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Abstract

This work is a contribution to the problem of detection of thin struc-
tures, namely tubes, in a 2D or 3D image. We introduce a bimodal model
for the case where the histogram of the image has two main modes. This
model involves an energy functional depending on a function and a rie-
mannian metric. One of the term of this energy is the anisotropic perime-
ter associated to the dual metric. We perform an approximation of this
functional and prove it Γ-converges to the original one.

Introduction

Let n be the dimension and Ω ⊂ R
n be a domain. Let g : Ω → [0; 1] be an

image with two modes 0 and 1. The analysis will consist in searching a pair
(p, g), where p : Ω → {0, 1} is a binary function and g : Ω×R

n → [0; +∞[
a riemannian metric which minimizes the functional

E(p, g) =

∫

Ω

(p − g)2dx + β

∫

Sp

g(x, νp)
1
2 dHn−1 + γ‖g‖W 1,r(Ω),

where Sp is the jump set of p, νp is a normal unitary vector to Sp and
Hn−1 is the (n − 1)-dimensional Hausdorff measure. By assumption, for
any x ∈ Ω, the function g(x, ·) is a scalar product. So, we may associate
a unique symmetric matrix denoted gx ∈ Sn(R). In this way, the last
term of E is the norm of the function x → gx in the Sobolev space
W 1,r(Ω; Sn(R)), the exponent r will be precised later. The parameters
β and γ are weights to determine. In order to detect thin tubes, the
riemannian metric g must belong to a suitable subset G ⊂ Sn(R). More
precisely, any g ∈ G must take the form

∀x ∈ Ω, gx = Idn + µ t
c(x)c(x),

where c : Ω → R
n is an unitary vector field. The parameter µ is the

thickness of the tubes.
In [1], it is proved that the second term of this functional is the anisotropic
perimeter associated to the dual metric. So, with g fixed, this functional
inherits a lower semi-continuity property and it can be approximated in
the sense of the Γ-convergence by an adapted family of functionals. We
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generalize this work to the case where g is also an unknown and takes the
form defined above. More precisely, we introduce the following functional

Eε(p, g) =

∫

Ω

(p − g)2dx+β

∫

Ω

[

9εg(x, ∇p) +
p2(1 − p)2

ε

]

dx+γ‖g‖W 1,r(Ω),

with p : Ω → [0; 1] a regular function. We prove that (Eε)ε>0 is an
approximation of E when ε converges to 0+.
In section 1, we introduce the problem with the practical motivations and
we give for the parameters β, γ, µ a geometrical interpretation. In section
2, we recall some classical results and introduce the functional framework.
Section 3 is devoted to the existence result of the minimizing problem. In
section 4, we introduce the approximation process and prove the main
result: the family (Eε)ε>0 Γ-converges to E.

1 Presentation of the model

In what follows, n represents the spatial dimension of the image: n = 2
for planar images and n = 3 for 3-D images. We adopt the list of symbols:

• x a scalar in R,

• x · y the usual scalar product of Rn,

• |x| =
√

x · x the euclidean norm of Rn,

• S
n−1 the unit sphere of Rn,

• Br(x) the ball of Rn with center x and radius r ≥ 0,

• ‖A‖ a generic matricial norm in the space of n × n matrices,

• sp(A) the eigenvalues of A counted with their multiplicities.

1.1 Motivation

For the study of some diseases, it is interesting to focus on the blood status
in a vessel network, especially on the volume of its microvasculature. To
assess this, in vivo mice brain angiography is performed. This is based on
the injection of a contrast medium and a MRI imaging process.

Figure 1.1: Mouse brain angiography and thresholding at 80% of the maximum
intensity

The left image in Figure 1.1 is a planar projection of a 3-D image, the
right image is the result of the manual segmentation with thresholding at
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a level equal to 80% of the maximum intensity. The aim is to construct
an automatic method to segment the network area corresponding to the
blood while removing noise.

1.2 Geometric characterization of the problem

We give an heuristic way to introduce and motivate the model. We first
present an isotropic model and show that it is not suitable for our problem.
Then, we introduce an anisotropic term.

Let Ω ⊂ R
n be the domain of the image. We consider the following

segmentation problem. Let α > 0 be the critical level of detection: if
a set is with diameter lower than α then it is considered as noise and
has to be removed. Let Γ ⊂ Ω be a curve with length ℓ such that α is
negligible compared with ℓ. We set Tℓ,α the tubular neighborhood of Γ of
the points of Ω at distance lower than α of Γ. Although the section of Tℓ,α

is critical we want to detect it because of its specific geometry. We set Bα

a ball with radius α, it is considered as noise not because it has a critical
diameter but because it has not the appropriate geometry of tubes.

Let I ⊂ Ω be a generic set and we assume that we have the following
disjoint decomposition (see figure 1.2)

I = Tℓ,α ∪ Bα

Tℓ,α

Bα

Figure 1.2: Decomposition of I

The segmentation problem consists in combining two constraints. The
first one is to remove Bα type sets, because they have small radius and
no tubular geometry. The second one is to detect the tubes Tℓ,α.

For that, we purpose an energy functional E defined on the sets of Ω.
We say that a set F is a better segmentation than the set G if E(F ) < E(G).
The functional E is adapted to the problem if it satisfies the following
conditions:

i) E(I \ Bα) < E(I),

ii) E(I) < E(I \ Tℓ,α).

Condition i) imply that removing Bα provides a better segmentation
than keeping it. Condition ii) implies that detecting Tℓ,α gives a better
segmentation than removing it.

We first consider an isotropic functional E defined on the subsets of Ω
as:

E(F ) = Voln(F △ I) + βVoln−1(∂F ),

where Voln and Voln−1 are respectively the volumes measure with dimen-
sion n and n − 1, F △ I the symmetric difference of the sets F and I, the
topological boundary of a set F is denoted ∂F . The parameter β > 0 is
a weight to tune. Many works have been devoted to this particular case.
Let us mention contributions from Morel and Solimini [2]. We show that
this model can not satisfy the constraints we imposed to our problem.
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As Tℓ,α and Bα are disjoints, condition i) is equivalent to

Voln(Bα) < βVoln−1(∂Bα). (1.1)

The sets which minimize the ratio Voln/Voln−1 are prefered by this energy.
It is well known that, with the diameter fixed, the sets which minimize
this ratio are the balls. Thus, if the inequality (1.1) is ensured, then
any set with diameter lower than α is removed. Taking the equivalences
Voln(Bα) ∼ αn and Voln−1(∂Bα) ∼ αn−1, this condition gives

α < β. (1.2)

Condition ii) is equivalent to

βVoln−1(∂Tℓ,α) < Voln(Tℓ,α).

Taking the equivalences Voln(Tℓ,α) ∼ ℓαn−1 and Voln−1(Tℓ,α) ∼ ℓαn−2,
this condition gives

β < α. (1.3)

Thus, conditions (1.2) and (1.3) are contradictious. Such a model is not
adapted to this problem.

1.3 An anisotropic model

We rather introduce an energy term that involves a preference to sets
having a direction, that is anisotropic sets. Let c : Ω −→ S

n−1 be an
unknown and unitary vector field that represents a direction in each point
of the image.

Let x ∈ ∂F and νF (x) be a unit normal vector of the surface ∂F at x.
We say that |c(x) · νF (x)| is the action of the vector field c on ∂F at x.
This term is zero if the field is tangent to the surface and it is maximum
if it is orthogonal to the surface. We introduce the total action of c on
∂F :

Action(F, c) =

∫

∂F

|c · νF |dVoln−1.

As α ≪ ℓ, a field which minimizes the action of c on ∂Tℓ,α has to be
tangent to ∂Tℓ,α along the tube (see figure 1.3).

∂Tℓ,αc

�✒νTℓ,α

Figure 1.3: A field c tangent to the edge of a tube Tℓ,α.

Moreover, we introduce a regularization term defined on the vector
field as

Reg(c) =

∫

Ω

‖Dc‖rdVoln,
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where ‖ · ‖ is a pointwise matricial norm and we fix r > n (not necessary
an integer) to ensure that the field is regular. Indeed, if r > n and∫

Ω
‖Dc‖r < ∞ then c is continuous. The new expression of the energy is

E(F, c) = Voln(F △ A) + β
[
Voln−1(∂F ) + µAction(∂F, c)

]

︸ ︷︷ ︸

anisotropic term

+γReg(c),

(1.4)
where β, µ and γ are, as before, weights to tune. We have to verify the
conditions i) and ii) of 1.2. We assume that Tℓ,α is a linear and rigid tube
of length ℓ and section α. Obviously, the best choice of c is to choose it
in the direction of the tube. Indeed, the action of the field on the tube is
zero outside the two ends of the tube and the regularization is zero (see
figure 1.4).

c

Tℓ,α

Figure 1.4: A tube Tℓ,α and c in the direction of the tube.

Using the following equivalences:

Voln−1(Tℓ,α) ∼ ℓαn−1, Voln−1(Tℓ,α) ∼ ℓαn−2, Action(∂Tℓ,α, c) ∼ αn−1.

Condition ii) is equivalent to

β(ℓαn−2 + µαn−1) < ℓαn−1. (1.5)

For a ball Bα, the field c has to realize a compromise between its
action on ∂Bα and its regularization (see figure 1.5).

c

Bα

c

Bα

Figure 1.5: At left, c minimizes the action, at right, the regularization

We make the homothetic change of variable between Bα and B1, a
ball of radius 1. We denote c1 = c(α·). It gives:

βµAction(∂Bα, c) + γReg(c) = βµαn−1Action(∂B1, c1) + γαn−rReg(c1).
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As α is small and r > n, then if µ ∼ γ the parameter µαn−1 is negligible
with respect to γαn−r. As a conclusion, the regularization is more impor-
tant than the action for balls with small radius α. The best choice for c

is a constant field. In this case the regularization is zero and the action is
equal to the action on the tube with the same section. Then, condition i)
is equivalent to

αn < β(αn−1 + µαn−1). (1.6)

The two conditions (1.5) and (1.6) are not contradictious anymore when
α is small and α ≪ ℓ. For example, we can take

{
β = α

2
,

µ < ℓ
α

,
γ = µ.

1.4 Functional formulation

In the sequel, we are formulating min E (1.4) as a minimization problem
of functions by connecting sets and functions via indicator functions. We
define an image as a function g : Ω → [0; 1]. We assume that the domain
Ω ⊂ R

n is Lipschitz-regular. The fondamental assumption of this model
is that the histogram distribution of the image contains two main modes
that we assume to be 0 and 1. Equivalently, g is almost equal to an
indicator function. The unknown is a pair (p, c) where p : Ω → {0; 1}
is a binary function and c : Ω → S

n−1 is an unitary vector field which
minimizes the energy

∫

Ω

(p − g)2dx + β

[

Hn−1(Sp) + µ

∫

Sp

|c · νp| dHn−1

]

+ γ

∫

Ω

‖Dc‖rdx,

(1.7)
where dx is the integration with respect to the n-dimensional Lebesgue
measure, Sp is the jump set of p, νp : Sp → S

n−1 is a normal unit vector
of Sp and dHn−1 is the integration with respect to the (n−1)-dimensional
Hausdorff measure. We can rewrite the functional defined in (1.7) as

∫

Ω

(p − g)2 + β

∫

Sp

(1 + µ|c · νp|) dHn−1 + γ

∫

Ω

‖Dc‖r. (1.8)

The second term of (1.8) corresponds to the anisotropic perimeter of Sp

according to the metric φ : Ω × R
n → [0; +∞[ defined as

φ(x, v) = |v| + µ|c(x) · v|.

For more convenience in calculus, we will adopt the equivalent quadratic
form

∫

Ω

(p − g)2 + β

∫

Sp

√

1 + µ2(c · νp)2 dHn−1 + γ

∫

Ω

‖Dc‖r. (1.9)

It has an obvious invariance. Indeed, let σ : Ω → {−1; 1} be an arbitrary
function, the functional (1.8) takes the same value for c and σc. This
invariance may generate numerical instability in the numerics. To remove
it, we replace the unknown vector field c by a riemannian metric which
takes the form

g(x, v) = |v|2 + µ2 (c(x) · v)2.
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We introduce the definitive version of the functional as

E(p, g) =

∫

Ω

(p − g)2 + β

∫

Sp

g(x, νp)
1
2 dHn−1 + γ‖g‖W 1,r(Ω). (1.10)

In [1], it is proved that
∫

Sp
g(x, νp)

1
2 dHn−1 is the anisotropic perimeter

associated to the dual metric denoted g0. We can explicitly calculate this
metric

g
0(x, v) = |v|2 − µ2

1 + µ2
(c(x) · v)2.

The unit ball for this metric is an elongated ellipsoid in the direction of
c(x).

c(x)

√

1 + µ2

1

For this metric, the points in direction of c(x) are closer of x for the
dual metric, than the points in the orthogonal directions. The ratio of the
elongation is equal to

√

1 + µ2.

2 Functional framework

2.1 Sobolev spaces

We denote W 1,2(Ω; [0; 1]) the set of functions p which belong to the clas-
sical Sobolev space W 1,2(Ω) such as p(x) ∈ [0; 1] a.e. x ∈ Ω.
Let Sn(R) be the space of n×n symmetric matrices. As Sn(R) is a vecto-
rial space with finite dimension (n(n + 1)/2), we may define the Sobolev
space W 1,r(Ω; Sn(R)). For any riemannian metric g : Ω × R

n → [0; +∞[,
we denote gx ∈ Sn(R) the symmetric matrix at point x ∈ Ω, that is

∀(x, v) ∈ Ω × R
n, g(x, v) = (gxv) · v.

Let G be the subset of Sn(R) defined by

G = {Idn + tcc : c ∈ S
n−1}.

Obviously, any matrix which belongs to G is symmetric definite positive,
so any function defined in Ω and taking its values in G may be consid-
ered as a riemannian metric. We denote W 1,r(Ω; G) the set of function
g ∈ W 1,r(Ω; Sn(R)) such as, for almost every x ∈ Ω, we have gx ∈ G.

The coefficient r is determined according to the following classical
theorem (see [3], for example).

Theorem 2.1. Let C(Ω; Sn(R)) be the space of continuous functions de-
fined on Ω taking their values in Sn(R) endowed with the L∞ norm. Let
r > n and consider the Sobolev space W 1,r(Ω; Sn(R)), then the following
compact embedding result holds

W 1,r(Ω; Sn(R)) →֒ C(Ω; Sn(R)).
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The assumption r > n is motivated by the regularity of the metric and
by what follows.

Proposition 2.1. If r > n, then W 1,r(Ω; G) is closed in W 1,r(Ω; Sn(R))
for the weak topology associated to the Sobolev norm.

To prove this proposition, we need the following lemma which will be
useful throughout the article.

Lemma 2.1. For G ∈ Sn(R), we have

i) G ∈ G ⇒ ∀v ∈ R
n, |v|2 ≤ (Gv) · v ≤ 2|v|2,

ii) G ∈ G ⇔ sp(G) = {1; 1; 2}.

Proof. If G ∈ G then there exists c ∈ S
n−1 such as G = Idn + tcc and

Cauchy–Schwarz inequality gives |v|2 ≤ (Gv) · v ≤ 2|v|2. Moreover, c is
an eigenvector associated with the eigenvalue 2 and the restriction of G
to {c}⊥ is the identity. So, we have sp(G) = {1; 1; 2}.
Conversely, we assume that sp(G) = {1; 1; 2}. Let c be the unitary eigen-
vector associated to the eigenvalue 2. As G is symmetric then {c}⊥ is
stable by G and necessary its restriction is the identity. We can conclude
that G = Idn + tcc.

Now, we can prove the proposition 2.1.

Proof. Let (gk)k ⊂ W 1,r(Ω; G) be a Cauchy sequence for the weak topol-
ogy associated to W 1,r(Ω; Sn(R)). As r > n, the following inclusion is
compact

W 1,r(Ω; Sn(R)) ⊂ C(Ω; Sn(R)).

So, (gk)k is also a Cauchy sequence for the L∞(Ω; Mn(R)) norm. So, for
x ∈ Ω fixed, the sequence (gk

x)k converges to a matrix gx. As the two
characterizations of the lemma 2.1 are stable under the limit, then gx

verifies this two conditions. This proves that g ∈ G and then W 1,r(Ω; G)
is closed in W 1,r(Ω; Mn(R)).

For the need of many proofs, we need a density result for smooth
functions. We recall the classical result (see [3]).

Theorem 2.2. If 1 ≤ r′ < +∞, then C∞ ∩W 1,r′

(Ω) is dense in W 1,r′

(Ω)

for the strong topology of W 1,r′

(Ω).

In our particular case, we need the following result.

Proposition 2.2. The space C∞ ∩ W 1,r(Ω; G) is dense in W 1,r(Ω; G) for
the strong topology of W 1,r(Ω; Sn(R)).

Proof. We give the outline of the proof which is quite abroad our subject.

1. For G ∈ G, we can associate a unique vector space D ⊂ R
n with

dimension 1 which corresponds to the eigenspace associated to the
eigenvalue 2.

2. The set of 1 dimensional space of Rn is a smooth and compact man-
ifold called the Grassmanian G1,n(R).

3. G1,n(R) and {Id + tcc : c ∈ S
n−1} are compact C∞ diffeomorphic

manifolds.

4. We may consider x → gx, from Ω to G1,n(R), as a continuous func-
tion of manifolds.
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5. Using an atlas of the manifold G1,n(R) and a smooth partition of
unity, we may apply Meyers-Serrin theorem to the previous function
in each map of the atlas.

2.2 Measure theory

Let Cc(Ω;Rn) be the space of continuous functions with compact support
in Ω and taking their values in R

n. We denote C0(Ω;Rn) the closure in
the sup norm of Cc(Ω;Rn). Let M(Ω) be the space of Radon measures
and M(Ω;Rn) be the space of vectorial Radon measures over Ω. For
λ ∈ M(Ω;Rn), we denote

‖λ‖M(Ω;Rn) = sup

{∫

Ω

ϕ · dλ : ϕ ∈ Cc(Ω;Rn), ‖ϕ‖L∞ ≤ 1

}

.

This application is a norm and M(Ω;Rn) is a Banach space. This topology
is quite restrictive in our case, we introduce a weaker topology.

Definition 2.1. Let λ ∈ M(Ω;Rn), the sequence (λk)k ⊂ M(Ω;Rn)
weakly* converges to λ if

lim
k

∫

Ω

ϕ · dλk =

∫

Ω

ϕ · dλ

for every ϕ ∈ C0(Ω;Rn).

Endowed of this topology, the space M(Ω;Rn) satisfies a compactness
property.

Theorem 2.3. If (λk)k ⊂ M(Ω;Rn) is a bounded sequence for the topol-
ogy of the norm, then it has a weakly* converging subsequence. Moreover,
the norm is lower semicontinuous with respect to the weak* convergence.

Let ϕ : Ω × R
n → R

+ be a sublinear function with respect to the
second variable, that is:

i)

∀(x, v1, v2) ∈ Ω ×R
n ×R

n, ϕ(x, v1 + v2) ≤ ϕ(x, v1) + ϕ(x, v2),

ii)
∀(x, v, t) ∈ Ω × R

n × R
+, ϕ(x, tv) = tϕ(x, v).

Suppose that θ is a Radon measure and λ is a vectorial Radon measure
on Ω. According to Besicovitch derivation theorem (see [4])

lim
r→0

λ(Br(x))

θ(Br(x))

exists and is finite for θ almost every x, we denote by dλ

dθ
(x) this limit

when it exists. We recall that λ is absolutely continuous with respect to
θ if λ(A) = 0 whenever θ(A) = 0. When this holds, we write λ ≪ θ. We
consider the convex functional defined on the space M(Ω;Rn) by

Φ : λ ∈ M(Ω;Rn) 7→
∫

Ω

ϕ
(

x,
dλ

dθ

)

dθ (2.1)
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where θ is a positive measure such that λ ≪ θ. It is shown in [5] that the
integral in (2.1) does not depend on the choice of θ. For that reason, we
will write it in the condensed form

Φ(λ) =

∫

Ω

ϕ (x, λ).

The functional Φ has the following continuity properties which are proved
in [6].

Proposition 2.3. i) If ϕ is a lower semicontinuous on Ω × R
n, then

Φ is lower semicontinuous on M(Ω;Rn) for the topology introduced
in 2.1.

ii) Assume that ϕ is continuous on Ω×R
n. If (λk)k weakly converges to

λ and if, moreover,
∫

Ω
|λk| →

∫

Ω
|λ|, then Φ(λk) converges to Φ(λ).

We give a variant of the coarea formula extended to the sublinear
functionals which can be found in [7].

Proposition 2.4. Let Φ(x, s, v) a Borel function of Ω ×R×R
n which is

sublinear in v. Let p be a Lipschitz continuous function on Ω and denote,
for t > 0, St = {x ∈ Ω; p(x) < t}. Then, for almost all t ∈ R, St belongs
to BV(Ω) and we have

∫

Ω

Φ(x, p, Dp)dx =

∫

R

dt

∫

Ω

Φ(x, t, D1St ).

2.3 Functions with bounded variation

A function u ∈ L1(Ω) is said to be with bounded variation if

sup

{∫

Ω

udiv(ϕ) : ϕ ∈ C1
0(Ω;Rn), ‖ϕ‖L∞ ≤ 1

}

< +∞.

We denote T V (u) this upper bound and BV(Ω) the set of such functions.
The space BV(Ω), equipped with the following norm

‖u‖BV (Ω) = ‖u‖L1(Ω) + T V (u)

is a Banach space. According to Riesz representation theorem, if u ∈
BV (Ω) then Du ∈ M(Ω;Rn). The topology of the norm in BV (Ω) is
quite restrictive in our case, we consider a weaker one.

Definition 2.2. A sequence (uk)k ⊂ BV (Ω) weakly* converges to u ∈
BV (Ω) if (uk)k converges to u in L1(Ω) and Duk weakly* converges to
Du in M(Ω;Rn).

The space BV (Ω) satisfies a compactness result for the weak* conver-
gence.

Theorem 2.4. If (uk)k ⊂ BV (Ω) is a bounded sequence for the topology
of the norm, then it has a weakly* converging subsequence.

A criterium for weak* convergence is stated in the following theorem.

Theorem 2.5. Let (uk)k be a sequence of BV(Ω). Then (uk)k weakly*
converges to u ∈ BV (Ω) if and only if (uk)k is bounded in BV (Ω) and
converges to u in L1(Ω).
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2.4 Sets with finite perimeter

The following terminology is introduced in [8].

Definition 2.3. Let A ⊂ Ω be a measurable set. A point x ∈ Ω belongs
to measure theoretic boundary of A if

lim sup
r→0+

Ln(B(x, r) ∩ A)

rn
> 0,

and

lim inf
r→0+

Ln(B(x, r) \ A)

rn
> 0.

We denote ∂∗A the measure theoretic boundary of A .

Definition 2.4. A measurable set A ⊂ Ω is said with finite perimeter

if 1A ∈ BV(Ω).

Remark 2.1. The concept of measure theoretic boundary generalizes the
concept of topological boundary when A is regular. Indeed, if A ⊂ Ω is an
open whose topological boundary ∂A is a smooth and compact hypersurface,
then we have

i) ∂A = ∂∗A,

ii) T V (1A) = Hn−1(∂A).

Theorem 2.6. Let A ⊂ Ω be a set with finite perimeter. There exists a
pairwise disjoint family of sets (Si)i and a set M ⊂ Ω such as

i) for all i, Si is a C1 and compact hypersurface of Ω,

ii) Hn−1(M) = 0,

iii) ∂∗A = M ∪
(⋃

i
Si

)
.

Theorem 2.7. Let A ⊂ Ω be a set with finite perimeter. The following
generalized Gauss-Green formula holds: for Hn−1 almost every x ∈ Ω,
there exists ν(x) ∈ S

n−1, called the inner normal vector to A at x, such
that for all ϕ ∈ C1

c (Ω;Rn),

∫

Ω

1Adiv(ϕ)dx = −
∫

∂∗A∩Ω

ϕ · νdHn−1,

that is D1A = νHn−1
x∂∗A ∩ Ω.

Definition 2.5. Let A ⊂ Ω be a set with finite perimeter and p = 1A.
With the theorems 2.6 and 2.7, we get Sp = ∂∗A and νp = ν.

Proposition 2.5. Let A ⊂ Ω be a set with finite perimeter and p = 1A.
Then, we have ‖Dp‖M = Hn−1(Sp).

Remark 2.2. If p = 1A with A ⊂ Ω an open subset whose boundary ∂A
is a compact hypersurface with class C1, then we have Sp = ∂A.

The following lemma is proved in [9]. It asserts that every set with
bounded perimeter can be approximated by a sequence of smooth subsets
of Rn, all having the same volume inside Ω and each of these boundaries
satisfy a measure theoretic transversality condition with respect to Ω.

Lemma 2.2. Let Ω be an open, bounded subset of R
n with Lipschitz

continuous boundary, and let A be a measurable subset of Ω. If A and
Ω \ A both contain a non-empty open ball, then there exists a sequence
(Ak)k of open bounded subsets of Rn with smooth boundaries such that

11



i)

lim
k→∞

Ln((Ak ∩ Ω) △ A) = 0, lim
k→∞

Hn−1(∂Ak) = T V (1A);

ii)
Ln(Ak ∩ Ω) = Ln(A) for k large enough;

iii)
Hn−1(∂Ak ∩ ∂Ω) = 0 for k large enough.

3 Existence result

In this section we prove that the function defined in (1.10) admits at
least a minimizer in an appropriate functional space. In the following, for
more simplicity in the notations, we assume that the parameters of the
functionals are fixed at β = µ = γ = 1.

3.1 Specific domain of E

In this section we introduce the appropriate functional spaces which en-
sures the existence result of the minimizing problem.

B(Ω; [0, 1]) = {p measurable : p(x) ∈ [0; 1] a.e. x ∈ Ω} ,
BV(Ω; {0; 1}) = {p ∈ BV(Ω): p(x) ∈ {0; 1} a.e. x ∈ Ω} ,

G = {g : ∃c : Ω → S
n−1, ∀x ∈ Ω, gx = Idn + tc(x)c(x)},

W 1,r(Ω; G) = G ∩ W 1,r(Ω; Sn(R)),
X = B(Ω; [0, 1]) × W 1,r(Ω; G),
Y = BV(Ω; {0; 1}) × W 1,r(Ω; G),

Let T be the product topology on X where:

• B(Ω; [0, 1]) is endowed with the almost everywhere convergence topol-
ogy,

• W 1,r(Ω; G) is endowed with the weak topology associated to the
Sobolev norm ‖ · ‖W 1,r(Ω).

For a sequence
(
(pk, gk)

)

k
which converges to (p, g) for this topology, we

write (pk, gk)
T−→ (p, g). Since these spaces are metrizable, then (X, T )

is also metrizable.

3.2 Existence of minimizers

We recall

E(p, g) =

∫

Ω

(p − g)2dx +

∫

Sp

g(x, νp)
1
2 dHn−1 + ‖g‖W 1,r(Ω),

for (p, g) ∈ Y and +∞ if (p, g) ∈ X \ Y. We have the following minimiza-
tion problem

(P) : Min {E(p, g) : (p, g) ∈ X } . (3.1)

In this section, we prove that problem (P) admits at least one solu-
tion. We apply the direct method of calculus of variations. We exhibit a
minimizing sequence which is compact for an appropriate topology. Then,
we prove a lower semicontinuity result for E and conclude.

12



As E is bounded from below by 0, there exists a sequence (pk, gk)k ⊂ Y
such that (E(pk, gk))k converges to the minimum value of E. In the
following theorem we prove that we can extract a converging sequence
from (pk, gk)k.

Theorem 3.1. Let (pk, gk)k ⊂ X such that

∃M > 0, ∀k, E(pk, g
k) ≤ M.

Then, there exists a subsequence, still denoted (pk, gk)k, and (p, g) ∈ Y
such that (pk, gk)

T−→ (p, g).

Proof. As E(pk, gk) is finite for any k, we have (pk, gk)k ⊂ Y. We sepa-
rate the arguments of the proof for the sequence (pk)k and (gk)k.

First Step: Compactness result for (pk)k.
As pk takes its values in [0; 1] and Ω is bounded, then (pk)k is a

bounded sequence of L1(Ω). According to lemma 2.1, we have

∀x ∈ Ω, 1 ≤ g
k(x, νpk

).

The integration with respect to Hn−1
xSpk

gives Hn−1(Spk
) ≤ E(pk, gk).

According to proposition 2.5, we have ‖Dpk‖M = Hn−1(Spk
), so (pk)k

is a bounded sequence of BV(Ω). According to theorem 2.4, there exists
a subsequence, still denoted (pk)k, and some p ∈ BV(Ω) such that (pk)k

weakly* converges to p. According to theorem 2.5, (pk)k converges to p
for the L1(Ω) norm. As pk takes its values in {0; 1}, we deduce that p
takes its values in {0; 1}.

Second Step: Compactness result for (gk)k.
As ‖gk‖W 1,r(Ω;Sn(R)) ≤ E(pk, gk), then (gk)k is a bounded sequence

in W 1,r(Ω; Sn(R)). According to Banach-Alaoglu theorem, there exists a
subsequence, still denoted (gk)k, and g ∈ W 1,r(Ω; Sn(R)) such that (gk)k

weakly converges to g in W 1,r(Ω; Sn(R)). According to proposition 2.1,
we have g ∈ W 1,r(Ω; G).

Theorem 3.2. The functional E : X → R is lower semicontinuous for
the topology T .

Proof. The lower semicontinuity of the terms p →
∫

Ω
(p − g)2dx and g →

‖g‖W 1,r(Ω) are well known results and the proof can be found for example
in [3]. The remaining part of this result is the lowersemicontinuity of

(p, g) →
∫

Sp

g(x, νp)
1
2 dHn−1.

We first prove the result with g fixed and generalize without this assump-
tion.

First Step: Let g ∈ W 1,r(Ω; G) be fixed and (pk)k ⊂ BV(Ω; {0; 1})
which weakly* converges to p ∈ BV(Ω; {0; 1}). Then, we have

∫

Sp

g(x, νp)
1
2 dHn−1 ≤ lim inf

k→∞

∫

Spk

g(x, νpk
)

1
2 dHn−1.

We define ϕ : Ω × R
n → R as

ϕ(x, v) = g(x, v)
1
2 .

13



As r > n, then we have W 1,r(Ω) ⊂ C(Ω) and then g is continuous. We
deduce that ϕ : Ω × R

n → R is continuous as well.
According to theorem 2.7, we have Dpk ≪ Hn−1

xSpk
, Dp ≪ Hn−1

xSp

and
d(Dpk)

d(Hn−1xSpk
)

= νpk
1Spk

,
d(Dp)

d(Hn−1xSp)
= νp1Sp .

Moreover, ϕ is sublinear with respect to v. According to proposition 2.3,
we can conclude the proof of the First Step.

Second Step: Let (pk, gk)k ⊂ Y such as (pk)k weakly* converges to
p ∈ BV(Ω; {0; 1}) and (gk)k weakly converges to g ∈ W 1,r(Ω; G). Then,
we have

∫

Sp

g(x, νp)
1
2 dHn−1 ≤ lim inf

k→∞

∫

Spk

g
k(x, νpk

)
1
2 dHn−1.

Lemma 2.1 gives
∣
∣
∣
∣
∣

∫

Spk

g
k(x, νpk

)
1
2 − g(x, νpk

)
1
2 dHn−1

∣
∣
∣
∣
∣

≤
∫

Spk

|
[
(gk

x − gx)νpk

]
· νpk

|
gk(x, νpk

)
1
2 + g(x, νpk

)
1
2

dHn−1,

≤ sup
x∈Ω

‖g
k
x − gx‖Hn−1(Spk

)

2
.

As (pk)k weakly* converges to p in BV(Ω) theorem 2.5 implies that
(Hn−1(Spk

))k is a bounded sequence. Moreover, (gk)k weakly converges
to g in W 1,r(Ω; Sn(R)) and, according to theorem 2.1, the inclusion
W 1,r(Ω; Sn(R)) ⊂ C(Ω; Sn(R)) is compact, it gives that (sup ‖g

k
x − gx‖)k

converges to 0. So, we have the following limit

(⋆)k =

∫

Spk

g
k(x, νpk

)
1
2 dHn−1 −

∫

Spk

g(x, νpk
)

1
2 dHn−1 → 0,

We decompose
∫

Spk

g
k(x, νpk

)
1
2 dHn−1 = (⋆)k +

∫

Spk

g(x, νpk
)

1
2 dHn−1

According to First Step, the lim inf in the previous expression gives
∫

Sp

g(x, νp)
1
2 dHn−1 ≤ lim inf

k→∞

∫

Spk

g
k(x, νpk

)
1
2 dHn−1.

We can now prove the existence of solutions for problem (P) (3.1).

Theorem 3.3. The problem (P) admits at least one solution.

Proof. Let (pk, gk)k be a minimizing sequence of E. According to theorem
3.1, there exists a subsequence, still denoted (pk, gk)k which converges to
(p, g) ∈ Y for the topology T . According to theorem 3.2, we have

E(p, g) ≤ lim inf
k→∞

E(pk, g
k).

As (pk, gk)k is a minimizing sequence for E, we can conclude that (p, g)
is a solution of (P).
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4 Approximation process

In this section we give the main result: we introduce an approximated
problem and prove a Γ-convergence result.

4.1 Γ-convergence

We want to perform an approximation of the energy E more suitable for
numerics applications. We will do that in the sense of the Γ-convergence.
In this section, we give the definition. For more properties on this subject
one refer to [10].

Definition 4.1. Let (X , d) be a metrizable space, (Ek)k a sequence of
real-valued functions Ek : X → R ∪ {+∞}, and E : X → R ∪ {+∞}. The
sequence (Ek)k Γ-converges to E at x ∈ X if both the following conditions
hold:

i) for all sequences (xk)k converging to x ∈ X , one has

E(x) ≤ lim inf
k→∞

Ek(xk), (4.1)

ii) there exists a sequence (yk)k converging to x ∈ X such that

E(x) ≥ lim sup
k→∞

Ek(yk). (4.2)

When i) and ii) hold for all x ∈ X , we say that (Ek)k Γ-converges to E
in (X , d).

The main interest of the Γ-convergence, in our case, is the following
result.

Theorem 4.1. Let (Ek)k be a sequence of functions which Γ-converges
to E in (X , d). Let (xk)k be such that

∀k, Ek(xk) ≤ inf
x∈X

Ek(x) + εk,

where εk > 0 converges to 0. Assume that (xk)k is relatively compact;
then every cluster point x of (xk)k is a minimizer of E and

lim inf
k→∞

Ek(xk) = E(x).

4.2 The main theorem

We introduce the functionals spaces for the approximation process.

W 1,2(Ω; [0; 1]) =
{

p ∈ W 1,2(Ω): 0 ≤ p(x) ≤ 1 a.e. x ∈ Ω
}

,

Z = W 1,2(Ω; [0; 1]) × W 1,r(Ω; G).

Let H, F , Fε and Eε be the functions defined on X and with values
in [0; +∞] as

H(p, g) =

∫

Ω

(p − g)2dx + ‖g‖W 1,r(Ω),

F (p, g) =

{ ∫

Sp
g(x, νp)

1
2 dHn−1 if (p, g) ∈ Y,

+∞ otherwise,

Fε(p, g) =

{
∫

Ω

[

9εg(x, ∇p) + p2(1−p)2

ε

]

dx if (p, g) ∈ Z,

+∞ otherwise,

Eε = H + Fε.
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The following property shows that the domain Z ⊂ X is adapted for
the approximation process.

Proposition 4.1. Let (pk, gk)k ⊂ Z be a sequence converging to (p, g) ∈
X for the topology T and such that (Eεk

(pk, gk))k is a bounded sequence.
Then, we have (p, g) ∈ Y.

Proof. It suffices to prove that p ∈ BV (Ω). According to lemma 2.1, we
have |∇pk|2 ≤ gk(x, ∇pk), it gives

∫

Ω

[

9εk|∇pk|2 +
p2

k(1 − pk)2

εk

]

dx ≤ Eεk
(pk, g

k). (4.3)

We apply the inequality 2ab ≤ a2 + b2 with a2 = 9εk|∇pk|2 and b2 =
p2

k
(1−pk)2

εk ∫

Ω

|∇pk|pk(1 − pk)dx ≤ Eεk
(pk, g

k).

The left hand side of the inequality is the total variation of uk =
p2

k

2
− p3

k

3
,

that is ∫

Ω

|∇uk|dx ≤ Eεk
(pk, g

k).

As the right hand side is a bounded then (uk)k is a bounded sequence
in BV (Ω). According to the theorems 2.4 and 2.5, there exists a subse-
quence which weakly* converges and almost everywhere to u ∈ BV (Ω).
By assumption, (pk)k converges almost everywhere to p, so by uniqueness
of the limit u = p(1 − p). As p takes its values in {0; 1}, then u = p

6
and

p ∈ BV (Ω).

The main result of this work is the following

Theorem 4.2. Let (εk)k be a sequence converging to 0+. Then, the
sequence (Eεk

)k Γ-converges to E in X for the topology T introduced in
3.1.

This results consists in proving two inequalities (4.1) and (4.2). The
first inequality consists in the application of the method introduced in
[11], while the second is specific to this problem.

4.3 The inequality for the lower Γ-limit (4.1)

We now prove the first inequality (4.1). For any (p, g) ∈ X , we denote

E−(p, g) = inf
{

lim inf
k→∞

Eεk
(pk, g

k) :
(
(pk, g

k)
)

k
⊂ Z, (pk, g

k)
T−→ (p, g)

}

We have to prove that E− ≥ E in X . Let (p, g) ∈ X such that E−(p, g) <
+∞, several assumptions may be made.

i) We have (p, g) ∈ Y. According to proposition 4.1, E−(p, g) < +∞
gives p ∈ BV (Ω).

ii) There exists a sequence
(
(pk, gk)

)

k
⊂ Z which converges to (p, g) for

T and Eεk
(pk, gk) converges to E−(p, g). Indeed, we can construct

such a sequence by a diagonal extraction.

iii) We have (pk)k ⊂ C∞ ∩ W 1,2(Ω). Indeed, according to Meyers-Serrin
theorem, the space C∞ ∩ W 1,2(Ω) is dense in W 1,2(Ω). So, by diag-
onal extraction we can construct such sequence.
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As for the proof of theorem 3.2, we first prove an uniform convergence
result for (gk)k and then we calculate the limit with g fixed.

First Step: we have

εk

[∫

Ω

g
k(x, ∇pk)dx −

∫

Ω

g(x, ∇pk)dx

]

→ 0.

We have the following inequalities
∣
∣g

k(x, ∇pk) − g(x, ∇pk)
∣
∣ =

∣
∣(gk

x∇pk) · ∇pk − (gx∇pk) · ∇pk

∣
∣ ,

≤
∣
∣
[
(gk

x − gx)∇pk

]
· ∇pk

∣
∣ ,

≤ ‖g
k
x − gx‖ |∇pk|2,

≤ sup
x∈Ω

‖g
k
x − gx‖ |∇pk|2.

We denote ‖gk −g‖L∞ = supx∈Ω ‖gk
x −gx‖. According to the previous

inequalities, we have

εk

∣
∣
∣
∣

∫

Ω

g
k(x, ∇pk)dx −

∫

Ω

g(x, ∇pk)dx

∣
∣
∣
∣

≤ ‖g
k − g‖L∞ εk

∫

Ω

|∇pk|2dx.

(4.4)
According to inequality (4.3), the term εk

∫

Ω
|∇pk|2 is uniformely bounded

with respect to k. Moreover, (gk)k weakly converges to g and the inclu-
sion W 1,r ⊂ L∞ is compact. It yields that (gk)k converges to g in L∞.
It concludes the first step of the proof.

Second Step: we have

lim inf
k→∞

Fεk
(pk, g) ≥ F (p, g).

For any k ≥ 0, the inequality a2 + b2 ≥ 2ab gives
∫

Ω

[

9εkg(x, ∇pk) +
p2

k(1 − pk)2

εk

]

dx ≥
∫

Ω

6pk(1 − pk)g(x, ∇pk)
1
2 dx.

Let Φ : Ω × [0; 1] × R
n → R

+ be the function

Φ(x, s, v) = 6s(1 − s)g(x, v)
1
2 .

This function is sublinear in v. We denote Sk
t = {x ∈ Ω: pk(x) < t} Using

the proposition 2.4, we can write
∫

Ω

6pk(1 − pk)g(x, ∇pk)
1
2 dx =

∫

R

∫

Ω

6t(1 − t)g(x, D1Sk
t

)
1
2 .

Applying Fatou lemma and noting that D1St vanishes when t 6∈ [0; 1]
gives

lim inf
k→∞

Fεk
(pk, g

k) ≥
∫ 1

0

6t(1 − t) lim inf
k→∞

∫

Ω

g(x, D1Sk
t

)
1
2 .

As the left hand side of this inequality is finished, for almost every t ∈ [0; 1]
we have

lim inf
k→∞

∫

Ω

g(x, D1Sk
t

)
1
2 < +∞.

Lemma 2.1 gives
∫

Ω

|D1Sk
t

| ≤
∫

Ω

g(x, D1Sk
t

)
1
2 ,
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so ‖D1Sk
t

‖M is bounded; this yields that (1Sk
t

)k is weakly relatively com-

pact in BV(Ω). We denote A = {x ∈ Ω: p(x) = 1} and we compare∫

Ω
|pk − p| and

∫

Ω
|1Sk

t
− 1A|.

∫

Ω

|pk − p|dx =

∫

Ω

|pk − 1A|dx,

≥
∫

A\Sk
t

|pk − 1A|dx +

∫

Sk
t

\A

|pk − 1A|dx,

≥ (1 − t)

∫

A\Sk
t

|1Sk
t

− 1A|dx + t

∫

Sk
t

\A

|1Sk
t

− 1A|dx,

≥ min(t, 1 − t)

∫

A△Sk
t

|1Sk
t

− 1A|dx,

≥ min(t, 1 − t)

∫

Ω

|1Sk
t

− 1A|dx.

For any t ∈]0; 1[, the unique possible limit of (1Sk
t

)k is 1A. Thanks to

proposition 2.3, we have

lim inf
k→∞

∫

Ω

[

9εkg(x, ∇pk) +
p2

k(1 − pk)2

εk

]

dx ≥
∫

Ω

g(x, D1A)
1
2 . (4.5)

Theorem 2.6 and the notation of definition 2.7 give

∫

Ω

g(x, D1A)
1
2 =

∫

Sp

g(x, νp)
1
2 dHn−1. (4.6)

Relations (4.5) and (4.6) give the result of the Second Step.
Third Step: we have

lim inf
k→∞

Fεk
(pk, g

k) ≥ F (p, g).

We decompose

Fεk
(pk, g

k) =
(
Fεk

(pk, g
k) − Fεk

(pk, g)
)

+ Fεk
(pk, g).

According to the first step, the first term converges to 0 and according to
the second step we can conclude that

lim inf
k→∞

Fεk
(pk, g

k) ≥ F (p, g).

Conclusion

As Eεk
= H + Fεk

, it gives

lim inf
k→∞

Eεk
(pk, g

k) ≥ lim inf
k→∞

H(pk, g
k) + lim inf

k→∞
Fεk

(pk, g
k).

According to the third step, we have lim inf Fεk
(pk, gk) ≥ F (p, g). More-

over, as H is lower semicontinuous for the topology of X , we have lim inf H(pk, gk) ≥
H(p, g). As E = F +H, it finishes the proof of the inequality for the lower
Γ-limit.
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Sp

[p = 1] [p = 0]

Vη

❅
❅❘

Figure 4.1: Partition of Ω in three domains: [p = 0], [p = 1] \ Vη and Vη.

4.4 The inequality for the higher Γ-limit (4.2)

We may now prove the second part (4.2) of theorem 4.2.

Proof. We set (p, g) ∈ X . If p 6∈ BV(Ω) then E(p, g) = +∞. So, we may
assume that p belongs to BV(Ω) and takes its values on {0; 1}, otherwise
the result is ensured. Let (εk)k be a sequence which converges to 0+. We
construct a sequence of functions (pk, gk)k such that

lim sup
k→∞

Eεk
(pk, g

k) ≤ E(p, g)

and (pk, gk)k converges to (p, g) for the topology T . First, we construct
it when Sp is a smooth surface and g a smooth vector field. Then, we
remove these assumptions and we use approximating results to prove it
in the general setting.

First step: we assume that Sp is a compact surface of class

C2 and g ∈ C∞ ∩ W 1,r(Ω; G) .

In this step, we set gk = g for any k. Moreover, if (pk)k ⊂ W 1,2(Ω; [0; 1])
converges a.e. to p, then it converges for the L1(Ω) norm and (

∫
(pk − g)2dx)k

converges to
∫

(p − g)2dx. So, it suffices to construct an appropriate se-
quence (pk)k which converges a.e. to p and such that lim sup Fεk

(pk, g) ≤
F (p, g).

For η > 0, we introduce the following set Vη (see figure 4.1)

Vη = {x ∈ [p = 1] : 0 < dist(x, Sp) < η} .

Outside Vη, we define the function pk as:

∀x ∈ [p = 0], pk(x) = 0,

∀x ∈ [p = 1] \ Vη, pk(x) = 1.
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The construction of pk inside Vη will be precised. As we assume that
Sp is a compact and of class C2 surface, there exists η0 > 0 and a C1-
diffeomorphism φ : Vη0 → Sp×]0; η0[ (see [9]), caracterized by

∀(ξ, t) ∈ Sp×]0; η0[, φ(ξ + tνp(ξ)) = (ξ, t).

Sp

Vη0

�
�
�
��✒

νp(ξ)

r

ξ + tνp(ξ)
r

ξ

❄

✻

η0

Figure 4.2: Slicing parametrization of Vη0 .

We denote Σξ the slice

Σξ = {ξ + tνp(ξ) : t ∈ [0; η0]} ,

We shall construct pk slice by slice (see figure 4.2). Indeed, φ : Vη0 →
Sp×]0; η0[ is a diffeomorphism, so it provides a complete construction of
pk. We denote by χk,ξ : [0; η0] → R the restriction of pk to Σξ. We
introduce K defined on Sp × [0; η0] by

∀(ξ, t) ∈ Sp × [0; η0], K(ξ, t) = g(ξ + tνp(ξ), νp(ξ))
1
2 .

and χk,ξ as the solution of the following differential equation

{
χk,ξ(0) = 0,

3
√

εkK(ξ, t)χ′
k,ξ(t) =

[
1

εk| ln(εk)| +
(χk,ξ(t))2(1−χk,ξ(t))2

εk

] 1
2

for t ≥ 0.

For t ≥ 0, we have χ′
k,ξ(t) ≥ 1

3K(ξ,t)εk

√
| ln(εk)|

. According to lemma

2.1, we have K(ξ, t) ≤
√

2. So, there exists a unique ηk,ξ > 0 such that
χk,ξ(ηk,ξ) = 1 and it satisfies

sup
ξ∈Sp

ηk,ξ ≤ 3
√

2εk

√

| ln(εk)|. (4.7)

As εk

√
| ln(εk)| converges to 0, then we can assume that ηk,ξ < η0 for any

k and ξ ∈ Sp. Thus, we modify the definition of χk,ξ as the solution of
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the following equation







χk,ξ(0) = 0,

3
√

εkK(ξ, t)χ′
k,ξ(t) =

[
1

εk| ln(εk)| +
(χk,ξ(t))2(1−χk,ξ(t))2

εk

] 1
2

for t ∈]0; ηk,ξ[,

χk,ξ(t) = 1 for t ∈ [ηk,ξ; η0[.
(4.8)

We denote ηk = sup {ηk,ξ : ξ ∈ Sp} and we define pk as

{ ∀x ∈ [p = 0] , pk(x) = 0,
∀(ξ, t) ∈ Sp×]0; η0[, pk(ξ + tνp(ξ)) = χk,ξ(t),
∀x ∈ [p = 1] \ Vη0 , pk(x) = 1.

(4.9)

According to (4.7), we have ηk → 0, it implies pk → p almost everywhere.
With the definitions introduced in (4.8) and (4.9), we have to prove

that lim sup Fεk
(pk, g) ≤ F (p, g). In the sequel we take n = 3 but the

arguments are the same for n = 2. As Sp is a surface with class C2, there
exists t1 and t2 two functions defined in Sp taking their values in the unit
sphere S

n−1 and with class C1 such that, for any ξ ∈ Sp, the vector triplet
(t1(ξ), t2(ξ), νp(ξ)) is an orthonormal basis of R3 (see figure 4.3).

ξ
q

ξ + tνp(ξ)

Sp

νp(ξ)t1(ξ)

t2(ξ)

q

Figure 4.3: Moving basis (t1(ξ), t2(ξ), νp(ξ)) at ξ + tνp(ξ).

We need to prove the following lemma.

Lemma 4.1. For any ε > 0, v ∈ R
n, x ∈ Ω and ξ ∈ Sp, we have

g(x, v) ≤ (v · νp)2 (g(x, νp) + 2ε) + (v · t1)2
(

3 +
1

ε

)

+ (v · t2)2
(

3 +
1

ε

)

,

(4.10)
where νp, t1 and t2 depends on ξ.

Proof. As g ∈ G, there exists c : Ω → S
n−1 such that

g(x, v) = |v|2 + (c(x) · v)2.
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We can decompose

{
|v|2 = (v · νp)2 + (v · t1)2 + (v · t2)2,

c(x) · v = (c(x) · νp)(v · νp) + (c(x) · t1)(v · t1) + (c(x) · t2)(v · t2),

We denote a = (c(x) · νp)(v · νp), b = (c(x) · t1)(v · t1) and c = (c(x) ·
t2)(v · t2). Moreover, we have

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc,

≤ a2 + b2 + c2 +

(

εa2 +
b2

ε

)

+

(

εa2 +
c2

ε

)

+
(
b2 + c2

)
,

≤ (1 + 2ε)a2 +
(

2 +
1

ε

)

b2 +
(

2 +
1

ε

)

c2.

We may introduce (c(x) ·t1)2 ≤ 1, (c(x) ·t2)2 ≤ 1 in the previous inequal-
ity, it gives the result of the lemma.

If we apply lemma 4.1 in the definition of Fεk
, we get

Fεk
(pk, g) ≤ (⋆)k,0 + (⋆)k,1 + (⋆)k,2, (4.11)

where

(⋆)k,0 =

∫

Vηk

[

9εk(∇pk · νp)2 (g(x, νp) + 2εk) +
p2

k(1 − pk)2

εk

]

dx,(4.12)

(⋆)k,1 =

∫

Vηk

9εk(∇pk · t1)2
(

3 +
1

εk

)

dx, (4.13)

(⋆)k,2 =

∫

Vηk

9εk(∇pk · t2)2
(

3 +
1

εk

)

dx. (4.14)

We will prove the following assertions

lim sup
k→∞

(⋆)k,0 ≤
∫

Sp

g(x, νp)
1
2 dHn−1, lim

k→∞
(⋆)k,1 = 0, lim

k→∞
(⋆)k,2 = 0.

According to the decomposition (4.11), it is sufficient to conclude the First
Step.

Claim 1: We have the following inequality

lim sup
k→∞

(⋆)k,0 ≤
∫

Sp

g(x, νp)
1
2 dHn−1.

Since

• (∇pk · νp)2 ≤ |∇pk|2,

• |∇pk|2 ≤ g(x, ∇pk), according to lemma 2.1,

•
∫

Ω
9εkg(x, ∇pk)dx ≤ Fεk

(pk, g),

• Fεk
(pk, g) is bounded,

then, we can conclude that
∫

Vηk

9εk(∇pk · νp)2dx is bounded. In particu-

lar, εk

∫

Vηk

9εk(∇pk · νp)2dx converges to 0. Then, for Claim 1, it suffices

to prove

lim sup
k→∞

∫

Vηk

[

9εk(∇pk · νp)2
g(x, νp) +

p2
k(1 − pk)2

εk

]

dx ≤
∫

Sp

g(x, νp)
1
2 dHn−1.
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Since

∂pk

∂νp(ξ)
(ξ + tνp(ξ)) = lim

s→0

pk(ξ + (s + t)νp(ξ)) − pk(ξ + tνp(ξ))

s
,

= lim
s→0

χk,ξ(s + t) − χk,ξ(t)

s
,

then, for any (ξ, t) ∈ Sp×]0; ηk[, we have

∂pk

∂νp(ξ)
(ξ + tνp(ξ)) = χ′

k,ξ(t).

This yields ∇pk · νp = χ′
k,ξ. According to the assumptions of regularity

of Sp, as in [9], we may introduce the following change of variable:

∫

Sp

∫ η0

0

dt dH2(ξ)
∏2

i=1
(1 − κi(ξ)t)

=

∫

Vη0

dx, (4.15)

where κ1(ξ), κ2(ξ) are the principal curvatures of Sp at ξ. As Sp is a C2

surface, then κ1 and κ2 are continuous on Sp. We denote

Π(ξ, t) =
1

∏2

i=1
(1 − κi(ξ)t)

.

This yields

(⋆)k,0 =

∫

Sp

∫ ηk

0

(

9εk(∇pk · νp)2
g(x, νp) +

p2
k(1 − pk)2

εk

)

Π dt dH2(ξ),

=

∫

Sp

∫ ηk

0

(

9εk(χ′
k,ξ)2K2 +

p2
k(1 − pk)2

εk

)

Π dt dH2(ξ).

In these integrals we remove the dependance variables for the sake of
simplicity:

x = ξ + tνp(ξ), νp = νp(ξ), pk = pk(ξ + tνp(ξ)), Π = Π(ξ, t),

χk,ξ = χk,ξ(t), K = K(ξ, t)

and we set

a = 3
√

εkKχ′
k,ξ, b =

χk,ξ(1 − χk,ξ)√
εk

.

With the construction of χk,ξ in (4.8) we get a2 = 1
εk| ln(ǫk)| + b2 so that

0 ≤ b ≤ a on [0; ηk] and

a2 + b2 ≤ 2ab +
1

εk| ln(ǫk)| .

This yields

(⋆)k,0 ≤
∫

Sp

∫ ηk

0

6Kχ′
k,ξχk,ξ(1 − χk,ξ)Π dt dH2(ξ)

︸ ︷︷ ︸

(⋆)k,3

+

∫

Sp

∫ ηk

0

1

εk| ln(ǫk)|Π dt dH2(ξ)

︸ ︷︷ ︸

(⋆)k,4

.
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The functions K and Π are uniformly bounded with respect to k in
Sp×]0; η0[. We denote M their upper bound. We have the following
inequalities

(⋆)k,4 ≤ M

∫

S

∫ ηk

0

1

εk| ln(ǫk)|dt dH2(ξ),

≤ MH2(Sp)
ηk

εk| ln(ǫk)| .

According to (4.7), we have ηk ≤ 3
√

2εk

√
| ln(εk)|. This yields

(⋆)k,4 ≤ 3
√

2MH2(Sp)√
| ln(ǫk)|

.

and we have lim
k→∞

(⋆)k,4 = 0. We denote

L(ξ, t) = K(ξ, t)Π(ξ, t).

We have the following decomposition

(⋆)k,3 =

∫

Sp

∫ ηk

0

6(L(ξ, t) − L(ξ, 0))χ′
k,ξ(t)χk,ξ(t)(1 − χk,ξ(t))dt dH2(ξ)

︸ ︷︷ ︸

(⋆)k,5

+

∫

Sp

∫ ηk

0

6L(ξ, 0)χ′
k,ξ(t)χk,ξ(t)(1 − χk,ξ(t))dt dH2(ξ)

︸ ︷︷ ︸

(⋆)k,6

,

and the following bound

(⋆)k,5 ≤
(

sup
(ξ,t)∈Sp×]0;ηk[

(L(ξ, t) − L(ξ, 0))

) ∫

Sp

∫ ηk

0

6χ′
k,ξ(t)χk,ξ(t)(1 − χk,ξ(t))dt dH2(ξ).

Since χk,ξ ∈ W 1,2(]0; ηk[), we may use the change of variable s = χk,ξ(t)
to obtain

(⋆)k,5 ≤ 6

(

sup
(ξ,t)∈Sp×]0;ηk[

(L(ξ, t) − L(ξ, 0))

) ∫

Sp

∫ χk,ξ(ηk)

χk,ξ(0)

s(1 − s)ds dH2(ξ),

≤
(

sup
(ξ,t)∈Sp×]0;ηk[

(L(ξ, t) − L(ξ, 0))

)

H2(Sp).

The surface Sp is compact and smooth and the function L is continuous.
Then, the family (L(·, t))t>0 uniformly converges to L(·, 0) when t → 0+.
We can deduce that lim

k→∞
(⋆)k,5 = 0. Using the same change of variable

s = χk,ξ(t) in (⋆)k,6 gives

(⋆)k,6 = 6

∫

Sp

L(ξ, 0)

∫ χk,ξ(ηk)

χk,ξ(0)

s(1 − s)ds dH2(ξ),

=

∫

Sp

g(ξ, νp(ξ))
1
2 dH2(ξ).

To summarize, we have






(⋆)k,0 = (⋆)k,4 + (⋆)k,5 + (⋆)k,6,
lim(⋆)k,4 = 0,
lim(⋆)k,5 = 0,

(⋆)k,6 =
∫

Sp
gξ(νp(ξ), νp(ξ))

1
2 dH2(ξ),
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which conclude the proof of Claim 1.
Claim 2: We have the following limits

lim
k→∞

(⋆)k,1 = 0, lim
k→∞

(⋆)k,2 = 0.

We prove the result for (⋆)k,1, the method for (⋆)k,2 is the same. As Sp is
a C2 surface, the intersection of the affine plane P1 = ξ+Vect(t1(ξ), νp(ξ))
and Sp at the neighborhood of ξ ∈ Sp is a C2-planar curve. Let I be a
neighborhood of 0 in R and γ : I → Sp be a local curvilinear parametriza-
tion of this curve such that

{
γ(0) = ξ,

γ′(0) = t1(ξ),
∀t ∈ I, |γ′(t)| = 1.

As νp ◦ γ(s) is orthogonal to γ′(s) for all s ∈ I and γ is a planar curve,
there exists κ̃1 : I → R such that

d(νp ◦ γ)

ds
(s) = −κ̃1(γ(s))t1(γ(s)).

As γ is a curve of Sp, κ̃1 is the sectional curvature of Sp in the direction
of t1(γ(s)), we have |κ̃1| ≤ max(|κ1|, |κ2|).

We evaluate

χk,γ(s)(t) − χk,ξ(t) = pk(γ(s) + tνp(γ(s))) − pk(ξ + tνp(ξ))).

So, we have the following asymptotic developpement at s = 0

γ(s) + tνp(γ(s)) = ξ + tνp(ξ) + s(1 − κ̃1(ξ)t)t1(ξ) + o(s),

and we get

lim
s→0

χk,γ(s)(t) − χk,ξ(t)

s(1 − κ̃1(ξ)t)
= ∇pk(ξ + tνp(ξ)) · t1(ξ). (4.16)

We calculate the left hand side of (4.16). We recall the equations satisfied
by χk,γ(s) and χk,ξ (see figure ??)

(E1) :







χk,ξ(0) = 0,

3
√

εkK(ξ, t)χ′
k,ξ(t) =

[

1
εk| ln(εk)| +

(χk,ξ(t))2(1−χk,ξ(t))2

εk

] 1
2

for t ∈]0; ηk,ξ[,

χk,ξ(t) = 1 for t ≥ ηk,ξ.

(E2) :







χk,γ(s)(0) = 0,

3
√

εkK(γ(s), t)χ′
k,γ(s)(t) =

[

1
εk| ln(εk)| +

(χk,γ(s)(t))2(1−χk,γ(s)(t))2

εk

] 1
2

for t ∈]0; ηγ(s),k[,

χk,γ(s)(t) = 1 for t ≥ ηγ(s),k.
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Sp

Vηk

�
�
�
��✒

✟✟✟✟✟✟✯

γ(s)

νp(ξ)

νp(γ(s))

ξ

❄

✻

ηk

✻

✲
0 ηkηγ(s),k

✲

✟✟✟✟✟✟✯

✻

✲
0

1

1

ηkηk,ξ

χk,γ(s)

χk,ξ

We denote fk(x) =
[

1
εk| ln(εk)| + x2(1−x)2

εk

] 1
2

and Yk,s(t) = χk,γ(s)(t) −
χk,ξ(t). We calculate K(ξ,·)

K(γ(s),·) (E2)−(E1) and we denote ηk,s = min(ηγ(s),k, ηξ,k).
It comes
{

Yk,s(0) = 0,

3
√

εkK(ξ, t)Y ′
k,s(t) = K(ξ,t)

K(γ(s),t)
fk(χk,γ(s)(t)) − fk(χk,ξ(t)) for t ∈]0; ηk,s[.

Lemma 2.1 gives

∀(ξ, t) ∈ Sp×]0; ηk,s[, 1 ≤ K(ξ, t) ≤
√

2. (4.17)

As Sp is a C2-manifold and g ∈ C∞ ∩ W 1,r(Ω; G), then K is a C1 function
of class C1 and there exists a constant τ > 0 such that

∀(ξ, ξ′, t) ∈ S2
p×]0; ηk[, |K(ξ, t) − K(ξ′, t)| ≤ τ |ξ − ξ′| (4.18)

Moreover, the study of fk gives

∀x ∈ [0; 1], fk(x) ≤
[

1

εk| ln(εk)| +
1

16εk

] 1
2

|f ′
k(x)| ≤ 1√

εk

.

(4.19)
With

3
√

εkK(ξ, t)Y ′
k,s(t) =

K(ξ, t)

K(γ(s), t)
fk(χk,γ(s)(t)) − fk(χk,ξ(t)),

=
K(ξ, t)

K(γ(s), t)
(fk(χk,γ(s)(t)) − fk(χk,ξ(t)))

+fk(χk,ξ(t))

(
K(ξ, t) − K(γ(s), t)

K(γ(s), t)

)

and (4.17), (4.18), (4.19), we get

3
√

εkY ′
k,s(t) ≤

√
2√
εk

Yk,s(t) + τs

√
1

εk| ln(εk)| +
1

16εk

.

Thus, Yk,s is a solution of the following differential inequation
{

Yk,s(0) = 0,

Y ′
k,s(t) ≤

√
2

3εk
Yk,s(t) + τs

3εk

√
1

| ln(εk)| + 1
16

for t ∈]0; ηk,s[.
(4.20)
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So, we have

Yk,s(t) ≤ τs√
2

√
1

| ln(εk)| +
1

16

(

exp

(√
2t

3εk

)

− 1

)

. (4.21)

The definition of Yk,s gives

Yk,s(t) − Yk,0(t)

s
=

χk,γ(s)(t) − χk,ξ(t)

s
,

and inequality (4.21) implies

∀t ∈]0; ηk,s[,
χk,γ(s)(t) − χk,ξ(t)

s
≤ τ√

2

√
1

| ln(εk)| +
1

16

(

exp

(√
2t

3εk

)

− 1

)

.

(4.22)
According to the continuous dependance of the solution of the equation
(4.20) with respect to the parameter s, then ηk,s converges to ηk,ξ when s
converges to 0. So, the inequality (4.22) remains true in the neighborhood
of any point t ∈]0; ηk,ξ[. With k, ξ and t ∈]0; ηk,ξ[ fixed, we calculate the
limit when s converges to 0, and we apply equality (4.16)

(1−κ̃1(ξ)t)∇pk(ξ+tνp(ξ))·t1(ξ) ≤ τ√
2

√
1

| ln(εk)| +
1

16

(

exp

(√
2t

3εk

)

− 1

)

.

As ηk → 0 and κ̃1 is continuous, there exists r > 0 such that

∀(ξ, t) ∈ Sp×]0; ηk[, r < (1 − κ̃1(ξ)t).

This gives

(∇pk(ξ + tνp(ξ)) · t1(ξ))2 ≤ τ2

2r2

(
1

| ln(εk)| +
1

16

) (

exp

(√
2t

3εk

)

− 1

)2

.

(4.23)
As 1

| ln(εk)| → 0, there exists M > 0 such that (4.23) becomes

(∇pk(ξ + tνp(ξ)) · t1(ξ))2 ≤ M exp

(
2
√

2t

3εk

)

+ M.

As 2
√

2
3

≤ 1, we have

(∇pk(ξ + tνp(ξ)) · t1(ξ))2 ≤ M exp
(

t

εk

)

+ M. (4.24)

Introducing (4.24) in the definition of (⋆)1,k (4.12) gives

(⋆)1,k ≤
∫

Sp

∫ ηk

0

9εk

(

M exp
(

t

εk

)

+ M
) [

3 +
1

εk

]

Π(ξ, t)dt dH2(ξ),

As ηk → 0, the function Π is bounded and there exists a positive constant,
still denoted M , such that

(⋆)1,k ≤
∫

Sp

∫ ηk

0

εk

(

M exp
(

t

εk

)

+ M
)

M
[

3 +
1

εk

]

dt dH2(ξ).

Thus, we have

(⋆)1,k ≤
(

ε2
k

(

exp
(

ηk

εk

)

− 1
)

+ εkηk

) [

3 +
1

εk

]

M2H2(Sp).
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According to (4.7)

ηk ≤ 3
√

2εk

√

| ln(εk)|,
so, that

(⋆)1,k ≤
(

ε2
k

[

exp
(

3
√

2
√

| ln(εk)|
)

− 1
]

+ 3
√

2ε2
k

√

| ln(εk)|
) [

3 +
1

εk

]

M2H2(Sp),

(⋆)1,k ≤
[

εk exp
(

3
√

2
√

| ln(εk)|
)

− εk + 3
√

2εk

√

| ln(εk)|
]

(1 + 3εk)M2H2(Sp),

(⋆)1,k ≤
[

exp
(

3
√

2
√

| ln(εk)| + ln(εk)
)

− εk + 3
√

2εk

√

| ln(εk)|
]

M2H2(Sp).

As εk → 0+ we have

exp
(

3
√

2
√

| ln(εk)| + ln(εk)
)

→ 0+, εk

√

| ln(εk)| → 0+.

We can conclude that (⋆)1,k → 0.
Second step: Assume that p ∈ BV(Ω), p takes its values in

{0; 1} and g ∈ C∞ ∩ W 1,r(Ω; G) .

In this step, we still we set gk = g for any k. For the same reason than
in the previous step, it suffices to construct an appropriate sequence (pk)k

which converges a.e. to p and such that lim sup Fεk
(pk, g) ≤ F (p, g).

We denote A = p−1({1}). Let us first assume that A and Ω \ A have
nonempty interior. We can apply lemma 2.2. So, there exists a sequence
(Al)l of open bounded subsets of Rn with smooth boundaries such that

i)

lim
l→∞

Ln((Al ∩ Ω) △ A) = 0, lim
l→∞

Hn−1(∂Al) = Hn−1(∂A);

ii)
Ln(Al ∩ Ω) = Ln(A) for l large enough;

iii)
Hn−1(∂Al ∩ ∂Ω) = 0 for l large enough;

iv)

F (pl, g) ≤ F (p, g) +
1

l
, (4.25)

where Ln is the Lebesgue measure over Ω and pl = 1Al∩Ω. For (4.25) we
use the fact that ‖D1Al

‖M → ‖D1A‖M and proposition 2.3 ii). With
i), ii) and iii), we can say that (pl)l is a bounded sequence of BV(Ω)
which converges to p in L1(Ω). According to theorem ??, there exists a
subsequence, still denoted (pl)l which weakly* converges to p in BV(Ω).
One can apply the result of the first step with p = pl. So, there exists a
sequence (pl,k)k which weakly* converges to pl in BV(Ω) such that

lim sup
k→∞

Fεk
(pk,l, g) ≤ F (pl, g). (4.26)

With (4.25), (4.26) and a diagonal extraction there exists a sequence (pk)k

which weakly* converges to p such that

lim sup
k→∞

Fεk
(pk, g) ≤ F (p, g).

Let us remove the restriction that both A or Ω\A have non empty interior.
First, we notice that if Ln(A) = 0 or Ln(A) = Ω the result is obvious by
taking for all l, Al = ∅ or Al = Ω. So, we may assume that 0 < Ln(A) <
|Ω|. There exists two points x1, x2 such that
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• x1 ∈ A and ∀r > 0, Ln(A ∩ B(x1, r)) > 0,

• x2 ∈ Ω \ A and ∀r > 0, Ln((Ω \ A) ∩ B(x1, r)) > 0.

Consider the set Aθ1,θ2 = (A ∪ B(x2, θ2)) \ B(x1, θ1) and the function
Υ(θ1, θ2) = Ln(Aθ1,θ2 ). As Υ(0, θ) > Ln(A) and Υ(θ, 0) < Ln(A) for
any θ > 0, there exists t ∈]0; 1[ depending on θ such that Υ(tθ, (1 −
t)θ) = Ln(A). By construction, Aθ and Ω \ Aθ have nonempty interior.
The previous result gives the existence of (pθ,k)k ⊂ BV(Ω; {0; 1}) which
weakly* converges to pθ = 1Aθ

in BV(Ω) such that

lim sup
k→∞

Fεk
(pθ,k, g) ≤ F (pθ, g). (4.27)

Moreover, Ln(A △ Aθ) tends to 0 as θ → 0+, and, using

∫

Spθ

g(x, νpθ
)

1
2 ≤

∫

Sp

g(x, νpθ
)

1
2 +

√
2Hn−1(∂B(x1, θ1)) ∪ ∂B(x2, θ2)),

we get
lim sup

θ→0+

F (pθ, g) ≤ F (p, g).

According to (4.27), with a diagonal extraction there exists a sequence
(pk)k which weakly* converges to p such that

lim sup
k→∞

Fεk
(pk, g) ≤ F (p, g).

Last step: Assume that p ∈ BV(Ω; {0; 1}) and g ∈ W 1,r(Ω; G) .

In this step we do not assume that (gk)k is a constant sequence. Let
(gl)l as in proposition 2.2. As gl ∈ C∞ ∩ W 1,r

u (Ω), one apply the Second
step of the proof, it gives

lim sup
k→∞

Fεk
(pk, g

l) ≤ F (p, g
l).

We have the following inequalities

|F (p, g
l) − F (p, g)| ≤

∫

Sp

|gl(x, νp)
1
2 − g(x, νp)

1
2 |dHn−1,

≤
∫

Sp

|
[
(gl

x − gx)νp

]
· νp|

gl(x, νp)
1
2 + g(x, νp)

1
2

dHn−1,

≤ ‖g
l − g‖L∞

Hn−1(Sp)

2
.

So, we deduce that (F (p, gl))l converges to F (p, g). With a diagonal ex-
traction, we can conclude that there exists (pk, gk)k ⊂ Y which converges
for the topology T to (p, g) such that

lim sup
k→∞

Fεk
(pk, g

k) ≤ F (p, g).

As (pk)k converges pointwise to p then (
∫

Ω
(pk − g)2dx)k converges to

∫

Ω
(p − g)2dx. Moreover, by construction (‖gk‖W 1,r )k converges to ‖g‖W 1,r .

We conclude that
lim sup

k→∞
Eεk

(pk, ) ≤ E(p, g).
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5 Conclusion

We have proved that the approximation process is suitable in the sense
of Γ-convergence. We next use the approximated problem for numerical
experimentation. The computation of p is done via a classical gradient
descent method, while another strategy has to be developed for g: this
will be adressed in a future work.

On the other hand, the main hypothesis we did in this paper is the
bimodality of histogram: this is quite restrictive for numerics. If this
assumption is not ensured the previous model is not valid any longer and
has to be modified: we will set a more general formulation that perfoms
a similar segmentation without the binary constraint. Roughly speaking,
we look for a pair (f, g) where f : Ω → [0; 1] is a function (not necessarily
binary) and g a riemannian metric. The corresponding energy to be
minimized is :

∫

Ω

(f − g)2 + β

∫

Sf

g(x, νf )
1
2 dHn−1 + γ‖g‖W 1,r(Ω) + ρ

∫

Ω\Sf

|∇f |2.

(5.1)
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