
HAL Id: hal-01006222
https://hal.science/hal-01006222

Submitted on 3 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Viewpoints and Abstraction Levels in Software
Engineering Towards Multi-Viewpoints/Multi-Hierarchy

in Software Architecture.
Ahmad Kheir, Hala Naja, Mourad Chabane Oussalah, Kifah Tout

To cite this version:
Ahmad Kheir, Hala Naja, Mourad Chabane Oussalah, Kifah Tout. From Viewpoints and Abstraction
Levels in Software Engineering Towards Multi-Viewpoints/Multi-Hierarchy in Software Architecture..
The Eighth International Conference on Software Engineering Advances, Oct 2013, Venice, Italy.
pp.478. �hal-01006222�

https://hal.science/hal-01006222
https://hal.archives-ouvertes.fr


From Viewpoints and Abstraction Levels in Software Engineering
Towards Multi-Viewpoints/Multi-Hierarchy in Software Ar chitecture.

Ahmad KHEIR1,2, Hala NAJA1, Mourad OUSSALAH2 and Kifah TOUT1

1LaMA Laboratory, EDST - AZM Center For Research - Lebanese University, Tripoli, Lebanon
2LINA Laboratory, Nantes University, Nantes, France

{ahmad.elkheir, Mourad.oussalah}@Univ-nantes.fr,{hala.naja, kifah.tout}@ul.edu.lb

Keywords: Software Architecture: Viewpoints: Views: Abstraction Levels: Dependency: Consistency Rules.

Abstract: Viewpoints concept could be considered one of the major concepts introduced in the software engineering do-
main in order to enhance the architectural organization of complex systems by separating its concerns. Despite
his ultimate importance, this concept must be evolved and hierarchized in order to allow the jump of software
architectures field from its current range of complexity coverage and resolution to a new range more secure,
more standardized and more appropriate with the current industrial needs.
This paper begins with a survey of the role and usage of the viewpoints, and the hierarchy definition by abstrac-
tion levels concepts. Then presents a small but complete analysis of the related works and their limitations,
in order to conclude with a proposition of current work on a multi-viewpoints and multi-abstraction levels
software architecture.

1 INTRODUCTION

Complex systems always include a large amount of
requirements, associated to different categories of
stakeholders that must be managed in coherent soft-
ware architecture. Furthermore, each stakeholder
adopts his own look to the system, represented via a
specific viewpoint that is in most cases complex and
hard to be covered entirely in the system architecture.
Informally, a view is an architectural design of a
stakeholder’s viewpoint that covers delicately all its
interests and required functionalities, and represents
them formally in a structured architecture. An ab-
straction level represents a level of details defined in
order to treat the extra complexities retained after de-
composing a system into multiple viewpoints, by rel-
egating some viewpoints’ details which appear to be
irrelevant in the first stages of the modeling process to
lower abstraction levels, so the architect could zoom
into a specific viewpoint to the desired level of details.
This paper presents, in sections 2 and 3, a survey

The work described in this paper is partially sup-
ported by a grant from National Council for Scientific
Research (Lebanon).

dealing with the evolution of role and usage of two
major concepts in software engineering, which are
respectively the views and abstraction levels. Then
an overview of an architectural modeling approach
called MoVAL is suggested in section 4. InMoVal,
both views and abstraction levels concepts are inte-
grated allowing the architect to build robustly a multi-
views and multi-granularities software architectures.
Section 5 and 6 presents a comparative analysis and
the deducted limitations of current solutions. Section
7 concludes.

2 HISTORY OF VIEWS

A view is a formal representation of a stakeholder or
a group of stakeholders’ viewpoint. This notion has
been introduced in four main fields of the software
engineering domain, which are: requirements engi-
neering, systems modeling, software architecture and
software development.

2.1 Views in Requirements Engineering

One of the first and leading researchers that worked
with viewpoint concept in requirements specification
was A. Finkelstein in (Finkelstein and Fuks, 1989),



where he and Fuks proposed a formal model aim-
ing to construct system’s specifications through a di-
alog in which the viewpoint negotiate. Robinson also
worked on the requirements specification through di-
alog (Robinson, 1990), in 1990’s and presented his
tool, Oz, but he focused more on the representation of
conflicting viewpoints and an automated way to pro-
duce resolutions.
Meanwhile, H. Delugach (Delugach, 1990) was
working on the representation of each viewpoint’s re-
quirements in a conceptual graph in order to merge
them by analyzing those conceptual graphs and per-
forming a join so that we obtain a single coherent set
of requirements for the target system.
In 1994, B. Nuseibeh et al. have introduced in (Nu-
seibeh et al., 1994), the relationships that could ex-
ist between viewpoints (overlapping, complementary,
contradiction) in requirements specification and have
proposed a framework to describe those relationships.
Finally, in 1997, Sommerville has contributed in
this domain in (Sommerville and Sawyer, 1997) by
proposing,Preview, a model for requirements discov-
ery, analysis and negotiation.

2.2 Views in Software Systems
Modelling

Prior to the incomparable commonness of UML in
software systems modeling field, Mullery has devel-
oped a method, called CORE, for requirements spec-
ification and design in 1979 (Mullery, 1979). CORE
is a modeling approach supported by diagrammatic
notation which decomposes the modeling process to
many steps, and defines for each of them a defini-
tion level and a set of viewpoints for which they will
model their requirements and establish, in an iterative
way, the consistency among them.
In the early 1990s, Booch et al. have developed
the Unified Modeling Language(UML), which was
adopted by the OMG in 1997. In the current version
of UML, 13 types of diagrams, where each diagram
type has an implicit viewpoint. Several researchers
have worked to extend UML model in order to add
the concept of dynamic views and viewpoints like in
(Ladeira and Cagnin, 2007; Nassar, 2003).
In 2003, a view-based UML extension, VUML (Nas-
sar, 2003), have been introduced to offer a UML mod-
eling tool in which the multiple viewpoints of the sys-
tem are taken into account in the modeling phase,
so they offered a methodology to construct multiple
class models one for each viewpoint and merge them
to obtain a single VUML model describing all the
viewpoints. Then they proposed a code generation
(Nassar et al., 2009) and automated composition (An-

war et al., 2011) tools.
Also one of the important works done in this field was
(Dijkman et al., 2008) where they presented a frame-
work allowing the architect to model a system from
different viewpoints by defining a collection of basic
concepts common to all viewpoints and defining for
each of them its associated level of abstraction. In this
work they focused on the definition of consistency re-
lationships between the views.

2.3 Views in Software Architecture

Software architecture consists on the definition of
a structured solution that meets all the system re-
quirements, and represents a complete organization
of the entire software system and its inherent soft-
ware and hardware components. Various models
have been proposed of how to create a documenta-
tion of those architectures (i.e. an architectural de-
scription) by the separation of concerns. Each model
describes a set of viewpoints and identifies the set
of concerns that each of them address. The con-
cept of Views appears in one of the earliest papers,
Perry and Wolf’s classic (Perry and Wolf, 1992) on
Software Architecture in the early 1990s. In (Sowa
and Zachman, 1992), the approach presents an exten-
sive set of constructs calledcolumnswhich is very
similar to views. In 1995, Philippe Kruchten pro-
posed four different Views (Kruchten, 1995) of a sys-
tem and the use of a set of scenarios (use cases)
to check their correctness. In (Hilliard, 1999), the
author proposed an Architecture Description Frame-
work (ADF) in which views are first-class entities
governed by type-like entities called viewpoints char-
acterized in terms of a set of properties pertaining to
their application, a viewpoint language. This study
was the basis of the ISO/IEC/IEEE 42010 Standard
(ISO/IEC/IEEE, 2011) which has formalized con-
cepts used in Software Architecture and brought some
standardization of terminology used in this field. It
recognized the importance of Views in architectural
description and adopted the Viewpoint concept de-
fined earlier in (Hilliard, 1999). In (Clements et al.,
2002), 3 viewpoints, called viewtypes, were identi-
fied which are: Module, Component-and-Connector
and Allocation. In this approach, the author has de-
fined a three-step procedure for choosing the relevant
views for a system based on stakeholder concerns.
Next, in 2005, a valuable survey (May, 2005) com-
pared between several view-based models and tried
to find out the correspondencies between the differ-
ent views proposed and the divergence between them.
Then it has proposed an optimum framework cover-
age encompassing a viewpoint set selected from dif-



ferent models with the greatest coverage of the frame-
work concepts. In (Rozanski and Woods, 2011), the
authors proposed a Viewpoint Catalogue for Infor-
mation Systems, extending the 4+1 set of viewpoints
identified by Kruchten (Kruchten, 1995) comprising
6 core viewpoints including : the Functional, Infor-
mation, Concurrency Development, Deployment and
Operational.

2.4 Views in Software Development

In Software Development field, many techniques con-
sider that a number of software developmentconcerns
could not be handled using the modularization bound-
aries inherent in object-oriented languages and pro-
pose new artifacts (beyond method, class or pack-
age) to separate new kinds of concerns that tend to
be amalgamated in object-oriented paradigms (Mili
et al., 2006). In this area, several methods are pro-
posed:

• The Subject-Oriented Programming (SOP) (Os-
sher and al., 1995) technique addresses thefunc-
tional requirements. It views object oriented ap-
plications as the composition of several applica-
tion slices representing separate functional do-
mains calledsubjects.

• The Aspect-Oriented programming (AOP) tech-
nique, such in (Majumdar and Swapan, 2010), ad-
dresses thenon-functional requirements. It de-
fines aspectas an implementation of a concern
that pertain to several objects in a collaboration.

• The View-Oriented programming technique (Mili
and al, 1999) considers each object of an applica-
tion as a set of core functionalities available, di-
rectly or indirectly, to all users of the object, and
a set of interfaces specific to particular users.

3 HISTORY OF ABSTRACTION
LEVELS

Abstraction level is a core concept in software engi-
neering; it is a way to deal with software systems’
complexities giving the architect or the analyst the
ability to examine different topics of the system at dif-
ferent levels of details (i.e. abstraction levels) accord-
ing to the purpose.
Actually there were not so many researches in this
domain as it was the case in viewpoints domain, but
among the valuable works done in this field (Regnell
et al., 1996) could be considered, where authors have
proposed a hierarchical modeling approach that con-
sists of three static distinct abstraction levels, which

Figure 1: Conceptual matrix of MoVAL model

are the environment level, structural level and event
level.
In (Medvidovic et al., 1996), authors have proposed
a software architecture’s modeling process of compo-
nent based architectures, composed of four modeling
process abstraction levels or, actually, four modeling
layers, which are: architectural components specifica-
tion, components’ interfaces definition, architectural
description and architectural styles rules.
In (Monperrus et al., 2009), authors have proposed
a decomposition approach of meta-model to multi-
ple abstraction levels. In this approach they defined
a lower abstraction level as a specialization of the up-
per abstraction level and proposed splitting rules that
are based on the inheritance and specialization rela-
tionships of the meta-model.

4 MoVAL APPROACH

MoVAL (Model, View and Abstraction Level
based software architecture) is a multi-views/multi-
hierarchy software architecture that complies with the
IEEE standard (ISO/IEC/IEEE, 2011). The major
benefits of MoVAL are: (i) it allows architects to
solve more efficiently complexity problems; (ii) it al-
lows them to build a complex, organized and coherent
architecture (iii) and enhance the communication and
harmony among different stakeholders by giving each
of them the appropriate tools to express his interests.
Actually, a MoVAL model could be conceptualized,
as shown is figure 1, by a matrix, in which the
columns represent the views of the model and the
lines represent the abstraction levels of a view.



4.1 Model views

A view of a model in MoVAL, is a representation
of the entire system considering a set of the devel-
opment process aspects and certain problems associ-
ated to a specific stakeholder or a group of stakehold-
ers. Moreover, each view of the model is represented
in a multi-levels multi-types hierarchy, but this paper
will present only the abstraction levels, which are the
highest hierarchy levels of a view.

4.2 View’s abstraction levels

An abstraction level is the higher level in a view’s hi-
erarchy. It represents the level of details considered in
certain point of the development process and defines
the details that must be considered in this level and
what to be relegated to lower levels. Each abstraction
level specifies a well-defined diagrammatic notation
that must be used to model the associated view con-
sidering the current level of details.

4.3 Links

The links are structural elements defined in MoVAL
in order to express formally the relations that could
exist between different abstraction levels and to con-
serve, consequently, the model’s consistency. Those
links are grouped in four categories, but this paper
will focus only on two of them:

• Inter-views link , defining the relation among a
couple of distinct abstraction levels belonging to
two different views.

• Inter-levels link , defining a similar relation to
that defined by the inter-views link, except that the
abstraction levels here belong to the same view.

Actually, MoVAL has defined those links formally by
attributing for each of them a semantic role that could
be a simple connection, composition, expansion, etc.
... Also, MoVAL has created some semantic attributes
for each of them in order to express formally all the
necessary semantics of a relation between different
abstraction levels of a model and guarantee its con-
sistency.

4.4 Case study

To clarify MoVAL concepts, a reduced case study will
be introduced in this section. This case study con-
sists on a banking system in which two primary views
are considered associated to a hierarchy of one sin-
gle abstraction level: the Client view and the External

Figure 2: Client view’s abstraction level

Figure 3: External application view’s abstraction level

Application view. Figures 2 and 3 illustrate those ab-
straction levels.
In the considered portion of the banking system, an

inter-views link could be defined between the abstrac-
tion levels of those views describing the relation be-
tween them and formalizing the fact that the exter-
nal account management service component of the
external application view’s abstraction level uses the
account management service of the client view’s ab-
straction level.

5 ANALYSIS

Table 1 presents an elicitation of five main character-
istics of several approaches sharing similar purposes
with MoVAL’s approach.

• The inter-views relations support column gives
idea about the considered approach, if it repre-
sents the relations that exist between the views,
and what types of relations it represents.

• The stakeholder roles column defines the consid-
ered set of stakeholders for each approach.

• The Fixed/Not Fixed views column indicates ei-
ther if the number of considered views in each ap-
proach is fixed or not.

• The hierarchy support column tells if each ap-
proach represents multiple levels of details/ ab-
straction levels/ hierarchy levels and gives a hint
about its support if exists.

6 RELATED WORKS
LIMITATIONS

Using viewpoints to describe software architecture
benefits the development process in a number of ways
the separation of concerns, communication among



Table 1: Existing works and their main characteristics.

Inter-Views
Relations
Support

Stakeholder
Roles

Fixed/Not Fixed
Views

Hierarchy
Support

(Delugach, 1990;
Nuseibeh et al.,

1994)

Represents
dependency &
overlapping

Development
participants, End

user

Not fixed NA

(Sommerville
and Sawyer,

1997)

Admits
overlapping

Development
participants, End

user

Not fixed NA

(Mullery, 1979) Admits
overlapping

Analyst, End user Not fixed Steps concept

(Nassar, 2003) NA End user not fixed NA
(Dijkman et al.,

2008)
Represents

refinement &
overlapping

Development
participants, End

user

Not fixed Single
abstraction level
per viewpoint

(Sowa and
Zachman, 1992)

NA Planner, Owner,
Designer, Builder

and
Subcontractor

Fixed NA

(Kruchten, 1995) NA Development
participants

Fixed NA

(Hilliard, 1999;
ISO/IEC/IEEE,
2011; Rozanski

and Woods,
2011)

Admits
consistency
relationships

existence

Development
participants, End

user

Not fixed NA

MoVAL Formal
consistency

relationships

Development
participants,

End user

Not fixed Multiple
abstraction
levels per
viewpoint

stakeholder groups, complexity management and de-
veloper focus improvement. However, some limi-
tations remain when using existing view-based ap-
proaches. We can summarize some of these limita-
tions, which were solved in MoVAL, as follows:

• Needs to move between different abstraction lev-
els: We assume that a software architect should
define views at different levels of details. Thus,
the software architect needs to think in terms of
different abstraction levels and to be capable to
move between them. Actually, in all the studied
related works, an architect cannot specify a view
or one of its representations in multiple abstrac-
tion levels, however in MoVAL he could iden-
tify for each view as many abstraction levels as
he needs.

• Lack of an Architectural Description Process:
In almost all the studied approaches, except in
(Clements et al., 2002), it is unclear what the soft-
ware architect has to do to define the suitable ar-
chitectural description. This task is based mainly

on his (her) experience and skills. So, MoVAL ap-
proach aims at defining an Architectural Descrip-
tion Process (ADP) which guides the software ar-
chitect while defining the software architectural
description. The ADP should be flexible, non-
constraining and iterative. Actually, MoVAL’s
ADP is out of this paper’s focus.

• Views Inconsistency:Using a number of Views to
describe a system inevitably brings inconsisten-
cies problems. So we need to achieve a cross-
view consistency within an architectural descrip-
tion, which is not offered by the majority of the
studied related works, but MoVAL has defined the
links (section 4.3) which hold the needed coher-
ence rules in order to solve those inconsistencies.

7 CONCLUSION

This paper presents an overview of several approaches
using Views in different fields: Requirements Engi-



neering, Modeling, Implementation and Software Ar-
chitecture. Limitations of existing approaches in Soft-
ware Architecture field are emphasized. Also, this
paper presents a preliminary approach for document-
ing intensive software systems architecture based on
views and hierarchy levels. This approach complies
with the IEEE standard 42010 and contributes with
two major additions that are firstly, providing the soft-
ware architect means to define views at different lev-
els of detail and to move between them; then defining
relationships that solve the inconsistencies between
the architectural views.
Actually, we are preparing a complete methodol-
ogy or development process in order to allow sys-
tem architects to build a rough and coherent multi-
views/multi-hierarchy software architecture.

REFERENCES

Anwar, A., Dkaki, T., Ebersold, S., Coulette, B., and Nas-
sar, M. (2011). A formal approach to model compo-
sition applied to VUML. InEngineering of Complex
Computer Systems (ICECCS), 2011 16th IEEE Inter-
national Conference on, pages 188 – 197.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J.,
Little, R., Nord, R., and Stafford, J. (2002). A practi-
cal method for documenting software architectures.

Delugach, H. S. (1990). Using conceptual graphs to analyze
multiple views of software requirements.

Dijkman, R. M., Quartel, D. A. C., and van Sinderen, M. J.
(2008). Consistency in multi-viewpoint design of en-
terprise information systems.Information and Soft-
ware Technology, 50(7):737 – 752.

Finkelstein, A. and Fuks, H. (1989). Multiparty specifica-
tion. In ACM SIGSOFT Software Engineering Notes,
volume 14, pages 185 – 195.

Hilliard, R. (1999). Views and viewpoints in software sys-
tems architecture. InFirst Working IFIP Conference
on Software Architecture,WICSA, pages 13 – 24.

ISO/IEC/IEEE (2011). Systems and software engi-
neering – architecture description.ISO/IEC/IEEE
42010:2011(E) (Revision of ISO/IEC 42010:2007 and
IEEE Std 1471-2000).

Kruchten, P. (1995). The 4+ 1 view model of architecture.
Software, IEEE, 12(6):42 – 50.

Ladeira, S. and Cagnin, M. I. (2007). Guidelines for busi-
ness modeling elaboration based on views from do-
main information. In10th Workshop on Requirements
Engineering, Toronto-Canada, pages 47 – 55.

Majumdar, D. and Swapan, B. (2010). Aspect Oriented Re-
quirement Engineering: A Theme Based Vector Ori-
entation Model. Journal of Computer Science, Info-
Comp.

May, N. (2005). A survey of software architecture view-
point models. InProceedings of the Sixth Aus-
tralasian Workshop on Software and System Architec-
tures, pages 13 – 24. Citeseer.

Medvidovic, N., Taylor, R. N., and Whitehead Jr, E. J.
(1996). Formal modeling of software architectures at
multiple levels of abstraction.ejw, 714:824 – 2776.

Mili, H. and al (1999). View programming : Towards a
framework for decentralized development and execu-
tion of oo programs. InProc. of TOOLS USA’ 99,
pages 211 – 221. Prentice Hall.

Mili, H., Sahraoui, H., Lounis, H., Mcheick, H., and Elkhar-
raz, A. (2006). Concerned about separation.Fun-
damental Approaches to Software Engineering, pages
247 – 261.

Monperrus, M., Beugnard, A., and Champeau, J. (2009).
A definition of ”abstraction level” for metamodels.
7th IEEE Workshop on Model-Based Development for
Computer Based Systems.

Mullery, G. P. (1979). CORE-a method for controlled
requirement specification. InProceedings of the
4th international conference on Software engineering,
pages 126 – 135.

Nassar, M. (2003). VUML: a viewpoint oriented UML ex-
tension. InAutomated Software Engineering, 2003.
Proceedings. 18th IEEE International Conference on,
pages 373 – 376.

Nassar, M., Anwar, A., Ebersold, S., Elasri, B., Coulette, B.,
and Kriouile, A. (2009). Code generation in VUML
profile: A model driven approach. InComputer Sys-
tems and Applications, 2009. AICCSA 2009, pages
412 – 419.

Nuseibeh, B., Kramer, J., and Finkelstein, A. (1994). A
framework for expressing the relationships between
multiple views in requirements specification.Soft-
ware Engineering, IEEE Transactions on, 20(10):760
– 773.

Ossher, H. and al. (1995). Subject-oriented composition
rules. InOOPSLAS’95, pages 235 – 250.

Perry, D. and Wolf, A. (1992). Foundations for the study of
software architecture.ACM SIGSOFT Software Engi-
neering Notes, 17(4):40 – 52.

Regnell, B., Andersson, M., and Bergstrand, J. (1996). A
hierarchical use case model with graphical represen-
tation. In Engineering of Computer-Based Systems,
1996. Proceedings., IEEE Symposium and Workshop
on, pages 270 – 277.

Robinson, W. N. (1990). Negotiation behavior during re-
quirement specification. InSoftware Engineering,
1990. Proceedings., 12th International Conference
on, pages 268 – 276.

Rozanski, N. and Woods, E. (2011).Software Systems Ar-
chitecture: Working with Stakeholders Using View-
points and Perspectives.Addison-Wesley.

Sommerville, I. and Sawyer, P. (1997). Viewpoints: prin-
ciples, problems and a practical approach to require-
ments engineering.Annals of Software Engineering,
3(1):101 – 130.

Sowa, J. and Zachman, J. (1992). Extending and formal-
izing the framework for information systems architec-
ture. IBM systems journal, 31(3):590 – 616.


