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Γ-convergence of anisotropic vectorial functionals

adapted to detection of thin tubes
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1 Introduction

This work is a contribution to the problem of detection of thin structures,
namely tubes, in a 2D or 3D image. We adopt a geometrical point of view.
As the concept of tube is geometric, it is therefore necessary to use mathemat-
ical tools to make the link between shapes, models and algorithms.
We introduce a variational model of Mumford-Shah type (see [1] for the seminal
article). This approach generates a set of parameters whose role is essential
but adjustment is not automatic. The mathematical model allows to develop
strategies for tuning these parameters.
We introduce a bimodal model for the case where the histogram of the image has
two main modes. This corresponds, for example, to the case of an angiography
MRI.
Let n be the dimension and Ω ⊂ R

n the domain of the image. The analysis will
consist in searching a pair (p, g), where p : Ω → {0, 1} is a binary function and
g : Ω × R

n → R
+ is such that for any x ∈ Ω, g(x, ·) is a riemannian metric.

This pair must minimize a functional E defined by:

E(p, g) =

∫

Sp

g(x, νp(x))
1
2 dHn−1(x),

where Sp is the jump set of p, νp is a normal unitary vector to Sp and Hn−1

the n−1-dimensional Hausdorff measure. To detect thin tubes, we assume that
the metric has a characteristic direction at each point of the domain. More
precisely, the metric must take the form g(x, v) = |v|2 + (c(x) · v)2, where c is
an unitary vector field on Ω.
In [2], it is proved, in the general setting of Finsler metric, that this functional
is the anisotropic perimeter associated to the dual metric if g is fixed. So, it
inherits of lower semi-continuity property and it can be approximated in the
sense of the Γ-convergence by the family of functionals (Eε)ε>0 defined by

Eε(p) =

∫

Ω

εg(x, ∇p) +
p2(1 − p)2

ε
dx.

We generalize this work to the case where the metric g is also an unknown and
takes the form defined above. More precisely, we will prove that the family
(Fε)ε>0 defined by

Fε(p, c) =

∫

Ω

9ε
[
|∇p|2 + (c · ∇p)2

]
+

p2(1 − p)2

ε
,
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Γ-converges to

F (p, c) =

∫

Sp

√

1 + (c · νp)2dHn−1.

In section 2, we introduce the problem and the practical motivations. We recall
some classical results and introduce the functional framework in section 3. Sec-
tion 4 is devoted to the approximation process. We prove the main result, that
is the Γ-convergence result.

from the practical point of view, of calculus of variation and introduce the
functionals spaces used in the results, in sthe main result of approximation is
given and proved.

2 Presentation of the model

In what follows, n represents the spatial dimension of the image: n = 2 for
planar images and n = 3 for 3-D images. We adopt the list of symbols:

• x = (xi)i=1...n a vector in R
n,

• x a scalar in R,

• x · y =
∑n

i=1 xiyi the usual scalar product of Rn,

• |x| =
√

x · x the euclidean norm of Rn,

• S
n−1 the unit sphere of Rn,

• Br(x) the ball of Rn with center x and radius r ≥ 0,

• ‖A‖ a generic matricial norm in Mn(R),

• ν(x) a normal vector of a surface at x in R
n,

• Ln the n-dimensional Lebesgue measure of Rn,

• Hk the k-dimensional Hausdorff measure of Rn,

• M(Ω;Rn) the space of vector valued measures over Ω,

• Ck(Ω) the space of k-differentiable functions defined on Ω,

• C1
0(Ω;Rn) the space of differentiable functions defined on Ω with values in

R
n and which tend to 0 at ∞,

• Cc(Ω) the space of continuous functions defined on Ω with compact sup-
port,

• A △ B the symetric difference of the sets: (A \ B) ∪ (B \ A),

• ∂A the topological boundary of A ⊂ R
n.
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Figure 2.1: Mouse brain angiography and thresholding at 80% of the maximum
intensity

2.1 Motivation of the problem

For the study of some diseases, it is interesting to focus on the blood status in a
vessel network, especially on the volume of its microvasculature. To assess this,
in vivo mice brain angiography is performed. This is based on the injection of
a contrast medium and a MRI imaging process.

The left image in Figure 2.1 is a planar projection of a 3-D image, the right
image is the result of the manual segmentation with thresholding at a level equal
to 80% of the maximum intensity. The aim is to construct an automatic method
to segment the network area corresponding to the blood while removing noise.

2.2 Geometric characterization of the problem

We give an heuristic way to introduce and motivate the model. We first present
an isotropic model and show that it is not suitable for our problem. Then, we
introduce an anisotropic term.

2.2.1 The generic problem

Let Ω ⊂ R
n be the domain of the image. We consider the following segmentation

problem. Let α > 0 be the critical level of detection: if a set bα0 is with diameter
α0 lower than α then it is considered as noise and has to be removed. Let Γ ⊂ Ω
be a curve with length ℓ such that α is negligible compared with ℓ. We set Tℓ,α

the tubular neighborhood of Γ of the points of Ω at distance lower than α of Γ.
Although the section of Tℓ,α is near of the critical level we want to detect this
set because of its specific geometry. We set Bα a ball with radius α, it is also
considered as noise not because it has a critical diameter but because it has not
the appropriate geometry of tubes.

Let I ⊂ Ω be a generic set and we assume that we have the following disjoint
decomposition (see figure 2.2)

I = Tℓ,α ∪ Bα ∪ bα0
.
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Tℓ,α

Bα bα0

Figure 2.2: Decomposition of the image in three kinds of sets.

The segmentation problem consists in combining three constraints. The first
one is to remove the sets of bα0 type because their section is too small. The
second one is to remove the Bα type sets, not because they have small radius,
but because they are not tubes. The last one is to detect the tubes Tℓ,α.

For that, we purpose an energy functional E defined on the sets of Ω. We
say that a set F is a better segmentation than the set G if E(F ) < E(G).
The functional E is adapted to the problem if it satisfies the three following
conditions:

i) E(I \ bα0
) < E(I),

ii) E(I \ Bα) < E(I),

iii) E(I) < E(I \ Tℓ,α).

Conditions i) and ii) imply that removing bα0
and Bα provides a better

segmentation than keeping them. Condition iii) implies that detecting Tℓ,α

gives a better segmentation than removing it.

2.2.2 An isotropic model

We first consider an isotropic functional E defined on the sets of P(Ω) with finite
volume and area as:

E(F ) = Volume(F △ I) + βArea(∂F ),

where β > 0 is a weight to tune. Many works have been devoted to this
particular case. Let us mention contributions from Morel and Solimini [3]. We
show that this model can not satisfy the three constraints we imposed to our
problem.

As Tℓ,α, Bα and bα0
are disjoints, condition i) is equivalent to

Volume(bα0) < βArea(∂bα0). (2.1)

The sets which minimize the ratio Volume/Area are prefered by this energy.
When the diameter is fixed, the sets which minimize this ratio are the balls.
Thus, to ensure the inequality (2.1), it it sufficient to have

Volume(Bα0) < βArea(∂Bα0).
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Taking the equivalences Volume(Bα0
) ∼ αn

0 and Area(∂Bα0
) ∼ αn−1

0 , this con-
dition gives

α0 < β.

For the same reasons, condition ii) gives

α < β. (2.2)

Condition iii) is equivalent to

βArea(∂Tℓ,α) < Volume(Tℓ,α).

Taking the equivalences Volume(Tℓ,α) ∼ ℓαn−1 and Area(Tℓ,α) ∼ ℓαn−2, this
condition gives

β < α. (2.3)

Thus, conditions (2.2) and (2.3) are contradictious. Such a model is not adapted
to this problem.

2.2.3 An anisotropic model

We rather introduce an energy term that involves a preference to sets having
a direction, that is anisotropic sets. Let c : Ω −→ S

n−1 be an unknown and
unitary vector field that represents a direction in each point of the image.

Let x ∈ ∂F and νF (x) be a unit normal vector of the surface ∂F at x. We
say that |c(x) · νF (x)| is the action of the vector field c on ∂F at x. This term
is zero if the field is tangent to the surface and it is maximum if it is orthogonal
to the surface. We introduce the total action of c on ∂F :

Action(F, c) =

∫

∂F

|c · νF |dHn−1,

where Hn−1 is the surface measure (namely the n − 1-dimensional Hausdorff
measure). As α ≪ ℓ, a field which minimizes the action of c on ∂Tℓ,α has to be
tangent to ∂Tℓ,α along the tube (see figure 2.3).

∂Tℓ,αc

�✒νTℓ,α

Figure 2.3: A field c tangent to the edge of a tube Tℓ,α.

Moreover, we introduce a regularization term defined on the vector field as

Regularization(c) =

∫

Ω

‖Dc‖λ,
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where ‖ · ‖ is a pointwise matricial norm and we fix λ > n (not necessary an
integer) to ensure that the field is regular. Indeed, if λ > n and

∫

Ω
‖Dc‖λ < ∞

then c is continuous. The new expression of the energy is

E(F, c) = Volume(F △ A) + βArea(∂F )
︸ ︷︷ ︸

isotropic terms

+ µAction(∂F, c) + γRegularization(c)
︸ ︷︷ ︸

anisotropic terms

,

(2.4)
where β, µ and γ are, as before, weights to tune. We have to verify the conditions
i), ii) and iii) of 2.2.1. We assume that Tℓ,α is a linear and rigid tube of length
ℓ and section α. Obviously, the best choice of c is to choose it in the direction
of the tube. Indeed, the action of the field on the tube is zero outside the two
ends of the tube and the regularization is zero (see figure 2.4).

c

Tℓ,α

Figure 2.4: A linear tube Tℓ,α and c in the direction of the tube.

Using the following equivalences:

Volume(Tℓ,α) ∼ ℓαn−1, Area(Tℓ,α) ∼ ℓαn−2, Action(∂Tℓ,α, c) ∼ αn−1.

Condition iii) is equivalent to

βℓαn−2 + µαn−1 < ℓαn−1. (2.5)

For a ball Bα, the field c has to realize a compromise between its action on
∂Bα and its regularization (see figure 2.5).

We make the homothetic change of variable between Bα and B1, a ball of
radius 1. We denote c1 = c(α·). It gives:

µAction(∂Bα, c)+γRegularization(c) = µαn−1Action(∂B1, c1)+γαn−λRegularization(c1).

As α is small and λ > n, then if µ ∼ γ the parameter µαn−1 is negligible with
respect to γαn−λ. As a conclusion, the regularization is more important than
the action for balls with small radius α. The best choice for c is a constant field.
In this case the regularization is zero and the action is equal to the action on
the tube with the same section. Then, conditions i) and ii) are equivalent to

αn < βαn−1 + µαn−1. (2.6)

The three conditions (2.5) and (2.6) are not contradictious anymore when α is
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c

Bα

c

Bα

Figure 2.5: Two opposite situations: at left, c minimizes the action, at right, c

minimizes the regularization.

small and α ≪ ℓ. For example, we can take







µ = γ,
β < α

2 ,
µ < ℓ

2 ,
β + µ > α.

As α ≪ ℓ, the previous system admits solutions. Thus, this model is adapted
to the problem.

2.3 Bimodal model

Let us give a functional formulation of the energy of (2.4). We define an im-
age as a function g : Ω → [0; 1]. We assume that the domain Ω ⊂ R

n is
Lipschitz-regular. The fondamental assumption of this model is that the his-
togram distribution of the image contains two main modes that we assume to be
0 and 1. Equivalently, g is almost equal to an indicator function. The unknown
is a pair (p, c) where p : Ω → {0; 1} is a binary function and c : Ω → S

n−1 is an
unitary vector field which minimizes the energy

E(p, c) =

∫

Ω

(p − g)2 + βHn−1(Sp) + µ

∫

Sp

|c · νp| dHn−1 + γ

∫

Ω

‖Dc‖λ, (2.7)

where Sp is the jump set of p. It is a C1-hypersurface of Ω and νp : Sp → S
n−1

is a normal unit vector of Sp. If p is the indicator function of a set F ⊂ Ω and
F is a smooth hypersurface then Sp is equal to ∂F . For the general setting, its
definition will be precised in section 3.3. The parameters β, µ and γ are weights
to determine.

3 Functional framework

The following results are extracted from [4] for Radon measures and BV-spaces
and [5] for functionals defined on measures spaces and Γ-convergence.
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3.1 Radon measures and functionals defined on measure
spaces

Definition 3.1. Let M(Ω) be the space of Radon measures and M(Ω;Rn) be
the space of vectorial Radon measures.

Theorem 3.1. For λ ∈ M(Ω;Rn), we denote

‖λ‖M(Ω;Rn) = sup

{∫

Ω

ϕ · dλ : ϕ ∈ Cc(Ω;Rn), ‖ϕ‖L∞ ≤ 1

}

.

Then, this application is a norm on M(Ω;Rn).

Definition 3.2. Let λ and θ be two measures on Ω. We say

i) the restriction of λ to the set B ⊂ Ω is the measure denoted λxB and
defined by λxB(·) = λ(B ∩ ·),

ii) λ is absolutely continuous with respect to θ if λ(A) = 0 whenever
θ(A) = 0, when this holds, we write λ ≪ θ;

iii) λ and θ are mutually singular if there exists a set B ⊂ Ω such that
λ = λxB and θ = θx(Ω \ B), when this holds we write λ ⊥ θ.

The following result is also called Besicovitch’s decomposition theorem.

Theorem 3.2. Suppose that θ is a Radon measure and λ is a vectorial Radon
measure on Ω. Then

i) lim
r→0

λ(Br(x))

θ(Br(x))
exists and is finite for θ almost every x, we denote by dλ

dθ
(x)

this limit when it exists,

ii) λ = λac +λs, where λac, λs are vectorial Radon measures such that λac ≪ θ
and λs ⊥ θ,

iii) λac(B) =
∫

B
dλ

dθ
dθ.

Definition 3.3. A sequence (λk)k∈N ⊂ M(Ω;Rn) weakly converges to λ ∈
M(Ω;Rn) if we have

∀ϕ ∈ Cc(Ω;Rn),

∫

Ω

ϕ · dλk →
∫

Ω

ϕ · dλ.

Let ϕ : Ω × R
n → R

+ be a sublinear function with respect to the second
variable, that is:

i)

∀(x, v1, v2) ∈ Ω × R
n × R

n, ϕ(x, v1 + v2) ≤ ϕ(x, v1) + ϕ(x, v2),

ii)
∀(x, v, t) ∈ Ω × R

n × R
+, ϕ(x, tv) = tϕ(x, v).

8



We consider the convex functional defined on the space M(Ω;Rn) by

Φ : λ ∈ M(Ω;Rn) 7→
∫

Ω

ϕ

(

x,
dλ

dθ

)

dθ (3.1)

where θ is a positive measure such that λ ≪ θ. It is shown in [6] that the
integral in (3.1) does not depend on the choice of θ. For that reason, we will
write it in the condensed form

Φ(λ) =

∫

Ω

ϕ (x, λ).

The functional Φ has the following continuity properties which are proved in
[7].

Proposition 3.1. i) If ϕ is a lower semicontinuous on Ω × R
n, then Φ is

lower semicontinuous on M(Ω;Rn) for the topology introduced in 3.3.

ii) Assume that ϕ is continuous on Ω × R
n. If (λk)k∈N weakly converges to λ

and if, moreover,
∫

Ω
|λk| →

∫

Ω
|λ|, then Φ(λk) converges to Φ(λ).

We give a variant of the coarea formula extended to the sublinear functionals
which can be found in [8].

Proposition 3.2. Let Φ(x, s, v) a Borel function of Ω×R×R
n which is sublinear

in v. Let p be a Lipschitz continuous function on Ω and denote, for t > 0,
St = {x ∈ Ω; p(x) < t}. Then, for almost all t ∈ R, St belongs to BV(Ω) and
we have ∫

Ω

Φ(x, p, Dp)dx =

∫

R

dt

∫

Ω

Φ(x, t, D1St
).

3.2 Functions with bounded variation

Definition 3.4. A function u ∈ L1(Ω) is said to be with bounded variation

if

sup

{∫

Ω

udiv(ϕ) : ϕ ∈ C1
0(Ω;Rn), ‖ϕ‖L∞ ≤ 1

}

< +∞.

We denote TV (u) this upper bound and BV(Ω) the set of such functions.

Theorem 3.3. Let be u ∈ L1(Ω), then the derivative of u in the sense of
the distributions is a bounded Radon measure. Moreover, we have TV (u) =
‖Du‖M(Ω;Rn).

Theorem 3.4. The space BV(Ω), equipped with the following norm

‖u‖BV(Ω) = ‖u‖L1(Ω) + TV (u)

is a Banach space.

Definition 3.5. A sequence (uk)k∈N of BV(Ω) converges in the sense of the
intermediate topology to u ∈ BV(Ω) if we have

{
uk → u in L1(Ω),

∫

Ω
|Duk| −→

∫

Ω
|Du|.
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Theorem 3.5. We have the two following compactness results

i) the inclusion BV(Ω) ⊂ L1(Ω) is compact,

ii) if (uk)k∈N is a bounded sequence of BV(Ω), then there exists a subsequence
which intermediately converges to u.

3.3 Sets with finite perimeter

In the sequel, we are formulating min E as a minimization problem of func-
tions by connecting sets and functions via indicator functions. The following
terminology is introduced in [4].

Definition 3.6. Let A ⊂ Ω be a measurable set. A point x ∈ Ω belongs to
measure theoretic boundary of A if

lim sup
r→0+

Ln(B(x, r) ∩ A)

rn
> 0,

and

lim inf
r→0+

Ln(B(x, r) \ A)

rn
> 0.

We denote ∂∗A the measure theoretic boundary of A .

Definition 3.7. A measurable set A ⊂ Ω is said with finite perimeter if
1A ∈ BV(Ω).

Remark 3.1. The concept of measure theoretic boundary generalizes the concept
of topological boundary when A is regular. Indeed, if A ⊂ Ω is an open whose
topological boundary ∂A is a smooth and compact hypersurface, then we have

i) ∂A = ∂∗A,

ii) TV (1A) = Hn−1(∂A).

Theorem 3.6. Let A ⊂ Ω be a set with finite perimeter. There exists a pairwise
disjoint family of sets (Si)i∈N and a set M ⊂ Ω such as

i) for all i ∈ N, Si is a C1 and compact hypersurface of Ω,

ii) Hn−1(M) = 0,

iii) ∂∗A = M ∪
(⋃

i∈N
Si

)
.

Theorem 3.7. Let A ⊂ Ω be a set with finite perimeter. The following gener-
alized Gauss-Green formula holds: for Hn−1 almost every x ∈ Ω, there exists
ν(x) ∈ S

n−1, called the inner normal vector to A at x, such that for all
ϕ ∈ C1

c (Ω;Rn),
∫

Ω

1Adiv(ϕ)dx = −
∫

∂∗A∩Ω

ϕ · νdHn−1,

that is D1A = νHn−1
x∂∗A ∩ Ω.

Definition 3.8. Let A ⊂ Ω be a set with finite perimeter and p = 1A. With
the theorems 3.6 and 3.7, we get Sp = ∂∗A and νp = ν.
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Proposition 3.3. Let A ⊂ Ω be a set with finite perimeter and p = 1A. Then,
we have ‖Dp‖M = Hn−1(Sp).

Remark 3.2. If p = 1A with A ⊂ Ω an open subset whose boundary ∂A is a
compact hypersurface with class C1, then we have Sp = ∂A.

The following lemma is proved in [9]. It asserts that every set with bounded
perimeter can be approximated by a sequence of smooth subsets of R

n, all
having the same volume inside Ω and each of these boundaries satisfy a measure
theoretic transversality condition with respect to Ω.

Lemma 3.1. Let Ω be an open, bounded subset of Rn with Lipschitz continuous
boundary, and let A be a measurable subset of Ω. If A and Ω \ A both contain
a non-empty open ball, then there exists a sequence (Ak)k∈N of open bounded
subsets of Rn with smooth boundaries such that

i)
lim

k→∞
Ln((Ak ∩ Ω) △ A) = 0, lim

k→∞
Hn−1(∂Ak) = TV (1A);

ii)
Ln(Ak ∩ Ω) = Ln(A) for k large enough;

iii)
Hn−1(∂Ak ∩ ∂Ω) = 0 for k large enough.

3.4 Functional spaces

In this section we introduce the appropriate functional spaces for the approxi-
mation process.

B(Ω; [0, 1]) = {p measurable : p(x) ∈ [0; 1] a.e. x ∈ Ω} ,
BVp(Ω) = {p ∈ BV(Ω): p(x) ∈ {0; 1} a.e. x ∈ Ω} ,
W 1,2

p (Ω) =
{

p ∈ W 1,2(Ω): 0 ≤ p(x) ≤ 1 a.e. x ∈ Ω
}

,
W 1,λ

u (Ω;Rn) =
{

c ∈ W 1,λ(Ω;Rn) : |c(x)| = 1 a.e. x ∈ Ω
}

,
X = B(Ω; [0, 1]) × W 1,λ

u (Ω),
Y = BVp(Ω) × W 1,λ

u (Ω;Rn),
Z = W 1,2

p (Ω) × W 1,λ
u (Ω;Rn).

Let T be the product topology on X where:

• B(Ω; [0, 1]) is endowed with the almost everywhere convergence topology,

• W 1,λ
u (Ω) is endowed with the weak topology associated to its norm.

For a sequence ((pk, ck))k∈N
which converges to (p, c) for this topology, we

write (pk, ck)
T−→ (p, c). Since these spaces are metrizable, then (X, T ) is also

metrizable.
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3.5 Γ-convergence

We want to perform an approximation of the energy E more suitable for nu-
merics applications. We will do that in the sense of the Γ-convergence. In this
section, we give the definition and a useful property of continuity. For more
properties on this subject one refer to [5], chapter 12.

Definition 3.9. Let (X , d) be a metrizable space, (Ek)k∈N a sequence of real-
valued functions Ek : X → R ∪ {+∞}, and E : X → R ∪ {+∞}. The sequence
(Ek)k∈N Γ-converges to E at x ∈ X if both the following conditions hold:

i) for all sequences (xk)k∈N converging to x ∈ X , one has

E(x) ≤ lim inf
k→∞

Ek(xk), (3.2)

ii) there exists a sequence (yk)k∈N converging to x ∈ X such that

E(x) ≥ lim sup
k→∞

Ek(yk). (3.3)

When i) and ii) hold for all x ∈ X , we say that (Ek)k∈N Γ-converges to E in
(X , d).

The main interest of the Γ-convergence, in our case, is the following result.

Theorem 3.8. Let (Ek)k∈N be a sequence of functions which Γ-converges to E
in (X , d). Let (xk)k∈N be such that

∀k ∈ N, Ek(xk) ≤ inf
x∈X

Ek(x) + εk,

where εk > 0 converges to 0. Assume that (xk)k∈N is relatively compact; then
every cluster point x of (xk)k∈N is a minimizer of E and

lim inf
k→∞

Ek(xk) = E(x).

Remark 3.3. The previous theorem asserts that if xk is an approximate solution
of the minimizing problem of Ek, then it is also an approximated solution of the
minimizing problem of E.

4 Functional formulation of the problem

In this section we prove that the function defined in (2.7) admits at least a mini-
mizer in an appropriate functional space. Then, we introduce an approximation
of this problem and prove a convergence result.

4.1 Existence result

In order to simplify the notations, we assume that β = µ = γ = 1. Thus, we
denote

E(p, c) =

∫

Ω

(p − g)2 + Hn−1(Sp) +

∫

Sp

|c · νp|dHn−1 +

∫

Ω

‖Dc‖λ.
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We have the following minimization problem

(P) : Min {E(p, c) : (p, c) ∈ Y} . (4.1)

In this section we prove that problem (P) admits at least one solution. We
apply the direct method of calculus of variations. We exhibit a minimizing
sequence which is compact for an appropriate topology. Then, we prove a lower
semicontinuity result for E and conclude.

As E is bounded from below by 0, there exists a sequence (pk, ck)k∈N ⊂ Y
such that (E(pk, ck))k∈N converges to the minimum value of E. In the following
theorem we prove that we can extract a converging sequence from (pk, ck)k∈N.

Theorem 4.1. Let (pk, ck)k∈N ⊂ Y such that

∃M > 0, ∀k ∈ N, E(pk, ck) ≤ M.

Then, there exists a subsequence, still denoted (pk, ck)k∈N, and (p, c) ∈ Y such

that (pk, ck)
T−→ (p, c).

Proof. As pk takes its values in [0; 1] and Ω is bounded, then (pk)k∈N is a
bounded sequence of L1(Ω). According to proposition 3.3, we have TV (pk) =
Hn−1(Spk

). Moreover, we have Hn−1(Spk
) ≤ E(pk, ck), so (TV (pk))k∈N is

bounded. We deduce that (pk)k∈N is a bounded sequence of BV(Ω). According
to theorem 3.5, there exists a subsequence, still denoted (pk)k∈N, and some
p ∈ BV(Ω) such that (pk)k∈N converges to p intermediately. As pk takes its
values in {0; 1}, we deduce that p takes its values in {0; 1}.
As ck takes its values in S

n−1, and Ω is bounded, then (ck)k∈N is a bounded
sequence in Lλ(Ω). Moreover, we have

‖Dck‖Lλ ≤ E(pk, ck).

We deduce that (ck)k∈N is bounded in W 1,λ(Ω;Rn). So, we can extract a
sequence (ck)k∈N and there exists c ∈ W 1,λ(Ω;Rn) such that (ck)k∈N converges
to c weakly in W 1,λ(Ω;Rn). As ck takes its values in S

n−1, we deduce that c

takes its values too in S
n−1. We can conclude that (p, c) ∈ Y.

Theorem 4.2. The functional E : Y → R is lower semicontinuous for the prod-
uct topology of the intermediate convergence on BV(Ω) and the weak-topology
on W 1,λ(Ω;Rn).

Proof. The lower semicontinuity of the three terms
∫

Ω
(p − g)2, Hn−1(Sp) and

∫

Ω
‖Dc‖λ are well known results and the proof can be found for example in [5].

The original part of this result is the lowersemicontinuity of
∫

Sp
|c · νp|dHn−1.

We first prove the result with c fixed and generalize without this assumption.
Claim 1: Let c ∈ W 1,λ

u (Ω;Rn) and (pk)k∈N ⊂ BVp(Ω) (see 3.4) which inter-
mediately converges to p ∈ BVp(Ω). Then, we have

∫

Sp

|c · νp|dHn−1 ≤ lim inf
k→∞

∫

Spk

|c · νpk
|dHn−1.

We define ϕ : Ω × R
n → R as

ϕ(x, v) = |c(x) · v|.

13



As λ > n, then we have W 1,λ(Ω) ⊂ C0(Ω), so c is continuous. We deduce that
ϕ : Ω × R

n → R is continuous as well.
According to theorem 3.7, we have Dpk ≪ Hn−1

xSpk
, Dp ≪ Hn−1

xSp and

d(Dpk)

d(Hn−1xSpk
)

= νpk
1Spk

,
d(Dp)

d(Hn−1xSp)
= νp1Sp

.

Moreover, ϕ is sublinear with respect to v. According to proposition 3.1, we
can conclude the proof of Claim 1.

Claim 2: Let (pk, ck)k∈N ∈ Y such as (pk)k∈N intermediately converges to
p ∈ BVp(Ω) and (ck)k∈N weakly converges to c ∈ W 1,λ

u (Ω;Rn) in W 1,λ(Ω;Rn).
Then, we have

∫

Sp

|c · νp|dHn−1 ≤ lim inf
k→∞

∫

Spk

|ck · νpk
|dHn−1.

Triangular inequality gives
∣
∣
∣
∣
∣

∫

Spk

|ck · νpk
|dHn−1 −

∫

Spk

|c · νpk
|dHn−1

∣
∣
∣
∣
∣

≤
∫

Spk

|(ck − c) · νpk
|dHn−1,

≤
∫

Spk

|ck − c|dHn−1,

≤ ‖ck − c‖L∞Hn−1(Spk
),

As (pk)k intermediately converges to p in BV(Ω) then (Hn−1(Spk
))k∈N is a

bounded sequence. As λ > n then the inclusion W 1,λ(Ω) ⊂ C0(Ω) is compact.
As (ck)k weakly converges to c in W 1,λ(Ω) then (ck)k∈N converges to c in
L∞(Ω). This two facts implie that

‖ck − c‖L∞Hn−1(Spk
) → 0,

so we have ∫

Spk

|ck · νpk
|dHn−1 −

∫

Spk

|c · νpk
|dHn−1 → 0.

Then, in the following expression:

∫

Spk

|ck · νpk
|dHn−1 =

(
∫

Spk

|ck · νpk
|dHn−1 −

∫

Spk

|c · νpk
|dHn−1

)

+

∫

Spk

|c · νpk
|dHn−1

the term between parentheses converges to 0. According to Claim 1, we can
conclude that

lim inf
k→∞

∫

Spk

|ck · νpk
|dHn−1 ≥

∫

Sp

|c · νp|dHn−1.

We can now prove the existence of solutions for problem (P) (4.1).

Theorem 4.3. Let λ > n, the problem (P) admits at least one solution.
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Proof. Let (pk, ck)k∈N be a minimizing sequence of E. According to theorem
4.1, there exists a subsequence, still denoted (pk, ck)k∈N, and (p, c) ∈ Y such
that (pk)k∈N converges to p in L1(Ω) and (ck)k∈N weakly converges to c in
W 1,λ(Ω;Rn). According to theorem 4.2 we have

E(p, c) ≤ lim inf
k→∞

E(pk, ck).

As (pk, ck)k∈N is a minimizing sequence of E, can conclude that (p, c) is a
solution of (P).

4.2 Approximation process

In this section we give the main result: we introduce an approximated problem
and prove a Γ-convergence result.

4.2.1 Motivations

Let us give an outlook of the approximation process and its proof. In [9], Modica
and Mortola consider two functionals F M

ε and F M defined by

F M
ε (p) =

∫

Ω

9ε|∇p|2 +
p2(1 − p)2

ε
,

F M (p) = Hn−1(Sp).

They prove the Γ-convergence of (F M
ε )ε>0 to F M for ε converging to 0+. In our

case, we have to introduce the action of c on Sp. So, we consider the functional

Fε(p, c) =

∫

Ω

9ε
[
|∇p|2 + (c · ∇p)2

]
+

p2(1 − p)2

ε
,

and prove that it Γ-converges to

F (p, c) =

∫

Sp

√

1 + (c · νp)2 dHn−1.

The result is not a direct consequence of [9]. Indeed, the functional Fε is not
isotropic and the proof has to be adapted. Moreover, this expression is not
exactly the same as the one we introduced in (2.7), in this case we had

Hn−1(Sp) +

∫

Sp

|c · νp| dHn−1.

According to the following equivalence

∀(a, b) ∈ (R+)2,
√

a2 + b2 ≤ a + b ≤
√

2
√

a2 + b2,

the expression of E given by

E(p, c) =

∫

Ω

(p − g)2 +

∫

Sp

√

β2 + µ2(c · νp)2 dHn−1 + γ

∫

Ω

‖Dc‖λ.

is equivalent to (2.7) from the minimizing point of view.
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4.2.2 The main theorem

Let F , Fε and G be the functions defined on X and with values in R∪ {+∞} as

G(p, c) =

∫

Ω

(p − g)2 +

∫

Ω

‖Dc‖λ if (p, c) ∈ X ,

F (p, c) =

{ ∫

Sp

√

1 + (c · νp)2dHn−1 if (p, c) ∈ Y,

+∞ otherwise,

Fε(p, c) =

{ ∫

Ω
9ε
[
|∇p|2 + (c · ∇p)2

]
+ p2(1−p)2

ε
if (p, c) ∈ Z,

+∞ otherwise,

E = G + F,

Eε = G + Fε.

The main result of this work is the following

Theorem 4.4. Let (εk)k∈N be a sequence converging to 0+. Then, the sequence
(Eεk

)k∈N Γ-converges to E in X for the topology introduced in 3.4.

This results consists in proving two inequalities (3.2) and (3.3). The first
inequality consists in the application of the method introduced in [10], while
the second is specific to this problem.

4.3 The inequality for the lower Γ-limit (3.2)

We now prove the first inequality (3.2). For any (p, c) ∈ X , we denote

E−(p, c) = inf

{

lim inf
k→∞

Eεk
(pk, ck) : ((pk, ck))k∈N

⊂ Z, (pk, ck)
T−→ (p, c)

}

Let (p, c) ∈ X , it suffices to prove that E−(p, c) ≥ E(p, c). Without loss of
generality, several assumptions can be made.

1. E−(p, c) < +∞, otherwise the result is ensured.

2. (p, c) ∈ Y. Indeed, according to the first assumption, there exists (pk, ck)k∈N
⊂

Z such that (Eεk
(pk, ck))k∈N

is bounded, so (Eεk
(pk, ck))k∈N

is bounded
too. According to theorem (4.1), we can deduce that its limit belongs to
Y.

3. There exists a sequence ((pk, ck))k∈N
⊂ Y such that ((pk, ck))k∈N

con-
verges to (p, c) and Eεk

((pk, ck), Ω) converges to E−(p, c). Indeed, we can
construct such a sequence by a diagonal extraction.

4. At last, (pk)k∈N ⊂ C∞ ∩ W 1,2(Ω). Indeed, according to Meyers-Serrin
theorem, the space C∞ ∩ W 1,2(Ω) is dense in W 1,2(Ω). Moreover, there

exists Cε such as for any (p, q) ∈
(
W 1,2(Ω)

)2
, we have

|Eε(p, c) − Eε(q, c)| ≤ Cε

(
|‖∇p‖2

L2 − ‖∇q‖2
L2 | + |〈∇p, c〉L2 − 〈∇q, c〉L2 |

)
.

So, by a diagonal extraction we may construct (pk)k∈N.
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First Step: we have

εk

(∫

Ω

(ck · ∇pk)2 −
∫

Ω

(c · ∇pk)2

)

→ 0.

As
|(ck · ∇pk)2 − (c · ∇pk)2| ≤ 2‖ck − c‖2

L∞ |∇pk|2,

then we have

εk

∣
∣
∣
∣

∫

Ω

(ck · ∇pk)2 −
∫

Ω

(c · ∇pk)2

∣
∣
∣
∣

≤ 2‖ck − c‖2
L∞εk

∫

Ω

|∇pk|2.

As εk

∫

Ω
|∇pk|2 ≤ Eεk

(pk, ck), then the term εk

∫

Ω
|∇pk|2 is uniformely

bounded with respect to k. Moreover, (ck)k∈N weakly converges to c and the
inclusion W 1,λ ⊂ L∞ is compact. It yields that (ck)k∈N converges to c in L∞.
It concludes the first step of the proof.

Second Step: we have

lim inf
k→∞

Fεk
(pk, c) ≥ F (p, c).

For any k ≥ 0, the inequality A2 + B2 ≥ 2AB gives
∫

Ω

9εk

[
|∇pk|2 + (c · ∇pk)2

]

︸ ︷︷ ︸

A2

+
p2

k(1 − pk)2

εk
︸ ︷︷ ︸

B2

≥
∫

Ω

6pk(1 − pk)
√

|∇pk|2 + (c · ∇pk)2

︸ ︷︷ ︸

2AB

.

Let Φ : Ω × [0; 1] × R
n → R

+ be the function

Φ(x, s, v) = 6s(1 − s)
√

|v|2 + (c(x) · v)2.

This function is sublinear in v. We denote Sk
t = {x ∈ Ω: pk(x) < t} Using the

formula 3.2, we can write
∫

Ω

6pk(1 − pk)
√

|∇pk|2 + (c · ∇pk)2 =

∫

R

∫

Ω

6t(1 − t)
√

|D1Sk
t
|2 + (c(x) · D1Sk

t
)2.

Applying Fatou lemma and noting that D1St
vanishes when t 6∈ [0; 1] gives

lim inf
k→∞

Fεk
(pk, ck) ≥

∫ 1

0

6t(1 − t) lim inf
k→∞

∫

Ω

√

|D1Sk
t
|2 + (c(x) · D1Sk

t
)2.

So, the sequence
∫

Ω
|D1Sk

t
| is bounded; this yields that (1Sk

t
)k∈N is weakly

relatively compact in BV(Ω). We denote A = {x ∈ Ω: p(x) = 1}. We have
∫

Ω

|pk − p| =

∫

Ω

|pk − 1A|,

≥
∫

A\Sk
t

|pk − 1A| +

∫

Sk
t \A

|pk − 1A|,

≥ (1 − t)

∫

A\Sk
t

|1Sk
t

− 1A| + t

∫

Sk
t \A

|1Sk
t

− 1A|,

≥ min(t, 1 − t)

∫

A△Sk
t

|1Sk
t

− 1A|,

≥ min(t, 1 − t)

∫

Ω

|1Sk
t

− 1A|.
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The unique possible limit of (1Sk
t
)k∈N is 1A. Then, thanks to proposition (3.1)

we have

lim inf
k→∞

∫

Ω

√

|D1Sk
t
|2 + (c(x) · D1Sk

t
)2 ≥

∫

Sp

√

1 + (c · νp)2.

Third Step: we have

lim inf
k→∞

Fεk
(pk, ck) ≥ F (p, c).

We have the decomposition

Fεk
(pk, ck) = (Fεk

(pk, ck) − Fεk
(pk, c)) + Fεk

(pk, c).

According to the first step, the first term converges to 0 and according to the
second step we can conclude that

lim inf
k→∞

Fεk
(pk, ck) ≥ F (p, c).

Conclusion

As Eεk
= G + Fεk

, it gives

lim inf
k→∞

Eεk
(pk, ck) ≥ lim inf

k→∞
G(pk, ck) + lim inf

k→∞
Fεk

(pk, ck).

According to the third step, we have lim inf Fεk
(pk, ck) ≥ F (p, c). Moreover,

as G is lower semicontinuous for the topology of X , we have lim inf G(pk, ck) ≥
G(p, c). As E = F + G, it finishes the proof of the inequality for the lower
Γ-limit.

4.4 The inequality for the higher Γ-limit (3.3)

We may now prove the second part (3.3) of theorem 4.4.

Proof. We set (p, c) ∈ X . As Eεk
(p, c) = +∞ if p 6∈ BV(Ω), we can assume

that p belongs to BV(Ω) and takes its values on {0; 1}, otherwise the result
is ensured. Let (εk)k∈N a sequence which converges to 0+. We construct a
sequence of functions (pk, ck)k∈N such that

lim sup
k→∞

Eεk
(pk, ck) ≤ E(p, c)

and (pk, ck)k∈N converges to (p, c) for the topology T (see page 10). First, we
construct it when Sp is a smooth surface and c a smooth vector field. Then, we
remove these assumptions and we use approximating results to prove it in the
general setting.

First step: we assume that Sp is a compact surface of class C2 and

c ∈ C∞(Ω) ∩ W 1,λ
u (Ω;Rn) .

We set ck = c for any k ∈ N. Moreover, if (pk)k∈N ⊂ W 1,2
b (Ω) converges a.e.

to p, then it converges for the L1(Ω) norm and (
∫

(pk − g)2)k∈N converges to
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Sp

[p = 1] [p = 0]

Vη

❅
❅❘

Figure 4.1: Partition of Ω in three domains: [p = 0], [p = 1] \ Vη and Vη.

∫
(p − g)2. So, it suffices to construct an appropriate sequence (pk)k∈N which

converges a.e. to p and such that lim sup Fεk
(pk, c) ≤ F (p, c).

For η > 0, let Vη be the set Vη = {x ∈ [p = 1] : 0 < dist(x, Sp) < η} (see
figure 4.1).

Outside Vη, we define all the function pk as:

∀x ∈ [p = 0], pk(x) = 0,

∀x ∈ [p = 1] \ Vη, pk(x) = 1.

The construction of pk inside Vη will be precised. As we assume that Sp is a
compact and C2-surface, there exists η0 > 0 and a C1-diffeomorphism φ : Vη0

→
Sp×]0; η0[ (see [9]), caracterized by

∀(ξ, t) ∈ Sp×]0; η0[, φ(ξ + tνp(ξ)) = (ξ, t).

We denote Σξ the slice

Σξ = {ξ + tνp(ξ) : t ∈ [0; η0]} ,

We shall construct pk slice by slice (see figure 4.2). Indeed, φ : Vη0
→ Sp×]0; η0[

is a diffeomorphism, so up to a condition of regularity that we will prove in
the following, it provides a complete construction of pk. We denote by χk,ξ :
[0; η0] → R the restriction of pk to Σξ. We introduce K defined on Sp × [0; η0]
as

∀(ξ, t) ∈ Sp × [0; η0], K(ξ, t) =
√

1 + (c(ξ + tνp(ξ)) · νp(ξ))2.

and χk,ξ as the solution of the following differential equation

{
χk,ξ(0) = 0,

3
√

εkK(ξ, t)χ′
k,ξ(t) =

√
1

εk| ln(εk)| +
(χk,ξ(t))2(1−χk,ξ(t))2

εk
for t ≥ 0.
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Sp

Vη0

�
�
�
��✒

νp(ξ)

r

ξ + tνp(ξ)
r

ξ

❄

✻

η0

Figure 4.2: Slicing parametrization of Vη0
.

For t ≥ 0, we have χ′
k,ξ(t) ≥ 1

3K(ξ,t)εk

√
| ln(εk)|

. As c is an unitary vector field, we

have K(ξ, t) ≤
√

2. So, there exists a unique ηk,ξ > 0 such that χk,ξ(ηk,ξ) = 1
and

sup
ξ∈Sp

ηk,ξ ≤ 3
√

2εk

√

| ln(εk)|. (4.2)

As εk

√

| ln(εk)| converges to 0, then we can assume that ηk,ξ < η0 for any k
and ξ. Thus, we change the definition of χk,ξ as the solution of the following
equation







χk,ξ(0) = 0,

3
√

εkK(ξ, t)χ′
k,ξ(t) =

√
1

εk| ln(εk)| +
(χk,ξ(t))2(1−χk,ξ(t))2

εk
for t ∈]0; ηk,ξ[,

χk,ξ(t) = 1 for t ∈ [ηk,ξ; η0[.
(4.3)

We denote ηk = sup {ηk,ξ : ξ ∈ Sp} and we define pk as

∀x ∈ [p = 0] , pk(x) = 0,

∀(ξ, t) ∈ Sp×]0; η0[, pk(ξ + tνp(ξ)) = χk,ξ(t),

∀x ∈ [p = 1] \ Vη0
, pk(x) = 1.

As ηk → 0, then pk → p almost everywhere.

In the sequel we take n = 3 but we can generalize it for any n ≥ 2. Let t1

and t2 be two C1-function defined on Sp (see figure 4.3) such that for all ξ ∈ Sp

we have

• (t1(ξ), t2(ξ), νp(ξ)) is an orthonormal basis of R3,

• (t1(ξ), t2(ξ)) is a basis of the tangent plane of Sp at ξ.
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ξ
q

ξ + tνp(ξ)

Sp

νp(ξ)t1(ξ)

t2(ξ)

q

Figure 4.3: Moving basis (t1(ξ), t2(ξ), νp(ξ)) at ξ + tνp(ξ).

Let be ξ ∈ Sp. We can decompose
{

|∇pk|2 = (∇pk · νp)2 + (∇pk · t1)2 + (∇pk · t2)2,
c · ∇pk = (c · νp)(∇pk · νp) + (c · t1)(∇pk · t1) + (c · t2)(∇pk · t2),

We have the following inequality

∀(a, b, c, ε) ∈ R
3 ×R

+, (a+ b+ c)2 ≤ (1+2ε)a2 +

(

2 +
1

ε

)

b2 +

(

2 +
1

ε

)

c2.

(4.4)
Indeed,

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc,

≤ a2 + b2 + c2 +

(

εa2 +
b2

ε

)

+

(

εa2 +
c2

ε

)

+
(
b2 + c2

)
,

≤ (1 + 2ε)a2 +

(

2 +
1

ε

)

b2 +

(

2 +
1

ε

)

c2.

If we apply (4.4) with a = (c · νp)(∇pk · νp), b = (c · t1)(∇pk · t1) and c =
(c · t2)(∇pk · t2) in (4.2.2) we get

Fεk
(pk, c) ≤ (1 + 2εk)(⋆)k,0 +

(

2 +
1

εk

)

(⋆)k,1 +

(

2 +
1

εk

)

(⋆)k,2, (4.5)

where we have set

(⋆)k,0 =

∫∫∫

Vηk

9εk(∇pk · νp)2
[
1 + (c · νp)2

]
+

p2
k(1 − pk)2

εk

, (4.6)

(⋆)k,1 =

∫∫∫

Vηk

9εk(∇pk · t1)2
[
1 + (c · t1)2

]
, (4.7)

(⋆)k,2 =

∫∫∫

Vηk

9εk(∇pk · t2)2
[
1 + (c · t2)2

]
. (4.8)
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It is sufficient to prove the two following assertions

1.

lim sup
k→∞

(⋆)k,0 ≤
∫∫

Sp

√

1 + (c · νp)2,

2.

lim
k→∞

(⋆)k,1

εk

= 0, lim
k→∞

(⋆)k,2

εk

= 0.

Indeed, passing through the limit in (4.5) gives

lim sup
k→∞

Fεk
(pk, c) ≤

∫∫

Sp

√

1 + (c · νp)2.

Claim 1: We have the following inequality

lim sup
k→∞

(⋆)k,0 ≤
∫∫

Sp

√

1 + (c · νp)2.

Since

∂pk

∂νp(ξ)
(ξ + tνp(ξ)) = lim

s→0

pk(ξ + (s + t)νp(ξ)) − pk(ξ + tνp(ξ))

s
,

= lim
s→0

χk,ξ(s + t) − χk,ξ(t)

s
,

then, for any (ξ, t) ∈ Sp×]0; ηk[, we have

∂pk

∂νp(ξ)
(ξ + tνp(ξ)) = χ′

k,ξ(t).

This yields ∇pk · νp = χ′
k,ξ. According to the assumptions of regularity of Sp,

as in [9], we may introduce the following change of variable:

∫∫

Sp

∫ η0

0

dt dH2(ξ)
∏2

i=1(1 − κi(ξ)t)
=

∫∫∫

Vη0

dx1dx2dx3, (4.9)

where κ1(ξ), κ2(ξ) are the principal curvatures of Sp at ξ. As Sp is a C2 surface,
then κ1 and κ2 are continuous on Sp. We denote

Π(ξ, t) =
1

∏2
i=1(1 − κi(ξ)t)

.

This yields

(⋆)k,0 =

∫∫

Sp

∫ ηk

0

(

9εk(∇pk · νp)2
[
1 + (c · νp)2

]
+

p2
k(1 − pk)2

εk

)

Π dt dH2(ξ),

=

∫∫

Sp

∫ ηk

0

(

9εk(χ′
k,ξ)2K2 +

p2
k(1 − pk)2

εk

)

Π dt dH2(ξ).

In these integrals we remove the dependance variables for the sake of simplicity:

νp = νp(ξ), pk = pk(ξ + tνp(ξ)), c = c(ξ + tνp(ξ)), Π = Π(ξ, t),
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χk,ξ = χk,ξ(t), K = K(ξ, t)

and we set

A = 3
√

εkKχ′
k,ξ, B =

χk,ξ(1 − χk,ξ)√
εk

.

With the construction of χk,ξ in (4.3) we get A2 = 1
εk| ln(ǫk)| + B2 so that

0 ≤ B ≤ A on [0; ηk] and

A2 + B2 ≤ 2AB +
1

εk| ln(ǫk)| .

This yields

(⋆)k,0 ≤
∫∫

Sp

∫ ηk

0

6Kχ′
k,ξχk,ξ(1 − χk,ξ)Π dt dH2(ξ)

︸ ︷︷ ︸

(⋆)k,3

+

∫∫

Sp

∫ ηk

0

1

εk| ln(ǫk)|Π dt dH2(ξ)

︸ ︷︷ ︸

(⋆)k,4

.

The functions K and Π are uniformly bounded with respect to k in Sp×]0; η0[.
We denote M their upper bound. We have the following inequalities

(⋆)k,4 ≤ M

∫∫

S

∫ ηk

0

1

εk| ln(ǫk)|dt dH2(ξ),

≤ MH2(Sp)
ηk

εk| ln(ǫk)| .

According to (4.2), we have ηk ≤ 3
√

2εk

√

| ln(εk)|. This yields

(⋆)k,4 ≤ 3
√

2MH2(Sp)√
| ln(ǫk)|

.

and we have lim
k→∞

(⋆)k,4 = 0. We denote

L(ξ, t) = K(ξ, t)Π(ξ, t).

We have the following decomposition

(⋆)k,3 =

∫∫

Sp

∫ ηk

0

6(L(ξ, t) − L(ξ, 0))χ′
k,ξ(t)χk,ξ(t)(1 − χk,ξ(t))dt dH2(ξ)

︸ ︷︷ ︸

(⋆)k,5

+

∫∫

Sp

∫ ηk

0

6L(ξ, 0)χ′
k,ξ(t)χk,ξ(t)(1 − χk,ξ(t))dt dH2(ξ)

︸ ︷︷ ︸

(⋆)k,6

,

and the following bound

(⋆)k,5 ≤
(

sup
(ξ,t)∈Sp×]0;ηk[

(L(ξ, t) − L(ξ, 0))

)
∫∫

Sp

∫ ηk

0

6χ′
k,ξ(t)χk,ξ(t)(1 − χk,ξ(t))dt dH2(ξ).
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Since χk,ξ ∈ W 1,2(]0; ηk[), we may use the change of variable s = χk,ξ(t) to
obtain

(⋆)k,5 ≤ 6

(

sup
(ξ,t)∈Sp×]0;ηk[

(L(ξ, t) − L(ξ, 0))

)
∫∫

Sp

∫ χk,ξ(ηk)

χk,ξ(0)

s(1 − s)ds dH2(ξ),

≤
(

sup
(ξ,t)∈Sp×]0;ηk[

(L(ξ, t) − L(ξ, 0))

)

H2(Sp).

The surface Sp is compact and smooth and the function L is continuous. Then,
the family (L(·, t))t>0 uniformly converges to L(·, 0) when t → 0+. We can
deduce that lim

k→∞
(⋆)k,5 = 0. Using the same change of variable s = χk,ξ(t) in

(⋆)k,6 gives

(⋆)k,6 = 6

∫∫

Sp

L(ξ, 0)

∫ χk,ξ(ηk)

χk,ξ(0)

s(1 − s)ds dH2(ξ),

=

∫∫

Sp

√

1 + (c(ξ) · νp(ξ))2dH2(ξ).

To summarize, we have

(⋆)k,0 = (⋆)k,4 + (⋆)k,5 + (⋆)k,6,

and the proof of Claim 1 is achieved.

lim sup
k→∞

(⋆)k,0 ≤
∫∫

Sp

√

1 + (c(ξ) · νp(ξ))2dH2(ξ).

Claim 2: We have the following limits

lim
k→∞

(⋆)k,1

εk

= 0, lim
k→∞

(⋆)k,2

εk

= 0.

We prove the result for (⋆)k,1, the method for (⋆)k,2 is the same. As Sp is a C2

surface, the intersection of the affine plane P1 = ξ + Vect(t1(ξ), νp(ξ)) and Sp

at the neighborhood of ξ ∈ Sp is a C2-planar curve. Let I be a neighborhood of
0 in R and γ : I → Sp be a local curvilinear parametrization of this curve such
that 





γ(0) = ξ,
γ′(0) = t1(ξ),

∀t ∈ I, |γ′(t)| = 1.

As νp ◦ γ(s) is orthogonal to γ′(s) for all s ∈ I and γ is a planar curve, there
exists κ̃1 : I → R such that

d(νp ◦ γ)

ds
(s) = −κ̃1(γ(s))t1(γ(s)).

As γ is a curve of Sp, κ̃1 is the sectional curvature of Sp in the direction of
t1(γ(s)), we have |κ̃1| ≤ max(|κ1|, |κ2|).

We evaluate

χk,γ(s)(t) − χk,ξ(t) = pk(γ(s) + tνp(γ(s))) − pk(ξ + tνp(ξ))).
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So, we have the following asymptotic developpement at s = 0

γ(s) + tνp(γ(s)) = ξ + tνp(ξ) + s(1 − κ̃1(ξ)t)t1(ξ) + o(s),

and we get

lim
s→0

χk,γ(s)(t) − χk,ξ(t)

s(1 − κ̃1(ξ)t)
= ∇pk(ξ + tνp(ξ)) · t1(ξ). (4.10)

We calculate the left hand side of (4.10). We recall the equations satisfied by
χk,γ(s) and χk,ξ (see figure 4.4)

(E1) :







χk,ξ(0) = 0,

3
√

εkK(ξ, t)χ′
k,ξ(t) =

√
1

εk| ln(εk)| +
(χk,ξ(t))2(1−χk,ξ(t))2

εk
for t ∈]0; ηk,ξ[,

χk,ξ(t) = 1 for t ≥ ηk,ξ.

(E2) :







χk,γ(s)(0) = 0,

3
√

εkK(γ(s), t)χ′
k,γ(s)(t) =

√

1
εk| ln(εk)| +

(χk,γ(s)(t))
2
(1−χk,γ(s)(t))

2

εk
for t ∈]0; ηγ(s),k[,

χk,γ(s)(t) = 1 for t ≥ ηγ(s),k.

Figure 4.4: Construction of the solution on each slice

We denote f(x) =
√

1
εk| ln(εk)| + x2(1−x)2

εk
and Yk,s(t) = χk,γ(s)(t) − χk,ξ(t).

We calculate K(ξ,·)
K(γ(s),·) (E2) − (E1) and we denote ηk,s = min(ηγ(s),k, ηξ,k). It
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comes
{

Yk,s(0) = 0,

3
√

εkK(ξ, t)Y ′
k,s(t) = K(ξ,t)

K(γ(s),t) f(χk,γ(s)(t)) − f(χk,ξ(t)) for t ∈]0; ηk,s[.

As K(ξ, t) =
√

1 + (C(ξ + tνp(ξ)) · νp(ξ))2, we get

∀(ξ, t) ∈ Sp×]0; ηk,s[, 1 ≤ K(ξ, t) ≤
√

2. (4.11)

As Sp is a C2-manifold and C ∈ C∞ ∩ W 1,λ
u (Ω;Rn), then K is a C1 function of

class C1 and there exists a constant µ > 0 such that

∀(ξ, ξ′, t) ∈ S2
p×]0; ηk[, |K(ξ, t) − K(ξ′, t)| ≤ µ|ξ − ξ′| (4.12)

Moreover, the study of fk gives

∀x ∈ [0; 1], fk(x) ≤
√

1

εk| ln(εk)| +
1

16εk

|f ′
k(x)| ≤ 1√

εk

. (4.13)

With

3
√

εkK(ξ, t)Y ′
k,s(t) =

K(ξ, t)

K(γ(s), t)
fk(χk,γ(s)(t)) − fk(χk,ξ(t)),

=
K(ξ, t)

K(γ(s), t)
(fk(χk,γ(s)(t)) − fk(χk,ξ(t)))

+fk(χk,ξ(t))

(
K(ξ, t) − K(γ(s), t)

K(γ(s), t)

)

and (4.11), (4.12), (4.13), we get

3
√

εkY ′
k,s(t) ≤

√
2√
εk

Yk,s(t) + µs

√

1

εk| ln(εk)| +
1

16εk

.

Thus, Yk,s is a solution of the following differential inequation
{

Yk,s(0) = 0,

Y ′
k,s(t) ≤

√
2

3εk
Yk,s(t) + µs

3εk

√
1

| ln(εk)| + 1
16 for t ∈]0; ηk,s[.

(4.14)

So, we have

Yk,s(t) ≤ µs√
2

√

1

| ln(εk)| +
1

16

(

exp

(√
2t

3εk

)

− 1

)

. (4.15)

The definition of Yk,s gives

Yk,s(t) − Yk,0(t)

s
=

χk,γ(s)(t) − χk,ξ(t)

s
,

and inequality (4.15) implies

∀t ∈]0; ηk,s[,
χk,γ(s)(t) − χk,ξ(t)

s
≤ µ√

2

√

1

| ln(εk)| +
1

16

(

exp

(√
2t

3εk

)

− 1

)

.

(4.16)
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According to the continuous dependance of the solution of the equation (4.14)
with respect to the parameter s, then ηk,s converges to ηk,ξ when s converges
to 0. So, the inequality (4.16) remains true in the neighborhood of any point
t ∈]0; ηk,ξ[. With k, ξ and t ∈]0; ηk,ξ[ fixed, we calculate the limit when s
converges to 0, and we apply equality (4.10)

(1 − κ̃1(ξ)t)∇pk(ξ + tνp(ξ)) · t1(ξ) ≤ µ√
2

√

1

| ln(εk)| +
1

16

(

exp

(√
2t

3εk

)

− 1

)

.

As ηk → 0 and κ̃1 is continuous, there exists r > 0 such that

∀(ξ, t) ∈ Sp×]0; ηk[, r < (1 − κ̃1(ξ)t).

This gives

(∇pk(ξ + tνp(ξ)) · t1(ξ))2 ≤ µ2

2r2

(
1

| ln(εk)| +
1

16

)(

exp

(√
2t

3εk

)

− 1

)2

. (4.17)

As 1
| ln(εk)| → 0, there exists M > 0 such that (4.17) becomes

(∇pk(ξ + tνp(ξ)) · t1(ξ))2 ≤ M exp

(
2
√

2t

3εk

)

+ M.

As 2
√

2
3 ≤ 1, we have

(∇pk(ξ + tνp(ξ)) · t1(ξ))2 ≤ M exp

(
t

εk

)

+ M. (4.18)

Introducing (4.18) in the definition of (⋆)1,k (4.6) gives

(⋆)1,k ≤
∫∫

Sp

∫ ηk

0

9εk

(

M exp

(
t

εk

)

+ M

)
[
1 + (c · t1)2

]
Π(ξ, t)dt dH2(ξ),

As ηk → 0, the function
[
1 + (c · t1)2

]
Π(ξ, t) is bounded and there exists a

positive constant, still denoted M , such that

(⋆)1,k ≤
∫∫

Sp

∫ ηk

0

εk

(

M exp

(
t

εk

)

+ M

)

Mdt dH2(ξ).

Thus, we have

(⋆)1,k ≤
(

ε2
k

(

exp

(
ηk

εk

)

− 1

)

+ εkηk

)

M2H2(Sp).

According to (4.2)

ηk ≤ 3
√

2εk

√

| ln(εk)|,
so, that

(⋆)1,k ≤
(

ε2
k

[

exp
(

3
√

2
√

| ln(εk)|
)

− 1
]

+ 3
√

2ε2
k

√

| ln(εk)|
)

M2H2(Sp),

(⋆)1,k

εk

≤
[

εk exp
(

3
√

2
√

| ln(εk)|
)

− εk + 3
√

2εk

√

| ln(εk)|
]

M2H2(Sp),

(⋆)1,k

εk

≤
[

exp
(

3
√

2
√

| ln(εk)| + ln(εk)
)

− εk + 3
√

2εk

√

| ln(εk)|
]

M2H2(Sp).
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As εk → 0+ we have

exp
(

3
√

2
√

| ln(εk)| + ln(εk)
)

→ 0+, εk

√

| ln(εk)| → 0+.

We can conclude that
(⋆)1,k

εk
→ 0.

Second step: Assume that p ∈ BV(Ω), p takes its values in {0; 1}
and c ∈ C∞ ∩ W 1,λ

u (Ω;Rn) .

In this step, we still we set ck = c for any k ∈ N. For the same reason than
in the previous step, it suffices to construct an appropriate sequence (pk)k∈N

which converges a.e. to p and such that lim sup Fεk
(pk, c) ≤ F (p, c).

We denote A = p−1({1}). Let us first assume that A and Ω \ A have
nonempty interior. We can apply lemma 3.1. So, there exists a sequence (Al)l∈N

of open bounded subsets of Rn with smooth boundaries such that

i)
lim

l→∞
Ln((Al ∩ Ω) △ A) = 0, lim

l→∞
Hn−1(∂Al) = Hn−1(∂A);

ii)
Ln(Al ∩ Ω) = Ln(A) for l large enough;

iii)
Hn−1(∂Al ∩ ∂Ω) = 0 for l large enough;

iv)

F (pl, c) ≤ F (p, c) +
1

l
, (4.19)

where Ln is the Lebesgue measure over Ω and pl = 1Al∩Ω. For (4.19) we use
the fact that ‖D1Al

‖M → ‖D1A‖M and proposition 3.1 ii). With i), ii) and
iii), we can say that (pl)l∈N is a bounded sequence of BV(Ω) which converges
to p in L1(Ω). According to theorem 3.5, there exists a subsequence, still de-
noted (pl)l∈N which intermediately converges to p in BV(Ω). One can apply the
result of the first step with p = pl. So, there exists a sequence (pl,k)k∈N which
intermediately converges to pl in BV(Ω) such that

lim sup
k→∞

Fεk
(pk,l, c) ≤ F (pl, c). (4.20)

With (4.19), (4.20) and a diagonal extraction there exists a sequence (pk)k∈N

which intermediately converges to p such that

lim sup
k→∞

Fεk
(pk, c) ≤ F (p, c).

Let us remove the restriction that both A or Ω \ A have non empty interior.
First, we notice that if Ln(A) = 0 or Ln(A) = Ω the result is obvious by taking
for all l ∈ N, Al = ∅ or Al = Ω. So, we may assume that 0 < Ln(A) < |Ω|.
There exists two points x1, x2 such that

• x1 ∈ A and ∀r > 0, Ln(A ∩ B(x1, r)) > 0,

• x2 ∈ Ω \ A and ∀r > 0, Ln((Ω \ A) ∩ B(x1, r)) > 0.
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Consider the set Aθ1,θ2
= (A∪B(x2, θ2))\B(x1, θ1) and the function Υ(θ1, θ2) =

Ln(Aθ1,θ2
). As Υ(0, θ) > Ln(A) and Υ(θ, 0) < Ln(A) for any θ > 0, there exists

t ∈]0; 1[ depending on θ such that Υ(tθ, (1 − t)θ) = Ln(A). By construction, Aθ

and Ω \ Aθ have nonempty interior. The previous result gives the existence of
(pθ,k)k∈N ⊂ BVp(Ω) which intermediately converges to pθ = 1Aθ

in BV(Ω) such
that

lim sup
k→∞

Fεk
(pθ,k, c) ≤ F (pθ, c). (4.21)

Moreover, Ln(A △ Aθ) tends to 0 as θ → 0+, and, using
∫

Spθ

√

1 + (c · νpθ
)2 ≤

∫

Sp

√

1 + (c · νp)2 + Hn−1(∂B(x1, θ1)) ∪ ∂B(x2, θ2)),

we get
lim sup

θ→0+

F (pθ, c) ≤ F (p, c).

According to (4.21), with a diagonal extraction there exists a sequence (pk)k∈N

which intermediately converges to p such that

lim sup
k→∞

Fεk
(pk, c) ≤ F (p, c).

Last step: Assume that p ∈ BVp(Ω) and c ∈ W 1,λ
u (Ω;Rn) .

In this step we do not assume that (ck)k∈N is a constant sequence. As C∞ ∩
W 1,λ(Ω) is dense in W 1,λ(Ω), there exists a sequence (cl)l∈N ⊂ C∞ ∩ W 1,λ(Ω)
which converges to c in W 1,λ(Ω). As λ > n, the inclusion W 1,λ(Ω) ⊂ C0 is
compact so the previous convergence holds for L∞(Ω). We denote P : Rn ⊂
{0} → S

n−1 the orthogonal projection onto the unit sphere. As c takes its values
in S

n−1 and the convergence of (cl)l∈N takes place for L∞ too, so (P ◦ cl)l∈N

converges to c in W 1,λ(Ω). We still denote cl the function P ◦ cl and therefore
we can assume (cl)l∈N ⊂ W 1,λ

u (Ω;Rn). As cl ∈ C∞ ∩ W 1,λ
u (Ω), one apply the

Second step of the proof, it gives

lim sup
k→∞

Fεk
(pk, cl) ≤ F (p, cl).

As in (4.2), we denote h(x) =
√

1 + x2. The function h is 1-Lipschitz, then we
have

|F (p, cl) − F (p, c)| ≤
∫

Sp

|
√

1 + (cl · νp)2 −
√

1 + (c · νp)2|,

≤ ‖cl − c‖L∞Hn−1(Sp).

So, we deduce that (F (p, cl))l∈N converges to F (p, c). With a diagonal extrac-
tion, we can conclude that there exists (pk, ck)k∈N ⊂ BVp(Ω) × W 1,λ

u (Ω;Rn)
which converges for the topology of X to (p, c) such that

lim sup
k→∞

Fεk
(pk, ck) ≤ F (p, c).

Moreover, as (pk)k∈N converges to p almost everywhere, then the dominated
convergence implies

lim
k→∞

∫

Ω

(pk − g)2 =

∫

Ω

(p − g)2.
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As (ck)k∈N converges to c, it gives

lim
k→∞

∫

Ω

‖Dck‖ =

∫

Ω

‖Dc‖.

We can conclude that

lim sup
k→∞

Eεk
(pk, ck) ≤ E(p, c).

5 Conclusion

We have proved that the approximation process is suitable in the sense of Γ-
convergence. We next use the approximated problem for numerical experimen-
tation.The computation of p is done via a classical gradient descent method,
while another strategy has to be developed for c: this will be adressed in a
future work.

On the other hand, the main hypothesis we did in this paper is the bimodality
of histogram: this is quite restrictive for numerics. If this assumption is not
ensured the previous model is not valid any longer and has to be modified:
we will set a more general formulation that perfoms a similar segmentation
without the binary constraint. Roughly speaking, we look for a pair (f, c)
where f : Ω → [0; 1] is a function (not necessarily binary) and c : Ω → S

n−1 is
still a unitary vector field. The corresponding energy to be minimized is :
∫

Ω

(f − g)2 + βHn−1(Sf ) + µ

∫

Sf

|c · νf | dHn−1 + γ

∫

Ω

‖Dc‖λ + ρ

∫

Ω\Sf

|∇f |2.

(5.1)
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