
HAL Id: hal-01006226
https://hal.science/hal-01006226v1

Submitted on 14 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supporting Non-functional Requirements in Services
Software Development Process: An MDD Approach

Maria Valeria de Castro, Martin A. Musicante, Umberto Souza, Plácido A.
Souza Di Neto, Genoveva Vargas-Solar

To cite this version:
Maria Valeria de Castro, Martin A. Musicante, Umberto Souza, Plácido A. Souza Di Neto, Genoveva
Vargas-Solar. Supporting Non-functional Requirements in Services Software Development Process:
An MDD Approach. SOFSEM, Jan 2014, Novy Smokovek, Slovakia. pp.199-210. �hal-01006226�

https://hal.science/hal-01006226v1
https://hal.archives-ouvertes.fr

Supporting Non-Functional Requirements in

Services Software Development Process: An

MDD Approach

Valeria de Castro1, Martin A. Musicante2, Umberto Souza da Costa2,
Plácido A. de Souza Neto3, and Genoveva Vargas-Solar4

1 Universidad Rey Juan Carlos – Móstoles, Spain
Valeria.deCastro@urjc.es

2 Federal University of Rio Grande do Norte (UFRN) – Natal-RN, Brazil
{mam,umberto}@dimap.ufrn.br

3 Federal Technological Institute of Rio Grande do Norte (IFRN) – Natal-RN, Brazil
placido.neto@ifrn.edu.br

4 French Council of Scientific Research (CNRS) – Grenoble, France
Genoveva.Vargas-Solar@imag.fr

Abstract. This paper presents the π-SODM method an extension to the
Service Oriented Development Method (SOD-M) to support the develop-
ment of services software considering their functional and non-functional
requirements. Specifically, π-SODM proposes: (i) meta-models for rep-
resenting non-functional requirements in different abstraction levels; (ii)
model-to-model transformation rules, useful to semi-automatically re-
fine Platform Independent Models into Platform Specific Models; and
(iii) rules to transform Platform Specific Models into concrete imple-
mentations. In order to illustrate the use of this methodology the paper
describes how its use to develop a proof-of-concept.

Keywords: MDD, Service Oriented Applications, Non-functional Properties

1 Introduction

Model Driven Development (MDD) [12] is a top-down approach for designing
and developing software systems proposed by the Object Management Group
(OMG)5. MDD provides a set of guidelines for structuring specifications using
models that specify a software system at different levels of abstraction or view-
points:
Computation Independent Models (CIM): This viewpoint represents the software
system at its highest level of abstraction. It focusses on the system environment,
and on its business and requirement specifications. At this moment of the de-
velopment, the structure and system processing details are still unknown or
undetermined.

5 http://www.omg.org/mda.

Platform Independent Models (PIM): This viewpoint focusses on the system
functionality, hiding the details of any particular platform.

Platform Specific Models (PSM): This viewpoint focusses on the functionality,
in the context of a particular implementation platform. Models at this level
combine the platform-independent view with the specific aspects of the platform
to implement the system.

Besides the notion of model at each level of abstraction, MDD requires the
use of model transformations between levels. These transformations may be au-
tomatic or semi-automatic and implement the refinement process between levels.

MDD has been applied for developing service oriented applications. In Service-
Oriented Computing [19], pre-existing services are combined to produce applica-
tions and provide the business logic. The selection of services is usually guided by
the functional requirements of the application being developed. Some method-
ologies and techniques have been proposed to help the software developer in
the specification of functional requirements of the business logic, such as the
Service-Oriented Development Method (SOD-M) [9].

Ideally, non-functional requirements such as security, reliability, and efficiency
would be considered along with all the stages of the software development. The
adoption of non-functional specifications from the early states of development
can help the developer to produce applications that are capable of dealing with
the application context. Non-functional properties of service-oriented applica-
tions have been addressed in academic works and standards.Dealing with these
kind of properties involves the use of specific technologies in different layers of
the SOC architecture, for instance during the description of service APIs (such as
WSDL[8] or REST [13]) or to express service coordinations (like WS-BPEL [1]).

Protocols and models implementing non-functional properties assume the ex-
istence of a global control of the artifacts implementing the application. They
also assume that each service exports its interface. So, the challenge of support-
ing non-functional properties is related to (i) the specification of the business
rules of the application; and (ii) dealing with the technical characteristics of the
infrastructure where the application is executed.

This paper presents πSOD-M a methodology for supporting the construction
of service-oriented applications, taking into account both functional and non-
functional requirements. The goal of the methdology are to: (i) improve the
construction process by providing an abstract view of the application and ensure
the conformance to its specification; (ii) reduce the programming effort through
the semi-automatic generation of models for the application, to produce concrete
implementations from high abstraction models. Accordingly, the remainder of the
paper is organized as follows: Sections 2 and 3 present, respectively, the SOD-M
method of service software process and πSOD-M our proposed extension to deal
with non-functional requirements. A proof of concept is developed in Section 4.
Section 5 describes related works. Section 6 concludes the paper and gives final
remarks.

2 SOD-M

The Service-Oriented Development Method (SOD-M) [9] adopts the MDD ap-
proach to build service-based applications. SOD-M considers two points of view:
(i) business, focusing on the characteristics and requirements of the organiza-
tion, and (ii) system requirements, focusing on features and processes to be
implemented in order application requirements. In this way, SOD-M simplifies
the design of service-oriented applications, as well as their implementation using
current technologies.

SOD-M provides a framework with models and standards to express func-
tionalities of applications at a high-level of abstraction. SOD-M meta-models
are organized into three levels: CIM (Computational Independent Models), PIM
(Platform Independent Models) and PSM (Platform Specific Models). Two mod-
els are defined at the CIM level: value model and BPMN model. The PIM level
models the entire structure of the application flow, while, the PSM level pro-
vides transformations towards more specific platforms. The PIM-level models
are: use case, extended use case, service process and service composition. The
PSM level models are: web service interface, extended composition service and
business logic.

The value model is a business model that describes a business case as a set of
values and value activities shared by business actors. The BPMN model (business
process model) is used to describe the business process related to the environment
which the system will run. These two models represent the independent aspects
of computing. The use case model is used to represent the business services to be
implemented by the system, while the extended use case model is a behavioral
model, to represent the system features as a way to implement the business
services. The service process model describes the set of activities that must be
performed on the system to implement a business service. Finally, the service
composition model represents the full flow of business system. This model is
an extension of the service process model, however, in more detail. These four
models represent the platform independent aspects.

The SOD-M approach includes transformations between models: CIM-to-
PIM, PIM-to-PIM and PIM-to-PSM transformations. Given an abstract model
at the CIM level, it is possible to apply transformations for generating a model
of the PSM level. In this context, it is necessary to follow the process activities
described by the methodology. These three SOD-M levels have no support for de-
scribing non-functional requirements.The following section introduces π-SODM
the extension proposed for considering these requirements.

3 πSOD-M

πSOD-M provides an environment for building service compositions considering
their non-functional requirements. πSOD-M proposes the generation of a set
of models at different abstraction levels, as well as transformations between

Fig. 1: πSOD-M.

these models. πSOD-M includes non-functional specifications through four meta-
models that extend PIM SOD-M meta-models (see Figure 1): π-UseCase, π-
ServiceProcess, π-ServiceComposition and π-PEWS.

The π-UseCase meta-model describes functional and non-functional require-
ments. Non-functional requirements are defined as constraints over processing
and data. The π-ServiceProcess meta-model defines the concept of service con-
tract to represent restrictions over data and actions that must be performed
upon certain conditions. The π-ServiceProcess meta-model gathers the con-
straints described in the π-UseCase model into contracts that are associated
with services. The π-ServiceComposition meta-model provides the concept of
Policy [11] which put together contracts with similar non-functional require-
ments. For instance, security and privacy restrictions may be grouped into a
security policy. π-ServiceComposition models can be refined into PSMs. Poli-
cies are associated to service operations and combine constraints and reactive
recovery actions. Constraints are restrictions that must be verified during the
execution of the application. Failure to verify the constraints will trigger excep-
tions to execute their corresponding recovery actions. An example of policy is
the requirement of authentication for executing some of the system functions.
The action associated to this policy may perform the authentication of the user.
The π-PEWS meta-model is a PSM (see Figure 1). At the PSM level we have

lower-level models that can be automatically translated into actual computer
programs. The π-PEWS meta-model is the PSM adopted in this work. π-PEWS
models are textual descriptions of service compositions that can be translated
into PEWS [3] or BPEL [1] code. Although PEWS is our language of choice,
other composition languages can be used as target.

Thus, πSOD-M proposes a development process based on the definition of
models (instances of the meta-models) and transformations between models.
There are two kinds of transformations: Model-to-model transformations are
used during the software process to refine the specification. Model-to-text trans-
formations are the last step of the process and generate code.

πSOD-M environment is built on the top of Eclipse. We also used the Eclipse
Modelling Framework (EMF) to define, edit and handle (meta)-models. To au-
tomate the transformation models we use ATL [14] and Acceleo [17].

In the next section we develop an example, to serve as a proof-of-concept.
The example will show the actual notation used for models.

4 Proof of Concept: Tracking Crimes

Consider a tracking crime application where civilians and police share informa-
tion about criminality in given zones of a city. Civilian users signal crimes using
Twitter. Police officers can notify crimes, as well as update information about
solving cases. Some of these information are confidential while other can be
shared to the community of users using this application. Users can track crimes
in given zones. Crime information stored by the system may be visualized on a
map. Some users have different access rights than others. For example, police
officers have more access rights than civilians.

In order to provide these functionalities, the application uses pre-existing
services to provide, store and visualize the information. The business process
defines the logic of the application and is specified in terms of tasks. Tasks can
be performed by people or computers.

The business process and requirements specifications presented in Figure 2
are instances of the Computation-Independent models of Figure 1. The business
process is represented as a graph while requirements are given as text boxes.

In our example, crime processing can start with one of two tasks: (i) notify
a crime, or (ii) track a crime. Notified crimes are stored in a database. Tracked
crimes are visualized in a map. The used can ask for detailed information. The
application is built upon four services: twitter and an ad-hoc police service for no-
tifying crimes, Amazon used as persistence service and Google Maps for locating
and displaying crimes on a map.

Non-functional requirements are specified by rules and conditions to be ver-
ified during the execution of tasks. In our example we have the following non-
functional requirements:

1. Twitter requires authentication and allows three login failures before blocking.
2. Crime notification needs privileged access.

Fig. 2: Business process for the tracking crime example.

3. Civilian users can only track crimes for which they have clearance: Civilian
population cannot track all the crimes notified by the police.

4. If Google Maps is unavailable, the results are delivered as text.
5. Querying about crimes without having proper clearance yields an empty map.
6. Access rights to detailed information depends on user clearance and zone assign-

ment for police officers.
7. The application maintains a detailed log.

The idea about these requirements is to leave the application logic expressed
by functional requirements as independent as possible from exceptional situa-
tions like the unavailability of a service and the conditions in which services are
called for example through an authentication protocol. These requirements can
be weaved as activities and branches of the composition or kept independent.
The interest of the second option is that the maintenance and the evolution
of the application logic can be easier. For example, the services called by the
application are not hard coded (Twitter and Google Maps in the example), nei-
ther the actions to deal with exceptions (replacing anohter Map service or doing
nothing).

Considering the example of tracking crimes, all the system restrictions are
modelled as constraints. π-SODM provides three types of constraints: value,
business and exceptions behaviour constraints. Each use case (model) can be
associated to one or more constraints 6.

π-UseCase model: In our example we have five use cases (Figure 3), which
represent the system functions (tasks) and constraints. We will not detail the
functional part of the specification, due to lack of space. The constrains defined
for our tracking crime example are:

- The Notify crime task requires that the user is logged in. This is an example of
a value constraint, where the value associated to the condition depends on the

6 For a more comprehensive account of πSOD-M the reader can refer to [22].

Fig. 3: π-UseCase Model

semantics of the application. In this case, it represents the maximum number of
allowed login attempts;

- The Store crimes task requires the verification of the user’s clearance (also a
value constraint).

- In order to perform the Track crimes task, it is necessary that the notifier user
is in the contact list of the requesting user. This is an example of business
constraint. Additionally the requesting user must be logged in.

- For the View Crime Map task, the specification defines that if the Google Maps
service is not available, the result is presented as text. This is an example of
exceptional behaviour constraint. The availability of the Google Maps service is
verified by a business constraint.

- The Show crime details task is specified to have three constraints: A value con-
straint is defined to verify the user’s clearance level; A business constraint is
used to ensure that the user’s clearance is valid for the geographic zone of the
crime; Another value constraint defines that the log is to be maintained.

π-ServiceProcess model: The model presented in Figure 3 is transformed, at this
stage of the development, into a similar graph, where (i) the task nodes are
better detailed, by refining the control and data flows; and (ii) constraints are
transformed into contracts (pre- and post-conditions). The new model describes
the application’s activities and defines contracts for each activity or for parts of
the application.

A model-to model transformation is defined in order refine the π-UseCase
model of the application into the more detailed model. This (semi-automatic)
transformation process is supported by a tool (described in [22]).

The π-ServiceProcess model defined for our tracking crime application is
presented in Figure 4, where:

1. Tasks of the previous model are transformed into actions;

Fig. 4: π-ServiceProcess Model

2. Actions are grouped into activities (in accordance to the business logic).
3. Constraints of the π-UseCase model are transformed into assertions.

π-ServiceComposition model: This model refines the previous model by using
the activities to produce the workflow of the application. The model serves to
identify those entities that collaborate with the service process by providing
services to execute actions. This model identifies the services and functions that
correspond to each action in the business process.

In the case of our crime tracking example, the model produced from the π-
ServiceProcess model of Figure 4 is given in Figures 5a and 5b. Figure 5a shows
how the crime application interacts with its business collaborators (external ser-
vices and entities). The interaction occurs by means of function calls (denoted
by dotted lines in the figure). Figure 5b shows the definition of three policies,
which define rules for service execution. In our case we have policies for Security,
Performance and Persistence.

π-PEWS Model: These models are produced by a model-to-text transformation
that takes a π-ServiceComposition model and generates π-PEWS specification
code. This code is a service composition program that can be compiled into
executable code. π-PEWS models are expressed in a variant of the PEWS com-
position language. The π-PEWS program generated from the model in Figure 5
is partially presented in Figure 6. The figure shows a simplified program code,
produced in accordance to the following guidelines:

1. Namespaces, identifying the addresses of external services are produced from
the Business Collaborators of the higher-level model. We define four of them,
corresponding to the Police, Twitter, Google Map and Amazon partners.

2. Specific operations exported by each business collaborator are identified to an
operation of the program (Each operation is given an alias).

(a) π-ServiceComposition Model
policy class Compensation |[Parallel-Operator scope]|

 Status-Backup

 backup-Facebook, backup-Twitter;

 rule R1

 ON Activity-Failure e1 AND

 Activity-Ended e2

 IF e1.activityName == “ update twitter ” AND

 e2.activityName == “ update facebook ”

 DO compensate(“ update facebook ” , backup-Facebook.status);

 rule R2

 ON ...

policy class Status-Backup |[Activity scope]|

 String status;

 rule R1

 ON Activity-Started event

 IF event.activityName == scope.name

 DO {

 status = get-Status (scope.name);

 }

(b) π-ServiceComposition Policies

Fig. 5: Service Composition and Policies.

3. The workflow in Figure 5a is translated into the text in line 11.

4. Contracts are defined in π-PEWS as having pre-conditions (requires), post-
conditions (ensures) and actions (OnFailureDo) to be executed case a condition
is not verified. Contracts are generated from Policies (such as those of Figure 5a.

5 Related work

Over the last years, a number of approaches have been proposed for the de-
velopment of web services. These approaches range from the proposal of new
languages for web service descriptions [1, 20] to techniques to support phases of
the development cycle of this kind of software [6]. In general, these approaches
concentrate on specific problems, like supporting transactions or QoS, in order to
improve the security and reliability of service-based applications. Some proposals
address service composition: workflow definition [24, 16] or semantic equivalence
between services [3].

Works dealing with non-functional properties in service-oriented develop-
ment can be organized in two main groups: those working on the modeling of

//Namespaces specify service URI

1 namespace twitter = www.twitter.com/service.wsdl

2 namespace googlemaps = maps.googleapis.com/maps/api/service

3 namespace amazondynamodb = rds.amazonaws.com/doc/2010-07-28/AmazonRDSv4.wsdl

4 namespace police = www.police.fr/service.wsdl

//Operations

5 alias publishTwitter = portType/publishTwitter in twitter

6 alias searchCrime = portType/searchCrime in amazondynamodb

7 alias showMap = portType/showMap in googlemaps

//Services

8 service notifyCrime = publishCrime . publishTwitter

9 service trackCrime= searchCrime . verifyService

10 Service visualizeCrime = showMap . getCrimeDetail

//Path

11 (notifyCrime.storeiCrime) || (trackCrime.visualizeCrime.getCrimeDetail)

//Contracts

12 defContract notifyCrimeContract{ isAppliedTo: notifyCrime

13 requires: userId == ?? && passw == ?? && req(notifyCrime) < 3

14 (OnFailureDo: NOT(action_publish(crime));

15 ensures: publishTwitter(crime) == true (OnFailureDo: skip); }

Fig. 6: π-PEWS code for the crime tracking example (partial, simplified).

particular non-functional properties or QoS attributes and those proposing ar-
chitectures or frameworks to manage and validate QoS attributes in web service
composition processes. The first group considers specific non-functional concerns
(e.g. security) which is modelled and then associated to functional models of
the application. The work of Chollet et al. [7] defines a proposal to associate
non-functional quality properties (security properties) to functional activities in
a web service composition model. Schmeling et al. [21] present an approach and
also a toolset for specifying and implementing non-functional concerns in web
service compositions. Non-functional concerns are modelled and then related
to a service composition represented in a BPMN diagram. Ovaska et al. [18]
present an approach to support quality management at design time. Quality
requirements are modelled in a first phase and then represented in an architec-
tural model where quality requirements are associated to some components of
the model.

The second group of works dealing with non-functional requirements for ser-
vices propose specific architectures or frameworks to manage and validate QoS
attributes in service composition processes [25, 4, 15].

Despite the variety of techniques proposed, there is not yet a consensus on a
software methodology for web services. Some methodologies address the service-
based development towards a standard or a new way to develop reliable applica-
tions. SOD-M and SOMF [5] are MDD approaches for web services; S-Cube [19]
is focused on the representation of business processes and service-based develop-
ment; SOMA [2] is a methodology for SOA solutions; DEVISE [10] is a methodol-

ogy for building service-based infrastructure for collaborative enterprises. Other
proposals include, the WIED model [23], that acts as a bridge between business
modeling and design models, and traditional approaches for software engineering
applied to SOC.

6 Conclusions

This paper presented the πSOD-M software method for specifying and design-
ing service based applications in the presence of non-functional constraints. Our
proposal enhances the SOD-M method with constraints, policies and contracts
to consider non-functional constraints of applications. We implemented the pro-
posed meta-models on the Eclipse platform and we illustrated the approach by
developping a simple application.

πSOD-M is being used in an academic environment. So far, the preliminary
results indicate that πSOD-M approach is useful for the development of complex
web service applications. We are now working on the definition of a PCM-level
meta-model to generate BPEL programs (instead of π-PEWS).

Acknowledgements

This research is partly supported by the National Institute of Science and Technology
for Software Engineering (INES7), funded by CNPq (Brazil), grants 573964/2008-4 and
305619/2012-8; CAPES/UdelaR (Brazil/Uruguay) grant 021/ 2010; CAPES/STIC-
AmSud (Brazil) grant 020/2010); MASAI project (TIN-2011-22617) financied by the
Spanish Ministry of Science and Innovation and the Spanish Network on Service Science
(TIN2011-15497-E) financed by the Spanish Ministry of Competitiveness and Economy.

References

1. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weeranwarana, S.: Bussi-
ness process execution language for web services. Available at http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/ (2003)

2. Arsanjani, A.: SOMA: Service-Oriented Modeling and Architecture. Technical
report, IBM, http://www.ibm.com/developerworks/library/ws-soa-design1 (2004)

3. Ba, C., Halfeld-Ferrari, M., Musicante, M.A.: Composing web services with PEWS:
A trace-theoretical approach. In: ECOWS 2006. (2006) 65–74

4. Babamir, S.M., Karimi, S., Shishechi, M.R.: A broker-based architecture for
quality-driven web services composition. In: Proc. CiSE 2010. (2010)

5. Bell, M.: Service-Oriented Modeling (SOA): Service Analysis, Design, and Archi-
tecture. John Wiley (2008)

6. Börger, E., Cisternino, A., eds.: Advances in Software Engineering (Revised Tuto-
rial Lectures). In Börger, E., Cisternino, A., eds.: Lipari Summer School. Volume
5316 of LNCS., Springer (2008)

7 www.ines.org.br

7. Chollet, S., Lalanda, P.: An extensible abstract service orchestration framework.
In: Proc. ICWS 2009, IEEE (2009) 831–838

8. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services descrip-
tion language (wsdl) 1.1. Technical report, World Wide Web Consortium (2001)
Available in http://www.w3.org/TR/wsdl.

9. de Castro, V., Marcos, E., Wieringa, R.: Towards a service-oriented mda-based
approach to the alignment of business processes with it systems: From the business
model to a web service composition model. IJCIS 18(2) (2009)

10. Dhyanesh, N., Vineel, G.C., Raghavan, S.V.: Devise: A methodology for building
web services based infrastructure for collaborative enterprises. In: Proc. WET-
ICE’03, USA, IEEE Computer Society (2003)

11. Espinosa-Oviedo, J.A., Vargas-Solar, G., Zechinelli-Martini, J.L., Collet, C.: Policy
driven services coordination for building social networks based applications. In:
Proc. of SCC’11, Work-in-Progress Track, USA, IEEE (2011)

12. Favre, L.: A rigorous framework for model driven development. In: Advanced
Topics in Database Research, Vol. 5. Chapter I, IGP. (2006) 1–27

13. Fielding, R.T.: REST: Architectural Styles and the Design of Network-based Soft-
ware Architectures. Doctoral dissertation, University of California, Irvine (2000)

14. Group, A.: Atl: Atlas transformation language. Technical report, ATLAS Group,
LINA & INRIA (February, 2006)

15. Karunamurthy, R., Khendek, F., Glitho, R.H.: A novel architecture for web service
composition. J. of Network and Computer Applications 35(2) (2012) 787 – 802

16. Musicante, M.A., Potrich, E.: Expressing workflow patterns for web services: The
case of pews. J.UCS 12(7) (jul 2006) 903–921

17. Musset, J., Juliot, E., Lacrampe, S.: Acceleo référence. Technical report, Obeo et
Acceleo (2006)

18. Ovaska, E., Evesti, A., Henttonen, K., Palviainen, M., Aho, P.: Knowledge based
quality-driven architecture design and evaluation. Information & Software Tech-
nology 52(6) (2010) 577–601

19. Papazoglou, M.P., Pohl, K., Parkin, M., Metzger, A., eds.: Service Research Chal-
lenges and Solutions for the Future Internet. In Papazoglou, M.P., Pohl, K., Parkin,
M., Metzger, A., eds.: S-CUBE Book. Volume 6500 of LNCS., Springer (2010)

20. Salaün, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services
using process algebra. In: Proc. IEEE International Conference on Web Services.
ICWS ’04, Washington, DC, USA, IEEE Computer Society (2004)

21. Schmeling, B., Charfi, A., Mezini, M.: Composing non-functional concerns in com-
posite web services. In: Proc. ICWS 2011. (july 2011) 331 –338

22. Souza Neto, P.A.: A methodology for building service-oriented applications in the
presence of non-functional properties. PhD thesis, Federal University of Rio Grande
do Norte (2012) http://www3.ifrn.edu.br/∼placidoneto/thesisPlacidoASNeto.pdf.

23. Tongrungrojana, R., Lowe, D.: Wied: A web modelling language for modelling
architectural-level information flows. J. Digit. Inf. 5(2) (2004)

24. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distrib. Parallel Databases 14(1) (July 2003) 5–51

25. Xiao, H., Chan, B., Zou, Y., Benayon, J.W., O’Farrell, B., Litani, E., Hawkins, J.:
A framework for verifying sla compliance in composed services. In: ICWS. (2008)

