
HAL Id: hal-01006221
https://hal.science/hal-01006221v1

Submitted on 14 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical Multi-Views Software Architecture
Ahmad Kheir, Mourad Chabane Oussalah, Hala Naja

To cite this version:
Ahmad Kheir, Mourad Chabane Oussalah, Hala Naja. Hierarchical Multi-Views Software Architec-
ture. International conference on Software engineering advances, Oct 2013, A. Dabi, United States.
�hal-01006221�

https://hal.science/hal-01006221v1
https://hal.archives-ouvertes.fr

Hierarchical Multi-Views Software Architecture

Ahmad Kheir, Mourad Oussalah
LINA Laboratory
Nantes University

Nantes, France
{Ahmad.Elkheir, Mourad.Oussalah}@univ-nantes.fr

Hala Naja
LaMA Laboratory

Azm Center For Research, Lebanese University
Tripoli, Lebanon

Hala.Naja@ul.edu.lb

Abstract—Software design and development hold so many
inconsistencies when it comes to build composable and scalable
structures. However, software architectures could be an
efficient solution if considered with additional features like the
composition of such architectures by linking different
hierarchized views formally together. Thus, this paper presents
a new contribution of a multi-views/multi-hierarchy software
architecture that is consistent with the ISO/IEC/IEEE 42010
standard, and that presents a way for defining formally the
consistencies between its different views and hierarchy levels.

Keywords-Software architecture; Views; Hierarchy levels;
Consistency

I. INTRODUCTION

Software architectures have contributed effectively in
complex and distributed software systems development.
Normally, there are two principles, which have made the
software architectures' contribution obvious and
indispensable. First, it allows the architect to model the
structure and the behavior of the system simultaneously.
Second, it offers the architect the base to build multi-
hierarchy based models.

In fact, coherent and well organized software architecture
would enhance some crucial system properties like the
reliability, consistency, and scalability. However, the lack of
such architectures may limit those systems' adaptability,
evolution, and consequently their life cycle, due to the
incapability of modifying or expanding the stakeholders'
requirements.

This paper presents a Model, View and Abstraction Level
based software architecture (MoVAL), a multi-views and
multi-hierarchy software architecture, which complies with
the IEEE standard 42010-2011 [1] and is based on the
construction of multi-views models having for each of their
views a hierarchy of levels.

Actually, the concept of viewpoint was present in many
fields of software engineering domain. Indeed, it was
introduced in requirements engineering by A. Finkelstein [4]
in 1989 opening the way for other valuable works in this
field like in [5] and in [6]. Also, the viewpoint concept was
existing in software modeling, implicitly in some cases like
in the unified modeling language (UML), where each

diagram type has an implicit viewpoint, and explicitly in
other studies like in the View-based UML extension
(VUML) [7], where an explicit representation of different
viewpoints in a single multi-views class diagram is proposed.
Also, the software implementation field recognized the
utility of viewpoint concept. Indeed, different development
paradigms encapsulate the viewpoint concept, like the aspect
oriented [8], subject oriented development paradigms [9] and
the view-based programming technique [10], which define
explicitly different views in a single model. In addition, most
of the related works done in the field of software architecture
like the 4+1 View Model [2] and the Views and Beyond [3]
approaches, have defined multi-views software architecture.
However they did not provided any type of hierarchy for
their views in order to reduce their complexities, nor they
defined formally some consistency rules between different
views of an architecture in order to conserve the robustness
of that architecture and its ability to evolve while the
stakeholders' requirements evolve. A complete survey on
related works and a fruitful analysis of their limitations was
presented in a previous study [11], but we can summarize
those limitations in three main points: the views
inconsistencies, the need to move between different
abstraction levels, and the lack of a complete architectural
description process.

In light of the related works study, MoVAL's motivations
and goals were made clear. Actually, there are two main
goals that were intended in this approach. The first goal is to
propose a multi-views software architecture defining for
each view a multi-levels hierarchy aiming to minimize
software systems complexity per modeling entity. The
second goal addressed in this approach, is to define formally
the relationships that may exist between different views of a
model, and also between different hierarchy levels inside a
given view.

This paper is organized as follows: Section II presents in
details our contribution. Then, the proposed approach is
illustrated by a case study in Section III. Finally, Section IV
concludes the paper.

II. MOVAL

In MoVAL, a model is conceptualized via a matrix as
illustrated in Figure 1.

478Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 1. Conceptual Matrix of a MoVAL model.

The columns of the matrix represent the views of the

model, while the lines represent its abstraction levels, which
are the first level of the views' hierarchy detailed further in
this paper. Hence, the lines and columns of the matrix
illustrate two distinct structuring types defined in MoVAL.
The columns illustrate the vertical structuring referring to
different views of the same model, and the lines illustrate the
horizontal structuring referring to the hierarchy levels
defined in the model and associated to its views.

Note that model's matrix, in some trivial cases where the
architect decides to create only one view for the model, and
decide to represent this unique view in a single abstraction
level, could be reduced to a single element.

A. Model View

A model view in MoVAL, or simply a view, is a
representation of this model considering, from one side, a set
of the development process' aspects, and from another side
certain problems associated to a specific category of
stakeholders or a group of categories of stakeholders. Those
development aspects and problems are grouped in a separate
entity, named viewpoints. In general, every stakeholder
needs to express his interests via some appropriate
semantics, syntax, and tools, called formalisms. For
example, a database administrator needs to use the entity-
relationship diagrams (ERDs) and the appropriate tools in
order to model his database in a given phase. Thus, a
viewpoint also defines the formalisms that shall be used
afterwards to model the inherent views. Hence, each view
must be associated to a specific viewpoint, which should be
either predefined like the physical, structural, and behavioral
viewpoints, or customized based on the application domain
like the thermic view in an automobile construction system.

B. View's Hiearachy Level

MoVAL approach has defined a hierarchy of levels for
each view, in order to describe it formally and appropriately
in each step of the development process.

Figure 2. Views and hierarchy levels.

Figure 2 represents this hierarchy, which consists of two
types of levels, the abstraction levels, which are
represented in the figure via ovals. Also, under each
abstraction level several description levels are represented
via correlated rectangles.
1) Abstraction Level
An abstraction level is a representation of a view

considered at a specific stage of the system lifecycle.
Eventually, several abstraction levels could be considered on
the same view, and then linked together by higher/lower
relationships. In fact, for the same view, an abstraction level
AL1 is higher than another abstraction level AL2 (resp. AL2
is lower than AL1) if AL1 defines relevant requirements in a
given stage of the system lifecycle leaving out some other
requirements and relegating them to AL2 in a more advanced
stage.

For a given view, an abstraction level must use
appropriate formalisms that are implied by the associated
viewpoint.

In general, a view could have more than one abstraction
level having the same inherent requirements as long as they
have different formalisms. Actually, in this case the
transition from one abstraction level of a view to another
abstraction level in the same view conserving the same
inherent requirements and changing the formalism, could
indicate the transition from a stage of the software lifecycle
to another more advanced stage.

Note that it is not mandatory to have always an
isomorphism between different views of a model, by the fact
that it is not mandatory to have each abstraction level
associated to all the views of the model, as illustrated in
Figure 1.

2) Description Level
The second type of hierarchy levels of a view is the

description level. This type of hierarchy levels allows the
architect to describe the same abstraction level of a specific
view and the same inherent requirements while providing
multiple descriptions having different granularity levels.

Here also, the description levels of the same abstraction
level are linked together by higher/lower relationships. So, a
description level DL1 is higher than another description level
DL2 (resp. DL2 is lower than DL1) if DL1 lies on the same

479Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

requirements as DL2 but adds more details in order to make
easier the understanding of DL2's requirements. In other
words, DL1 is at a higher granularity level than DL2.

Actually, the difference between this type of hierarchy
levels and the abstraction levels, resides in the fact that a
lower abstraction level allows the architect to go
straightforward into more advanced stages of the system
lifecycle relatively to the higher abstraction level, in general,
by providing more requirements. However, a lower
description level does not allow the architect to provide
additional requirements of a specific view, but it allows him
to describe more clearly its previous description level by
providing more description details.

C. Link

The links are structural elements defined in MoVAL in
order to express formally the relations between different
hierarchy levels and conserve model's consistency. Those
links are grouped in four categories: Inter-views link, defining the relation among a couple

of distinct hierarchy levels belonging to two different
views. Inter-levels link, defining a similar relation to that
defined by the inter-views link, except that the hierarchy
levels here belong to the same view. Intra-level link, defining an internal relation between
elements of the same hierarchy level. User links; this category of links is a special category.
A user link always inherits from one of the three
previous categories, then defines some additional
structural or semantic properties and attributes (see the
case study in Section IV). Actually, the purpose of this
category of links was to enhance the modularity and
reusability of software architecture's structural elements.

In order to formalize the links, MoVAL has attributed
four main properties to define them: Source: based on the semantic role of a link, its source

could be either an abstraction or a description level of a
view. Destination: similarly, the type of the destination of a
link depends on its semantic role. Note that always the
source and destination of a link must have the same
type. Semantic role: the semantic role of a link defines the
nature or the purpose behind the relation between the
source and destination hierarchy levels. It is firmly
related to the category of the link and the type of its
source and destination hierarchy levels. Hence, MoVAL
has defined three main semantic roles:

o Connection, specifying some consistency rules
between elements of the same hierarchy levels.
Note that this semantic role could be used only
for intra-level links.

o Composition, specifying the composition of
elements of the source level in the destination
level, which is in this case the lower level. This
role could be used in case of inter-levels or
inter-views links.

o Expansion, representing the description of
elements of the source level in the destination
level, which is in this case the lower level,
respecting the abstraction levels of the source
and destination. Actually, this semantic role is
dedicated for the representation of relations
between abstraction levels only and could be
used in both cases of inter-levels or inter-views
links.

 Normally, composition and expansion roles are
 adequate when the architect adopts a Top-Down
 development strategy. However, when the Bottom-
 Up strategy is adopted, composition and expansion
 could be replaced by other roles having inverse
 semantics, which are respectively the aggregation
 and compression semantic roles. Semantic link, which includes a set of semantic

attributes aiming to implement the desired semantics,
chosen in advance by architect via the semantic role:

o Dependence, declaring that the destination
hierarchy level depends for its existence on the
source hierarchy level.

o Predominance, which declares semantics
symmetric to those declared by the dependence
attribute.

o Coherence, specifying that some consistency
rules should be considered and respected in the
destination hierarchy level based on the source
level parameters, in order to conserve the
coherence of the model. Those consistency
rules could be expressed via a given constraint
language like OCL.

D. MoVAL Meta-Model

MoVAL meta-model is consistent with the
ISO/IEC/IEEE 42010 standard. Thus, some elements have
kept their definitions presented in the IEEE standard, like the
definition of a system, architecture, architectural description,
stakeholder, viewpoint, view, and concern. However, some
other elements were given new definitions like the model,
and others have been introduced like the abstraction and
description level, formalism, and link. Figure 3 presents the
proposed meta-model.

A System, as it was defined in the IEEE standard, is not
limited to individual applications but it encompasses them to
cover also the subsystems, systems of systems and all kind of
software interests' aggregations. A system always has
different categories of Stakeholders, which are the
participants in every phase of his life cycle. They could be
individuals, teams or even organizations interested in this
system, like the system architects, developers, analysts,
experts contributing in the system development, users, etc.

Each of those stakeholders focuses on a specific part of
the system requirements saturating his interests. Hence, those
interests of different stakeholders are defined as different sets
of Concerns overlapping in certain cases and contradicting in
other cases.

Simultaneously, a system is associated to an
Architecture, documented and described via an Architectural

480Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Description (AD). An AD is composed of a set of Views
governed by a set of Viewpoints specifying and grouping the
inherent

concerns and formalisms that should be used for the
development of the views. Those views are represented in a
hierarchy of Abstraction and Description Levels.

Figure 3. Conceptual model of MoVAL

Also, each viewpoint and each abstraction level of a
model offers a set of Formalisms that could be used
afterward to model the associated view at each of its
abstraction levels. Those formalisms define actually the
lexical and syntax elements that could be used.

III. CASE STUDY

In order to clarify MoVAL concepts and confirm its
contribution and utility in software engineering and complex
systems development field, a case study will be represented
in this section.

This case study consists on an eCommerce WebApp, in
which multiple stores would be registered and given virtual
spaces to expose their products for sale.

In this context, only three viewpoints are considered (due
to space limitation issue): Physical viewpoint, which represents the view of the

system deployer. Thus, it manipulates the hardware and
software resources used for the deployment of such
systems. Actually, this viewpoint is predefined in

MoVAL and considered associated to a single
formalism, which is the deployment diagram of UML.
The associated view could be represented in a hierarchy
of one abstraction level and one description level
mentioned respectively in figures 4 and 5.

Figure 4. Physical view abstraction level.

481Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Figure 5. Physical view description level

 Site administrator viewpoint, representing the system as
seen by the system administrator and considering his
requirements. Three formalisms could be associated to
this viewpoint, which are the use case, sequence, and
class diagrams of UML. In addition, the associated view
could be defined in two abstraction levels illustrated in
figures 6 and 7, respectively.

Figure 6. First abstraction level of the Site admin view.

Figure 7. Second abstraction level of the Site admin view.

 Store administrator viewpoint, representing the system
as seen by the registered store administrator. This
viewpoint will be associated to the same formalisms
associated to the previous viewpoint, also the associated
view will be defined in two abstraction levels illustrated
in figures 8 and 9.

Figure 8. First abstraction level of the Store admin view.

Figure 9. Second abstraction level of the Store admin view.

In general, in order to improve the models’ consistency,

the system architect must create different links between
different views and hierarchy levels of this model. For this
reason, the abstraction levels of the Site Administrator view
could be associated to the abstraction levels of the Store

482Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Administrator view, as they share the same level of details.
Thus, for the remaining of this section, the higher and lower
abstraction levels, associated to this couple of views, will be
referred by the First Functional Level and the Second
Functional Level, respectively.

Now, three links, among others, could be derived for this
case study: Inter-levels link having the First Functional Level of the

Site Administrator view as source hierarchy level, and
the Second Functional Level of the same view as
destination. This link is a composition link expressing in
his coherence semantic attribute the composition of the
Accounting Service in the source by the Site Accounting
Service and the Store Accounting Service in the
destination. Inter-levels link having the First Functional Level of the
Site Administrator view as source and the Second
Functional Level of the same view as destination. This
link is an expansion link expressing in his coherence
semantic attribute the expansion of the Internal Services
of the source level to the Log Service and the Backup
Service in the destination. User link, named Reuse Link, created by the architect as
an inter-views link defining the reusability of a
component of the source level in the destination level.
Hence, a Reuse link could be defined having the Second
Functional Level of the Site Administrator view as
source and the Second Functional Level of the Store
Administrator view as destination. This link expresses
the reusability of the Reporting Service in both of the
source and destination levels.

Figure 10. Conceptual matrix of the eCommerce model.

Figure 10 represents the conceptual matrix of the
eCommerce case study.

IV. CONCLUSION

This paper has presented a new contribution of multi-
views and multi-hierarchy software architecture, named
MoVAL, defining and modeling independently, for each
stakeholder, its inherent concerns in a separate multi-levels
view and providing the necessary definitions to combine and
link all those views and hierarchy levels in order to guaranty
a complete consistency between different parts of the
resulting architecture.

In fact, MoVAL has given every stakeholder the space to
model his interests and the tools to represent the possible
interferences that may exist with other interests of other
stakeholders, what should decrease significantly the number
of unexpected executions or the number of bugs of the
system, and increase consequently the system’s reliability.

From another side, MoVAL has given the software
architect the tools to link different semantically related views
or abstraction levels via the architectural links, what would
enhance the model coherence because of the representation
of every constraint that may exist between different views or
abstraction levels. Simultaneously, this organization and
coherence make the addition of other user requirements
much simpler, and consequently increase model’s scalability.

Actually, MoVAL is in the prototyping phase. A specific
framework encapsulating the all the tools and features
needed to apply MoVAL's concepts will be implemented and
validated.

ACKNOWLEDGMENT

This material is based upon work supported by the
Lebanese association for scientific research (LASeR), the
Lebanese council for scientific research (CNRS), the French
association CAPACITES, the University of Nantes, and
finally the Lebanese University.

REFERENCES
[1] ISO/IEC/IEEE, “Systems and software engineering -- Architecture

description,” in ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC
42010:2007 and IEEE Std 1471-2000), 2011.

[2] P. B. Kruchten, “The 4+ 1 view model of architecture,” IEEE
Software, vol. 12, no. 6, 1995, pp. 42–50.

[3] P. C. Clements et al., “A practical method for documenting software
architectures,” Research showcase, Carnegie Mellon University,
2002.

[4] A. Finkelstein and H. Fuks, “Multiparty specification,” in ACM
SIGSOFT Software Engineering Notes, vol. 14, 1989, pp. 185–195.

[5] B. Nuseibeh, J. Kramer, and A. Finkelstein, “A framework for
expressing the relationships between multiple views in requirements
specification,” IEEE Transactions on Software Engineering, vol. 20,
no. 10, 1994, pp. 760–773.

[6] I. Sommerville and P. Sawyer, “Viewpoints: principles, problems and
a practical approach to requirements engineering,” Annals of
Software Engineering, vol. 3, no. 1, 1997, pp. 101–130.

[7] M. Nassar et al., “VUML: a Viewpoint oriented UML Extension,”
Proceedings of the 18th IEEE International Conference on Automated
Software Engineering (ASE’03), IEEE Computer Society, 2003, pp.
373–376.

[8] D. Majumdar and S. Bhattacharya, “Aspect Oriented Requirements
Engineering: A Theme Based Vector-Orientation Model,” Infocomp
J. Comput. Sci., vol. 9, no. 1, 2010, pp. 61–69.

[9] H. Ossher, M. Kaplan, W. Harrison, A. Katz, and V. Kruskal,
“Subject-oriented composition rules,” in ACM SIGPLAN Notices,
vol. 30, no. 10, 1995, pp. 235–250.

[10] H. Mili, J. Dargham, A. Mili, O. Cherkaoui, and R. Godin, “View
programming for decentralized development of OO programs”, in
Technology of Object-Oriented Languages and Systems (TOOLS 30),
1999, pp. 210–221.

[11] A. Kheir, H. Naja, M. Oussalah, and K. Tout, “Overview of an
Approach Describing Multi-Views/Multi-Abstraction Levels
Software Architecture,” Proceedings of the 8th International
Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE 2013), France, 2013, pp. 132–140.

483Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

484Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

