
HAL Id: hal-01006231
https://hal.science/hal-01006231v1

Submitted on 16 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

MPSoC Zoom Debugging: A Deterministic
Record-Partial Replay Approach
Kiril Georgiev, Vania Marangozova-Martin

To cite this version:
Kiril Georgiev, Vania Marangozova-Martin. MPSoC Zoom Debugging: A Deterministic Record-
Partial Replay Approach. EUC 2014 : The 12th IEEE International Conference on Embedded and
Ubiquitous Computing, Aug 2014, Milan, Italy. 8 p. �hal-01006231�

https://hal.science/hal-01006231v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


MPSoC Zoom Debugging:

A Deterministic Record-Partial Replay Approach

Kiril Georgiev∗†‡ and Vania Marangozova-Martin∗†‡

∗Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France
†CNRS, LIG, F-38000 Grenoble, France

‡Email: kiril.georgiev.sf@gmail.com, vania.marangozova@imag.fr

Abstract—This work presents a debugging methodology for
MPSoC based on deterministic record-replay. We propose a
general model of MPSoC and define a debugging cycle targeting
errors by applying temporal and spatial selection criteria. The
idea behind spatial and temporal selection is to consider not the
entire execution of the whole application but replay a part of the
application during a specific execution interval. The proposed
mechanisms are connected to GDB and allow for a visual
representation of the considered part of the trace. The approach
is validated on two execution platforms and two multimedia
applications.

I. INTRODUCTION

Recent years have witnessed a tremendous development
of embedded systems. They find their place in numerous
domains in our everyday life like transports, domotics and
telecommunications. This omnipresence has called for new
design methods targeting more complex applications, more
efficiency and yet a shorter time to market.

Multi-Processor Systems on Chip (MPSoC) architectures
have been proposed to meet these new requirements. They
follow the ”multi-core trend” and propose an increasing num-
ber of components allowing for bigger computational power at
a lower energetic cost. The hardware design includes general
purpose processors, specialized accelerators, shared, as well
as distributed memory, numerous peripherals and Network-on-
Chip (NoC) interconnections.

The increasing hardware complexity of MPSoC brings
new challenges to the process of software development and
validation. Indeed, parallel computations and concurrent data
accesses makes software execution non deterministic. As a
consequence, software validation is faced with the problem
of detecting and rooting the causes of non deterministic errors
which are hard to observe and reproduce. The problem is even
more emphasized by the important number of components
(threads, tasks, processes) taking part in an execution and their
possible interactions.

In this paper we describe our approach to debugging non
deterministic embedded software. We propose a record-replay
mechanism in which non deterministic errors are first captured
in execution traces and then tracked through debugging a
deterministic replay of the recorded traces. The main contri-
bution of this work is a debugging methodology reducing the
error search space by applying spatial and temporal selection
criteria. We describe our implementation, ReDSoC, and its
trace collection, trace visualization, deterministic replay and

partial replay support. ReDSoC has been validated on two
different platforms with two multimedia applications.

The rest of the paper is organized as follows. After
presenting the general methodology for debugging based on
deterministic partial record-replay (Section II), we describe
the general principles of our ReDSoC system and its imple-
mentation (Sections III and IV). We illustrate its application
in the cases of a Tetris and a Video Mosaic application and
discuss performance issues (Section V). Related work and
future perspectives conclude the paper (Sections VI and VII).

II. RECORD-REPLAY DEBUGGING METHODOLOGY

We propose the following methodology (Figure 1).

Step  1:  Recording  a  Reference 

Execu5on Trace 

Step 2: Trace Analysis 

Step 4: Search Space Reduc5on 

Step  5:  Determinis5c  Replay  and 

Recording Par5al Traces  

Step  6:  Determinis5c  Par5al  Replay 

and Debugging 

Step 3: Error Detec5on 

Step 7: Error Iden5fica5on 

A 

B 

C 

A  C 

Choice 

Proposed methods 

Developer ac5ons 

A 
Contribu5on on  

determinis5c replay methods 

B 
Contribu5on on  

search space reduc5on 

C 
Contribu5on on  

par5al replay 

Fig. 1. Debugging Cycle

• Step 1: Recording a Reference Execution Trace
During this step, the execution of the whole MPSoC
software is recorded to produce reference execution
traces. These reference traces target the non deter-
ministic behavior to debug and are exploited in the
next debugging steps. The data captured in these
traces has been defined in close relation with the non
deterministic phenomena we have decided to target,
as well as with the replay techniques we have cho-
sen. Their volume is limited to minimize the tracing
overhead during execution. Yet, the recorded data is
sufficient for a deterministic replay. The choice of
target non deterministic phenomena to debug and the
identification of adapted replay algorithms represents
our first contribution.



• Step 2: Trace Analysis
The step is performed by the developer who debugs
the MPSoC software. Using different available tools
but mainly his/her experience, the developer analyzes
the reference traces in search of abnormal behavior.

• Step 3: Error Detection
At this step, the developer decides whether a problem
has been recorded and should be investigated, in
which case the cycle continues with Step 4. Otherwise,
typically if a targeted non deterministic error has not
yet been recorded, the cycle may restart with Step 1.

• Step 4: Spatial and Temporal Reduction of the Search
Space
During this step, the developer decides to focus on a
particular part of the software execution thus reducing
the search space. To do so, the developer may apply
a spatial and/or a temporal selection criteria. He/she
selects a suspected part of the application to debug
during a specific time interval. The definition of these
criteria represents our second contribution.

• Step 5: Deterministic Replay and Recording Partial
Traces
During this step, the reference trace is deterministi-
cally replayed to capture additional data reflecting the
execution of the software part, selected in Step 4.

• Step 6: Deterministic Partial Replay and Debugging
During this step, only the selected software part is
considered and the corresponding trace deterministi-
cally replayed. The replay mechanism is connected
to a debugging tool, so the developer may debug the
execution of the selected part and during the selected
time interval in a standard way.

• Step 7: Error Identification
If the error source is not identified after Step 6, the
developer goes back to Step 4. If the developer want
to focus on a different software part, the cycle goes
through Step 5. If the developer considers the same
software part but during a different time interval, there
is no need for additional trace collection and the cycle
continues directly with Step 6.

III. REDSOC OVERVIEW

To define the debugging selection criteria(Section III-B),
we use an abstract MPSoC architecture model (Section III-A).
We have studied existing algorithms and based our solution on
the ones with minimal intrusion in terms of tracing overhead
(Section III-C).

A. MPSoC Model

Our work is based on the generic hardware model showed
in Figure 2.

MPSoC components include processors, memory blocs,
peripherals and a communication network. Processors are com-
putational units including general purpose processors, cores
or accelerators. They are organized in a two-level hierarchy.
Homogeneous processors form groups we call nodes. Thus

N1  N2  N3  N4 

N5  N6  N7  N8 

Periph1  Periph2 

Periph3  Periph4 

N
e
tw

o
rk
 

CPU 

video 

CPU 

video 

CPU 

video 

CPU 

video 

shared 

memory 

Node 5 

CPU 

audio 

CPU 

audio 

shared 

memory 

Node 8 

Fig. 2. MPSoC Hardware Architecture

there may be a node with audio processing units and another
specialized in video decoding.

In a node, processors have access to and communicate
through a shared memory bloc. Among nodes, memory is
distributed and a processor from one node cannot access the
memory of another node without passing through inter-node
network connections.

Peripherals are the devices ensuring data exchange between
the MPSoC and the external environment. Peripherals may
include sensors, keyboards, screens, microphones, etc. The
data they capture is communicated to the processors via the
memory or the network.

The network connections organize components in a hierar-
chical way.

As for MPSoC software, our assumptions are the following.
The software execution is composed of a set of execution
flows which is statically partitioned and scheduled on the
MPSoC nodes. The execution flows scheduled on the same
node communicate using the shared memory bloc and via
synchronization. The execution flows scheduled on different
nodes communicate using message-passing through the net-
work. Data from peripherals is acquired either by polling, or
using interruptions.

B. Partial Replay

To partially replay MPSoC software execution, we apply
two selection criteria concerning the software architecture
(space) and the execution duration (time).

Search Space 

Execu,on ,me 

Nodes 

Debugged Space 

Execu,on ,me 

Nodes 

Suspected  

nodes 

Time interval 

Fig. 3. Search Space Reduction

With space reduction, the idea is to isolate a set of nodes on
which the debugging can focus. The replay phase thus concerns
only the execution flows running on the identified set of nodes.
We call the set of nodes to be debugged, the suspected nodes.
The non suspected nodes are called the correct nodes.

2



To isolate suspected nodes from the correct nodes, the
tracing phase needs to differentiate the nodes and consider their
message exchanges. Indeed, messages exchanged between
correct nodes are not to be recorded as these nodes would
not participate in the replay. Messages exchanged between
suspected nodes do not need to be recorded either, as they
will be executed during replay. In the case of a message sent
from a suspected node to a correct one, as the receive operation
has no relevance to the replay, the replay may skip the send
operation. In the case of a message sent by a correct node to a
suspected one, the order and the content of the message need
to be traced. During replay, the trace is used to decide whether
to execute a message exchange operation and also to provide
message values coming from the external/correct nodes.

The reduction of the search space concerning time is based
on the time sequence of events recorded in the trace. The
developer needs to delimit the interval to consider during
debugging. This is done by choosing the interval limits which
are two traced events. The choice is typically facilitated
by a visualization tools which represents the trace. During
replay, re-executed events are compared to the chosen interval
beginning. When this event is reached, a debugger is launched
and a standard debugging process may start. When the interval
end is reached, the debugging phase terminates.

C. Record-Replay Algorithms

We focus on replaying shared data accesses, network
communications and I/O operations.

Given that recording all accesses to shared data implies a
prohibitive execution overhead [1], our record-replay mecha-
nisms focuses on accesses to synchronization structures. Non-
synchronized shared data accesses are considered to be errors,
to be detected and corrected. We have chosen the algorithm
proposed by Levrouw et al. in [2]. The algorithm uses Lam-
port clocks to identify accesses to different synchronization
structures by different execution flows.

Two network communication situations may be non de-
terministic. First, when multiple sources send messages to a
single destination. The reception order may depend on numer-
ous factors like network protocols, connection speed, routing,
system load, etc. The second situation concerns non blocking
reception operations. In this case, the reception operation relies
on a verification of the data availability (probe) which is itself
non deterministic.

To trace and deterministically replay network communi-
cations, we have used the solution proposed in [3], [4]. For
blocking network communications, the detection of race re-
ception primitives is based on vector clocks. For non blocking
reception operations, there is a need to record the number of
executed probes, as well as their outcome (message available
or not). This solution has minimal intrusion as it traces only
race reception operations.

Output operations have no effect on replay techniques.
Input operations, however, are important, as they influence the
execution path of MPSoC software. Input operations are based
either on interrupts, or on busy waiting (polling). Interrupts,
however, are a challenge to embedded record-replay [5].

We have decided to limit the intrusion of our mechanism
by not recording interrupts and only consider polling requests.
We suppose that the content of the input data is recorded by
specific devices. We only record the input size in the reference
execution trace (Step 1). During replay, the trace is read to
decide that there is an input operation which is in turn acquired
by executing a polling request to the specific recording device.

IV. REDSOC IMPLEMENTATION

The architecture of our prototype is given on Figure 4.

Development pla,orm (host)  MPSoC pla,orm 

Linux x86 

GDB 

MPSoC kernel 

MPSoC API 

Trace VisualizaEon 

 Tool 

ParEal Replay Tool 

Temporal  

parEEoning 

GDB Extension 

Space/node parEEoning  Trace CollecEon  

Tool 

DeterminisEc Replay Tool 

MPSoC SoLware 

Fig. 4. ReDSoC Architecture

We consider a standard configuration in which part of
the debugging operations are deported on a host platform
connected to the target MPSoC platform. This is necessary
as in many cases MPSoCs have limited resources and do not
provide keyboard and screen peripherals.

ReDSoC is deployed both on the host machine and the
target MPSoC machine. It is composed of four tools, namely
a trace visualization tool, a partial replay tool, a trace collection
tool and a deterministic replay tool. The trace collection tool,
as well as the temporal selection management of the partial
replay tool are deployed on the host machine. The other tools
are deployed on the MPSoC, each MPSoC node having its
own ReDSoC instance. The deployment on a MPSoC node is
guided using a configuration file, provided by the developer.
The file indicates the node number, the debugging phase to
consider (Steps 1, 5 or 6 on Figure 1), as well as the identifiers
of the suspected nodes.

The host machine is supposed to run a Linux-based system
and have GDB for debugging. The MPSoC runs a MPSoC
kernel characterized by a MPSoC API. The MPSoC API
is inspired by the the POSIX standard and includes basic
functions for execution flow management, synchronization,
network communications and I/O.

Our trace collection tool is deployed on each node of the
MPSoC platform. As its purpose is to intercept the calls to the
defined MPSoC API, it provides a simple interface including
a trace function used for generating trace entries.

The tool for deterministic replay implements the algorithms
presented in Section III using as basis the MPSoC API.
Shared data accesses are managed through tracking the syn-
chronization operations of the API. Network communications

3



are targeted using our message-based communication. Finally,
I/O are addresses by the MPSoC file-oriented I/O operations.

To apply the space reduction criterion based on isolating
suspected nodes, our partial replay tool needs to monitor
and record all communications between normal and suspected
nodes. During replay, each communication operation is inter-
cepted to decide whether a normal node takes part in it or
not. If yes, the operation is replayed by directly reading the
needed values from the recorded trace. If the communication is
between suspected nodes, the operation is normally executed.

To apply the time reduction criterion, we have implemented
an extension for GDB and introduced a new type of breakpoint.
We use replay breakpoints corresponding to the limits of the
time interval that has been selected for debugging. Each replay
breakpoint corresponds to an event recorded in the trace and
is identified by a triple containing a node identifier, a task
identifier and a timestamp.

During replay, each call to the MPSoC API is intercepted
and compared to to the limits of the selected time interval. If it
does not correspond to any of them, the execution is pursued.
If the call corresponds to the start of the time interval, the
execution is suspended and the debugging starts. When the
end of the time interval is reached, the debugging stops and
the developer may choose a new time interval. If it is after
the previous time interval, the execution continues. If not, it is
launched from the beginning.

We have adapted the KPTrace Viewer of STMicroelectron-
ics [6] to visualize our recorded traces. The viewer allows
for representation of an event, characterized by a time, a
timestamp, a process identifier and a number of arguments.
We have provided for a tool formatting our traces according
to the Pajé [7] format and adapted the KPTrace viewer to take
into account its visualization.

An example of visualization is shown on Figure 5. The
x dimension gives the time progression. The y dimension
represent containers, in this case tasks. The links, represented
using arrows, show three successive accesses of the tasks T0,
T2 and T1 to a shared synchronization structure. The flags
show peripheral operations, their color being specific for each
peripheral device.

Fig. 5. A fragment of trace visualization

V. DEBUGGING NON DETERMINISTIC

MULTIMEDIA APPLICATIONS

We have validated our approach in two settings: the
debugging of a real-time game application on an MPSoC
platform (Section V-A) and the debugging of a video-decoding
application on a NUMA platform (Section V-C).

A. Debugging a Tetris Application on an MPSoC Platform

For this use case, we have used a Stagecoach expan-
sion board having two OveroFE COM nodes (computer-on-

module)1. Each node has an ARM Cortex-A8 600MHz pro-
cessor with 256MB of DDR RAM, 256MB of NAND flash
memory and a microSD port. The two nodes occupy the first
and the third slot of the board. They are connected through
a 100Mb/s Ethernet link and have distinct IP addresses. The
RJ45 slot of the board is used to connect to an external network
card which gives IP access to both nodes.

&

1 euro cent

USB

RJ45 connector

Fig. 6. Stagecoach board with two Overo FE COM nodes

We have implemented our MPSoC API using the POSIX
and the libc interfaces. We have installed the platform from
scratch by creating a bootable microSD with the needed
Linux distribution. The system image includes the 2.6 Linux
kernel, libc6, a file system and the ssh service. To deploy
the platform, we have used the cross-compiler provided in
the Sourcery Codebench 2 to create a x86 executable. The
executable contains the MPSoC application, the ReDSoC tools,
as well as a GDB server.

The debugged MPSoC application is the Tetris game for
two players (cf. Figure 7). The application’s size is about
0,7MB and contains about 15000 lines of code. It is executed
by two tasks run respectively on the two MPSoC nodes.

Fig. 7. Two Player Tetris.

Both players see both Tetris boards. When a player suc-
ceeds in making disappear multiple lines, the other player’s
game becomes harder. The player whose board fills first, loses
the game.

The Tetris pieces movements are controlled through the
keyboard and also using the clock frequency. The keyboard
is scanned for player commands, while the clock frequency is
used to advance the pieces downwards.

In our use case, we needed to debug the application as,
from time to time, one of the Tetris instances crashed and as a

1https://store.gumstix.com/index.php/products/247/
2http://www.mentor.com/embedded-software/sourcery-tools/sourcery-

codebench/editions/lite-edition/

4



consequence the other player won. Following our debug cycle,
we re-executed several times the Tetris application to obtain a
reference trace containing the error (cf. Figure 8).

I/O clock I/O keyboard Msg Communication

Task 0
Node 0

Task 0
Node 1

Fig. 8. Visualization of the Tetris Reference Trace

As, in our case, the node to fail is node 1, we suspect
this node and choose it as a target for the partial replay. To
select the time interval for debugging, we focus and zoom
the end of its trace (cf. Figure 9). We select the small end
time interval containing three operations reading the system
clock, four keyboard inputs and one message reception. As
each event can be examined, we can see that the first event
is a GetTimerOp operation, executed by task T0 at time
19

′
244

′
641µs. The last event is a NetRecvOp executed by

T0 at time 19
′
244

′
728µs. These two events are defined as the

two replay breakpoints for the debugging session.

I/O clock I/O keyboard Msg Communication

Task 0
Node 1

Time interval

Fig. 9. Time Interval Selection

ReDSoC needs to first deterministically replay the whole
application to gather additional traces about the communica-
tions of node 1 with node 2. Once these traces are generated,
ReDSoC may start the deterministic replay of node 1 and
debug it during the selected time interval. Indeed, when the
replay reaches the first replay breakpoint, ReDSoC starts a
standard debugging session (cf. Figure 10).

The figure contains a screen capture of the debugging
session when the first replay breakpoint is reached. The first
line’s information states clearly the number of the entry in the
trace (202459), the type of the entry (IO), the node identifier
(Node1) and the task identifier (Task0).

The bt GDB command given on the fourth line gives
the function call stack. We observe the interaction between
the GDB server and our GDB extension implemented in
the rdb_notify_event function. The additional parameter
information for rdb_notify_syscall confirms that the
replay considers an IO operation of the task with tid=0 on
node node=1. Up the call stack, we see the replay function

kpoint,

c replay

on calls

Fig. 10. Partial Debugging of the MPSoC Tetris Application

for IO operations (replayIOsize) and the MPSoC function
calls.

When the debugging session reaches the last message
reception operation, it is possible to investigate the received
value. It appears that it is not correct and contains zero. This
value is used in a division operation and the division by zero
makes the node 1 to crash. To understand why the value is
incorrect, we choose to suspect the other node, node 0. When
we focus on the end of its trace, we observe a non regular
behavior. Partially replaying node 0 and debugging it during
a time interval at the end of its execution, makes us discover
that there are many keyboard input operations resulting form
a continuous pressing of a keyboard key. The input data being
saved in a memory buffer, an error in the buffer management
makes it overflow and results in sending an incorrect value.

I/O clock I/O keyboard Msg Communication

Task 0
Node 0

Fig. 11. Considering a Different Node and a Different Time Interval

B. Debugging a Video Decoding Application on a NUMA
Platform

To validate the scalability of our approach and given the
unavailability of a large scale MPSoC platform at the time of
the experience, we have developed the use case on a NUMA

5



platform. The considered MPSoC software is the FFMPEG
video decoder [8], [9].

The NUMA architecture used in our experiments has four
nodes, each having eight dual core 2.2 GHz AMD Opteron
processors and 32GB of main memory.

In the final experimental setup, one node is considered to
be the master one, and as such can access the file system, as
well as the peripherals. The master node is also responsible
for communicating input peripheral data to the other nodes. It
occupies four of the NUMA processors, the other four being
reserved for GDB. The other three nodes are MPSoC slave
nodes.

The implementation of our MPSoC API uses the
Linux2.6 interface, as well as the libSDL3 and libc li-
braries. The task management and synchronization functions
are based on the POSIX interface and use the system call
sched_setaffinity. The I/O functions encapsulate the
accesses to the file system, the screen, the keyboard, the audio
card and the system clock. The file system is accessed using the
libc functions. The audio and video peripherals are accessed
through libSDL calls. Finally, the system clock is accessed
using a dedicated Linux register. The network communication
primitives are based on the inter-process socket-based commu-
nication of Linux.

From the FFMPEG suite, we have used the FFPLAY [10]
and FFSERVER [11] components. FFSERVER is a video
server, receiving video flows through different protocols (e.g.,
RTP or RTSP) and creating multiple output flows having
different formats (H.264, DIVX, MPEG-4, etc). FFPLAY is a
video decoder, receiving and synchronizing audio and video
frames. Using these components, we have created a video
mosaic application (cf. Figure 12). We have re-engineered the
code to redirect all Linux function calls to calls to our MPSoC
API.

Fig. 12. Video Mosaic Application

The video mosaic application exhibited a non deterministic
bug. During some executions, one or more videos were not
visible. By tracing one of these executions, we captured the sit-
uation showed on Figure 13. The trace of Node0 (FFSERVER)
shows the non blocking receptions of messages coming from
FFPLAY components. The other three traces (FFPLAY com-
ponents) show, in the beginning of their execution, receptions
of messages from FFSERVER, followed by synchronization
operations related to the work with memory buffers containing
the audio/video data. We can clearly see that at one point,
Task2 on Node2 blocks and causes the blocking of Task0 and
Task1.

3http://www.libsdl.org/

Synchronization Clock I/O

Blocking

Communication

Fig. 13. Visualization of Captured Traces.

Having selected this node as the suspected one, as well
as the short time interval directly preceding the blocking, the
debugging session proved rather straightforward. By tracking
the accesses to synchronization structures, we observed that a
condition variable is never signaled. During a second replay,
we established the connection between this variable and the
memory allocation for video frames. During a third replay, we
discovered that the developer has forgotten to notify the frame
memory allocation.

C. Performances

To evaluate the performances of our implementation, we
have considered three criteria, namely the intrusion during
normal execution, the trace volume and the execution speed
during debugging. To evaluate the intrusion of ReDSoC during
the recording phase, we have considered both the embedded
and the NUMA platforms and have used the the native
execution time and the reference execution time. The native
execution time reflects the execution duration of the software
without ReDSoC. The measure is obtained as a mean value
of thirty executions.The reference execution time is the mean
execution time of the same software with the same inputs
but running under the control of ReDSoC. This execution is
logically slower due to the interception of function calls and
the tracing mechanism. Using the two previous measures, the
overhead gives the execution slowdown as a percentage.

The considered applications include a simple MJPEG de-
coder, the Tetris application and the video mosaic application.
The results are given in Table I.

In all use cases, the intrusion is very low (Overhead
column, 4% for MJPEG and less than 1% in the other cases)
and does not cause video glitch visible to the eye. In the
case of the Tetris application, for example, this is explained
by the fact that the time spent for moving the pieces is

6



Software Native Reference Overhead Trace Trace

Time(s) Time(s) (%) Data(KB) Entries

MJPEG

Node0 139 144 3,59 2298 45471

Tetris

Node0 62 62 < 1 333 887

Node1 60 60 < 1 201 530

Video Mosaic

FFSERVER node 31 31 < 1 500 1345

TABLE I. INTRUSION MEASURES

much smaller that the time between moves. As a consequence,
tracing happens during this inactivity time and does not perturb
the application. In the case of the video mosaic application,
the tracing situation is similar: the application behavior is very
regular and the tracing operations happen in between image
decoding operations.

Obviously, this low intrusion cannot be generalized for
all cases. However, this experiment confirms the utility to
have a resource provisioning (here the management of time
constraints) for the tracing operations. Indeed, in most MPSoC
platforms, the architecture includes hardware tracing ports
which do not perturb normal execution. It is interesting to
apply this approach to tracing of the upper software layers.

As non deterministic behavior cannot be easily reproduced
and captured, we also note that there is no general prediction
about the number of executions a developer needs to run to
obtain the reference trace.

Considering the trace volumes (Trace Data column), as
we focus on a restrained type of events to record, in all
cases the number of entries is rather small (Trace Entries
column). In the MJPEG case, for example, due to the more
intensive use of synchronization, the number of entries (45471)
is more important, which explains the perceivable execution
time overhead. The trace data volume is minimal, as we do
not record the full data characterizing an event but only the
information needed for deterministic replay.

To start the debugging session itself, the actual ReDSoC
solution forces the developer to wait for the deterministic
replay to happen and reach the selected time interval. In the
worst cases, if the selected debugging region is at the end of
the execution, the developer needs to wait for two replays,
corresponding to the deterministic and partial trace recordings
respectively. In the case of the Tetris application, for exemple,
if the execution time of Node0 is 61s, the waiting time for
the developer to be able to debug Node0 is about 161s. An
interesting approach to accelerate the process would be to
manage application snapshots allowing the deterministic replay
to start in the middle of an application execution.

VI. RELATED WORK

There are numerous deterministic record-replay solutions
that focus and limit themselves on different sources of non
determinism. In a shared memory setting, projects reproduce
scheduling decisions only [12] or consider data races. The
latter consider all shared data accesses [13], [14], [15] or
the accesses to synchronization structures [16]. Alternative
approaches relax the exact replay of data accesses and focus
on application outputs [17]. Others eliminate non determinism

by using an adapted execution support [18]. In a distributed
setting, record-replay solutions focus on the data exchanges
among nodes [19], [20]. To apply to realistic embedded
platforms, ReDSoC considers all sources of non determinism
and combines record-replay techniques from both shared and
distributed memory settings.

In the domain of embedded systems, record-replay mecha-
nisms for multi-tasking embedded systems mainly focus on
the reproduction of context switches [21], [22], [5]. The
works investigate the unique identification of context switches,
needed for a precise replay, as well as various algorithms
for efficient computing of the system state fingerprint. This
approach can be used in hard real-time embedded systems but
does not apply to multi-core concurrent executions which are
considered in ReDSoC.

Record-replay mechanisms strive for a trade-off between
cost of implementation, precision and generality. Indeed,
hardware-based mechanisms [23] impose minimal intrusion
on the traced system but require costly non commodity hard-
ware. Virtual machine mechanisms [24], [13] provide for a
comparable level of detail but rarely consider multi-processor
platforms. In addition, their cost is prohibitive for embedded
systems. System mechanisms [14] provide for transparent
record-replay which does not require application modification.
They are, however, tightly coupled with the specific operating
system they consider. ReDSoC is at the level of application and
library mechanisms [20], [25] which require some modification
(instrumentation, recompilation) of the target application but
provide better portability.

Partial replay has been considered in parallel and dis-
tributed systems which exhibit too much components and in-
teractions for a total record-replay. Recent works [26], [27] on
many-core High Performance Computing (HPC) architectures
reproduce selected groups of processes. However, as their
mechanisms are based on their programming models API, they
cannot be applied to embedded system environments. As for
distributed systems [25], [28], existing partial replay solutions
limit themselves to considering a single node.

VII. CONCLUSION

In this paper we argue that with the increasing scale
and complexity of embedded systems, classic debugging tech-
niques cannot be applied ”as is”. Non deterministic systems
with numerous components need our debugging methodology
which applies space and time reduction criteria to the error
search space. For human comprehension, debugging should
indeed be able to focus on a specific part of the target
software and consider a limited time interval. We have shown
the usefulness of this approach in our experiences with two
multimedia applications on two different platforms. The de-
bugging experiences have proven successful and our system
has performed with minimal intrusion.

The selection of the suspected software parts and the time
interval to debug is a delicate issue which for now relies on
the developer experience. It would be highly beneficial and
interesting to couple the proposed debugging methodology
with techniques able to automatically delimit ”problem zones”.

Intrusion is a major issue in record-replay systems and the
usual answer is to provide ad-hoc solutions for minimizing

7



the execution overhead. However, modeling and formally es-
timating the cost of a given tracing/replaying technique will
allow for cost predictions and will greatly facilitate the choice
between different solutions. This would also be the basis for
provisioning hardware resources for record/replay in embedded
systems.

ReDSoC uses trace visualization which greatly facilitates
the debugging task of the developer. Our belief is that a visual
support, representing the execution history of a target system,
with the possibility of going back and examining past events
beyond the current call stack, becomes a necessary feature for
future development environments.

Our proposal is independent from execution platforms as it
is based on a general model for MPSoC and an MPSoC API.
However, task-based programming models are not the only
ones used in the embedded system domain. We think that the
future of debugging techniques is to consider higher levels
of the application stack and namely the used programming
models. The developer needs to be able to work in a top-
down approach, starting by the human-comprehensive applica-
tion entities and interactions before going down to operating
system details. Some works exist in the domain of interactive
debugging [29] but the approach should be also investigated
for post-mortem analysis.

ACKNOWLEDGMENT

This work has been done in a collaboration with the IDTEC
department of STMicroelectronics, Crolles, France.

REFERENCES

[1] M. Ronsse and W. Zwaenepoel, “Execution Replay for TreadMarks,”
in PDP. IEEE Computer Society, 1997, pp. 343–350.

[2] L. Levrouw, K. Audenaert, and J. Van Campenhout, “A New Trace
and Replay System for Shared Memory Programs based on Lamport
Clocks,” in Parallel and Distributed Processing, 1994. Proceedings.

Second Euromicro Workshop on. IEEE, 1994, pp. 471–478.

[3] C. Clemencon, J. Fritscher, M. Meehan, and R. Rühl, “An Implemen-
tation of Race Detection and Deterministic Replay with MPI,” EURO-

PAR’95 Parallel Processing, pp. 155–166, 1995.

[4] R. Netzer and B. Miller, “Optimal Tracing and Replay for Debug-
ging Message-Passing Parallel Programs,” in Proceedings of the 1992

ACM/IEEE conference on Supercomputing. IEEE Computer Society
Press, 1992, pp. 502–511.

[5] G. Gracioli and S. Fischmeister, “Tracing and Recording Interrupts in
Embedded Software,” Journal of Systems Architecture, vol. 58, pp. 372–
385, Oct 2012.

[6] STMicroelectronics, “KPTrace,”
http://www.stlinux.com/devel/traceprofile/kptrace.

[7] J. C. de Kergommeaux, B. Stein, and P. Bernard, “Pajé, an interac-
tive visualization tool for tuning multi-threaded parallel applications,”
Parallel Computing, vol. 26, no. 10, pp. 1253 – 1274, 2000.

[8] S. Tomar, “Converting Video Formats with FFmpeg,” 2006.

[9] “FFMPEG Website.” [Online]. Available: http://ffmpeg.org/ffmpeg.html

[10] Y. Ahn, Y.-S. Hwang, and K.-S. Chung, “Flexible framework for dy-
namic management of multi-core systems,” in SoC Design Conference

(ISOCC), 2009 International, Nov 2009, pp. 237–240.

[11] A. Pura and C. V. Raghu, “Design of a wireless adapter for multimedia
projectors,” in Wireless Communication, Vehicular Technology, Infor-

mation Theory and Aerospace Electronic Systems Technology (Wireless

VITAE), 2011 2nd International Conference on, Feb 2011, pp. 1–4.

[12] J.-D. Choi and H. Srinivasan, “Deterministic replay of java multi-
threaded applications,” in Proceedings of the SIGMETRICS Symposium

on Parallel and Distributed Tools, ser. SPDT ’98. New York, NY,
USA: ACM, 1998, pp. 48–59.

[13] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen,
“Execution replay of multiprocessor virtual machines,” in Proceedings

of the Fourth ACM SIGPLAN/SIGOPS International Conference on

Virtual Execution Environments, ser. VEE ’08. New York, NY, USA:
ACM, 2008, pp. 121–130.

[14] O. Laadan, N. Viennot, and J. Nieh, “Transparent, lightweight applica-
tion execution replay on commodity multiprocessor operating systems,”
SIGMETRICS Perform. Eval. Rev., vol. 38, no. 1, pp. 155–166, Jun.
2010.

[15] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie, “PinPlay: a
framework for deterministic replay and reproducible analysis of parallel
programs,” in Proceedings of the 8th annual IEEE/ACM international

symposium on Code generation and optimization. ACM, 2010, pp.
2–11.

[16] M. Ronsse and K. De Bosschere, “Recplay: a fully integrated practical
record/replay system,” ACM Trans. Comput. Syst., vol. 17, no. 2, pp.
133–152, 1999.

[17] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. Chen, and
J. Flinn, “Respec: efficient online multiprocessor replayvia speculation
and external determinism,” in ACM SIGARCH Computer Architecture

News, vol. 38, no. 1. ACM, 2010, pp. 77–90.

[18] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble, “Deterministic process
groups in dos,” in Proceedings of the 9th USENIX Conference on Op-

erating Systems Design and Implementation, ser. OSDI’10. Berkeley,
CA, USA: USENIX Association, 2010, pp. 1–16.

[19] R. Konuru, H. Srinivasan, and J. Choi, “Deterministic replay of dis-
tributed java applications,” in Parallel and Distributed Processing Sym-

posium, 2000. IPDPS 2000. Proceedings. 14th International. IEEE,
2000, pp. 219–227.

[20] D. Geels, G. Altekar, S. Shenker, and I. Stoica, “Replay debugging
for distributed applications,” in Proceedings of the annual conference

on USENIX’06 Annual Technical Conference. USENIX Association,
2006, pp. 27–27.

[21] H. Thane, D. Sundmark, J. Huselius, and A. Pettersson, “Replay debug-
ging of real-time systems using time machines,” in Proceedings of the

17th International Symposium on Parallel and Distributed Processing,
ser. IPDPS ’03. Washington, DC, USA: IEEE Computer Society, 2003,
pp. 288.2–.

[22] J. Maeng, J. Kwon, M. Sin, and M. Ryu, “Rt-replayer: a record-
replay architecture for embedded real-time software debugging,” in
Proceedings of the 2009 ACM symposium on Applied Computing.
ACM, 2009, pp. 1670–1675.

[23] J. Devietti, B. Lucia, L. Ceze, and M. Oskin, “Dmp: Deterministic
shared memory multiprocessing,” SIGARCH Comput. Archit. News,
vol. 37, no. 1, pp. 85–96, Mar. 2009. [Online]. Available:
http://doi.acm.org/10.1145/2528521.1508255

[24] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen, “Revirt: enabling
intrusion analysis through virtual-machine logging and replay,” ACM

SIGOPS Operating Systems Review, vol. 36, no. SI, pp. 211–224, 2002.

[25] Y. Saito, “Jockey: A user-space library for record-replay debugging,” in
In AADEBUG05: Proceedings of the sixth international symposium on

Automated analysis-driven debugging. ACM Press, 2005, pp. 69–76.

[26] R. Xue, X. Liu, M. Wu, Z. Guo, W. Chen, W. Zheng, Z. Zhang, and
G. Voelker, “Mpiwiz: Subgroup reproducible replay of mpi applica-
tions,” ACM SIGPLAN Notices, vol. 44, no. 4, pp. 251–260, 2009.

[27] F. Gioachin, G. Zheng, and L. Kalé, “Robust non-intrusive record-
replay with processor extraction,” in Proceedings of the 8th Workshop

on Parallel and Distributed Systems: Testing, Analysis, and Debugging.
ACM, 2010, pp. 9–19.

[28] N. Hunt, T. Bergan, L. Ceze, and S. D. Gribble, “Ddos:
Taming nondeterminism in distributed systems,” SIGPLAN Not.,
vol. 48, no. 4, pp. 499–508, Mar. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2499368.2451170

[29] K. Pouget, P. L. Cueva, M. Santana, and J.-F. Mhaut, “Interactive
debugging of dynamic dataflow embedded applications.” in IPDPS

Workshops. IEEE, 2013, pp. 345–354.

8


