(0,0) with
positive measure |Ko|, there exists € = (N, q, |Ko|) > 0 such that

Capy 1 o(K) <e=infu < / uédadt.
h Ko $2(0,0)

where the constant in the inequality < depends on Ky. In particular,
Capy 1 o(K) <e= i}I{lfU < Capyq o (K) + R o1, (3.25)
0

Proof. It is enough to assert that there is € > 0 such that
Capy 1, (K) <& = |Ki| > 1/2|Ko| (3.26)

where Ky = {(z,t) € Ky : {(x,t) > 1/2}. By (2.1) in Proposition (2.5), we have

|Ko\K:1|'" %5 < Capy o (Ko\K1) if ¢>¢q., and

|Q100(0,0)\ |~ < A
<log < Ko\K1] S Capy g o (Ko\K1) if ¢ = g..

On the other hand,
Capz,l,q/ (Ko\K1) = CapQ,l,q'({KO e >1-— (1/2)1/(2(],)})
<=V [ (1Dl (Tl ol + 06l ) o
S Cap2,1,q' (K)
So, one can find € = £(N, g, | Ko|) > 0 such that
Capy ¢ (K) < &= |Ko\K1| <1/2 [Ko|.

This implies (3.26). |

4 Large solutions

In the first part of this section, we prove theorem 1.1-(ii), then we prove theorems 1.1-(i)
and 1.2, at end we consider a parabolic viscous Hamilton-Jacobi equation.
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4.1 Proof of Theorem 1.1-(ii)

Let Ry > 4 such that O cC Qg,(0,0). Assume that the equation (1.10) is a large solution
u. Take any (x,t) € 9,0. We will to prove that (1.12) holds. We can assume (z,t) = (0,0).
Set K = Qar,(0,0)\O and define

Ty = {z: pysr < max{fal, |12} < p,t < O},

T = {x: pjps < max{z], [t['/*} < pj_a,t <0},
Here p; = 277, For j > 3, let uy,u2, us, us be the maximal solutions of (3.7) when K is
replaced by KNQ,, ., (0,0), KT, (K N 010, 0)) \@p, ,(0,0) and K\Q1(0,0) respectively
and R > 100Ry. From (3.9) in Remark (3.2), we can assert that

w<uy+us+us+ug in ON{(z,t) e RNt <0}
Thus,

infu < fjur]| oo (ry) +[lusl| Lo ay) + [lualloe ;) + nfue. (4.1)
J J

Case 1: ¢ > ¢.. By (3.8) in Remark 3.2,
l[wall oo (1) S 1- (4.2)

By Proposition 3.8,

T2 Capyy o (KN Q,,(0,0))

gl S D ¥
i=—2 Pi

4+ jRTT. (4.3)

Since (z,t) — up(z,t) = p?i(g_l)ul(pﬂgz,p?wt) is the maximal solution of (3.7) when

(K, Qr(0,0)) is replaced by ({(y/pj+s,5/0343) : (4:5) € KNQp, (0,00}, Qrypy44(0,0)), we
derive, thanks to (3.19) in Proposition 3.7 and (2.2) in Proposition 2.5,

_ Cap2 1 ’(KOQ j 2(()’0)) ——2_
||u1||L°°(T73) 5 — p]\[.|_2_2§/]Jr + (R/pj+3) -1,
J
from which follows
Ca. (KN . 0,0 2
w|| oo (7 5 p2,1,q ( Qp]+2( )) +R7F. 4.4
(T5)

Py

Since, (z,t) — Ta(z,t) = p?i(gfl)ug(pj_gx,p?_Qt) is the maximal solution of (3.7) when

the couple (K, Qr(0,0)) is replaced by {(w/pj—2,5/p5_2) : (y,5) € KﬂTj},QR/pjfz(O,O)),
Proposition 3.9 and relation (2.2) in Proposition 2.5 yield

Cap21q/(KﬁTj) s e Cap21q/(KﬁTj) __2_
P22 se=infie S N 237 + (R/pj—2)" 7T,
J— J—

which implies

Cap2,1,q/(K N QPj—S (05 0)) .
NT2 39 <e=> 1%1f us S

N
pj*? J pj72

C (KNQ,. .(0,0 >
apa1.q ( ngfs( )) 1+ R (4'5)

for some € = (N, q) > 0.
First, we assume that there exists J € N, J > 10 such that

Capy 1 (KN Qp, 5(0,0))
Nt2—2¢
Pj—2

<eVj>J
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Then, from (4.1) and (4.2), (4.3), (4.4), (4.5) we have

2 Capy 14 KQQPZ(O 0))

1nfu< Z

i=—2 pl

FIRTTT 41,

for any j > J. Letting R — oo,

AR Capy 1 ¢ Kﬂsz(O 0))

1nfu< Z

i=—2 pi

+ 1.

Since inf7; u — 00 as j — oo, we get

i Cap?,l,q’ (K N Qpi (07 0))

o -
1=0 ¢

which implies that (1.12) holds with (x,t) = (0,0).
Alternatively, assume that for infinitely many j

Cap?,l,q’ (K n ij—s (0’ O))
N+2—-2q'
j—2

>¢€

Then,

Cap2,1,q' (K n ijfs (an)) 2—24'
N
Pj—2

We also achieve that (1.12) holds with (z,t) = (0,0). Therefore, case ¢ > g, proved.

Case 2: ¢ = g,. Similarly to Case 1, we have: for j > 5

l|uall oo (1) S 1

72 Ca
p K;)
lual| Lo (ry) S Y ———2 “q YR @,
=0 Z
Caps 4 '(K) __2_
||U1||Loo(Tj)§’p7’]3]+ a1
J

. Cap, 4 /(Kj)
Cap2711ql(K‘j) <e= 1%fu2 < 713

J Pj

+ R,

where Kj = {(x/pj13,t/p3y3) : (2,1) € KNQ,,_,(0,0)} and & = &(N) > 0.

Note that, from (2.2) in Proposition 2.5 we have

1 < C + C]N/Q
Capy 1, (K NQp; 4(0,0)) = Capyy o (K;)

for any j > 4 where ¢ = ¢(N). If there are infinitely many j > 4 such that

1
Capz,l,q/ (KN ij—s (0,0)) > QCjN/Q’

then (1.12) holds with (x,t) = (0,0) since

Capm,q,(Kﬂij,g,(0,0)) - 23—3
Pj‘v—s QCjN/2

— oo  when j — oo.

17

> pj_o € 00 when j— o0,



Now, we assume that there exists J > 5 such that

Cap2 1,9’ (Kﬁ QP] 3(0 0)) — QC]N/Q

Then,
Capy 1 o (K;) < 2cCapy 1 (K NQp,_5(0,0)) Vj=>J
This leads to
Cap, 1 (Kj) < 2cCapyy (KN Q,,_,(0,0)) <e Vji>J +J
for some J' = J'(N, q). Hence, from (4.6)-(4.9) we have, for any j > J + J + 3,

[|uallpoe (1) S1
j—2
Cap2,1, ’(K mQPi—B (an))
< Z a <

lusll Lo (1)) S

+C(J 4+ J)+ jR™ 7T,
i=J T +1 Pi

Capy 1 o (KﬁQp] 5(0,0)) JrR_q%l,
Py

Cap2,1,q’ (K N ijfs (Oa 0)) + qui%,

l[ull Lo (1) S

inf u9 5 N
T; pj

where O+ ) = 1§ Ceasg )

Consequently, from (4.1) we derive

J Ca Kﬂ 0,0 2
<y P2,1,4 (K NQp,( ))+C(J/+J)+1+jR*ﬁ Vi>J +J+3.

1nf u
1=0 pl

Letting R — oo and j — oo we obtain

i Capgylﬂqz (K N Qpi (Oa 0))

i=0 Pi

= OO,
e (1.12) holds with (x,t) = (0,0). This completes the proof of Theorem 1.1-(ii).

4.2 Proof of Theorem 1.1-(i) and Theorem 1.2
Fix (x9,t9) € 0,0. We can assume that (xo,t9) = 0. Let 6 € (0,1/100). For (yo,s0) €

(B5(0) x (—62,82)) N O, we set
¢ YR L 5 1| 5
M, =0°nN B,_k+2 (yo) X [SO - (73 + §)Tk+2, So — (70 + §)Tk+2] and
Sk ={(z,t) : rg—1 < max{|z — yo, |t — so|%} <rgtfor k=1,2,..

where r, = 47, Npte that My = 0 for k large enough and M C Sy for all k. Let Rg > 4
such that O CC Qg,(0,0). By Theorem 2.2 and 2.4 and estimate (1.9) there exist two
sequences {py}r and {vy}r of nonnegative Radon measures such that

supp (ug) C My, supp (vx) C M) and (4.10)
q
p(My) = Capy ;o (My) = / (]1330 [,Uk]) dedt and (4.11)
RN+1
i(Mi) < PHY (M), |IM77 [vk]|| oo sy < 1 for k= 1,2, ... (4.12)
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where equivalent constants depend on N, ¢q, Ry.

Take € > 0 such that exp (Cls]lgR“ > ey uk]) € L'(Qg,(0,0)) where the constant C; =

C1(N) is the one of inequality (2.6). By Theorem 2.7 and Proposition 2.8, there exist two
nonnegative solutions Uy, Us of problems

OUy — AUy + UY =€ in Qr,(0,0),
k=1 .
Uy =0 on 0,Qr,(0,0).
and -
atUQ _AU2+6U2 -1 :Ezyk in QRO(O)O)?
k=1 -
U2 =0 on GPQRO(O,O),
respectively which satisfy
e Mk(Bﬁ (yO) X (50 - 13278 z2a50 - 13278 12))
U z 8
)2 303 -
=0 k=1 g
0o q
. [(]I%R“ [eZm]) ] (yo,50) =: A (4.13)
k=1
and
2 S vk(Brz(yo) x (so — 15577, 50 — 15577))
U 2 =
2(y0,20)NZZE N
=0 k=1 ?
% o (Yl ) 1| now 8w
k=1

and Ul, U, € 02’1(0).

Let uy, us be the maximal solutions of equations (3.1) and (3.16) respectively.
We have u1(yo, s0) > U1(yo, s0) and u2(yo, s0) > Uz(yo, So0)-

Now, we claim that

AZ = 4.1
2 " (4.15)
k=1

and N
B > —c1(Ry) +ZL(). (4.16)

k=1 rk

Proof of assertion (4.15). From (4.11) we have
C (My,)

A> EZ ap2 1‘1 B g, (4.17)

with

st (550 o
k=1
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Take ig € Z such that r;;+1 < max{2Ry,1} < r;,. We have

[e'e] [e’e) q
AdoS 2 i N/ (o.20) <H3RO >3 Mk]) o

1=10 k=1
q

- ZZ / (]12R0 M) dxdt
i=1ip j=1 k=1

— i ZT_N/ <]1§R0 i“k> dxdt
j=ko i=i0 Sj k=1

< Z r;N/ <]I§R“ [Z ,uk]> dxdt.
j=io Sj k=1

Here we used ZZ —igTi N <4 37; N for all j in the last inequality.

Setting pg = 0 for all ig — 1 < k < 0, the previous inequality becomes

Ag < Z _N/ HQR" (1 + Z I Z ] | dadt

J=to k=ip—1 k=j+1
i q
< Z r;N/ (]IgR“ [Mj]) dxdt
J=to
j—1 a
Ly ( 3 mmmuux(sj))
J=10 k=i9—1
o0 oo a
+ > >0 I [l cs,)
j=io k=j+1
=A; + As + As.

Using (4.11) we obtain

= Capz,l,q' (Mk)

- )
Tk

A <
k=1

Next, using (4.10) we have for any (z,t) € S; if k> j + 1,
N

T

I35 (k] (e, t) = / 2R0 7@”@ £) 7/) cm® )

Tj+1 p

and if k < j—1

2R 2o ,Uk(Q (z,1)) dp (RNH)
e
Thus,
Ay < iTQ < Ji Mk(RN“))q and Ag < irQ*Nq i
o =0 TS iy ’ j=io =j+1

20
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Noticing that (a 4+ b)? — a? < g(a + b)?b for any a,b > 0, we get

00 Jj—1 N1y \ !
- ,Uk(R )
<142>§:r?( —N)
k=ig—1 "k

Jj=to

o5 mE S LS m® Y
(& ) -y (3 e

J=10 k=ip—1 j=to+1 k=io—1
o0 J—1 Ny ) Ot N+1
2 pe (R pi—1(RYTH)
SWABE 0,
j—=io k=io—1 k g1
Similarly, we also have
q
o oo
_ 2-N
1 _ 42 Nq) Z r q Z Mk(RN+1)
j=io k=j+1
qg—1
o0 oo
2-N
< Z gry ¢ Z (RN ppr RV,
j=io k=j+1

Thus,

o0 j-1 Ny ) T N+1
R (R
A2+A3szr§< v E >> ki1 R7T)

T
j=io k=ig—1 "k Jj—1
qg—1
oo oo
2-Ng N+1 N+1
+Do7; > k(RN frj 1 (R
j=io k=j+1

Since i (RN*1) < T]ZCVH*Q‘II if ¢ > q. and pg(RYF1) < min{k_q%l, 1} if ¢ = ¢. for any k,
we always assert that

k=ig—1
q—1
oo
2—Ngq N+1 -N .
T E e (RYTH) S forany .
k=j+1

In the case ¢ = ¢« we assume N > 3 in order ro to verify that

oo

> @Y < ik’*ﬁ < 0.

j=1 k=1

This leads to

Combining this with (4.19) and (4.18), we deduce

AO<Z

Cap2 1 q Mk)
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Consequently, we obtain (4.15) from (4.17), for € small enough.
Proof of assertion (4.16). From (4.12) we get

— PH (M})
B 2527%\, — By
=1

where

By = HgRO lexp <C1]I§R“ EZVk ) ] (Yo, s0)-
k=1

We show that

By < ¢(N,q, Ry) for e small enough. (4.22)

In fact, as above we have

By < Z / exp <015H2R° Z z/k]> dxdt.
k=1

Jj=to

Thus

)

By < Z rs / exp (3015]1330 [uj]) dxdt

Jj=to

j—1
+ Z T exp (3015 Z ||]I§R0[Vk]||L°°(Sj)>

j ’Lo k:io —1

+> rZexp [ 3C1e D (B[]l (s))
j=io k=j+1
= B, + By + B;. (4.23)

Here we used an inequality exp(a + b+ ¢) < exp(3a) + exp(3b) + exp(3c¢) for all a, b, c.
By Theorem 2.3, we have

/ exp (301511330 [yj]) dadt S vV for all j,
Sj
for € > 0 small enough. Hence,

B; < Z r? < (max{2Ry,1})°. (4.24)

Jj=to

Note that estimates (4.20) and (4.21) are also true with vj; we deduce

RNJrl
BQ+Bg<Zr exp(cQE Z 2t )>

J=to0 k=ip—1

RN+1

+Z7’]exp C2€ Z Mk

Jj=to k=j+1 J
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From (4.12) we have p,(RNT1) <7V for all k, therefore

By + B3 < Z 7‘]2- exp (ese(f — i) + Z r]2- exp (cse)

Jj=to Jj=tio
S exp(ese(j —do) — 4log(2)j) + 17,
Jj=to

< c4(N,q,Ry) for £ small enough.

Combining this with (4.24) and (4.23) we obtain (4.22).
This implies straightforwardly exp (C’ls]@R” >y I/k]) € LY (Qr,(0,0)).
We conclude that for any (yo, s0) € (Bs(0) x (—6%,4%)) N O,

= Cap2,1q/ (Mg(yo, s0))

Ul(yO,SO) 2 Z N

r
k=1 k

and

2 PHY (M (yo,
u2(Yo, s0) 2 —cl(RO)+Z 1 ( Jl\c[(yo 50)),

k=1 Tk

where r, = 47F and

X —_— 1 1
Muyors0) = 0°1 B on) x o = (73 + 5z = (10 ]

Take 7,44 < 0 < rg;43, we have for 1 <k < k;
1 1
Mil50) 2 0% (Bryams0) x (8 = (734 Grkin, =07 = (04 )ik ))
D 0°N (B, 5 (0) x (=73r7 0, —Tlrt )
=0°N (Byy,5(0) x (—116877, 5, —113677_3)) .

Tk+3

Finally
in u1 (Yo, S0)
(y0,50)€(Bs(0) x (—02,52))NO

k c
. ig Capy 1 o (0°N (B, (0) ; (—1168r7, —1136r7))) Lo as 550,

k=4 "k

and
> —c1(R,
(yo,sO)e(Bé(é?x(_52’52))ﬁou2(y0,So) = —c1(Rp)

ks+3 N 2 2
c B —11 —-11
n Z PH; (O ﬂ( . (0) XJS 68 36rk))) — o0 as 6 — 0.

r
k=4 k

This completes the proof of Theorem 1.1-(i) and Theorem 1.2.

4.3 The viscous Hamilton-Jacobi parabolic equations

In this section we apply our previous result to the question of existence of a large solution
of the following type of parabolic viscous Hamilton-Jacobi equation

Ou — Au+ a|VulP + bu? =0 in O,

U = 00 on 0,0, (4.25)
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where a > 0,b> 0 and 1 < p <2, ¢ > 1. First, we show that such a large solution to (4.25)
does not exist when ¢ = 1. Equivalently namely, for a > 0, b > 0 and p > 1 there exists no
function u € C%1(0) satisfying

Ou — Au + a|VulP > —bu in O,

U = 00 on 0,0. (4.26)

Indeed, assuming that such a function u € C?1(0), exists, we define
vt &2
U(z,t) = u(z, t)e” — §|x| ,

for € > 0 and denote by (zo,to) € O\9,O the point where U achieves it minimum in O, i.e.
U(xo,to) = inf{U(x,t) : (z,t) € O}. Clearly, we have
U (z0,t0) <0, AU(xg,t0) >0 and VU(zg,tg) =0.

Thus,

Oru(xo,to) < —bu(zg,to), — Aulxg,tp) < —eNe " and a|Vu(zg,to)|P = a5p|x0|pe_pbt°,

from which follows

dyu(xo, to) — Au(xo, to) + a|Vu(zo, to)|P < —bu(zg, to) + et (—N + aep_1|z0|pe_(p_1)bt°)
< —bu(xo, to)

for € small enough, we obtain contradiction.
Proof of Theorem 1.3. By Remark 3.3, we have

inf{v(z,t); (z,t) € O} > (q1 — 1)7T£1R7$.

Take V = Ava € C21(0) for A > 0. Thus v = AV,

2

inf{V(x,t); (z,t) € O} >0} > Mq1 — 1)7Q<411*1>R7“<01*1>,
and

Vv 2
O — Av + 01 = aX" V19V — ad VLAV 4 a1 — a)xava—ly + ATonyen,

This leads to

|VV|2 —1y—a(qi—1)y,aq—a+1 :
atV—AV—i—(l—a)T—l—a ATl yen =0 in O.

Using Holder’s inequality,

Vv ?

a(qlfé)@*zs) a('n*;)@ﬂs)_(p_l)

(1—a) + (20) " IATe@-Dyan—atl > o gy |PA~

2(p—1)

> | VVIPA~ (P D R™HPF ata =

and
(2a>—1>\—a(q1—1)vaq1—a+1 > CBA—(q—l)R*QJF% Ve,
Clearly, if we choose

L 1 1 _2-p 2 1 _ 2 2
)\:min{cgfl,cg*l}min{afﬁR =1Ta@m-1 ph"T TR ‘?*1+“<(11*1)}
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then

2(p—1)
oA"Y RTAIPTEGED > g

R e
it follows
8V — AV +alVV[P + V9 <0 in O
By Remark 3.5, there exists a maximal solution u € C*1(O) of
ou — Au+alVulP +bu? =0 in O

Therefore, u > V = e and uis a large solution of (4.25). This is complete the proof of
Theorem. ]

5 Appendix

Proof of Proposition 2.5. First we have the following equivalence,

Lo (e (N+2)/N 2/N " '
[ @)™ was [ @@ o L. 6

In fact, we have for p; =277, j € Z,

Z/}RN+1(M(ij (2, ) Ndp(z,t) S /]RNH/O (M(Qr(x,t)))Q/N%d,u(x,t)

/]RN+1( (ij (‘T’ t)))Q/Nd,u(xa t)'

M2

<

i
=]

J

Note that for any j € Z

. / (#(Qpyr (&, ) Ndadt 5 | (1(Qp, (,8)) N dpa(a,t)

RN+
SoiN (@, (1) NI N dgrdt,
RN+1
Thus,
d
Zl)j / Qp (, 1)) N /N gy </ / 2/N_Tdu($,t)
RN+1 o "

DA / Q) N
j=-1

This yields

1
[ () e s [ [ @t o) Lo,
RN+1 RN+1 Jo T



By [11, Theorem 4.2],

(N+2)/N
[ () dadt = [ (@8l ) P do,
RN+1 RN+1

thus we obtain (5.1).

Now we come back proof of proposition. The first inequality in (2.1) was proved in [11]. We
now prove the second inequality. By Theorem 2.4 there is p € 9T (RY+1) supp (u) € K
such that

IMB [l mneny < 1 and p(K) = PHY (K) 2 |K|V/ V), (5.2)

Thanks to (5.1), we have for § = min{1, (u(K))"/N}

! ~ dr
I A 18220 1) = / / (@, 1)) = d( 1)
(N+2)/N
2
<o [ antwn) +iosa/s) ([ dutonn)
< (u(F)) NN (1t logy (n(K) ™))

< (u(E)) N4/ 1og (W) |

Set i = (log (w

It is well known that

~N/(N+2) -
)) i/ (), then [T [N v gnsny S 1.

Capy,y, g2 (K) = sup{(w(K) V4272 o € 0 (K), [l ovmrm vy S 1 (5.3)

~

see [11, Section 4]. This gives the second inequality in (2.1).
It is easy to prove (2.2) from its definition. Moreover, (5.3) implies that

1
Capy,y szz (K)2/Y

. N+2)/N
= inf{| I [w] IS 2N vy w € I (K), w(K) =1}

We deduce from (5.1) that

1 ! ~ dr
= inf (@)Y Lz, t) w € MT(K),w(K) =17
Cap2,17¥(K)2/N 1 {/RN+1/O (N’(Q (ZL') ))) r ,U(Z', ) w € ( >,w( )
(5.4)
As in [6, proof of Lemma 2.2], it is easy to derive (2.3) from (5.4). -

Proof of Proposition 2.6. Thanks to the Poincaré inequality, it is enough to show that
there exists ¢ € C°(Q2(0,0)) such that 0 < ¢ <1, with ¢ = 1 in an open neighborhood of
K and

[ (D*0P + 10617t £ Cas,1, (). (55)
By definition, one can find 0 < ¢ € S(RV*1), ¢ > 1 in a neighborhood of K such that
[ (D200 + V6 + 617 + 161" )dadt < 2Caps,1,(K).

Let 7 be a cut off function on Q;(0,0) with respect to Qg/g (0,0) and H € C*°(R) such that

O0< H(@) <t [t||H'(t)] <1 forallteR, H(t)=0 fort<1/4 and H(t)=1 fort > 3/4.

26



We claim that

/ (1Dl + Brpl?)dedt < / (D3[P + [Vop + |6 + [6u)dzdt  (5.6)

RN+1 RN+1

where ¢ = nH(¢). Indeed, we have

and

D] S |D*[H(9) + [VallH'(6)|[Vo] +nlH" ()| [Vo[* + | H" (6)||D*¢|

0| < 10| H(¢) +nlH (9|, H(¢) <o, $IH"(¢)] S 1.

Thus,

/ (1Dl + Brpl?)dedt < / (ID2[P + Vo + |6fF + g ]?)dudt

RN+1 RN+1

2p
+ / Vel dxdt.
RN+ PP

This implies (5.6) since, according to [1], one has

Vo) 2
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