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An Anisotropic Bimodal Energy for detection of thin tubes and its approximation with Γ-convergence

This work is a contribution to the problem of detection of thin structures, namely tubes, in a 2D or 3D image. We introduce a bimodal model for the case where the histogram of the image has two main modes. This model involves an energy functional depending on a function and a riemannian metric. One of the term of this energy is the anisotropic perimeter associated to the dual metric. We perform an approximation of this functional and prove it Γ-converges to the original one.

Introduction

Let n be the dimension and Ω ⊂ R n be a domain. Let g : Ω → [0; 1] be an image with two modes 0 and 1. The analysis will consist in searching a pair (p, g), where p : Ω → {0, 1} is a binary function and g : Ω × R n → [0; +∞[ a riemannian metric which minimizes the functional

E(p, g) = Ω (p -g) 2 dx + β Sp g(x, νp) 1 2 dH n-1 + γ g W 1,r (Ω) ,
where Sp is the jump set of p, νp is a normal unitary vector to Sp and H n-1 is the (n -1)-dimensional Hausdorff measure. By assumption, for any x ∈ Ω, the function g(x, •) is a scalar product. So, we may associate a unique symmetric matrix denoted g x ∈ Sn(R). In this way, the last term of E is the norm of the function x → g x in the Sobolev space W 1,r (Ω; Sn(R)), the exponent r will be precised later. The parameters β and γ are weights to determine. In order to detect thin tubes, the riemannian metric g must belong to a suitable subset G ⊂ Sn(R). More precisely, any g ∈ G must take the form ∀x ∈ Ω,

g x = Idn + µ t c(x)c(x),
where c : Ω → R n is an unitary vector field. The parameter µ is the thickness of the tubes.

In [START_REF] Bellettini | Some results on surface measures in calculus of variations[END_REF], it is proved that the second term of this functional is the anisotropic perimeter associated to the dual metric. So, with g fixed, this functional inherits a lower semi-continuity property and it can be approximated in the sense of the Γ-convergence by an adapted family of functionals. We 1 generalize this work to the case where g is also an unknown and takes the form defined above. More precisely, we introduce the following functional

Eε(p, g) = Ω (p -g) 2 dx+β Ω 9εg(x, ∇p) + p 2 (1 -p) 2 ε dx+γ g W 1,r (Ω) ,
with p : Ω → [0; 1] a regular function. We prove that (Eε)ε>0 is an approximation of E when ε converges to 0 + . In section 1, we introduce the problem with the practical motivations and we give for the parameters β, γ, µ a geometrical interpretation. In section 2, we recall some classical results and introduce the functional framework. Section 3 is devoted to the existence result of the minimizing problem. In section 4, we introduce the approximation process and prove the main result: the family (Eε)ε>0 Γ-converges to E.

Presentation of the model

In what follows, n represents the spatial dimension of the image: n = 2 for planar images and n = 3 for 3-D images. We adopt the list of symbols:

• x a scalar in R,

• x • y the usual scalar product of R n ,

• |x| = √ x • x the euclidean norm of R n ,
• S n-1 the unit sphere of R n ,

• Br(x) the ball of R n with center x and radius r ≥ 0,

• A a generic matricial norm in the space of n × n matrices,

• sp(A) the eigenvalues of A counted with their multiplicities.

Motivation

For the study of some diseases, it is interesting to focus on the blood status in a vessel network, especially on the volume of its microvasculature. To assess this, in vivo mice brain angiography is performed. This is based on the injection of a contrast medium and a MRI imaging process. a level equal to 80% of the maximum intensity. The aim is to construct an automatic method to segment the network area corresponding to the blood while removing noise.

Geometric characterization of the problem

We give an heuristic way to introduce and motivate the model. We first present an isotropic model and show that it is not suitable for our problem.

Then, we introduce an anisotropic term.

Let Ω ⊂ R n be the domain of the image. We consider the following segmentation problem. Let α > 0 be the critical level of detection: if a set is with diameter lower than α then it is considered as noise and has to be removed. Let Γ ⊂ Ω be a curve with length ℓ such that α is negligible compared with ℓ. We set T ℓ,α the tubular neighborhood of Γ of the points of Ω at distance lower than α of Γ. Although the section of T ℓ,α is critical we want to detect it because of its specific geometry. We set Bα a ball with radius α, it is considered as noise not because it has a critical diameter but because it has not the appropriate geometry of tubes.

Let I ⊂ Ω be a generic set and we assume that we have the following disjoint decomposition (see figure 1.2) The segmentation problem consists in combining two constraints. The first one is to remove Bα type sets, because they have small radius and no tubular geometry. The second one is to detect the tubes T ℓ,α .

I = T ℓ,α ∪ Bα T ℓ,α B α
For that, we purpose an energy functional E defined on the sets of Ω. We say that a set F is a better segmentation than the set

G if E(F ) < E(G).
The functional E is adapted to the problem if it satisfies the following conditions:

i) E(I \ Bα) < E(I), ii) E(I) < E(I \ T ℓ,α ).
Condition i) imply that removing Bα provides a better segmentation than keeping it. Condition ii) implies that detecting T ℓ,α gives a better segmentation than removing it.

We first consider an isotropic functional E defined on the subsets of Ω as:

E(F ) = Vol n (F △ I) + βVol n-1 (∂F ),
where Vol n and Vol n-1 are respectively the volumes measure with dimension n and n -1, F △ I the symmetric difference of the sets F and I, the topological boundary of a set F is denoted ∂F . The parameter β > 0 is a weight to tune. Many works have been devoted to this particular case.

Let us mention contributions from Morel and Solimini [START_REF] Morel | Variational methods in image segmentation[END_REF]. We show that this model can not satisfy the constraints we imposed to our problem.

As T ℓ,α and Bα are disjoints, condition i) is equivalent to

Vol n (Bα) < βVol n-1 (∂Bα).

(1.1)

The sets which minimize the ratio Vol n /Vol n-1 are prefered by this energy.

It is well known that, with the diameter fixed, the sets which minimize this ratio are the balls. Thus, if the inequality (1.1) is ensured, then any set with diameter lower than α is removed. Taking the equivalences Vol n (Bα) ∼ α n and Vol n-1 (∂Bα) ∼ α n-1 , this condition gives

α < β. (1.2)
Condition ii) is equivalent to

βVol n-1 (∂T ℓ,α ) < Vol n (T ℓ,α ).
Taking the equivalences Vol n (T ℓ,α ) ∼ ℓα n-1 and Vol 

An anisotropic model

We rather introduce an energy term that involves a preference to sets having a direction, that is anisotropic sets. Let c : Ω -→ S n-1 be an unknown and unitary vector field that represents a direction in each point of the image. Let x ∈ ∂F and νF (x) be a unit normal vector of the surface ∂F at x. We say that |c(x) • νF (x)| is the action of the vector field c on ∂F at x. This term is zero if the field is tangent to the surface and it is maximum if it is orthogonal to the surface. We introduce the total action of c on ∂F :

Action(F, c) = ∂F |c • νF |dVol n-1 .
As α ≪ ℓ, a field which minimizes the action of c on ∂T ℓ,α has to be tangent to ∂T ℓ,α along the tube (see figure 1.3).

∂T ℓ,α c

✒νT ℓ,α Moreover, we introduce a regularization term defined on the vector field as

Reg(c) = Ω Dc r dVol n ,
where • is a pointwise matricial norm and we fix r > n (not necessary an integer) to ensure that the field is regular. Indeed, if r > n and Ω Dc r < ∞ then c is continuous. The new expression of the energy is

E(F, c) = Vol n (F △ A) + β Vol n-1 (∂F ) + µAction(∂F, c)
anisotropic term +γReg(c), (1.4) where β, µ and γ are, as before, weights to tune. We have to verify the conditions i) and ii) of 1.2. We assume that T ℓ,α is a linear and rigid tube of length ℓ and section α. Obviously, the best choice of c is to choose it in the direction of the tube. Indeed, the action of the field on the tube is zero outside the two ends of the tube and the regularization is zero (see figure 1.4). Using the following equivalences:

c T ℓ,α

Vol n-1 (T ℓ,α ) ∼ ℓα n-1 , Vol n-1 (T ℓ,α ) ∼ ℓα n-2 , Action(∂T ℓ,α , c) ∼ α n-1 . Condition ii) is equivalent to β(ℓα n-2 + µα n-1 ) < ℓα n-1 .
(1.5)

For a ball Bα, the field c has to realize a compromise between its action on ∂Bα and its regularization (see figure 1 As α is small and r > n, then if µ ∼ γ the parameter µα n-1 is negligible with respect to γα n-r . As a conclusion, the regularization is more important than the action for balls with small radius α. The best choice for c is a constant field. In this case the regularization is zero and the action is equal to the action on the tube with the same section. Then, condition i) is equivalent to α n < β(α n-1 + µα n-1 ).

(1.6)

The two conditions (1.5) and (1.6) are not contradictious anymore when α is small and α ≪ ℓ. For example, we can take

β = α 2 , µ < ℓ α , γ = µ.

Functional formulation

In the sequel, we are formulating min E (1.4) as a minimization problem of functions by connecting sets and functions via indicator functions. We define an image as a function g : Ω → [0; 1]. We assume that the domain Ω ⊂ R n is Lipschitz-regular. The fondamental assumption of this model is that the histogram distribution of the image contains two main modes that we assume to be 0 and 1. Equivalently, g is almost equal to an indicator function. The unknown is a pair (p, c) where p : Ω → {0; 1} is a binary function and c : Ω → S n-1 is an unitary vector field which minimizes the energy

Ω (p -g) 2 dx + β H n-1 (Sp) + µ Sp |c • νp| dH n-1 + γ Ω Dc r dx, (1.7)
where dx is the integration with respect to the n-dimensional Lebesgue measure, Sp is the jump set of p, νp : Sp → S n-1 is a normal unit vector of Sp and dH n-1 is the integration with respect to the (n-1)-dimensional Hausdorff measure. We can rewrite the functional defined in (1.7) as

Ω (p -g) 2 + β Sp (1 + µ|c • νp|) dH n-1 + γ Ω Dc r .
(1.8)

The second term of (1.8) corresponds to the anisotropic perimeter of Sp according to the metric φ :

Ω × R n → [0; +∞[ defined as φ(x, v) = |v| + µ|c(x) • v|.
For more convenience in calculus, we will adopt the equivalent quadratic form

Ω (p -g) 2 + β Sp 1 + µ 2 (c • νp) 2 dH n-1 + γ Ω Dc r . (1.9)
It has an obvious invariance. Indeed, let σ : Ω → {-1; 1} be an arbitrary function, the functional (1.8) takes the same value for c and σc. This invariance may generate numerical instability in the numerics. To remove it, we replace the unknown vector field c by a riemannian metric which takes the form

g(x, v) = |v| 2 + µ 2 (c(x) • v) 2 .
We introduce the definitive version of the functional as

E(p, g) = Ω (p -g) 2 + β Sp g(x, νp) 1 2 dH n-1 + γ g W 1,r (Ω) . (1.10)
In [START_REF] Bellettini | Some results on surface measures in calculus of variations[END_REF], it is proved that Sp g(x, νp)

1 2
dH n-1 is the anisotropic perimeter associated to the dual metric denoted g 0 . We can explicitly calculate this metric

g 0 (x, v) = |v| 2 - µ 2 1 + µ 2 (c(x) • v) 2 .
The unit ball for this metric is an elongated ellipsoid in the direction of c(x). c(x)

1 + µ 2 1
For this metric, the points in direction of c(x) are closer of x for the dual metric, than the points in the orthogonal directions. The ratio of the elongation is equal to 1 + µ 2 .

Functional framework 2.1 Sobolev spaces

We denote W 1,2 (Ω; [0; 1]) the set of functions p which belong to the classical Sobolev space W 1,2 (Ω) such as p(x) ∈ [0; 1] a.e. x ∈ Ω. Let Sn(R) be the space of n × n symmetric matrices. As Sn(R) is a vectorial space with finite dimension (n(n + 1)/2), we may define the Sobolev space W 1,r (Ω; Sn(R)). For any riemannian metric g : Ω × R n → [0; +∞[, we denote gx ∈ Sn(R) the symmetric matrix at point x ∈ Ω, that is

∀(x, v) ∈ Ω × R n , g(x, v) = (gxv) • v.
Let G be the subset of Sn(R) defined by

G = {Idn + t cc : c ∈ S n-1 }.
Obviously, any matrix which belongs to G is symmetric definite positive, so any function defined in Ω and taking its values in G may be considered as a riemannian metric. We denote W 1,r (Ω; G) the set of function g ∈ W 1,r (Ω; Sn(R)) such as, for almost every x ∈ Ω, we have gx ∈ G.

The coefficient r is determined according to the following classical theorem (see [START_REF] Attouch | Variational Analysis in Sobolev and BV spaces[END_REF], for example).

Theorem 2.1. Let C(Ω; Sn(R)) be the space of continuous functions defined on Ω taking their values in Sn(R) endowed with the L ∞ norm. Let r > n and consider the Sobolev space W 1,r (Ω; Sn(R)), then the following compact embedding result holds

W 1,r (Ω; Sn(R)) ֒→ C(Ω; Sn(R)).
The assumption r > n is motivated by the regularity of the metric and by what follows.

Proposition 2.1. If r > n, then W 1,r (Ω; G) is closed in W 1,r (Ω; Sn(R))
for the weak topology associated to the Sobolev norm.

To prove this proposition, we need the following lemma which will be useful throughout the article.

Lemma 2.1. For G ∈ Sn(R), we have i) G ∈ G ⇒ ∀v ∈ R n , |v| 2 ≤ (Gv) • v ≤ 2|v| 2 , ii) G ∈ G ⇔ sp(G) = {1; 1; 2}.
Proof. If G ∈ G then there exists c ∈ S n-1 such as G = Idn + t cc and Cauchy-Schwarz inequality gives |v| 2 ≤ (Gv) • v ≤ 2|v| 2 . Moreover, c is an eigenvector associated with the eigenvalue 2 and the restriction of G to {c} ⊥ is the identity. So, we have sp(G) = {1; 1; 2}. Conversely, we assume that sp(G) = {1; 1; 2}. Let c be the unitary eigenvector associated to the eigenvalue 2. As G is symmetric then {c} ⊥ is stable by G and necessary its restriction is the identity. We can conclude that G = Idn + t cc. Now, we can prove the proposition 2.1.

Proof. Let (g k ) k ⊂ W 1,r (Ω; G) be a Cauchy sequence for the weak topol- ogy associated to W 1,r (Ω; Sn(R)). As r > n, the following inclusion is compact W 1,r (Ω; Sn(R)) ⊂ C(Ω; Sn(R)).
So, (g k ) k is also a Cauchy sequence for the L ∞ (Ω; Mn(R)) norm. So, for x ∈ Ω fixed, the sequence (g k x ) k converges to a matrix gx. As the two characterizations of the lemma 2.1 are stable under the limit, then gx verifies this two conditions. This proves that g ∈ G and then W 1,r (Ω; G) is closed in W 1,r (Ω; Mn(R)).

For the need of many proofs, we need a density result for smooth functions. We recall the classical result (see [START_REF] Attouch | Variational Analysis in Sobolev and BV spaces[END_REF]).

Theorem 2.2. If 1 ≤ r ′ < +∞, then C ∞ ∩W 1,r ′ (Ω) is dense in W 1,r ′ (Ω)
for the strong topology of W 1,r ′ (Ω).

In our particular case, we need the following result.

Proposition 2.2. The space

C ∞ ∩ W 1,r (Ω; G) is dense in W 1,r (Ω; G) for the strong topology of W 1,r (Ω; Sn(R)).
Proof. We give the outline of the proof which is quite abroad our subject.

1. For G ∈ G, we can associate a unique vector space D ⊂ R n with dimension 1 which corresponds to the eigenspace associated to the eigenvalue 2.

2. The set of 1 dimensional space of R n is a smooth and compact manifold called the Grassmanian G1,n(R).

G1,n(R) and {Id

+ t cc : c ∈ S n-1 } are compact C ∞ diffeomorphic manifolds.
5. Using an atlas of the manifold G1,n(R) and a smooth partition of unity, we may apply Meyers-Serrin theorem to the previous function in each map of the atlas.

Measure theory

Let Cc(Ω; R n ) be the space of continuous functions with compact support in Ω and taking their values in R n . We denote C0(Ω; R n ) the closure in the sup norm of Cc(Ω; R n ). Let M(Ω) be the space of Radon measures and M(Ω; R n ) be the space of vectorial Radon measures over Ω. For

λ ∈ M(Ω; R n ), we denote λ M(Ω;R n ) = sup Ω ϕ • dλ : ϕ ∈ Cc(Ω; R n ), ϕ L ∞ ≤ 1 .
This application is a norm and M(Ω; R n ) is a Banach space. This topology is quite restrictive in our case, we introduce a weaker topology.

Definition 2.1. Let λ ∈ M(Ω; R n ), the sequence (λ k ) k ⊂ M(Ω; R n ) weakly* converges to λ if lim k Ω ϕ • dλ k = Ω ϕ • dλ for every ϕ ∈ C0(Ω; R n ).
Endowed of this topology, the space M(Ω; R n ) satisfies a compactness property.

Theorem 2.3. If (λ k ) k ⊂ M(Ω; R n ) is
a bounded sequence for the topology of the norm, then it has a weakly* converging subsequence. Moreover, the norm is lower semicontinuous with respect to the weak* convergence.

Let ϕ : Ω × R n → R + be a sublinear function with respect to the second variable, that is:

i) ∀(x, v1, v2) ∈ Ω × R n × R n , ϕ(x, v1 + v2) ≤ ϕ(x, v1) + ϕ(x, v2), ii) ∀(x, v, t) ∈ Ω × R n × R + , ϕ(x, tv) = tϕ(x, v).
Suppose that θ is a Radon measure and λ is a vectorial Radon measure on Ω. According to Besicovitch derivation theorem (see [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF])

lim r→0 λ(Br(x)) θ(Br(x))
exists and is finite for θ almost every x, we denote by dλ dθ (x) this limit when it exists. We recall that λ is absolutely continuous with respect to θ if λ(A) = 0 whenever θ(A) = 0. When this holds, we write λ ≪ θ. We consider the convex functional defined on the space M(Ω; R n ) by

Φ : λ ∈ M(Ω; R n ) → Ω ϕ x, dλ dθ dθ (2.1)
where θ is a positive measure such that λ ≪ θ. It is shown in [START_REF] Goffman | Sublinear functions of measures and variational integrals[END_REF] that the integral in (2.1) does not depend on the choice of θ. For that reason, we will write it in the condensed form

Φ(λ) = Ω ϕ (x, λ).
The functional Φ has the following continuity properties which are proved in [START_REF] Bouchitté | Multifonctions s.c.i. et régularisée s.c.i. essentielle, fonctions de mesures dans le cas sous-linéaire[END_REF].

Proposition 2.3. i) If ϕ is a lower semicontinuous on Ω × R n , then Φ is lower semicontinuous on M(Ω; R n ) for the topology introduced in 2.1. ii) Assume that ϕ is continuous on Ω×R n . If (λ k ) k weakly converges to λ and if, moreover, Ω |λ k | → Ω |λ|, then Φ(λ k ) converges to Φ(λ).
We give a variant of the coarea formula extended to the sublinear functionals which can be found in [START_REF] Maso | Integral representation on bounded variation spaces of gamma-limits of variational integrals[END_REF].

Proposition 2.4. Let Φ(x, s, v) a Borel function of Ω × R × R n which is sublinear in v.
Let p be a Lipschitz continuous function on Ω and denote, for t > 0, St = {x ∈ Ω; p(x) < t}. Then, for almost all t ∈ R, St belongs to BV(Ω) and we have

Ω Φ(x, p, Dp)dx = R dt Ω Φ(x, t, D1S t ).

Functions with bounded variation

A function u ∈ L 1 (Ω) is said to be with bounded variation if sup Ω udiv(ϕ) : ϕ ∈ C 1 0 (Ω; R n ), ϕ L ∞ ≤ 1 < +∞.
We denote T V (u) this upper bound and BV(Ω) the set of such functions. The space BV(Ω), equipped with the following norm

u BV (Ω) = u L 1 (Ω) + T V (u) is a Banach space. According to Riesz representation theorem, if u ∈ BV (Ω) then Du ∈ M(Ω; R n ).
The topology of the norm in BV (Ω) is quite restrictive in our case, we consider a weaker one.

Definition 2.2. A sequence

(u k ) k ⊂ BV (Ω) weakly* converges to u ∈ BV (Ω) if (u k ) k converges to u in L 1 (Ω) and Du k weakly* converges to Du in M(Ω; R n ).
The space BV (Ω) satisfies a compactness result for the weak* convergence.

Theorem 2.4. If (u k ) k ⊂ BV (Ω)

is a bounded sequence for the topology of the norm, then it has a weakly* converging subsequence.

A criterium for weak* convergence is stated in the following theorem.

Theorem 2.5. Let (u k ) k be a sequence of BV(Ω). Then (u k ) k weakly* converges to u ∈ BV (Ω) if and only if (u k ) k is bounded in BV (Ω) and converges to u in L 1 (Ω).

Sets with finite perimeter

The following terminology is introduced in [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF].

Definition 2.3. Let A ⊂ Ω be a measurable set. A point x ∈ Ω belongs to measure theoretic boundary of A if lim sup r→0 + L n (B(x, r) ∩ A) r n > 0,
and

lim inf r→0 + L n (B(x, r) \ A) r n > 0.
We 

i) ∂A = ∂ * A, ii) T V (1A) = H n-1 (∂A).
Theorem 2.6. Let A ⊂ Ω be a set with finite perimeter. There exists a pairwise disjoint family of sets (Si)i and a set M ⊂ Ω such as i) for all i, Si is a C 1 and compact hypersurface of Ω,

ii) H n-1 (M ) = 0, iii) ∂ * A = M ∪ i Si . Theorem 2.7.
Let A ⊂ Ω be a set with finite perimeter. The following generalized Gauss-Green formula holds: for H n-1 almost every x ∈ Ω, there exists ν(x) ∈ S n-1 , called the inner normal vector to A at x, such that for all The following lemma is proved in [START_REF] Modica | The gradient theory of phase transitions and the minimal interface criterion[END_REF]. It asserts that every set with bounded perimeter can be approximated by a sequence of smooth subsets of R n , all having the same volume inside Ω and each of these boundaries satisfy a measure theoretic transversality condition with respect to Ω. 

ϕ ∈ C 1 c (Ω; R n ), Ω 1Adiv(ϕ)dx = - ∂ * A∩Ω ϕ • νdH n-1 , that is D1A = νH n-1 ∂ * A ∩ Ω.
lim k→∞ L n ((A k ∩ Ω) △ A) = 0, lim k→∞ H n-1 (∂A k ) = T V (1A); ii) L n (A k ∩ Ω) = L n (A) for k large enough; iii) H n-1 (∂A k ∩ ∂Ω) = 0 for k large enough.

Existence result

In this section we prove that the function defined in (1.10) admits at least a minimizer in an appropriate functional space. In the following, for more simplicity in the notations, we assume that the parameters of the functionals are fixed at β = µ = γ = 1.

Specific domain of E

In this section we introduce the appropriate functional spaces which ensures the existence result of the minimizing problem.

B(Ω; [0, 1]) = {p measurable : p(x) ∈ [0; 1] a.e. x ∈ Ω} , BV(Ω; {0; 1}) = {p ∈ BV(Ω) : p(x) ∈ {0; 1} a.e. x ∈ Ω} , G = {g : ∃c : Ω → S n-1 , ∀x ∈ Ω, gx = Idn + t c(x)c(x)}, W 1,r (Ω; G) = G ∩ W 1,r (Ω; Sn(R)), X = B(Ω; [0, 1]) × W 1,r (Ω; G), Y = BV(Ω; {0; 1}) × W 1,r (Ω; G),
Let T be the product topology on X where:

• B(Ω; [0, 1]
) is endowed with the almost everywhere convergence topology,

• W 1,r (Ω; G) is endowed with the weak topology associated to the Sobolev norm

• W 1,r (Ω) .
For a sequence (p k , g k ) k which converges to (p, g) for this topology, we write (p k , g k ) T -→ (p, g). Since these spaces are metrizable, then (X, T ) is also metrizable.

Existence of minimizers

We recall

E(p, g) = Ω (p -g) 2 dx + Sp g(x, νp) 1 2 dH n-1 + g W 1,r (Ω) ,
for (p, g) ∈ Y and +∞ if (p, g) ∈ X \ Y. We have the following minimization problem (P) :

Min {E(p, g) : (p, g) ∈ X } . (3.1)
In this section, we prove that problem (P) admits at least one solution. We apply the direct method of calculus of variations. We exhibit a minimizing sequence which is compact for an appropriate topology. Then, we prove a lower semicontinuity result for E and conclude.

As E is bounded from below by 0, there exists a sequence (p k , g k ) k ⊂ Y such that (E(p k , g k )) k converges to the minimum value of E. In the following theorem we prove that we can extract a converging sequence from (p k , g k ) k .

Theorem 3.1. Let (p k , g k ) k ⊂ X such that ∃M > 0, ∀k, E(p k , g k ) ≤ M.
Then, there exists a subsequence, still denoted (p k , g k ) k , and

(p, g) ∈ Y such that (p k , g k ) T -→ (p, g). Proof. As E(p k , g k ) is finite for any k, we have (p k , g k ) k ⊂ Y.
We separate the arguments of the proof for the sequence (p k ) k and (g k ) k .

First

Step: Compactness result for (p k ) k . As p k takes its values in [0; 1] and Ω is bounded, then (p k ) k is a bounded sequence of L 1 (Ω). According to lemma 2.1, we have

∀x ∈ Ω, 1 ≤ g k (x, νp k ).
The integration with respect to

H n-1 Sp k gives H n-1 (Sp k ) ≤ E(p k , g k ).
According to proposition 2.5, we have As g k W 1,r (Ω;Sn(R)) ≤ E(p k , g k ), then (g k ) k is a bounded sequence in W 1,r (Ω; Sn(R)). According to Banach-Alaoglu theorem, there exists a subsequence, still denoted (g k ) k , and g ∈ W 1,r (Ω; Sn(R)) such that (g k ) k weakly converges to g in W 1,r (Ω; Sn(R)). According to proposition 2.1, we have g ∈ W 1,r (Ω; G). Theorem 3.2. The functional E : X → R is lower semicontinuous for the topology T .

Dp k M = H n-1 (Sp k ), so (p k ) k is a
Proof. The lower semicontinuity of the terms p → Ω (pg) 2 dx and g → g W 1,r (Ω) are well known results and the proof can be found for example in [START_REF] Attouch | Variational Analysis in Sobolev and BV spaces[END_REF]. The remaining part of this result is the lowersemicontinuity of (p, g) → Sp g(x, νp)

1 2 dH n-1 .
We first prove the result with g fixed and generalize without this assumption.

First

Step: Let g ∈ W 1,r (Ω; G) be fixed and (p k ) k ⊂ BV(Ω; {0; 1}) which weakly* converges to p ∈ BV(Ω; {0; 1}). Then, we have Sp g(x, νp)

1 2 dH n-1 ≤ lim inf k→∞ Sp k g(x, νp k ) 1 2 dH n-1 .
We define ϕ :

Ω × R n → R as ϕ(x, v) = g(x, v) 1 2 .
As r > n, then we have W 1,r (Ω) ⊂ C(Ω) and then g is continuous. We deduce that ϕ : Ω × R n → R is continuous as well.

According to theorem 2.7, we have

Dp k ≪ H n-1 Sp k , Dp ≪ H n-1 Sp and d(Dp k ) d(H n-1 Sp k ) = νp k 1S p k , d(Dp) d(H n-1 Sp) = νp1S p .
Moreover, ϕ is sublinear with respect to v. According to proposition 2.3, we can conclude the proof of the First Step.

Second

Step: Let (p k , g k ) k ⊂ Y such as (p k ) k weakly* converges to p ∈ BV(Ω; {0; 1}) and (g k ) k weakly converges to g ∈ W 1,r (Ω; G). Then, we have Sp g(x, νp)

1 2 dH n-1 ≤ lim inf k→∞ Sp k g k (x, νp k ) 1 2 dH n-1 .
Lemma 2.1 gives

Sp k g k (x, νp k ) 1 2 -g(x, νp k ) 1 2 dH n-1 ≤ Sp k | (g k x -gx)νp k • νp k | g k (x, νp k ) 1 2 + g(x, νp k ) 1 2 dH n-1 , ≤ sup x∈Ω g k x -gx H n-1 (Sp k ) 2 .
As (p k ) k weakly* converges to p in BV(Ω) theorem 2.5 implies that (H n-1 (Sp k )) k is a bounded sequence. Moreover, (g k ) k weakly converges to g in W 1,r (Ω; Sn(R)) and, according to theorem 2.1, the inclusion W 1,r (Ω; Sn(R)) ⊂ C(Ω; Sn(R)) is compact, it gives that (sup g k xgx ) k converges to 0. So, we have the following limit

(⋆) k = Sp k g k (x, νp k ) 1 2 dH n-1 - Sp k g(x, νp k ) 1 2 dH n-1 → 0, We decompose Sp k g k (x, νp k ) 1 2 dH n-1 = (⋆) k + Sp k g(x, νp k ) 1 2 dH n-1
According to First Step, the lim inf in the previous expression gives Sp g(x, νp)

1 2 dH n-1 ≤ lim inf k→∞ Sp k g k (x, νp k ) 1 2 dH n-1 .
We can now prove the existence of solutions for problem (P) (3.1).

Theorem 3.3. The problem (P) admits at least one solution.

Proof. Let (p k , g k ) k be a minimizing sequence of E. According to theorem 3.1, there exists a subsequence, still denoted (p k , g k ) k which converges to (p, g) ∈ Y for the topology T . According to theorem 3.2, we have

E(p, g) ≤ lim inf k→∞ E(p k , g k ).
As (p k , g k ) k is a minimizing sequence for E, we can conclude that (p, g) is a solution of (P).

Approximation process

In this section we give the main result: we introduce an approximated problem and prove a Γ-convergence result.

Γ-convergence

We want to perform an approximation of the energy E more suitable for numerics applications. We will do that in the sense of the Γ-convergence.

In this section, we give the definition. For more properties on this subject one refer to [START_REF] Maso | An Introduction to Γ-convergence[END_REF]. i) for all sequences (x k ) k converging to x ∈ X , one has

E(x) ≤ lim inf k→∞ E k (x k ), (4.1) 
ii) there exists a sequence (y k ) converging to x ∈ X such that

E(x) ≥ lim sup k→∞ E k (y k ). (4.2) 
When i) and ii) hold for all x ∈ X , we say that

(E k ) k Γ-converges to E in (X , d).
The main interest of the Γ-convergence, in our case, is the following result.

Theorem 4.1. Let (E k ) k be a sequence of functions which Γ-converges to E in (X , d). Let (x k ) k be such that

∀k, E k (x k ) ≤ inf x∈X E k (x) + ε k ,
where ε k > 0 converges to 0. Assume that (x k ) k is relatively compact; then every cluster point x of (x k ) k is a minimizer of E and

lim inf k→∞ E k (x k ) = E(x).

The main theorem

We introduce the functionals spaces for the approximation process.

W 1,2 (Ω; [0; 1]) = p ∈ W 1,2 (Ω) : 0 ≤ p(x) ≤ 1 a.e. x ∈ Ω , Z = W 1,2 (Ω; [0; 1]) × W 1,r (Ω; G).
Let H, F , Fε and Eε be the functions defined on X and with values in [0; +∞] as

H(p, g) = Ω (p -g) 2 dx + g W 1,r (Ω) , F (p, g) = Sp g(x, νp) 1 2 dH n-1 if (p, g) ∈ Y, +∞ otherwise, Fε(p, g) = Ω 9εg(x, ∇p) + p 2 (1-p) 2 ε dx if (p, g) ∈ Z, +∞ otherwise, Eε = H + Fε.
The following property shows that the domain Z ⊂ X is adapted for the approximation process. Proposition 4.1. Let (p k , g k ) k ⊂ Z be a sequence converging to (p, g) ∈ X for the topology T and such that (Eε k (p k , g k )) k is a bounded sequence. Then, we have (p, g) ∈ Y.

Proof. It suffices to prove that p ∈ BV (Ω). According to lemma 2.1, we have

|∇p k | 2 ≤ g k (x, ∇p k ), it gives Ω 9ε k |∇p k | 2 + p 2 k (1 -p k ) 2 ε k dx ≤ Eε k (p k , g k ). (4.3)
We apply the inequality 2ab

≤ a 2 + b 2 with a 2 = 9ε k |∇p k | 2 and b 2 = p 2 k (1-p k ) 2 ε k Ω |∇p k |p k (1 -p k )dx ≤ Eε k (p k , g k ).
The left hand side of the inequality is the total variation of

u k = p 2 k 2 - p 3 k 3 , that is Ω |∇u k |dx ≤ Eε k (p k , g k ).
As the right hand side is a bounded then (u k ) k is a bounded sequence in BV (Ω). According to the theorems 2.4 and 2.5, there exists a subsequence which weakly* converges and almost everywhere to u ∈ BV (Ω). By assumption, (p k ) k converges almost everywhere to p, so by uniqueness of the limit u = p(1p). As p takes its values in {0; 1}, then u = p 6 and p ∈ BV (Ω).

The main result of this work is the following Theorem 4.2. Let (ε k ) k be a sequence converging to 0 + . Then, the sequence (Eε k ) k Γ-converges to E in X for the topology T introduced in 3.1.

This results consists in proving two inequalities (4.1) and (4.2). The first inequality consists in the application of the method introduced in [START_REF] Bouchitté | Singular Perturbations of Variational Problems Arising from a Two-Phase Transition Model[END_REF], while the second is specific to this problem.

The inequality for the lower Γ-limit (4.1)

We now prove the first inequality (4.1). For any (p, g) ∈ X , we denote

E-(p, g) = inf lim inf k→∞ Eε k (p k , g k ) : (p k , g k ) k ⊂ Z, (p k , g k ) T -→ (p, g)
We have to prove that E-≥ E in X . Let (p, g) ∈ X such that E-(p, g) < +∞, several assumptions may be made.

i) We have (p, g) ∈ Y. According to proposition 4.1, E-(p, g) < +∞ gives p ∈ BV (Ω).

ii) There exists a sequence (p k , g k ) k ⊂ Z which converges to (p, g) for T and Eε k (p k , g k ) converges to E-(p, g). Indeed, we can construct such a sequence by a diagonal extraction.

iii

) We have (p k ) k ⊂ C ∞ ∩ W 1,2 ( 
Ω). Indeed, according to Meyers-Serrin theorem, the space C ∞ ∩ W 1,2 (Ω) is dense in W 1,2 (Ω). So, by diagonal extraction we can construct such sequence.

As for the proof of theorem 3.2, we first prove an uniform convergence result for (g k ) k and then we calculate the limit with g fixed.

First

Step: we have

ε k Ω g k (x, ∇p k )dx - Ω g(x, ∇p k )dx → 0.
We have the following inequalities

g k (x, ∇p k ) -g(x, ∇p k ) = (g k x ∇p k ) • ∇p k -(gx∇p k ) • ∇p k , ≤ (g k x -gx)∇p k • ∇p k , ≤ g k x -gx |∇p k | 2 , ≤ sup x∈Ω g k x -gx |∇p k | 2 .
We denote g k -g L ∞ = sup x∈Ω g k x -gx . According to the previous inequalities, we have

ε k Ω g k (x, ∇p k )dx - Ω g(x, ∇p k )dx ≤ g k -g L ∞ ε k Ω |∇p k | 2 dx. (4.4) According to inequality (4.3), the term ε k Ω |∇p k | 2 is uniformely bounded with respect to k. Moreover, (g k ) k weakly converges to g and the inclu- sion W 1,r ⊂ L ∞ is compact. It yields that (g k ) k converges to g in L ∞ .
It concludes the first step of the proof.

Second Step: we have

lim inf k→∞ Fε k (p k , g) ≥ F (p, g).
For any k ≥ 0, the inequality a 2 + b 2 ≥ 2ab gives

Ω 9ε k g(x, ∇p k ) + p 2 k (1 -p k ) 2 ε k dx ≥ Ω 6p k (1 -p k )g(x, ∇p k ) 1 2 dx. Let Φ : Ω × [0; 1] × R n → R + be the function Φ(x, s, v) = 6s(1 -s)g(x, v) 1 2 .
This function is sublinear in v. We denote S k t = {x ∈ Ω : p k (x) < t} Using the proposition 2.4, we can write

Ω 6p k (1 -p k )g(x, ∇p k ) 1 2 dx = R Ω 6t(1 -t)g(x, D1 S k t ) 1 2 .
Applying Fatou lemma and noting that D1S t vanishes when t ∈ [0; 1] gives

lim inf k→∞ Fε k (p k , g k ) ≥ 1 0 6t(1 -t) lim inf k→∞ Ω g(x, D1 S k t ) 1 2 .
As the left hand side of this inequality is finished, for almost every t ∈ [0; 1] we have

lim inf k→∞ Ω g(x, D1 S k t ) 1 2 < +∞. Lemma 2.1 gives Ω |D1 S k t | ≤ Ω g(x, D1 S k t ) 1 2 , so D1 S k t M is bounded; this yields that (1 S k t
) k is weakly relatively compact in BV(Ω). We denote A = {x ∈ Ω : p(x) = 1} and we compare

Ω |p k -p| and Ω |1 S k t -1A|. Ω |p k -p|dx = Ω |p k -1A|dx, ≥ A\S k t |p k -1A|dx + S k t \A |p k -1A|dx, ≥ (1 -t) A\S k t |1 S k t -1A|dx + t S k t \A |1 S k t -1A|dx, ≥ min(t, 1 -t) A△S k t |1 S k t -1A|dx, ≥ min(t, 1 -t) Ω |1 S k t -1A|dx.
For any t ∈]0; 1[, the unique possible limit of (1 We decompose

S k t ) k is 1A. Thanks to proposition 2.3, we have lim inf k→∞ Ω 9ε k g(x, ∇p k ) + p 2 k (1 -p k ) 2 ε k dx ≥ Ω g(x, D1A)
Fε k (p k , g k ) = Fε k (p k , g k ) -Fε k (p k , g) + Fε k (p k , g).
According to the first step, the first term converges to 0 and according to the second step we can conclude that

lim inf k→∞ Fε k (p k , g k ) ≥ F (p, g).

Conclusion

As

Eε k = H + Fε k , it gives lim inf k→∞ Eε k (p k , g k ) ≥ lim inf k→∞ H(p k , g k ) + lim inf k→∞ Fε k (p k , g k ).
According to the third step, we have lim inf Fε k (p k , g k ) ≥ F (p, g). Moreover, as H is lower semicontinuous for the topology of X , we have lim inf H(p k , g k ) ≥ H(p, g). As E = F +H, it finishes the proof of the inequality for the lower Γ-limit.

S p 

[p = 1] [p = 0] V η ❅ ❅ |

The inequality for the higher Γ-limit (4.2)

We may now prove the second part (4.2) of theorem 4.2.

Proof. We set (p, g) ∈ X . If p ∈ BV(Ω) then E(p, g) = +∞. So, we may assume that p belongs to BV(Ω) and takes its values on {0; 1}, otherwise the result is ensured. Let (ε k ) k be a sequence which converges to 0 + . We construct a sequence of functions (p k , g k ) k such that lim sup

k→∞ Eε k (p k , g k ) ≤ E(p, g)
and (p k , g k ) k converges to (p, g) for the topology T . First, we construct it when Sp is a smooth surface and g a smooth vector field. Then, we remove these assumptions and we use approximating results to prove it in the general setting.

First step: we assume that Sp is a compact surface of class C 2 and g ∈ C ∞ ∩ W 1,r (Ω; G) .

In this step, we set g k = g for any k. Moreover, if (p k ) k ⊂ W 1,2 (Ω; [0; 1]) converges a.e. to p, then it converges for the L 1 (Ω) norm and ( (p kg) 2 dx) k converges to (pg) 2 dx. So, it suffices to construct an appropriate sequence (p k ) k which converges a.e. to p and such that lim sup Fε k (p k , g) ≤ F (p, g).

For η > 0, we introduce the following set Vη (see figure 4.1)

Vη = {x ∈ [p = 1] : 0 < dist(x, Sp) < η} .
Outside Vη, we define the function p k as:

∀x ∈ [p = 0], p k (x) = 0, ∀x ∈ [p = 1] \ Vη, p k (x) = 1.
The construction of p k inside Vη will be precised. As we assume that Sp is a compact and of class C 2 surface, there exists η0 > 0 and a C 1diffeomorphism φ : Vη 0 → Sp×]0; η0[ (see [START_REF] Modica | The gradient theory of phase transitions and the minimal interface criterion[END_REF]), caracterized by

∀(ξ, t) ∈ Sp×]0; η0[, φ(ξ + tνp(ξ)) = (ξ, t). S p V η0 ✒ ν p (ξ) r ξ + tν p (ξ) r ξ ❄ ✻ η 0 Figure 4.2: Slicing parametrization of V η0 .
We denote Σ ξ the slice

Σ ξ = {ξ + tνp(ξ) : t ∈ [0; η0]} ,
We shall construct p k slice by slice (see figure 4.2). Indeed, φ : Vη 0 → Sp×]0; η0[ is a diffeomorphism, so it provides a complete construction of p k . We denote by χ k,ξ : [0; η0] → R the restriction of p k to Σ ξ . We introduce K defined on Sp × [0; η0] by

∀(ξ, t) ∈ Sp × [0; η0], K(ξ, t) = g(ξ + tνp(ξ), νp(ξ)) 1 2 .
and χ k,ξ as the solution of the following differential equation

χ k,ξ (0) = 0, 3 √ ε k K(ξ, t)χ ′ k,ξ (t) = 1 ε k | ln(ε k )| + (χ k,ξ (t)) 2 (1-χ k,ξ (t)) 2 ε k 1 2
for t ≥ 0.

For t ≥ 0, we have

χ ′ k,ξ (t) ≥ 1 3K(ξ,t)ε k √ | ln(ε k )| . According to lemma 2.1, we have K(ξ, t) ≤ √ 2. So, there exists a unique η k,ξ > 0 such that χ k,ξ (η k,ξ ) = 1 and it satisfies sup ξ∈Sp η k,ξ ≤ 3 √ 2ε k | ln(ε k )|. ( 4.7) 
As ε k | ln(ε k )| converges to 0, then we can assume that η k,ξ < η0 for any k and ξ ∈ Sp. Thus, we modify the definition of χ k,ξ as the solution of the following equation

     χ k,ξ (0) = 0, 3 √ ε k K(ξ, t)χ ′ k,ξ (t) = 1 ε k | ln(ε k )| + (χ k,ξ (t)) 2 (1-χ k,ξ (t)) 2 ε k 1 2 for t ∈]0; η k,ξ [, χ k,ξ (t) = 1 for t ∈ [η k,ξ ; η0[. (4.8) We denote η k = sup {η k,ξ : ξ ∈ Sp} and we define p k as ∀x ∈ [p = 0] , p k (x) = 0, ∀(ξ, t) ∈ Sp×]0; η0[, p k (ξ + tνp(ξ)) = χ k,ξ (t), ∀x ∈ [p = 1] \ Vη 0 , p k (x) = 1.
(4.9)

According to (4.7), we have η k → 0, it implies p k → p almost everywhere.

With the definitions introduced in (4.8) and (4.9), we have to prove that lim sup Fε k (p k , g) ≤ F (p, g). In the sequel we take n = 3 but the arguments are the same for n = 2. As Sp is a surface with class C 2 , there exists t1 and t2 two functions defined in Sp taking their values in the unit sphere S n-1 and with class C 1 such that, for any ξ ∈ Sp, the vector triplet (t1(ξ), t2(ξ), νp(ξ)) is an orthonormal basis of R 3 (see figure 4.3). ξ q ξ + tν p (ξ)

S p ν p (ξ) t 1 (ξ) t 2 (ξ) q Figure 4.3: Moving basis (t 1 (ξ), t 2 (ξ), ν p (ξ)) at ξ + tν p (ξ).
We need to prove the following lemma.

Lemma 4.1. For any ε > 0, v ∈ R n , x ∈ Ω and ξ ∈ Sp, we have Proof. As g ∈ G, there exists c : Ω → S n-1 such that

g(x, v) ≤ (v • νp) 2 (g(x, νp) + 2ε) + (v • t1) 2 3 + 1 ε + (v • t2) 2 3 + 1 ε , ( 4 
g(x, v) = |v| 2 + (c(x) • v) 2 .
We can decompose

|v| 2 = (v • νp) 2 + (v • t1) 2 + (v • t2) 2 , c(x) • v = (c(x) • νp)(v • νp) + (c(x) • t1)(v • t1) + (c(x) • t2)(v • t2), We denote a = (c(x) • νp)(v • νp), b = (c(x) • t1)(v • t1) and c = (c(x) • t2)(v • t2). Moreover, we have (a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2ac + 2bc, ≤ a 2 + b 2 + c 2 + εa 2 + b 2 ε + εa 2 + c 2 ε + b 2 + c 2 , ≤ (1 + 2ε)a 2 + 2 + 1 ε b 2 + 2 + 1 ε c 2 .
We may introduce (c(x) • t1) 2 ≤ 1, (c(x) • t2) 2 ≤ 1 in the previous inequality, it gives the result of the lemma.

If we apply lemma 4.1 in the definition of Fε k , we get

Fε k (p k , g) ≤ (⋆) k,0 + (⋆) k,1 + (⋆) k,2 , (4.11) 
where

(⋆) k,0 = Vη k 9ε k (∇p k • νp) 2 (g(x, νp) + 2ε k ) + p 2 k (1 -p k ) 2 ε k dx, (4.12) 
(⋆) k,1 = Vη k 9ε k (∇p k • t1) 2 3 + 1 ε k dx, (4.13) 
(⋆) k,2 = Vη k 9ε k (∇p k • t2) 2 3 + 1 ε k dx. (4.14)
We will prove the following assertions lim sup

k→∞ (⋆) k,0 ≤ Sp g(x, νp) 1 2 dH n-1 , lim k→∞ (⋆) k,1 = 0, lim k→∞ (⋆) k,2 = 0.
According to the decomposition (4.11), it is sufficient to conclude the First

Step. Claim 1: We have the following inequality

lim sup k→∞ (⋆) k,0 ≤ Sp g(x, νp) 1 2 dH n-1 . Since • (∇p k • νp) 2 ≤ |∇p k | 2 ,
• |∇p k | 2 ≤ g(x, ∇p k ), according to lemma 2.1, 

• Ω 9ε k g(x, ∇p k )dx ≤ Fε k (p k , g), • Fε k (p k ,
∂p k ∂νp(ξ) (ξ + tνp(ξ)) = χ ′ k,ξ (t).
This yields

∇p k • νp = χ ′ k,ξ .
According to the assumptions of regularity of Sp, as in [START_REF] Modica | The gradient theory of phase transitions and the minimal interface criterion[END_REF], we may introduce the following change of variable:

Sp η 0 0 dt dH 2 (ξ) 2 i=1 (1 -κi(ξ)t) = Vη 0 dx, (4.15) 
where κ1(ξ), κ2(ξ) are the principal curvatures of Sp at ξ. As Sp is a C 2 surface, then κ1 and κ2 are continuous on Sp. We denote

Π(ξ, t) = 1 2 i=1 (1 -κi(ξ)t) . This yields (⋆) k,0 = Sp η k 0 9ε k (∇p k • νp) 2 g(x, νp) + p 2 k (1 -p k ) 2 ε k Π dt dH 2 (ξ), = Sp η k 0 9ε k (χ ′ k,ξ ) 2 K 2 + p 2 k (1 -p k ) 2 ε k Π dt dH 2 (ξ).
In these integrals we remove the dependance variables for the sake of simplicity:

x = ξ + tνp(ξ), νp = νp(ξ), p k = p k (ξ + tνp(ξ)), Π = Π(ξ, t), χ k,ξ = χ k,ξ (t), K = K(ξ, t)
and we set

a = 3 √ ε k Kχ ′ k,ξ , b = χ k,ξ (1 -χ k,ξ ) √ ε k .
With the construction of χ k,ξ in (4.8) we get

a 2 = 1 ε k | ln(ǫ k )| + b 2 so that 0 ≤ b ≤ a on [0; η k ] and
a 2 + b 2 ≤ 2ab + 1 ε k | ln(ǫ k )| . This yields (⋆) k,0 ≤ Sp η k 0 6Kχ ′ k,ξ χ k,ξ (1 -χ k,ξ )Π dt dH 2 (ξ) (⋆) k,3 + Sp η k 0 1 ε k | ln(ǫ k )| Π dt dH 2 (ξ) (⋆) k,4
.

The functions K and Π are uniformly bounded with respect to k in Sp×]0; η0[. We denote M their upper bound. We have the following inequalities

(⋆) k,4 ≤ M S η k 0 1 ε k | ln(ǫ k )| dt dH 2 (ξ), ≤ M H 2 (Sp) η k ε k | ln(ǫ k )| .
According to (4.7), we have

η k ≤ 3 √ 2ε k | ln(ε k )|. This yields (⋆) k,4 ≤ 3 √ 2M H 2 (Sp) √ | ln(ǫ k )|
.

and we have lim k→∞ (⋆) k,4 = 0. We denote

L(ξ, t) = K(ξ, t)Π(ξ, t).
We have the following decomposition

(⋆) k,3 = Sp η k 0 6(L(ξ, t) -L(ξ, 0))χ ′ k,ξ (t)χ k,ξ (t)(1 -χ k,ξ (t))dt dH 2 (ξ) (⋆) k,5 + Sp η k 0 6L(ξ, 0)χ ′ k,ξ (t)χ k,ξ (t)(1 -χ k,ξ (t))dt dH 2 (ξ) (⋆) k,6
, and the following bound

(⋆) k,5 ≤ sup (ξ,t)∈Sp×]0;η k [ (L(ξ, t) -L(ξ, 0)) Sp η k 0 6χ ′ k,ξ (t)χ k,ξ (t)(1 -χ k,ξ (t))dt dH 2 (ξ).
Since χ k,ξ ∈ W 1,2 (]0; η k [), we may use the change of variable s = χ k,ξ (t) to obtain (⋆) k,5 ≤ 6 sup

(ξ,t)∈Sp×]0;η k [ (L(ξ, t) -L(ξ, 0)) Sp χ k,ξ (η k ) χ k,ξ (0) s(1 -s)ds dH 2 (ξ), ≤ sup (ξ,t)∈Sp×]0;η k [ (L(ξ, t) -L(ξ, 0)) H 2 (Sp).
The surface Sp is compact and smooth and the function L is continuous. Then, the family (L(•, t))t>0 uniformly converges to L(•, 0) when t → 0 + . We can deduce that lim k→∞ (⋆) k,5 = 0. Using the same change of variable

s = χ k,ξ (t) in (⋆) k,6 gives (⋆) k,6 = 6 Sp L(ξ, 0) χ k,ξ (η k ) χ k,ξ (0) s(1 -s)ds dH 2 (ξ), = Sp g(ξ, νp(ξ)) 1 2 dH 2 (ξ).
To summarize, we have We prove the result for (⋆) k,1 , the method for (⋆) k,2 is the same. As Sp is a C 2 surface, the intersection of the affine plane P1 = ξ +Vect(t1(ξ), νp(ξ)) and Sp at the neighborhood of ξ ∈ Sp is a C 2 -planar curve. Let I be a neighborhood of 0 in R and γ : I → Sp be a local curvilinear parametrization of this curve such that

       (⋆) k,0 = (⋆) k,4 + (⋆) k,5 + (⋆) k,6 , lim(⋆) k,4 = 0, lim ( 
γ(0) = ξ, γ ′ (0) = t1(ξ), ∀t ∈ I, |γ ′ (t)| = 1.
As νp • γ(s) is orthogonal to γ ′ (s) for all s ∈ I and γ is a planar curve, there exists κ1 :

I → R such that d(νp • γ) ds (s) = -κ1(γ(s))t1(γ(s)).
As γ is a curve of Sp, κ1 is the sectional curvature of Sp in the direction of t1(γ(s)), we have |κ1| ≤ max(|κ1|, |κ2|). We evaluate

χ k,γ(s) (t) -χ k,ξ (t) = p k (γ(s) + tνp(γ(s))) -p k (ξ + tνp(ξ))).
So, we have the following asymptotic developpement at s = 0

γ(s) + tνp(γ(s)) = ξ + tνp(ξ) + s(1 -κ1(ξ)t)t1(ξ) + o(s),
and we get

lim s→0 χ k,γ(s) (t) -χ k,ξ (t) s(1 -κ1(ξ)t) = ∇p k (ξ + tνp(ξ)) • t1(ξ). ( 4 

.16)

We calculate the left hand side of (4.16). We recall the equations satisfied by χ k,γ(s) and χ k,ξ (see figure ??)

(E1) :        χ k,ξ (0) = 0, 3 √ ε k K(ξ, t)χ ′ k,ξ (t) = 1 ε k | ln(ε k )| + (χk,ξ(t)) 2 (1-χk,ξ(t)) 2 ε k 1 2 for t ∈]0; η k,ξ [, χ k,ξ (t) = 1 for t ≥ η k,ξ . (E2) :        χ k,γ(s) (0) = 0, 3 √ ε k K(γ(s), t)χ ′ k,γ(s) (t) = 1 ε k | ln(ε k )| + (χk,γ(s)(t)) 2 (1-χk,γ(s)(t)) 2 ε k 1 2 for t ∈]0; η γ(s),k [, χ k,γ(s) (t) = 1 for t ≥ η γ(s),k . Sp Vη k ✒ ✟ ✟ ✟ ✟ ✟ ✟ ✯ γ(s) νp(ξ) νp(γ(s)) ξ ❄ ✻ η k ✻ ✲ 0 η k η γ(s),k ✲ ✟ ✟ ✟ ✟ ✟ ✟ ✯ ✻ ✲ 0 1 1 η k η k,ξ χ k,γ(s) χ k,ξ We denote f k (x) = 1 ε k | ln(ε k )| + x 2 (1-x) 2 ε k 1 2 and Y k,s (t) = χ k,γ(s) (t) - χ k,ξ (t). We calculate K(ξ,•) K(γ(s),•) (E2)-(E1) and we denote η k,s = min(η γ(s),k , η ξ,k ). It comes Y k,s (0) = 0, 3 √ ε k K(ξ, t)Y ′ k,s (t) = K(ξ,t) K(γ(s),t) f k (χ k,γ(s) (t)) -f k (χ k,ξ (t)) for t ∈]0; η k,s [. Lemma 2.1 gives ∀(ξ, t) ∈ Sp×]0; η k,s [, 1 ≤ K(ξ, t) ≤ √ 2. ( 4 

.17)

As Sp is a C 2 -manifold and g ∈ C ∞ ∩ W 1,r (Ω; G), then K is a C 1 function of class C 1 and there exists a constant τ > 0 such that

∀(ξ, ξ ′ , t) ∈ S 2 p ×]0; η k [, |K(ξ, t) -K(ξ ′ , t)| ≤ τ |ξ -ξ ′ | (4.18)
Moreover, the study of

f k gives ∀x ∈ [0; 1], f k (x) ≤ 1 ε k | ln(ε k )| + 1 16ε k 1 2 |f ′ k (x)| ≤ 1 √ ε k . (4.19) With 3 √ ε k K(ξ, t)Y ′ k,s (t) = K(ξ, t) K(γ(s), t) f k (χ k,γ(s) (t)) -f k (χ k,ξ (t)), = K(ξ, t) K(γ(s), t) (f k (χ k,γ(s) (t)) -f k (χ k,ξ (t))) +f k (χ k,ξ (t)) K(ξ, t) -K(γ(s), t) K(γ(s), t)
and (4.17), (4.18), (4.19), we get

3 √ ε k Y ′ k,s (t) ≤ √ 2 √ ε k Y k,s (t) + τ s 1 ε k | ln(ε k )| + 1 16ε k . Thus, Y k,s is a solution of the following differential inequation Y k,s (0) = 0, Y ′ k,s (t) ≤ √ 2 3ε k Y k,s (t) + τ s 3ε k 1 | ln(ε k )| + 1 16 for t ∈]0; η k,s [. (4.20) So, we have Y k,s (t) ≤ τ s √ 2 1 | ln(ε k )| + 1 16 exp √ 2t 3ε k -1 . (4.21)
The definition of Y k,s gives

Y k,s (t) -Y k,0 (t) s = χ k,γ(s) (t) -χ k,ξ (t) s ,
and inequality (4.21) implies

∀t ∈]0; η k,s [, χ k,γ(s) (t) -χ k,ξ (t) s ≤ τ √ 2 1 | ln(ε k )| + 1 16 exp √ 2t 3ε k - 1 . 
(4.22) According to the continuous dependance of the solution of the equation (4.20) with respect to the parameter s, then η k,s converges to η k,ξ when s converges to 0. So, the inequality (4.22) remains true in the neighborhood of any point t ∈]0; η k,ξ [. With k, ξ and t ∈]0; η k,ξ [ fixed, we calculate the limit when s converges to 0, and we apply equality (4.16)

(1-κ1(ξ)t)∇p k (ξ+tνp(ξ))•t1(ξ) ≤ τ √ 2 1 | ln(ε k )| + 1 16 exp √ 2t 3ε k -1 .
As η k → 0 and κ1 is continuous, there exists r > 0 such that

∀(ξ, t) ∈ Sp×]0; η k [, r < (1 -κ1(ξ)t).
This gives 

(∇p k (ξ + tνp(ξ)) • t1(ξ)) 2 ≤ τ 2 2r 2 1 | ln(ε k )| + 1 16 exp √ 2t 3ε k -1 2 . ( 4 
(∇p k (ξ + tνp(ξ)) • t1(ξ)) 2 ≤ M exp 2 √ 2t 3ε k + M. As 2 √ 2 3 ≤ 1, we have (∇p k (ξ + tνp(ξ)) • t1(ξ)) 2 ≤ M exp t ε k + M. (4.24)
Introducing (4.24) in the definition of (⋆) 1,k (4.12) gives

(⋆) 1,k ≤ Sp η k 0 9ε k M exp t ε k + M 3 + 1 ε k Π(ξ, t)dt dH 2 (ξ),
As η k → 0, the function Π is bounded and there exists a positive constant, still denoted M , such that

(⋆) 1,k ≤ Sp η k 0 ε k M exp t ε k + M M 3 + 1 ε k dt dH 2 (ξ).
Thus, we have

(⋆) 1,k ≤ ε 2 k exp η k ε k -1 + ε k η k 3 + 1 ε k M 2 H 2 (Sp).
According to (4.7)

η k ≤ 3 √ 2ε k | ln(ε k )|, so, that (⋆) 1,k ≤ ε 2 k exp 3 √ 2 | ln(ε k )| -1 + 3 √ 2ε 2 k | ln(ε k )| 3 + 1 ε k M 2 H 2 (Sp), (⋆) 1,k ≤ ε k exp 3 √ 2 | ln(ε k )| -ε k + 3 √ 2ε k | ln(ε k )| (1 + 3ε k )M 2 H 2 (Sp), (⋆) 1,k ≤ exp 3 √ 2 | ln(ε k )| + ln(ε k ) -ε k + 3 √ 2ε k | ln(ε k )| M 2 H 2 (Sp).
As

ε k → 0 + we have exp 3 √ 2 | ln(ε k )| + ln(ε k ) → 0 + , ε k | ln(ε k )| → 0 + .
We can conclude that (⋆) 1,k → 0.

Second step: Assume that p ∈ BV(Ω), p takes its values in {0; 1} and g ∈ C ∞ ∩ W 1,r (Ω; G) .

In this step, we still we set g k = g for any k. For the same reason than in the previous step, it suffices to construct an appropriate sequence (p k ) k which converges a.e. to p and such that lim sup Fε k (p k , g) ≤ F (p, g).

We denote A = p -1 ({1}). Let us first assume that A and Ω \ A have nonempty interior. We can apply lemma 2. In this step we do not assume that (g k ) k is a constant sequence. Let (g l ) l as in proposition 2.2. As g l ∈ C ∞ ∩ W 1,r u (Ω), one apply the Second step of the proof, it gives lim sup k→∞ Fε k (p k , g l ) ≤ F (p, g l ).

We have the following inequalities 

5 Conclusion

We have proved that the approximation process is suitable in the sense of Γ-convergence. We next use the approximated problem for numerical experimentation. The computation of p is done via a classical gradient descent method, while another strategy has to be developed for g: this will be adressed in a future work.

On the other hand, the main hypothesis we did in this paper is the bimodality of histogram: this is quite restrictive for numerics. If this assumption is not ensured the previous model is not valid any longer and has to be modified: we will set a more general formulation that perfoms a similar segmentation without the binary constraint. Roughly speaking, we look for a pair (f, g) where f : Ω → [0; 1] is a function (not necessarily binary) and g a riemannian metric. The corresponding energy to be minimized is :

Ω (f -g) 2 + β S f g(x, ν f ) 1 2 dH n-1 + γ g W 1,r (Ω) + ρ Ω\S f |∇f | 2 .
(5.1)

Figure 1 . 1 :

 11 Figure 1.1: Mouse brain angiography and thresholding at 80% of the maximum intensity

Figure 1 . 2 :

 12 Figure 1.2: Decomposition of I

Figure 1 . 3 :

 13 Figure 1.3: A field c tangent to the edge of a tube T ℓ,α .

Figure 1 . 4 :

 14 Figure 1.4: A tube T ℓ,α and c in the direction of the tube.

Figure 1 . 5 :

 15 Figure 1.5: At left, c minimizes the action, at right, the regularization We make the homothetic change of variable between Bα and B1, a ball of radius 1. We denote c1 = c(α•). It gives: βµAction(∂Bα, c) + γReg(c) = βµα n-1 Action(∂B1, c1) + γα n-r Reg(c1).

Lemma 2 . 2 .

 22 Let Ω be an open, bounded subset of R n with Lipschitz continuous boundary, and let A be a measurable subset of Ω. If A and Ω \ A both contain a non-empty open ball, then there exists a sequence (A k ) k of open bounded subsets of R n with smooth boundaries such that i)

  and (4.6) give the result of the Second Step. Third Step: we have lim inf k→∞ Fε k (p k , g k ) ≥ F (p, g).

Figure 4 . 1 :

 41 Figure 4.1: Partition of Ω in three domains: [p = 0], [p = 1] \ V η and V η .

. 10 )

 10 where νp, t1 and t2 depends on ξ.

1 2

 1 ⋆) k,5 = 0, (⋆) k,6 = Sp g ξ (νp(ξ), νp(ξ)) dH 2 (ξ), which conclude the proof of Claim 1. Claim 2: We have the following limits lim k→∞ (⋆) k,1 = 0, lim k→∞ (⋆) k,2 = 0.

.23) As 1 |

 1 ln(ε k )| → 0, there exists M > 0 such that (4.23) becomes

F

  2. So, there exists a sequence (A l ) l of open bounded subsets of R n with smooth boundaries such that i)lim l→∞ L n ((A l ∩ Ω) △ A) = 0, lim l→∞ H n-1 (∂A l ) = H n-1 (∂A); ii) L n (A l ∩ Ω) = L n (A) for l large enough; iii) H n-1 (∂A l ∩ ∂Ω) = 0 for l large enough; iv) (p l , g) ≤ F (p, g) + 1 l , (4.25) where L n is the Lebesgue measure over Ω and p l = 1 A l ∩Ω . For (4.25) we use the fact that D1A l M → D1A M and proposition 2.3 ii). With i), ii) and iii), we can say that (p l ) l is a bounded sequence of BV(Ω) which converges to p in L 1 (Ω). According to theorem ??, there exists a subsequence, still denoted (p l ) l which weakly* converges to p in BV(Ω). One can apply the result of the first step with p = p l . So, there exists a sequence (p l,k ) k which weakly* converges to p l in BV(Ω) such that lim sup k→∞ Fε k (p k,l , g) ≤ F (p l , g). (4.26) With (4.25), (4.26) and a diagonal extraction there exists a sequence (p k ) k which weakly* converges to p such that lim sup k→∞ Fε k (p k , g) ≤ F (p, g).Let us remove the restriction that both A or Ω\A have non empty interior. First, we notice that if L n (A) = 0 or L n (A) = Ω the result is obvious by taking for all l, A l = ∅ or A l = Ω. So, we may assume that 0 < L n (A) < |Ω|. There exists two points x1, x2 such that• x1 ∈ A and ∀r > 0, L n (A ∩ B(x1, r)) > 0, • x2 ∈ Ω \ A and ∀r > 0, L n ((Ω \ A) ∩ B(x1, r)) > 0. Consider the set A θ 1 ,θ 2 = (A ∪ B(x2, θ2)) \ B(x1, θ1) and the function Υ(θ1, θ2) = L n (A θ 1 ,θ 2 ). As Υ(0, θ) > L n (A) and Υ(θ, 0) < L n (A) for any θ > 0, there exists t ∈]0; 1[ depending on θ such that Υ(tθ, (1 -t)θ) = L n (A).By construction, A θ and Ω \ A θ have nonempty interior. The previous result gives the existence of (p θ,k ) k ⊂ BV(Ω; {0; 1}) which weakly* converges to p θ = 1A θ in BV(Ω) such that lim sup k→∞ Fε k (p θ,k , g) ≤ F (p θ , g). (4.27) Moreover, L n (A △ A θ ) tends to 0 as θ → 0 + , and, using Sp θ g(x, νp θ ) 2H n-1 (∂B(x1, θ1)) ∪ ∂B(x2, θ2)), we get lim sup θ→0 + F (p θ , g) ≤ F (p, g). According to (4.27), with a diagonal extraction there exists a sequence (p k ) k which weakly* converges to p such that lim sup k→∞ Fε k (p k , g) ≤ F (p, g). Last step: Assume that p ∈ BV(Ω; {0; 1}) and g ∈ W 1,r (Ω; G) .

1 2 1 2 1 2

 111 |F (p, g l ) -F (p, g)| ≤ Sp |g l (x, νp) g(x, νp) |dH n-1 , ≤ Sp | (g l xgx)νp • νp| g l (x, νp) + g(x, νp)

  So, we deduce that (F (p, g l )) l converges to F (p, g). With a diagonal extraction, we can conclude that there exists (p k , g k ) k ⊂ Y which converges for the topology T to (p, g) such that lim sup As (p k ) k converges pointwise to p then ( Ω (p kg) 2 dx) k converges to Ω (pg) 2 dx. Moreover, by construction ( g k W 1,r ) k converges to g W 1,r .

				2 1	dH n-1 ,
	≤	g l -g L ∞	H n-1 (Sp) 2	.
	We conclude that			
	lim sup			

k→∞ Fε k (p k , g k ) ≤ F (p, g). k→∞ Eε k (p k , ) ≤ E(p, g).

The left image in Figure1.1 is a planar projection of a 3-D image, the right image is the result of the manual segmentation with thresholding at

We may consider x → gx, from Ω to G1,n(R), as a continuous function of manifolds.