
HAL Id: hal-01006198
https://hal.science/hal-01006198

Submitted on 14 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Harmonic mechanical excitations of steady convective
instabilities: a means to get more uniform heat transfers

in mixed convection flows?
Xavier Nicolas, S. Mergui

To cite this version:
Xavier Nicolas, S. Mergui. Harmonic mechanical excitations of steady convective instabilities: a means
to get more uniform heat transfers in mixed convection flows?. International Journal of Heat and Mass
Transfer, 2014, 77, pp.419-438. �10.1016/j.ijheatmasstransfer.2014.05.029�. �hal-01006198�

https://hal.science/hal-01006198
https://hal.archives-ouvertes.fr


 1 

Harmonic mechanical excitations of steady convective instabilities: a 

means to get more uniform heat transfers in mixed convection flows? 

 

Xavier NICOLAS1, Sophie MERGUI2 

1 Université Paris-Est, MSME UMR 8208 CNRS, 
5 Boulevard Descartes, 77454 Marne la Vallée Cedex 2, France 

2 UPMC Université Paris 06, FAST UMR CNRS 7608,  
Bat 502, Campus Universitaire, 91405 Orsay, France 

 
 

Corresponding author: Xavier NICOLAS 

Postal address:  Université Paris-Est Marne-la-Vallée, Bât. Lavoisier,  

MSME UMR 8208 CNRS, 5 Bd Descartes,  

77454 Marne-la-Vallée Cedex 2, France. 

Tel: [33] 1 60 95 73 14 

Fax: [33] 1 60 95 72 94 

E-mail: xavier.nicolas@univ-paris-est.fr 

Other author e-mail: mergui@fast.u-psud.fr  

 

 

Abstract 

 
In laminar mixed convection flows, steady thermoconvective patterns generate non uniform 

heat and/or mass transfers at walls that can be detrimental in some industrial processes. For 

instance the longitudinal thermoconvective patterns of Poiseuille-Rayleigh-Bénard (PRB) 

flows generate non uniform thin films or coatings when they are present in cold wall 

horizontal Chemical Vapor Deposition (CVD) reactors. The aim of this paper is to show that, 

when the basic steady flow is convectively unstable against an unsteady flow regime, 

introducing small harmonic mechanical excitations in the basic flow may enable to obtain 

more uniform time averaged heat transfers. More specifically, three-dimensional direct 
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numerical simulations are used to characterize the temperature field and wall heat transfer 

associated with unsteady wavy convective instabilities of PRB flows that result from 

harmonic excitations of the longitudinal thermoconvective rolls at channel inlet. A design of 

experiments is used to build cubic response surfaces of the different quantities analyzed  

(growth length of the wavy rolls, magnitude of their spanwise oscillations, wall Nusselt 

number …) on a wide range of the flow parameters. Air PRB flows (Pr=0.71) in channels of 

aspect ratios equal to Width/Height=10 and 150≤Length/Height≤300, for Reynolds numbers 

100≤Re≤300 and Rayleigh numbers 5000≤Ra≤16000 are considered. Comparisons with 

experiments are presented and a good agreement is obtained. The optimal conditions to have 

uniform heat transfers on the horizontal walls of PRB flows correspond to the minimal growth 

length of the wavy rolls until saturation and the maximum magnitude of their spanwise 

oscillations. They are approximately obtained for moderate Reynolds number (Re≈150), high 

Rayleigh numbers (Ra≈15000), low excitation frequency and rather high excitation 

magnitude. A discussion of these results for the applications to CVD in horizontal rectangular 

reactors at atmospheric pressure is finally proposed.  

 

 

Keywords: mixed convection, Poiseuille-Rayleigh-Bénard flow, convective instability, 

rectangular channel, harmonic inlet excitation, CVD, 3D numerical simulations, design of 

experiments 
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1. Introduction 

A Poiseuille-Rayleigh-Bénard (PRB) flow is a mixed convection flow in a horizontal 

rectangular channel heated from below and cooled from above. PRB flows are commonly 

encountered in industrial applications, for example in heat exchangers, during the air cooling 

of electronic circuit boards or in the rectangular Chemical Vapor Deposition (CVD) reactors 

used to make thin solid films or coatings on heated substrates from chemical precursors in 

gaseous phase (see [1, 2] for reviews). To optimize these industrial processes, heat and/or 

mass transfers at walls must be well controlled as well as the thermoconvective instabilities 

and the flow type (laminar, transitional, turbulent) that develop in the system. Indeed the 

thermoconvective instabilities can result in non uniform heat and mass transfers, especially 

when they are steady, and give rise to a degradation of the desired process (see [2-5] for 

instance in the case of CVD applications). It is then of great interest to characterize the flow 

patterns in the PRB configuration to enable a good controlling of the magnitude and 

homogeneity of heat and mass transfers. 

In this paper, only laminar PRB flows are studied. The stable basic state is a purely 

conductive Poiseuille flow. Its successive destabilizations generate many different 

thermoconvective patterns, depending on the values of the characteristic parameters: the 

Reynolds, Re, Rayleigh, Ra, and Prandtl, Pr, numbers and the transverse aspect ratio of the 

channel, B = W (width) / H (height). Thus the stability diagrams of PRB flows present many 

flow configurations. A few examples, established experimentally, theoretically and 

numerically, for different Prandtl numbers and aspect ratios, can be found in [6-9] in the case 

of pure fluids. In the case of air PRB flows (Pr=0.7), a complete stability diagram at B≥10 is 

presented in [10]. It is partially reproduced in Fig. 1 in order to specify the framework of the 

present study, in the next paragraphs. Very recently, Barletta and Nield [11] have analyzed the 

consequences of a uniform internal heat source on the thermal instability of the PRB mixed 

convection. Finally the stability of PRB flows in binary fluids, with and without Soret effect, 
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is studied in [12-15] for instance.  

The primary instability made of steady parallel convection rolls oriented in the direction 

of the mean flow, referred to as longitudinal rolls, is the main flow pattern in all the stability 

diagrams of PRB flows at different Pr and B values (see Fig. 1). This instability is observed 

for sufficiently high Reynolds numbers (typically for Re>O(10) in air) and for Rayleigh 

numbers above a critical value varying between 1708 and 2000 when B>2 [9]. Carrière and 

Monkewitz (1999) [16] showed that this pattern is a convective instability of the basic 

conductive Poiseuille flow. Mergui et al. (2011) [17] and Benderradji et al. (2008) [18] 

demonstrated that these rolls are triggered in real channels of finite transverse aspect ratio just 

downstream the leading edge of the heated plate and near the vertical walls due to the 

presence of velocity and temperature boundary layers adjacent to these walls.  
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FIG. 1: Primary and secondary marginal stability curves of PRB flows at Pr=0.7 and B=10 or 

B→∞ determined by time linear stability analyses in [8, 10, 19]. Ra//* is the transition curve 

between the basic Poiseuille flow and the longitudinal rolls. Raosc*(Re) and Ra≈*(Re) are the 

transition curves between the longitudinal rolls and the oscillating and wavy rolls 

respectively. The simulation points of the wavy roll flows used in the present design of 

experiments are also indicated.  

 

Two secondary unsteady instabilities appear at higher Rayleigh numbers, arising from 



 5 

the destabilization of the longitudinal rolls. They are referred to as oscillating instabilities at 

low Reynolds number (Re<O(100)) and wavy instabilities at high Reynolds number 

(Re≥O(100)) (see Fig. 1). These instabilities have been first detected by Clever and Busse 

(1991) [8] through a time linear stability analysis for an infinite fluid layer. In the current 

paper, we focus on the wavy instability. The time linear stability analysis of longitudinal rolls 

against wavy rolls has been extended by Kato and Fujimura (2001) [20], Xin et al. (2006) [19] 

and Nicolas et al. (2012) [10] to channels of finite transverse aspect ratio. Previous 

experimental [21] and numerical [10, 22] studies showed that the wavy pattern can develop in 

the channel only if a perturbation is imposed and maintained into the longitudinal roll flow, 

meaning that the wavy rolls result from a convective instability of the longitudinal rolls.  

This feature could be of great interest from a practical point of view. Indeed, the idea is 

to take advantage of the convective nature and unsteadiness of the wavy instability to enhance 

or weaken and/or homogenize the heat and/or mass transfers in the industrial processes by 

imposing the most appropriate perturbations/excitations to the flow. A numerical study by 

Nicolas et al. (2008) [2] has already shown that the presence of wavy rolls generated by 

harmonic mechanical excitations could homogenize the growth rate and the thickness of the 

deposited thin solid layers in APCVD (Atmospheric Pressure CVD) reactors. Nicolas et al. 

(2012) [10] conducted a numerical study to characterize the saturated wavy roll flows by 

maintaining a random excitation, a white noise on the transverse velocity components, at the 

channel inlet. It has been shown that, depending on the Reynolds and Rayleigh numbers and 

on the excitation amplitude, the spanwise displacement magnitude of the wavy rolls can be 

large on a large extent of the domain suggesting that this configuration could potentially be 

interesting to homogenize the heat and mass transfers in CVD reactors. However, in practical 

situations, a random excitation is almost impossible to implement and a sinusoidal 

perturbation will be preferred. Thus, the aim of the present study is to better characterize the 

spatial and temporal development of the wavy instability and of the associated heat transfers, 
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on a wide range of the control parameters, when a harmonic forcing is imposed to the system. 

The most effective conditions susceptible to homogenize the heat transfer at the channel walls 

and the main characteristics of the wavy roll flows (their growth length, the magnitude of the 

spanwise displacement of the oscillations, the wall Nusselt number at saturation, etc) will be 

numerically identified.  

However, as the wavy roll flows are controlled by six parameters (Re, Ra, Pr, B and the 

magnitude, Aexc, and frequency, fexc, of the harmonic forcing), the complexity of the problem 

is reduced by setting the values of Pr and B. More precisely, in all this work, Pr=0.71 (air 

flow) and B=10 to allow experimental and numerical comparisons with the PRB experiments 

carried out at FAST laboratory [17, 21, 23, 24]. Despite this simplification, the problem 

remains expensive to solve because one simulation of an unsteady fully-developed three-

dimensional (3D) PRB flow requires channels of long streamwise aspect ratios (say A = L 

(length) / H ≈ 200), very large grids of more than 107 cells or nodes and, as a consequence, 

high computational resources. The computational cost of such simulations is presented for 

instance in [25] in the framework of a benchmark exercise on PRB flows, using different 

numerical methods on parallel or vectorial supercomputers. As the present study aims at 

analyzing the influence of four parameters (Ra, Re, Aexc, fexc) on the wavy roll behavior, on a 

wide parameter domain, the total computational cost of the study could have been prohibitive. 

To overcome this difficulty, we decided to apply a design of experiments (DOE) [26]. This 

technique allows constructing polynomial interpolation surfaces of the studied quantities as a 

function of all the parameters, on the whole parameter domain, from a limited number of 

experiments (or simulations in the present case). The accuracy of the interpolation of course 

depends on the number and repartition of the simulations on the parameter domain and 

statistical tests are needed to determine it. This aspect will be discussed in the paper. 

The paper is organized as follows. First, the mathematical model and the numerical 

methods are presented in §2. The way the design of experiments is built is presented in §3. 
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The methodology used and the definitions of the quantities (responses) analyzed to 

characterize the wavy roll flows are described in §4. The results are presented in §5. The 

wavy roll growth lengths until saturation and the magnitude of the most amplified modes at 

saturation are analyzed and compared with the experiments in §5.1 and §5.2. The magnitude 

of the spanwise oscillations of the wavy rolls and their spanwise wavelength are studied in 

§5.3. The optimum conditions for uniform time averaged heat transfers on the horizontal 

plates are determined in §5.4 and the intensity of these heat transfers at saturation are 

determined in §5.5. Finally, in §6, the main results of this study are summed up and discussed 

from the point of view of the possible applications to the horizontal rectangular CVD reactors. 

The statistical tests used to determine the accuracy of the response surfaces are presented in 

Appendix A. The equations of the response surfaces, not presented in the body of the text, are 

given in Appendix B and the values of the main responses are given in Appendix C for all the 

simulations of the DOE.  

 

2. Mathematical model and numerical method 

The channel considered to simulate the PRB flows is shown in Fig. 2. It is a horizontal 

rectangular channel of height H, width W and length L, heated from below. A fully developed 

Poiseuille flow enters into the channel at the cold temperature Tc, with an average velocity 

Umean. After an adiabatic entrance zone of length Le, the top wall is maintained at Tc and the 

bottom wall is heated at a higher temperature Th. The vertical lateral walls are adiabatic all 

along the channel. The origin of the reference frame being placed at the beginning of the 

heated plate, the computational domain is defined by (x, y, z) ∈  [-Ae, A-Ae]×[0, B]×[0, 1] in 

dimensionless Cartesian coordinates, where A=L/H and B=W/H are the streamwise and 

spanwise aspect ratios of the channel and Ae=Le/H is the streamwise entrance aspect ratio. In 

this study, B = 10, Ae = 1 and A varies between 150 and 300. Note that the ratio Umax/Umeam 

of the maximum and average Poiseuille velocities in a channel of B=10 is equal to 1.6009 [9]. 
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FIG. 2: Dimensionless geometry and thermal boundary conditions. The vertical lateral walls 

at y=0 and B are adiabatic all along the channel. 

 

We consider PRB flows of an incompressible Newtonian fluid, governed by the 3D 

Navier-Stokes equations under the Boussinesq approximation. As already discussed in [2], 

this assumption is justified on the basis of the works by Chiu et al. (2000) [27] and Wang et 

al. (2003) [28] that show that the flow structure and the heat and mass transfers are little 

modified when the variations of the physical properties with temperature are not taken into 

account in simulations of CVD reactors with high temperature differences. Furthermore, the 

present simulations will be compared with FAST experiments [17, 21, 23, 24] in which the 

maximum temperature difference, Th-Tc, in air flows is 40°C at Ra=104. Thus giving the 

reference quantities H, Umean, ρUmean
2, and H/Umean, for the lengths, velocity, pressure and 

time respectively, and defining the reduced temperature θ=(T-Tc)/(Th-Tc), the dimensionless 

governing equations for continuity, momentum and energy read as follows:  
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where )w,v,u(v =�
 is the dimensionless velocity vector, k

�
 the upward unit vector and p the 

deviation of the mixture pressure from the hydrostatic pressure. Ra=gβ(Th-Tc)H
3/(να), Re= 

UmeanH/ν and Pr=ν/α where g, β, ν and α are the gravity acceleration, the thermal expansion 
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coefficient, the kinematic viscosity and the thermal diffusivity respectively. The boundary 

conditions are:  

at x=-Ae, u=uPois(y,z), v=0 ∀ z or v=Aexc×2πfexc×cos(2πfexct) at z=0.5, w=0, θ=0 (4) 

at y=0 and B, 0v
�� = , 0y/ =∂θ∂        (5) 

at z=0 and 1, for x∈ [-A e,0], 0v
�� = , 0z/ =∂θ∂       (6) 

at z=1, for x∈ [0, A-Ae], 0v
�� = , θ=0       (7) 

at z=0, for x∈ [0, A-Ae], 0v
�� = , θ=1       (8) 

at x=A-Ae, 0x/ft/f =∂∂+∂∂  for f=u, v, w and θ     (9) 

In equation (4), the analytical expression of the Poiseuille profile, uPois(y,z), at the inlet is 

given in [9] and details of its numerical implementation are given in [25]. In this paper, to 

simulate the wavy rolls, a permanent sinusoidal excitation is introduced on the transversal 

velocity component, v, at mid-height of the inlet Poiseuille profile to approximately simulate 

the transverse oscillations of the horizontal rod placed at the entrance of the experimental 

channel [17, 23, 24]. This condition on v reads: at x=-Ae, ∀ y∈ [0, B] and ∀ z∈ [0, 1] v=0, 

except at z=0.5 where v=Aexc×2πfexc×cos(2πfexct) with fexc the excitation dimensionless 

frequency and 2Aexc the crest to crest dimensionless magnitude of the rod spanwise 

displacement (the reference frequency and displacement magnitude are Umean/H and H, 

respectively). At the outlet (Eq. (9)), Orlanski type boundary conditions are used with a 

dimensionless average transport velocity u=1.  

The problem (1-9) is solved using a finite difference method optimized for vectorial 

computers [22]. The equations are discretized in space on uniform, Cartesian and staggered 

grids using a centered scheme. The second-order Adams-Bashforth scheme is used for the 

time discretization. The dimensionless cell sizes and time step are 

∆x×∆y×∆z=0.1×0.055×0.029 and ∆t=0.01. The time integration and the velocity-pressure 

coupling are solved by a projection method based on Goda's algorithm. The Helmholtz 



 10 

equations for the temperature field and the components of the predicted velocity field are 

solved using an incremental factorization method of ADI type which permits to keep a second 

order time accuracy. The Poisson equation for the pressure increment is solved by a direct 

factorization method. The linear systems resulting from these two factorization methods are 

all tridiagonal and are solved by the TDMA algorithm. A detailed description of this code, its 

performances and several validations can be found in [10, 22, 25]. 

 

3. Building of the design of experiments 

3.1. Choice of the factors and study domain 

The quantities analyzed in a design of experiments (DOE) are usually called the 

“responses”. They are interpolated with polynomials functions, called the “response surfaces”, 

depending on the parameters of the problem called the “factors”. The portion of the parameter 

domain limited by the minimum and maximum values of the range of each factor is called the 

“study domain”. A very important step of a DOE is to adequately choose the factors and the 

study domain according to the responses that have to be analyzed.  

At the beginning of the present study, it was decided to characterize the wavy roll flows 

using a four factor Doehlert design. It is a conventional DOE of 21 experiments (simulations) 

that enables to build quadratic response surfaces from a hexagonal distribution of the 

simulation points in the parameter domain [26]. However, it appeared that this DOE had to be 

modified due to a too much extended study domain and the lack of fit of the computed 

response surfaces. At large excitation magnitude, flows with ten or twelve wavy rolls were 

observed (a similar behavior is analyzed in [17, 19] for longitudinal roll flows) and, at low 

excitation frequency, the first harmonic of the excitation frequency was amplified by the flow, 

instead of its fundamental mode (a similar behavior is also observed experimentally in [23, 

24]). In other words, different populations of wavy rolls were present in this study domain, 

generating strongly non linear behaviors of the responses, impossible to interpolate with 
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quadric or even cubic polynomials. 

It was then decided to reduce the study domain and to analyze the wavy roll flows using 

a non conventional DOE of 31 simulations, enabling to compute cubic response surfaces, on 

the following parameter ranges: for Pr=0.7, B=10, 100≤Re≤300 (⇔ 1.4≤Re/Re*≤3.9), 

0.5≤ε≤3.5 (⇔ 4800≤Ra≤16300), 0.125≤fexc≤0.3 and -0.387≤Log(Aexc)≤ 0.301 (⇔ 

0.41≤Aexc≤2). Here Re*≈70±30 is the critical Reynolds number between the longitudinal and 

wavy rolls that is the “vertical” part of the curve Ra≈*(Re) in Fig. 1. The parameter ε=(Ra-

Ra≈*(Re))/Ra≈*(Re) is the relative distance to the critical Rayleigh number, Ra≈*(Re), 

between the longitudinal and wavy rolls determined by a linear stability analysis [8, 10]. 

Ra≈*(Re) is drawn in Fig. 1 at Pr=0.7 for B=10 and B→∞. It can be seen that 

3100<Ra≈*(Re)<3900 when 100≤Re≤300 at B=10. The coordinates of the 31 simulation 

points of the DOE are given in Table 1 and their distribution in the study domain is presented 

in Fig. 3 (see also Fig. 1).  

 

         

FIG. 3: Distribution of the DOE simulation points in the planes (ε, Re) and (Log(Aexc), fexc). 

The numbers correspond to the cases given in Table 1. Some of the points of Table 1 are not 

shown because they are superimposed to others.  

 

In the present DOE, the factor ε is preferred to Ra because it is well known that the 

main characteristics of the thermoconvective patterns in natural and mixed convection are 

related to ε (see [1, 8, 16, 29] for instance in mixed convection flows). The Reynolds number 
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range, 100≤Re≤300, was chosen, on the one hand, to avoid to be too close to the critical 

threshold between the longitudinal and wavy rolls at Re*≈70±30 and, on the other hand, to 

avoid too long wavy roll growth length, Lg, beyond Re>300, since Lg increases a lot when Re 

increases [10]. Furthermore, this Reynolds number range partly covers the one of the APCVD 

reactors envisaged as application of the present study since in these reactors 

O(10)≤Re≤O(103) [2]. The chosen Rayleigh number range, 4800≤Ra≤16300, covers the 

whole domain studied in the experiments [17, 21, 23, 24] and a part of that covered by the 

APCVD applications. Indeed, Ra varies between O(103) and O(106) according to the 

temperature levels and the carrier gas used in the APCVD reactors [2]. The excitation 

frequency range, 0.125≤fexc≤0.3, was chosen in accordance with the results obtained when 

wavy roll flows are generated with a white noise imposed at channel inlet: in this case, the 

most amplified wavy roll modes are indeed observed for 0.18≤fexc≤0.28 [10]. Finally the 

excitation magnitude range, 0.41≤Aexc≤2, corresponds to a maximum spanwise displacement 

of the inlet agitator that varies between 0.82H and 4H and it covers a part of the range of 

excitation magnitudes used in the experiments (0.14≤Aexc≤1). In the DOE, the considered 

factor is not Aexc but Log(Aexc) because it was shown in [10, 29] that the growth length of the 

wavy and transversal rolls in the PRB flows linearly decreases as a function of Log(Aexc).  

 

3.2. Form of the response surfaces 

In the present DOE, the response surfaces, noted y(xi), are looked for in the form of 

cubic polynomials as a function of the four factors xi (i=1 to 4), with x1=Re (or Re/Re*), x2=ε, 

x3=fexc and x4=Log(Aexc). They are thus written in the form:  

y(xi)=a0+a1x1+a2x2+a3x3+a4x4+a12x1x2+a13x1x3+a14x1x4+a23x2x3+a24x2x4+a34x3x4 

+a11x1²+a22x2²+a33x3²+a44x4²+a111x1
3+a222x2

3+a333x3
3+a444x4

3 (10) 

The 19 unknown coefficients ai, aij and aiii  (i, j=1 to 4) of this cubic response surface are 

computed by a least square method knowing the values of the responses on the 31 simulation 
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points of the DOE (these values are partly provided in Table 3 of Appendix C). Note that, for 

the response surface given by Eq. (10) and the 31 points of the DOE, it was checked that the 

prediction variance function is lower than one in most of the study domain (see Appendix A). 

 

TAB. 1. Parameters of the 31 simulation points used in the present DOE. Case #32 is not 

included in the DOE: it is the optimal point resulting from the analysis of § 5.4. 

Case # Re Re/Re* Ra ε fexc Aexc A=L/H 

1 200 2,72 10240 1,95 0,2 1 200 

2 300 3,87 11460 1,96 0,2 0,9 200 

3 250 2,70 16360 3,42 0,2 0,9 200 

4 150 1,73 14400 3,45 0,2 1 200 

5 100 1,40 9600 2,04 0,2 1 200 

6 150 2,27 4800 0,48 0,2 1 300 

7 250 3,93 7270 0,96 0,2 1 200 

8 250 3,06 12730 2,44 0,3 0,9 200 

9 150 1,96 11200 2,46 0,3 1 200 

10 200 3,23 6830 0,97 0,3 1 250 

11 250 3,58 9090 1,45 0,125 1 200 

12 150 2,28 8000 1,47 0,125 1 200 

13 200 2,37 13660 2,93 0,125 1 200 

14 250 3,06 12730 2,44 0,2204 1,5 200 

15 150 1,96 11200 2,46 0,2204 1,5 200 

16 200 3,23 6830 0,97 0,2204 1,5 200 

17 200 2,72 10240 1,95 0,1388 1,5 200 

18 250 3,58 9090 1,45 0,1796 0,5 250 

19 150 2,28 8000 1,47 0,1796 0,5 200 

20 200 3,03 13660 2,93 0,1796 0,5 200 

21 200 2,37 10240 1,95 0,2612 0,5 200 

22 150 1,96 11200 2,46 0,2204 2 200 

23 200 3,23 6830 0,97 0,2204 2 300 

24 200 2,72 10240 1,95 0,1388 2 250 

25 175 2,25 10000 1,98 0,23 0,41 200 

26 175 2,25 10000 1,98 0,23 0,75 200 

27 175 2,25 10000 1,98 0,23 1 200 

28 175 2,66 8000 1,38 0,23 0,41 200 

29 175 2,66 8000 1,38 0,23 0,75 200 

30 130 1,51 14200 3,49 0,25 0,5 200 

31 150 1,95 11300 2,49 0,16 0,5 150 

32 150 1,72 14575 3,50 0,17 2 150 
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To estimate the relative influence of each factor on the studied responses and possibly 

simplify Eq. (10), centered and scaled factors xi’ (i=1 to 4) are used. They are defined as 

xi’=(x i-xi,m)/∆xi, with xi,m=(xi,max+xi,min)/2 and ∆xi=(xi,max-xi,min)/2, where xi,max and xi,min are 

the maximum and minimum values of the factor xi on the study domain. Thus, on the whole 

study domain, the values of the four centered and scaled factors, xi’, vary between -1 and 1. 

As a consequence, it is possible to compare between themselves the values of the coefficients 

A i, Aij and Aiii  of the modified Eq. (10), written as a function of xi’ instead of xi, to determine 

the dominant factors. Furthermore, by comparing the value of a coefficient to its standard 

deviation, it is possible to simplify Eq. (10) by eliminating the negligible factors [26]. As a 

consequence, in §5 and Appendix B, only the simplified form of the response surface 

equations, written in terms of the normal factors xi and in terms of the centered and scaled 

factors xi’, are presented. The various statistical tests used to characterize the quality of the 

interpolation by the response surfaces (the correlation coefficients, R2 and Ra
2, and the Fisher 

test, F) and enabling to compute the 95% confidence interval of the responses are defined in 

Appendix A. In the result section (§5), whenever possible, the 95% confidence interval of a 

response is plotted in the figures and the numerical values of the responses are provided in the 

form “response value ± 95% confidence interval”.  

 

4. Methodology for the characterization of the wavy roll flows 

In this section, the methodology used to simulate the wavy roll flows and the responses 

analyzed to characterize their space and time development and the associated heat transfers, 

are defined.  

 

4.1. Main steps of the simulation procedure and signals recorded 

Each simulation of a wavy roll flow is divided into three steps illustrated in Fig. 4: first, 

a longitudinal roll flow is simulated without any excitation, starting from a cold Poiseuille 
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flow as initial condition and imposing θ=1 at z=0, x∈ [0, A-Ae] for t>0. In the second step, the 

permanent sinusoidal excitation of v given by Eq. (4) is maintained in the inlet Poiseuille 

profile to trigger the wavy rolls and make them develop. This second step is a transient step 

that ends when fully developed wavy rolls are present in the whole channel. In the third step, 

the sinusoidal excitation is still maintained at the inlet and all the temperature and velocity 

time signals necessary to characterize the fully-developed wavy roll flows are recorded. 

 

 

FIG. 4: Temperature field in the horizontal median plane at z=0.5, during the three steps of 

the establishment of ten wavy rolls in the DOE case #1 (see Table 1). The flow is from left to 

right and the unsteady waves travel in this direction. In blue is the cold entering and 

descending flow and in red is the hot ascending flow. In step 3, the wavy roll growth length, 

Lg, and the magnitude of their spanwise oscillations, Dθ, are depicted. 

 

θ and v are recorded at each time step, during 26,000 to 30,000 iterations, all along the 

streamwise lines at (y, z)=(B/2, 0.5) and (B/2-1/3, 0.5) and the spanwise line at (x, z)=(A-Ae-

30, 0.5). These time signals are analyzed through discrete Fourier transforms (DFT) to 

determine the space variation of the Fourier spectra in the wavy roll flows. The DFT are always 

performed on signals whose duration is a multiple of the period of the fundamental mode of 

the considered signal. Thus, it can be shown that the peak magnitudes, A(fi), of the amplified 
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modes, fi (i=1, 2, 3, …), in the Fourier spectra presented in this paper are equal to a quarter of 

the crest to crest amplitude of each mode in the Fourier decomposition of the recorded 

signals. Since the time step in the simulations is ∆t=0.01 and the dimensionless recording 

duration is tmax=260 to 300, the highest frequency, fmax, and the frequency step, ∆f, of the 

Fourier spectra are: fmax=1/(2∆t)=50 and ∆f=1/tmax≤3.85×10-3. As the excitation frequency and 

the fundamental frequencies in the Fourier spectra vary between 0.125 and 0.3, the recorded 

signals contain at least 37 periods and one period comprises at minimum 330 time steps. We 

have checked that this is enough to provide a Fourier analysis independent on ∆t and the time 

signal duration. 

 

4.2. Definition of the analyzed responses 

In the present DOE, 31 wavy roll simulations are used to analyze around ten responses 

and build the corresponding response surfaces. These responses are defined now in the DOE 

case #1 because it is representative of all the other DOE cases since it is located in the middle 

of the studied parameter domain (see §3.1 and Fig. 3).  

The first responses concern the space development of the wavy rolls that qualitatively 

occurs according to the same scenario whatever the case considered in the DOE. Fig. 5 

presents an instantaneous signal and the envelope of the spanwise velocity component, v, 

along the channel axis, at (y, z) = (B/2, 0.5). This velocity component is equal to zero all 

along the axis for the longitudinal roll flows because an even roll number always develop and 

the channel axis is located between two longitudinal rolls. On the other hand, v is non-zero 

with wavy roll flows due to the spanwise oscillations generated by the inlet excitation. The 

envelope of v is computed by recording the maximum v values at each point of the channel 

axis throughout the entire step 3 of the simulation. The envelope of v at saturation is slightly 

modulated in the streamwise direction (see Fig. 5). Its average value in x direction is a 

constant denoted by Vs. For each simulation, the wavy roll growth length, Lg, is defined as the 
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first x position at which the envelope reaches Vs. The fully-developed wavy roll zone is 

defined as the zone where x>Lg. As illustrated in Fig. 5, the envelope magnitude strongly 

diminishes from the inlet (where Aexc=1 is imposed; see Table 1) to x = 42 in the DOE case 

#1. As shown in Fig. 4, this zone is the well known forced convection triangular zone [10, 17] 

where the longitudinal rolls develop from the lateral boundaries. For 42 ≤ x ≤ Lg=82, the 

wavy roll spanwise oscillations grow to reach saturation and Vs=0.23 at x=Lg.  
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FIG. 5: Instantaneous signal and envelope of the spanwise velocity component, v, along the 

channel axis at (y, z) = (5, 0.5) for the DOE case #1 (recorded during step 3 of Fig. 4). The 

average saturation magnitude, Vs, and growth length, Lg, are depicted by double arrows. 

 

In the experiments presented in [23, 24] with which comparisons are proposed in §5.1 

and 5.2, only temperature time signals, θ(t), measured with micro thermocouples in numerous 

points of the channel, are used to characterize the space and time evolutions of PRB flows 

(velocities are not available). More precisely, the space development of the wavy rolls is 

analyzed thanks to the axial evolution of the θ(t) Fourier spectra. In the numerical 

simulations, both the θ(t) and spanwise velocity (v(t)) Fourier spectra are determined along 

channel axis at y=B/2 and B/2-0.33 and at z=0.5. In the development zone of the wavy rolls 

(for 0≤x≤Lg=82 for case #1; see Figs. 4 and 5), the magnitudes of the fundamental mode and 

harmonics globally increase with x. In the fully-developed zone, for x>Lg=82, the mode 
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magnitudes are nearly constant and up to fifteen harmonics appear in each spectrum. However 

the magnitudes of the four first modes, f0 to f3, are really of importance, the magnitudes of the 

remaining modes being at least one order smaller than the most amplified one. As illustrated 

in Fig. 6, the magnitudes Aθ(f0), Aθ(f1) and Aθ(f2) of the three most amplified modes of the 

θ(t) signals slightly oscillate in the fully-developed zone, just as the v envelope displayed in 

Fig. 5. The average values over the range x>Lg of the saturated magnitude are denoted by 

Āθ(f0), Āθ(f1) and Āθ(f2) and are depicted in Fig. 6. The growth lengths, Lθ(f i), of each 

amplified mode (i=0, 1, 2) is defined as the first x position at which the magnitude of mode i 

reaches Āθ(f i). In case #1, Lθ(f i) and Lg seems to be approximately equal since Lθ(f i) (i=0, 1, 

2) varies between 83 and 86 (see Fig. 6) while Lg=82. It should also be mentioned that the 

mode magnitudes strongly vary with y as shown in Fig. 7 (and also with z; not shown here). 
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FIG. 6: Streamwise variation of the magnitude of the three first modes of the temperature 

signal, θ(t), near channel axis at (y, z) = (B/2-0.33, 0.5) for the DOE case #1. The growth 

lengths, Lθ(f i), and the average magnitude at saturation, Āθ(f i) (i=0, 1, 2), of each mode are 

indicated. 

 

The average magnitude of the spanwise displacement of the fully-developed wavy rolls 

at channel center is also analyzed by monitoring the position of the local minimum of the 

spanwise temperature profiles, θ(y), in the fully-developed region, at (x, z)=(A-30, 0.5), near 
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the channel center (for 4≤y≤6). This minimum corresponds to the cold downwards flow 

coming from the top plate and thus marks the boundary between the two rolls at channel 

center. For the wavy pattern, the position of this minimum at constant streamwise and vertical 

coordinates oscillates in the spanwise direction. We denote by Dθ the average magnitude of 

these oscillations in the fully developed region. Details on the way Dθ is computed are given 

in [10]. From the view point of CVD applications, it is interesting to determine how Dθ varies 

with respect to the flow parameters. Indeed, the larger the magnitude of the wavy roll 

spanwise displacement is the more uniform the time average of the thin solid coatings on the 

heated substrate is [2]. In fact, to allow a good leveling of the depositions in CVD reactors, it 

would be necessary that the spanwise displacement of the wavy rolls is at least equal to their 

spanwise wavelength. Thus, in §5.3, the spanwise wavelength, λy, of the two contra-rotative 

wavy rolls at channel center will be computed from the θ signals. More precisely, it will be 

computed from the Aθ(f0) signals as it is illustrated in Fig. 7. 

 

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 B/2
=5y

0

0.02

0.04

0.06

0.08

0.1

0.12

A
θ(f

i) 
(i=

0,
 1

, 2
)

Aθ(f0
)

Aθ(f1
)

Aθ(f2
)

λ
y
/2

 

FIG. 7: Peak magnitude, Aθ(f i) (i=1, 2, 3), of the three first modes of the temperature 

spectra at saturation, as a function of the spanwise coordinate y, at x=169 and z=0.5, obtained 

from direct numerical simulations at Re=175, Ra=10000, fexc=0.23 and Aexc=0.75 (case #26 of 

Table 1). The determination of the spanwise wavelength, λy, of the wavy rolls at channel 

centre is illustrated. 
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Finally, to analyze the heat transfers on the bottom and top plates associated with PRB 

mixed convection, the local Nusselt number Nu(x; y; z=0, 1), the spanwise averaged Nusselt 

number Nu (x; z=0 or 1) and the averaged Nusselt number in the fully-developed region, 

)1,0z(Nufd = , are defined as:  
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where Lg
+ is a dimensionless length larger than the growth length, Lg, of the wavy rolls. As 

the wavy roll flows are unsteady, the local Nusselt numbers oscillate in time. A Nusselt 

number averaged in time over the whole third step of the simulations, during which the wavy 

roll flow is fully-established, is thus defined as: 

 ∫
∆

= =∂
θ∂

∆
==><

3stept

0t 1,0z3step
dt

zt

1
)1,0z;y;x(Nu       (14)  

where ∆tstep3 is the duration of third step of the simulation. As the Nusselt numbers (13) 

slightly oscillates in time, it is in addition averaged as is done in Eq. (14). 

To sum up, the main quantities analyzed in the following, for which response surfaces 

will be computed and some of them compared with experimental results, are: the wavy roll 

growth length until saturation, Lg and Lθ(f i) (i=0, 1), the average magnitude at saturation of 

the two first modes contained in the temperature signals, Āθ(f i) (i=0, 1), the spanwise 

displacement magnitude, Dθ, the spanwise wave length of the wavy rolls near channel center, 

λy, and the averaged Nusselt number in the fully-developed region, fdNu . 
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5. Results and comparison with experiments 

5.1. Wavy roll growth length 

The simplified equation of the response surface for the wavy roll growth length, Lg, writes as 

a function of the normal factors: 

Lg = 526.9922 - 167.6567 (Re/Re*) - 151.7345 ε - 469.8198 fexc + 156.2139 Log(Aexc) + 

21.41344 (Re/Re*)2 + 22.54020 ε2 + 1833.512 fexc
2 + 28.22014 (Re/Re*) ε - 195.5463 

fexc ε - 34.33355 Log(Aexc) (Re/Re*) - 40.84351 Log(Aexc) ε    (15)  

The same equation as a function of the centered and scaled factors writes: 

Lg = 70.2649 + 5.073633 (Re/Re*)’ - 40.26428 ε’ - 6.943345 fexc’ - 5.65777 Log(Aexc)’ 

+ 34.38466 (Re/Re*)’2 + 51.13193 ε’2 + 14.03783 fexc’
2 + 53.8599 (Re/Re*)’ ε’ - 

25.77062 fexc’ ε’ - 14.97172 Log(Aexc)’ (Re/Re*)’ - 21.16919 Log(Aexc)’ ε’  (16) 

The statistical tests indicate that the interpolation quality is very good since the correlation 

coefficients are R2=0.981 and Ra
2=0.970, the Fisher ratio is F=87.9 and the root mean square 

error is RMSE=4.87 for a mean equal to Mean=90.52 (see Appendix A). 

The dominant coefficients of Eq. (16) are those of ε’, (Re/Re*)’2, ε’2 and of the 

interaction (Re/Re*)’ε’. All the cubic terms, the quadratic term Log(Aexc)’
2 and two 

interactions ((Re/Re*)’fexc’ and fexc’Log(Aexc)’) are neglected because it was checked that the 

values of their coefficients are smaller than their standard deviation [26]. This indicates that, 

in the parameter domain under study, Lg mainly depends on ε and Re/Re* and to a lesser 

extent on fexc and Aexc. This is illustrated in Fig. 8 where Lg behavior is presented as a 

function of the four factors around the center of the study domain at point Re/Re*=2.5, ε=2.5, 

fexc=0.2 and Aexc=1. Around this point, one can see that Lg slightly decreases as fexc or Aexc 

increases. This behavior has been observed in the whole study domain, except when Re/Re* 

and ε are simultaneously small (typically for Re/Re*<1.5 to 2 and ε<1 to 1.5): in this case, Lg 

increases as fexc or Aexc increases.  
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FIG. 8: Wavy roll growth length, Lg, as a function of four parameters Re/Re*, ε, fexc and 

Log(Aexc). Each graph presents Lg as a function of one parameter, the three others being fixed 

at the value noted in red below each abscissa. The dashed blue lines indicate the 95% 

confidence interval. The Lg value is given in red, with its confidence interval in blue, near the 

ordinate axis for the four parameter values fixed at Re/Re*=2.5, ε=2.5, fexc=0.2 and Aexc=1.  

 

As described in §4.2, in the experiments at Fast laboratory [23], the wavy roll growth 

lengths (or saturation length) are measured from the streamwise variation of the mode 

magnitude of the temperature time signals recorded at y=B/2-0.33 and z=0.5. For the 

fundamental mode and its first harmonic, these growth lengths are denoted by Lθ(f0) and 

Lθ(f1), respectively. They are compared now with the values of Lg, Lθ(f0) and Lθ(f1) obtained 

by the numerical simulations and given by Eqs. (15-16) and, in Appendix B, by Eqs. (19-22). 

Fig. 9 compares the experimental and numerical values of Lθ(f1) with respect to fexc and Aexc, 

at Ra≈8000 and 10000 and Re≈175. It clearly appears that experiments and simulations are in 

good agreement and provide the same variations of Lθ(f1) with respect to the flow parameters: 

Lθ(f1) decreases when Aexc or Ra increases but varies very little with fexc in the range 

0.17≤fexc≤0.27. On the other hand, the experimental values of Lθ(f1) are quasi systematically 

lower than the numerical values: the discrepancy is around 8 unities on average but it can be 

considered negligible considering that the uncertainty bars are often larger. The intrinsic 

background noise of the experimental apparatus could explain this discrepancy. Note that the 

experimental point at Ra=7900 (ε=1.35), Re=176 (Re/Re*=2.69), Aexc=1 and fexc=0.26 is 

clearly below its numerical counterpart probably because the saturation zone of the wavy rolls 

is not fully reached in this experiment.  
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FIG. 9: Experimental [23] and numerical comparison of the wavy roll growth length until 

saturation, Lθ(f1), with respect to fexc and Aexc, at Ra≈8000 and 10000 and Re≈175. The 

numerical results are obtained by DNS, except when they are unavailable: in this case, the 

solution of the Lθ(f1) response surface is used (cf. Table 2). 

 

For more accuracy, Table 2 gives the values of Lθ(f0), Lθ(f1) and Lg obtained 

experimentally and numerically, including the values of Fig. 9. The numerical results comes 

either from the response surfaces of the DOE or directly from the numerical simulations 

(DNS). Note that Lθ(f0) is very difficult to measure, particularly in the experiments, because 

the magnitude of the fundamental mode strongly oscillates. The relative discrepancy between 

the numerical and experimental results is generally smaller than 13% but can reach 17% for 

some cases. It appears that Lθ(f0) is generally slightly smaller than Lθ(f1). Moreover Lg is 

nearly equal to Lθ(f1) and thus both the fluctuations of the temperature and velocity fields can 

be used to determine the growth length of the wavy rolls. Finally, it is also noteworthy that 

the results of the response surfaces (DOE) are always coherent with the results of the direct 

numerical simulations (DNS) when the confidence intervals and the error bars are taken into 

account.  

 



 24 

Flow parameters Lθ(f0) Lθ(f1) Lg 
Ra 
ε 

Re 
Re/Re* 

Aexc fexc exp. DOE DNS exp. DOE DNS DOE DNS 
DOE 
case 

# 

10000 
1.98 

175 
2.4 

1 0.27 60±7 67±5.5 
11% 

 63±5 71.5±5 
13% 

 72±4 
14% 

  

  1 0.23 NA 64±4.5 71±2 67±3 69±4 
3% 

70±1 
4% 

70±3.5 
4% 

67±1 
0% 

27 

  0.75 0.23 NA 68±4 74±2 73±7 70±4 
-4% 

77±1 
5% 

71±3.5 
-3% 

75±1 
3% 

26 

  0.41 0.23 NA 75±6 80±2 73±7 73.5±6 
1% 

80±1 
9% 

73±4.5 
0% 

77±1 
5% 

25 

  0.14 0.23 NA  84±2 76±5 79±11 
4% 

84±1 
10% 

76±8 
0% 

80±1 
5% 

 

  0.14 0.18 80±7  85±4 
6% 

87±3  85±1 
-2% 

81±8 
-7% 

89±1 
2% 

 

  0.14 0.27 74±7  87±2 
16% 

80±3  88±1 
10% 

78±9 
-2% 

84±1 
5% 

 

7900 
1.35 

176 
2.69 

0.75 0.23 NA 98±5 96±2 87±7 99±4 
13% 

96±1 
10% 

97±3.5 
11% 

91±1 
4% 

29 

  0.41 0.23 100±7 109±7 
9% 

101±2 
1% 

NA 103±7 102±1 
 

94.5±6 
 

97±1 
 

28 

  0.14 0.23 107±7  105±1 
-2% 

107±3  106±1 
-1% 

 101±1 
-6% 

 

  1 0.17 87±3 90.5±5 
4% 

 100±5 102±5 
2% 

 98±4 
-2% 

  

  1 0.26 87±7 97±6.5 
11% 

 87±7 102±5 
16% 

 103±4 
17% 

  

TAB. 2: Comparison of the wavy roll growth lengths, Lθ(f0), Lθ(f1) and Lg, obtained in 

experiments [23] and numerically from the response surfaces (DOE) or from simulations 

(DNS). In the second series of results, the DNS parameters are (Ra, ε, Re, Re/Re*) = (8000, 

1.38, 175, 2.66) instead of (7900, 1.35, 176, 2.69) in the experiments and DOE. The 

percentages below the numerical results indicate the relative discrepancy with the 

experimental result except when it is not available (NA) due to the difficulty of measuring. 

For Lg, the discrepancies are computed with the experimental values of Lθ(f1). Some DOE 

results are noted in italics because the response surfaces are solved outside the DOE study 

domain (cases at Aexc=0.14). 

 

Fig. 10 displays isovalues of Lg and Lθ(f1), computed from the response surfaces, in the 

plane (Re/Re*, ε) at fexc=0.2 and Aexc=1. This figure confirms that the two growth lengths 

provide nearly the same information. It is noteworthy that wavy roll growth lengths smaller 

than 60 are reached at high Rayleigh numbers (for ε≈3) and moderate Reynolds numbers (for 

Re/Re*≈2). In fact, in the study domain, the minimum growth length, according to Eq. (15), is 

Lg=23±18 at Re/Re*=1.85, ε=3.5, fexc=0.3 and Aexc=2; while the minimum growth length 

according to Eq. (21) of Appendix B is Lθ(f1)=38±21 at Re/Re*=1.93, ε=3.26, fexc=0.3 and 
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Aexc=2. From the viewpoint of CVD application, this means that fully established unsteady 

wavy roll flows and, as a consequence, better conditions to homogenize the heat and mass 

transfers can be obtained in the largest part of some CVD reactors [2].  

 
ε ε

 

FIG. 10: Isovalues of Lg (on the left) and Lθ(f1) (on the right) in the plane (Re/Re*, ε) for 

fexc=0.2 and Aexc=1. The zone corresponding to wavy roll growth lengths smaller than 60 is 

colored in grey.  

 

5.2. Magnitude of the most amplified modes at saturation 

Fig. 11 displays the averaged magnitude of the two first modes of the temperature 

spectra at saturation, Āθ(f0) and Āθ(f1) (defined in §4.2 and Fig. 6), as a function of the 

frequency at Re=175 (Re/Re*=2.4), Ra=10000 (ε=1.98) and Aexc=0.41, compared to 

experimental results presented in [24]. The temperature time signals are recorded at z=0.5 and 

different spanwise coordinates, y, nearby channel center. The results are plotted from the 

response surface Eqs. (23-30) of Appendix B. A close examination of the coefficients of these 

equations, based on centered and scaled factors, clearly indicates that Āθ(f i) (i=0, 1) strongly 

depend on Re, ε and fexc on the studied parameter domain. On the other hand, as it could have 

been expected, they are very little dependent on Aexc.  

Fig. 11 shows that the experimental and numerical results are qualitatively in very good 

agreement. Indeed the slopes of the curves Āθ(f i) are similar for i=0 and 1 whatever the 

spanwise coordinate of the monitoring point (y=B/2, B/2-0.33 and B/2-0.5). Furthermore, the 
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most amplified mode is detected for f≈0.18 numerically and for f=0.19±0.01 experimentally. 

This mode is smaller than the most amplified mode observed with random excitations in [10] 

(f°=0.23±0.02 for 150<Re<200, ε=2 and Aexc=0.1) and the mode with the maximum spatial 

growth rate observed in the experiments in the framework of the linear theory (f≈0.24 in [21] 

and f=0.22±0.02 at Re/Re*=2.4 and Ra=10000 in [24]). 
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FIG. 11: Numerical averaged magnitude of the two first modes in the temperature spectra at 

saturation, Āθ(f0) and Āθ(f1), as a function of frequency, for different spanwise coordinates y, 

at z=0.5, Re=175 (Re/Re*=2.4), Ra=10000 (ε=1.98) and Aexc=0.41. Comparison with 

experiments presented in [24]. The numerical results are obtained from the response surfaces 

given in Appendix B (Eqs. (23-30)); here they are slightly extended outside their validity 

domain defined by 0.15≤f0≤0.3 and 0.25≤f1≤0.6.  

 

On the other hand, the magnitudes of the experimental and numerical curves in Fig. 11 

are very different: there is nearly a factor four between them. This can probably be explained 

as follows. The coordinates of the probes that measure the temperature time signals and their 

relative positions in the convection rolls are exactly controlled in the numerical simulations 

but not in the experiments. Experimentally, the position of the thermocouples relative to a 
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convection roll is not controlled since the convection pattern of real PRB flows is never 

perfectly symmetric through the streamwise median vertical plane. As a consequence, the 

relative error on the spanwise position of the thermocouple is estimated to be around 20%. It 

has been shown in Fig. 7 that the spanwise variation of the mode magnitude Āθ(f i) is very 

important depending on the spanwise location of the monitoring point. Moreover, the vertical 

position of the monitoring point also influences the amplitude of the signal. Therefore a small 

error in the thermocouple location can provide a large error on the measurement of the mode 

magnitude. In the experiments, Āθ(f i) (i=0, 1) is approximately measured at y≈B/2-0.5 and 

z≈0.5. In the numerical simulations, Āθ(f1) is really measured at z=0.5 and y=B/2 or B/2-0.33 

while Āθ(f0) is measured at z=0.5 but near y=B/2-0.5 or B/2-0.33. Indeed, the values of Āθ(f0) 

correspond in fact to the maximum of Āθ(f0), measured near y=B/2-0.5 (cf. Fig. 7) or to the 

values measured at y≈B/2-λy/6, where λy is the dimensionless spanwise wavelength of the 

two rolls at channel center which is approximately equal to 2. To a lesser extent, another 

explanation of the experimental and numerical discrepancies in the mode magnitudes 

observed in Fig. 11 could also be ascribed to the heat conduction in the Plexiglas top plate 

used in the experiments. This is not taken into account in the simulations but it is well known 

that conducting horizontal walls can modify the spanwise wavelength of the 

thermoconvective rolls [17, 30]. As a consequence, the magnitudes measured at the same 

point in the cases with perfectly and finitely conducting horizontal boundaries can be different 

for the same Rayleigh number value.  

In Fig. 11, the modes denoted by f0 correspond to the excitation modes. Experimentally, 

when the excitation frequency is low (fexc<0.12), it clearly appears that the most amplified 

mode is the first harmonic, f1=2f0, instead of the fundamental mode, f0. The DOE response 

surfaces of Āθ(f0) have been obtained for fexc>0.125. They cannot reproduce the steep 

variation observed experimentally for 0.1<f0<0.2 (even if quintic polynomials as a function of 

fexc were used for these response surfaces: see Eqs. (23, 24, 27, 28) in Appendix B).  
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5.3. Spanwise oscillation magnitude and spanwise wavelength of wavy rolls 

As already explained in §4.2 and demonstrated in [2], a large magnitude of the spanwise 

oscillations of the wavy rolls would be interesting from the view point of CVD applications to 

get a more uniform time average of the deposition thickness. In the present study, the 

spanwise displacement of wavy rolls is characterized by Dθ defined in §4.2. The simplified 

response surfaces of Dθ are given in Appendix B, Eqs. (31-32). As illustrated in Fig. 12 and 

already observed for Āθ(f i) (i=0, 1, 2) in §5.2, Dθ  depends very little on Aexc but strongly 

depends on fexc and, to a lesser extent, on ε and Re: globally, Dθ increases when fexc and Re 

decrease and ε increases, but it remains constant for ε≥2.  
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FIG. 12: Isovalues of the wavy roll spanwise displacement, Dθ, as a function of ε and fexc at 

Re=150 and Aexc=2 (left), as a function of Re and fexc at ε=2.5 and Aexc=2 (center), as a 

function of Aexc and fexc at ε=2.5 and Re=150 (right). The shaded area indicates displacements 

greater than 1.5.  

 

Fig. 12 shows that spanwise displacements Dθ larger than 1.8 are possible. The 

response surface (Eq. (31)) indicates that the maximum spanwise displacement of the wavy 

rolls is Dθmax=1.83±0.15 obtained at Re=125, ε=3.5, fexc=0.125 and Aexc=2. This therefore 

means that Dθmax is just a little smaller than the dimensionless spanwise wavelength, λy, of 

the wavy rolls at channel center. Indeed, λy has been computed as defined in §4.2 and Fig. 7 

for the 31 cases of the DOE (see Table 3 of Appendix 3) and its response surface is Eqs. (33-
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34) in Appendix B. It indicates that λy varies between 1.55±0.09 and 2.82±0.10 in the studied 

parameter domain (see Fig. 13) and that its average value is equal to 2.18. At point Re=125, 

ε=3.5, fexc=0.125 and Aexc=2, where Dθ=Dθmax=1.83±0.15, the response surface provides λy = 

2.33±0.08. As a consequence, more uniform heat transfers and a better leveling of the solid 

coatings produced in some APCVD reactors could be conceivable by making develop well 

amplified wavy roll flows. This suggestion is analyzed with more details in the next section.  

 

 

FIG. 13: Cube plots of the spanwise wavelength λy at Aexc=0.41 on the left and Aexc=2 on the 

right: the cubes display the values of the λy response surface (Eqs. (33-34)), laid out in 

rectangles on the cube vertices, for the extremes of the factor ranges (100≤Re≤300 on the 

horizontal axis, 0.482≤ε≤3.494 on the vertical axis and 0.125≤fexc≤0.3 on the depth axis). The 

two red boxed λy values are the minimum and maximum values of λy in the study domain.  

 

5.4. Optimum conditions for uniform heat transfers on the horizontal plates 

In this section, we are going to determine the best values of the parameters Re, ε, fexc 

and Aexc to get uniform heat transfers on the bottom plate of the PRB flows under study (for 

B=10 and Pr=0.7). These conditions will be satisfied if the growth length, Lg, of the fully-

developed wavy rolls is as short as possible and the magnitude of their spanwise 

displacement, Dθ, is as large as possible. According to the previous discussions in §5.1 and 

5.3, we decide that the sought objective is to simultaneously check Lg<60 and Dθ>1.5. In that 

aim, the full response surfaces of Lg and Dθ (not simplified) are analyzed both together in 
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Figs. 14 for the largest values of ε and Aexc (ε=3.5 and Aexc=2). Indeed, Figures 8, 10 and 12 

have shown that small values for Lg and large values for Dθ are simultaneously obtained 

when ε and Aexc are large. Figure 14 shows that Re and fexc have antagonist effects on Lg and 

thus are more difficult to fix to satisfy the objective. The criteria Lg<60 and Dθ>1.5 are 

satisfied in a very restricted area around Re=155 and fexc=0.17. Using the four parameter 

values (ε=3.5, Aexc=2, Re=155, fexc=0.17) the results predicted by the response surfaces are: 

Lg=59.8±22.1 and Dθ=1.51±0.19. As the 95% confidence intervals are quite large, it is 

necessary to check whether the prediction is correct or not and whether uniform heat transfers 

are really observed for these parameter values.  

 

 

FIG. 14: Superimposition of the isovalues of Lg (gray lines) and Dθ (black lines) in the plane 

(Re, fexc) for ε=3.5 and Aexc=2. The zone of larger growth lengths (Lg>60) is colored in light 

gray and a double black line marks Dθ=1.5. As a consequence, the objective (Lg≤60 and 

Dθ≥1.5) is achieved in a restricted zone around Re=155 and fexc=0.17.  

 

For this purpose, an additional simulation has been performed at Re=150, ε=3.5, 

fexc=0.17 and Aexc=2. This case is numbered #32 in Table 1 and the associated results are 

included in Table 3 of Appendix C. The instantaneous temperature field at z=0.5 and a series 

of velocity vector and temperature fields in the vertical transverse plane at x=139 are 

presented in Figures 15 and 16 for the fully-developed regime. It appears that the growth 
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length of the wavy rolls is rather short and their spanwise oscillations are well amplified in the 

channel core: Lg=57.5 and Dθ=1.50 which confirms the prediction obtained by the response 

surface. On the other hand, the oscillation magnitude is very small near the walls due to the 

lateral confinement.  

 

 

FIG. 15: Instantaneous temperature field in the horizontal mid-plane at z=0.5 in the fully-

developed wavy roll flow at Re=150, ε=3.5, fexc=0.17 and Aexc=2 (case #32).  

 

 

FIG. 16: Instantaneous velocity vector and temperature fields in the vertical plane at x=139, 

Re=150 and ε=3.5. Case (a) without excitation: ten steady longitudinal rolls are observed. 

Cases (b) to (h) with the inlet excitation defined by fexc=0.17 and Aexc=2 (case #32): one 

period of the fully-developed wavy roll flow is observed with ∆t=1 between each picture. A 

black point on the bottom plate indicates the location, y, of the impact of the downward cold 

jet of channel center. Starting from y=5 when the flow is steady (case (a)), the impact position 

moves from y=4.25 to y=5.75 as the flow is wavy and unsteady (cases (b) to (h)).  
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Let’s analyze now the consequence of the waviness on the heat transfer distribution on 

the bottom plate of the PRB channel. Fig. 17 shows that, in the case of steady longitudinal 

rolls (Fig. 17 (a)), the Nusselt number is very heterogeneous in the spanwise direction as 

longitudinal parallel ridges of high intensity are observed. In the case of wavy roll flows 

(Fig. 17 (b)), the time averaged Nusselt number, <Nu>, is much more uniform at center and in 

the downstream part of the channel, where the wavy rolls have the highest oscillation 

amplitude. This is clear in Fig. 18 where spanwise <Nu> profiles for the longitudinal and 

wavy rolls are compared for 0≤y≤5 (the symmetry through the central vertical plane at y=5 is 

taken into account). For x≤29, both <Nu> profiles are similar because the longitudinal rolls 

are just fully developed. Indeed, by using a correlation established in [10], the growth length 

of the longitudinal rolls is LR//=25.6 at Re=150 and Ra=14575. On the other hand, the 

magnitude of the spanwise <Nu> oscillations is divided by two or more for the wavy rolls, 

compared with the fully developed longitudinal rolls, when x≥Lg=57.5 and 3<y<7; <Nu> is 

even nearly uniform for x>90 and 3.5≤y≤6.5.  

 

 

FIG. 17: Three dimensional surfaces of the time averaged local Nusselt numbers, <Nu>, on 

the bottom plate of the PRB channel: (a) steady longitudinal roll flow at Re=150, ε=3.5, fexc=0 

and Aexc=0; (b) wavy roll flow at Re=150, ε=3.5, fexc=0.17 and Aexc=2 (case #32).  
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FIG. 18: Half spanwise profiles of the time averaged local Nusselt number, <Nu>, on the 

heated bottom plate for different streamwise coordinates, in the case of a steady longitudinal 

roll flow (R//) at Re=150 and ε=3.5 (Fig. 17(a)) and for the associated wavy roll flow (R≈) at 

fexc=0.17 and Aexc=2 (case #32 of Fig. 17(b)).  

 

5.5. Average heat transfer intensity at saturation on the horizontal plates 

In this section, we focus on the heat transfer intensity on the horizontal walls. Fig. 19 

illustrates the streamwise variation of the spanwise averaged Nusselt number, Nu (x; z=0 or 

1) (see Eq. (12)) in case #32 of Table 1. The magnitude of the Nusselt number oscillation is 

nearly the same on the top and bottom plates for x≥Lg. As a consequence, the space and time 

averaged Nusselt number in the fully-developed region, fdNu , is constant and has nearly 

equal values on the top and bottom plates. The intensity of heat transfer on the horizontal 

walls is therefore analyzed now from the response surface of fdNu . 
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FIG. 19: Streamwise profiles of the instantaneous and spanwise averaged Nusselt numbers on 

the horizontal walls (Nu (x; z=0 or 1)) and space and time averaged Nusselt number in the 

fully-developed region ( fdNu ) at Re=150, ε=3.5, fexc=0.17 and Aexc=2 (case #32 of Table 1).  
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The simplified response surface of fdNu  in the case of wavy rolls generated by 

harmonic excitations is (see also Eq. (35) of Appendix 2): 

fdNu =3.8941 - 0.019453 Re +²0.49352 ε - 16.9125 fexc + 0.000086848 Re2 - 0.017167 

ε
2 + 89.0432 fexc

2 - 0.000000121545 Re3 - 139.49268 fexc
3 - 0.00032852 Re ε + 

0.0069023 fexc Re - 0.623136 fexc ε       (17) 

R2=0.988; Ra
2=0.982; F=148.4; RMSE=0.027; Mean=2.405 

Note that fdNu  is independent of Aexc. Its partial representation in Fig. 20 indicates that fdNu  

is minimum for Re values between about 150 and 170 and increases mainly with ε and, to a 

lesser extent, with fexc. The cube plot displayed in Fig. 20 (b) also indicates that fdNu  

approximately varies between 1.9 and 2.9 in the studied parameter domain.  

 

 

FIG. 20: Representations of the fdNu  response surface (Eq. (17)) as a function of Re, ε and 

fexc: (a) Isocontours of fdNu  in the (Re, ε) plane: in blue, for 100≤Re<300, case of the present 

wavy rolls at fexc=0.2 ; in red, for 100≤Re≤200, case of wavy rolls excited by a white noise 

(Eq. (18) from [10]). (b) Cube plots of fdNu  (see Fig. 13 for indications); red boxed values 

are the minimum and maximum of fdNu  on the vertices of the cube.  

 

In Fig. 20(a), the fdNu  values computed from Eq. (17) at fexc=0.2 are compared with 

the quadratic response surface established in [10] in the case of wavy rolls excited by a white 
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noise at channel inlet. This response surface, valid for 100≤Re≤200 and 4500≤Ra≤15,000 

(0.5≤ε≤3.5), writes: 

fdNu  =(2172.2 – 7.145Re + 591.9ε + 0.0276Re2 – 39.5ε2 – 1.125εRe)×10-3  (18) 

It is independent on Aexc like Eq. (17) and also on fexc since the used random excitation 

embraces all the frequencies. When similar figures as Fig. 20(a) are plotted for different 

values of fexc in Eq. (17) (not shown here), it is interesting to observe that the best agreement 

of fdNu  between the two studies with random and harmonic excitations is achieved for 

harmonic excitations at fexc≈0.2. This approximately corresponds to the most amplified 

modes, f°, observed with a white noise since they are f°≈0.22±0.04 when 100≤Re≤200 and 

0.5≤ε≤3.5 [10]. 

Finally, to sum up the results around the optimum point (case #32), Fig. 21 compares 

the behaviors of Lg, fdNu  and Dθ as a function of the flow parameters. These profiles are 

here computed from the full cubic response surfaces of Lg, fdNu  and Dθ, without any 

simplification. One can note that the three quantities are nearly independent of Aexc. 

Furthermore a short growth length (small Lg) and a high heat transfer (large fdNu ) and a 

uniform heat transfer (large Dθ)  can be reached by simply increasing ε. Unfortunately, these 

three objectives cannot be satisfied at the same time when Re and fexc vary. In particular the 

maximum of Dθ as a function of Re is obtained for 120≤Re≤150 (see Figs. 12, 14 and 21) 

associated with a minimum of fdNu  obtained for 150≤Re≤175 (see Figs. 20 and 21). Thus, 

contrary to what could be thought at first, increasing the spanwise displacement of the wavy 

rolls does not allow an increase of the average heat transfer but rather a slight decrease of it. 

This has already been analyzed in [10] and is confirmed here: when Dθ increases, the mixing 

of the flow in the channel core increases and its time averaged temperature is more uniform 

resulting in slightly smaller mean temperature gradients at walls (see [10] for more details). 

This decrease of fdNu  with the magnitude of the spanwise oscillations of the wavy rolls is 
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also visible in Fig. 18. Indeed, in the fdNu  profiles at x=104, 119 and 134, it clearly appears 

that the spanwise averaged Nusselt number in the longitudinal roll flow is higher than the 

spanwise averaged Nusselt number in the fully amplified wavy roll flow (for 3.5≤y≤5). 

Therefore, when choosing the Reynolds number, a compromise has to be found between more 

uniform and more intense heat transfers.  

In the same way, when choosing the excitation frequency, a compromise has to be 

found between a shorter growth length of the wavy rolls and more uniform heat transfers. 

Indeed, Fig. 21 shows that the minimum (resp. maximum) of Lg with respect to fexc is 

associated with the minimum (resp. maximum) of Dθ. 
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FIG. 21: Profiles of Lg, fdNu  and Dθ as a function of Re, ε, fexc and Log(Aexc), around the 

point Re=155, ε=3.5, fexc=0.17 and Aexc=2 (case #32).  

 

6. Conclusion and discussion from the point of view of CVD applications 

In this paper, a control of the non uniform heat transfers resulting from the onset of 

steady longitudinal thermoconvective rolls in the PRB configuration has been proposed. It 

consists in exciting the longitudinal roll flows at channel inlet by introducing a harmonic 
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mechanical excitation in the velocity profile. This permanent excitation enables to amplify 

and maintain an unsteady convective instability of the longitudinal rolls that takes the form of 

wavy rolls. This unsteady pattern then provides more uniform time averaged heat transfers. 

A numerical Design Of Experiments (DOE) has been built to analyze about ten 

responses characterizing the global structure and the heat transfers associated with the wavy 

thermoconvective flows at Pr=0.71, in channels of spanwise aspect ratio B=W/H=10, on a 

wide range of four parameters: for 100≤Re≤300, 5000≤Ra≤16000, 0.125≤fexc≤0.3 and 

0.4≤Aexc≤2. The studied responses are the wavy roll growth lengths until saturation (Lg, 

Lθ(f0), Lθ(f1)), the magnitude of the most amplified modes in temperature spectra at different 

positions (Āθ(f0), Āθ(f1)), the magnitude of the spanwise displacement of the wavy rolls in the 

channel core (Dθ), their spanwise wavelength (λy) and the average Nusselt number in the 

fully-developed zone ( fdNu ).  

The DOE has been built carefully and the statistical tests to determine the quality of the 

interpolations have been systematically checked in order to provide reliable polynomial 

response surfaces. The built response surfaces being quadratic or cubic functions of the flow 

and excitation parameters, they are very simple to manipulate and the behavior of the wavy 

rolls can be analyzed very easily on the wide parameter domain.  

The numerical results obtained directly from DNS and DOE have been compared with 

the PRB experiments performed at FAST laboratory (Orsay, France) in which the wavy rolls 

are generated by the same type of harmonic mechanical excitation at channel inlet as in the 

numerical simulations. A very good agreement is observed concerning the growth length of 

the wavy rolls until saturation. A good agreement is also obtained concerning the spectral 

distribution of the amplified modes, but with a systematic gap between experiments and 

simulations, explained by the difficulty of controlling experimentally the position of the 

thermocouples relative to the wavy rolls. 

All the studied responses characterizing the fully-developed wavy roll flows more or 
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less depend on Re, ε and fexc. On the other hand, they are all independent or quasi independent 

of the excitation magnitude, Aexc, except the wavy roll growth length that (linearly) decreases 

as a function of Log(Aexc).  

The joint analysis of the response surfaces of Lg and Dθ has enabled to find the values 

of the flow and excitation parameters to simultaneously obtain small growth lengths and large 

oscillation magnitudes of the wavy rolls and, as a consequence, more uniform wall heat 

transfer in a large part of the channel. These conditions are obtained for moderate Reynolds 

number (Re≈150), high Rayleigh numbers (Ra≈15000), low excitation frequency (fexc≈0.17) 

and rather high excitation magnitude (Aexc≈2). For these optimal conditions, it has been 

verified that more uniform time averaged Nusselt numbers are indeed observed on the 

horizontal walls for x>Lg=60 and in the channel core, because the vertical side walls of the 

rather narrow channel used prevent large oscillations nearby them. On the other hand, it has 

been shown that a compromise has to be done between more uniform and more intense heat 

transfer because Dθ and fdNu  have opposite behaviors with respect to Re. 

 

We discuss now the results of the present work from the point of view of the application 

to the horizontal rectangular CVD reactors. The present study is a theoretical test case limited 

to laminar mixed convection flows in a quite narrow channel. In fact, there is a great 

multiplicity of operating conditions in CVD reactors. The flow regimes can be laminar or 

turbulent and can vary from forced convection flows at low Rayleigh numbers (Ra<O(103)) in 

the low pressure CVD reactors to mixed convection flows at very high Rayleigh numbers 

(until Ra~O(106)) in some APCVD reactors [2, 5]. Furthermore, some reactors are rather 

narrow and short with small spanwise and streamwise aspect ratios (2≤B=W/H<10 and 

A=L/H~O(10)) such as those used for silicon deposition and electronic applications [3, 4]. 

Others can be very wide and long: for instance, the aspect ratios of the online APCVD reactors 

used to make depositions of metallic oxides on flat glass, in the float glass industry, are 
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generally larger than 100 and the spanwise aspect ratio can even reach 400 (the glass windows 

can measure four meter wide and the reactor height is around the centimeter [2, 34, 35]). 

As a consequence, the fact that the lateral confinement prevent to make uniform heat (or 

mass) transfers on a distance equal to 2.5H from the vertical walls is not a drawback in some 

practical situations where channels or reactors of large spanwise aspect ratio are used. Indeed 

some CVD reactors are so wide that the influence of the lateral walls is negligible on the heat 

and mass transfer in the reactor core.  

Another aspect of the discussion concerns the growth length of the thermoconvective 

patterns in the CVD processes. In the APCVD reactors, the temperature difference between 

the hot substrate and the cold ceiling of the reactor is important and the Rayleigh number can 

reach 105 or more. It is well known that the growth length of all the thermoconvective patterns 

in the PRB configuration decreases with increasing Rayleigh number when the other 

parameters are fixed (see §5.1 and [1, 6, 9, 10, 17, 21] for instance in the case of the 

transverse, longitudinal and wavy thermoconvective rolls). But, at Ra>105, it was also shown 

in [18, 32, 33] that a second type of initiation mechanism of the longitudinal rolls can appear 

at channel entrance, inducing very short growth lengths of the thermoconvective rolls for the 

same range of Reynolds numbers as in the present study. With this initiation mechanism two 

(or four) longitudinal rolls are symmetrically initiated along each vertical wall at channel 

entry and, at the same time, a Rayleigh-Bénard instability mechanism produces thermal 

plumes at the same axial coordinate, in the bottom thermal boundary layer, in the channel 

core. This initiation mechanism prevents the formation of the triangular forced convection 

zone that appears at lower Rayleigh numbers, visible in Figs. 4, 17 and 19. The development 

of wavy rolls and the characterization of the heat and mass transfers have never been studied 

in such a situation and it could be an interesting perspective for the present work.  
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Appendix A : Statistical tests and prediction variance 

To evaluate the quality of the response surfaces presented in this paper, classical 

statistical tests of ANOVA (analysis of variance) have been computed. This appendix gives 

their definitions. Let y be the studied response and (yi)i=1,n the n measurements of this 

response at the n points of the study domain (n=31 in the present work). Let yˆ  be the 

mathematical model of y and n,1ii )ŷ( =  the n values of this model at the same n points. In the 

present work, yˆ  is a polynomial response surface of p terms whose p coefficients are obtained 

by the least square method, with p=19 for the full cubic response surface given by Eq. (10). 

Finally let n,1iiin,1ii )ŷy()r( == −=  be the errors or residuals at all points of the study domain. 

Then one can define: 
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- the Fisher test: F=
)r(V

)ŷ(V
. 

A response surface is a good interpolation of the measurements if R2 and Ra
2 are nearby 1 and 

F is much greater than 1. The 95% confidence interval of a response is the interval where 

there is a 95% chance to find the true response. This confidence interval depends on the 

variance of the coefficients of the postulated mathematical model which itself depends on the 

variance of the measured responses and RMSE. In the simple case of a full factorial design, 

the variance of the coefficients is proportional to the RMSE and to a coefficient that depends 

on the number n of measurements [26]. But, in a non conventional DOE as is the present one, 

a specialty software is necessary to make the calculation of the variance of the coefficients 

and of the 95% confidence intervals. In the present study, the response surface equations and 

all the statistical tests were computed using the DOE software JMP [31]. 

When doing a DOE, it is possible to compute a priori, before all experiment, the 

prediction variance. This function is the ratio of the variance of the response predicted by the 

model (by the response surface) to the variance of the measured response. The values of this 

function lower than one indicate the part of the study domain on which the prediction of the 

model is valid. Prediction variance profiles are plotted on Fig. 22 around the center of the 

study domain (case #1 of Table 1) and on Fig. 23 around the optimal point (case #32 of Table 

1). It appears that the prediction variance is lower than one in most of the study domain. It 

strongly increases and can be larger than one only near the limits of the parameter domain but 

the prediction variance remains valid near the optimal point.  
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FIG. 22: Surface and profiles of the prediction variance function with respect to the flow 

parameters around the point Re=200, ε=2, fexc=0.2 and Aexc=1 (nearby case #1 of Table 1). 

 

 

 

FIG. 23: Profiles of the prediction variance function with respect to the flow parameters 

around the point Re=150, ε=3.5, fexc=0.17 and Aexc=2 (case #32 of Table 1). 
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Appendix B: Response surface equations 

This appendix provides the simplified equations of all the response surfaces analyzed in 

this paper (except Eqs. (15-17)), in terms of the normal factors, xi, and the centered and scaled 

factors, xi’, (see §3.2). It also provides the values of different statistical tests defined in 

Appendix A. All these tests certify the quality of the interpolations since, for most of the 

response surfaces, R2>0.98, Ra
2>0.96 and F>40. The 31 first simulations of Table 1 are used 

to compute all the response surfaces, unless noted otherwise.  

 

Lθ(f0) = 696.0247 - 403.8727 (Re/Re*) - 215.3178 ε - 206.5564 fexc - 21.86075 Log(Aexc) 

+ 120.5856 (Re/Re*)2 + 65.04936 ε2 + 1098.7845 fexc
2 - 12.06144 (Re/Re*)3 - 7.029342 ε3 + 

18.77915 (Re/Re*) ε - 140.9255 ε fexc + 22.49143 ε Log(Aexc) - 220.9749 fexc Log(Aexc) (19) 

Lθ(f0) = 68.33351 + 24.23996 (Re/Re*)’ - 31.49747 ε’ - 0.895262 fexc’ - 8.293909 

Log(Aexc)’ + 38.86516 (Re/Re*)’2 + 52.45449 ε’2 + 8.412569 fexc’
2 - 24.54239 (Re/Re*)’3 - 

24.01688 ε’3 + 35.84118 (Re/Re*)’ ε’ - 18.57227 ε’ f exc’ + 11.65731 ε’ Log(Aexc)’ - 6.653723 

fexc’ Log(Aexc)’          (20) 

R2=0.982; Ra
2=0.968; F=70.5; RMSE=5.34; Mean=88.57 

 

Lθ(f1) = 629.7239 - 180.7396 (Re/Re*) - 169.6855 ε - 1108.742 fexc + 187.8898 Log(Aexc) 

+ 21.94402 (Re/Re*)2 + 23.95543 ε2 + 2353.467 fexc
2 + 24.81971 (Re/Re*) ε + 84.97554 

(Re/Re*) fexc - 33.19252 (Re/Re*) Log(Aexc) - 100.8250 ε fexc - 15.02282 ε Log(Aexc) - 

394.3169 fexc Log(Aexc)         (21) 

Lθ(f1) = 69.53698 + 6.329706 (Re/Re*)’ - 43.82713 ε’ - 5.743301 fexc’ - 4.880657 

Log(Aexc)’ + 35.23664 (Re/Re*)’2 + 54.34237 ε’2 + 18.01873 fexc’
2 + 47.36998 (Re/Re*)’ ε’ + 

9.421958 (Re/Re*)’ fexc’ - 14.47415 (Re/Re*)’ Log(Aexc)’ - 13.28751 ε’ f exc’ - 7.786325 ε’ 

Log(Aexc)’ - 11.87319 fexc’ Log(Aexc)’       (22) 

R2=0.980; Ra
2=0.965; F=65.4; RMSE=5.44; Mean=92.63 

 

Āθ(f0) at y≈B/2-0.5 computed without case #11 = 3.897247 + 0.002883855 Re + 

0.0990001 ε - 103.9990 fexc + 0.1019505 Log(Aexc) - 1.789214×10-5 Re2 - 0.04554606 ε2 + 

1049.295 fexc
2 + 0.02921743 Log(Aexc)

2 + 2.732254×10-8 Re3 + 0.006099978 ε3 - 5142.170 

fexc
3 + 12174.71 fexc

4 - 11193.94 fexc
5 + 0.003435454 Re fexc - 0.0005269348 Re Log(Aexc) + 

0.03642383 ε fexc          (23) 
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Āθ(f0) at y≈B/2-0.5 computed without case #11 = 0.1178183 - 0.02415546 Re’ - 

0.003057056 ε’ - 0.06300225 fexc’ - 0.002049106 Log(Aexc)’ - 0.01498615 Re’2 - 0.02078617 

ε’2 - 0.03360801 fexc’
2 + 0.003459949 Log(Aexc)’

2 + 0.02732254 Re’3 + 0.02084156 ε’3 + 

0.1015424 fexc’
3 + 0.01648062 fexc’

4 - 0.05741478 fexc’
5 + 0.03006022 Re’ fexc’ - 0.01813304 

Re’ Log(Aexc)’ + 0.004800218 ε’ f exc’       (24) 

R2=0.982; Ra
2=0.959; F=43.9; RMSE=0.0039; Mean=0.1093 (without case #11) 

 

Āθ(f1) at y=B/2 = -1.143385 + 0.001879925 Re + 0.1007241 ε + 21.33103 fexc - 

1.184232×10-5 Re2 - 0.0638189 ε2 - 152.2703 fexc
2 + 1.83499×10-8 Re3 + 0.0093640 ε3 + 

452.0639 fexc
3 - 488.6181 fexc

4 + 9.70967×10-5 Re ε + 0.001184152 Re fexc - 0.0002568074 Re 

Log(Aexc) + 0.09477817 ε fexc - 0.01190459 ε Log(Aexc) + 0.3636938 fexc Log(Aexc) (25) 

Āθ(f1) at y=B/2 = 0.05475080 - 0.0196806 Re’ - 0.002453063 ε’ - 0.04287955 fexc’ - 

0.00854033 Re’2 - 0.01795359 ε’2 + 0.02473988 fexc’
2 + 0.0180447 Re’3 + 0.03114458 ε’3 + 

0.02457169 fexc’
3 - 0.02627256 fexc’

4 + 0.01422482 Re’ ε’ + 0.01044974 Re’ fexc’ - 

0.008866129 Re’ Log(Aexc)’ + 0.01256749 ε’ f exc’ - 0.006048305 ε’ Log(Aexc)’ + 0.01086985 

fexc’ Log(Aexc)’          (26) 

R2=0.977; Ra
2=0.952; F=37.9; RMSE=0.00392; Mean=0.05273 

 

Āθ(f0) at y≈B/2-0.33 computed without case #11 = 5.895955 + 0.001449948 Re + 

0.02965187 ε - 157.7524 fexc + 0.01002236 Log(Aexc) - 9.390035×10-6 Re2 - 0.024260 ε2 + 

1633.919 fexc
2 + 0.0352445 Log(Aexc)

2 + 1.423205×10-8 Re3 + 0.003031883 ε3 - 8206.292 

fexc
3 + 19985.991 fexc

4 - 18949.155 fexc
5 + 6.17380×10-5 Re ε + 0.001515424 Re fexc + 

0.07716775 ε fexc (27) 

Āθ(f0) at y≈B/2-0.33 computed without case #11 = 0.08877126 - 0.01534488 Re’ - 

0.003184832 ε’ - 0.05713407 fexc’ + 0.002403622 Log(Aexc)’ - 0.008508074 Re’2 - 

0.01401116 ε’2 - 0.007217776 fexc’
2 + 0.004173679 Log(Aexc)’

2 + 0.01423205 Re’3 + 

0.01035892 ε’3 + 0.1507814 fexc’
3 - 0.008645341 fexc’

4 - 0.097191978 fexc’
5 + 0.009298649 

Re’ ε’ + 0.01325996 Re’ fexc’ + 0.01016977 ε’ f exc’      (28) 

R2=0.959; Ra
2=0.909; F=19.0; RMSE=0.00347; Mean=0.08254 

 

Āθ(f1) at y=B/2-0.33 = -0.5674319 + 0.002841371 Re + 0.06129390 ε + 10.36498 fexc - 

0.1022064 Log(Aexc) - 1.608725×10-5 Re2 - 0.03419296 ε2 - 89.97388 fexc
2 - 0.04056966 

Log(Aexc)
2 + 2.61366×10-8 Re3 + 0.004789451 ε3 + 315.7115 fexc

3 - 0.2916017 Log(Aexc)
3 - 

398.2689 fexc
4 + 0.001319137 Re fexc - 0.0003543790 Re Log(Aexc) + 0.07738846 ε fexc - 

0.008503581 ε Log(Aexc) + 0.9657349 fexc Log(Aexc)     (29) 
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Āθ(f1) at y=B/2-0.33 = 0.03588318 - 0.01615449 Re’ - 0.001599074 ε’ - 0.001355596 

fexc’ + 0.005885233 Log(Aexc)’ - 0.004052689 Re’2 - 0.01276364 ε’2 + 0.02592563 fexc’
2 - 

0.0003400595 Log(Aexc)’
2 + 0.02613663 Re’3 + 0.01636394 ε’3 - 0.01528566 fexc’

3 - 

0.01188315 Log(Aexc)’
3 - 0.02334579 fexc’

4 + 0.01154245 Re’ fexc’ - 0.01219499 Re’ Log(Aexc)’ 

+ 0.01019886 ε’ f exc’ - 0.004407405 ε’ Log(Aexc)’ + 0.02907902 fexc’ Log(Aexc)’  (30) 

R2=0.965; Ra
2=0.912; F=18.2; RMSE=0.0036; Mean=0.0348 

 

Dθ = -1.756986 + 0.01947727 Re + 0.9587349 ε + 35.75977 fexc - 0.2274313 Log(Aexc) 

- 1.225783×10-4 Re2 - 0.3528563 ε2 - 245.9273 fexc
2 + 1.091683 Log(Aexc)

2 + 1.927105×10-7 

Re3 + 0.04271694 ε3 + 421.0985 fexc
3 + 3.377437 Log(Aexc)

3 + 0.01602055 Re fexc  (31) 

Dθ = 0.8510430 - 0.3024399 Re’ + 0.09371140 ε’ - 0.7445842 fexc’ - 0.1041672 Log(Aexc)’ 

- 0.06951943 Re’2 - 0.2224772 ε’2 + 0.1724416 fexc’
2 + 0.07757151 Log(Aexc)’

2 + 0.1927105 

Re’3 + 0.1459493 ε’3 + 0.2821031 fexc’
3 + 0.1376349 Log(Aexc)’

3 + 0.1401798 Re’ fexc’ (32) 

R2=0.989; Ra
2=0.980; F=112.6; RMSE=0.049; Mean=0.918 

 

λy = 3.583701 + 0.007546033 Re + 0.4677752 ε - 39.63022 fexc - 1.982811 Log(Aexc) - 

2.60769×10-5 Re2 - 0.1218955 ε2 + 211.6004 fexc
2 - 0.1686435 Log(Aexc)

2 + 3.956629×10-8 Re3 

+ 0.02452726 ε3 - 340.8219 fexc
3 - 0.000794504 Re ε - 0.003694637 Re fexc - 0.003170226 Re 

Log(Aexc) - 0.4836759 ε fexc + 0.2552500 ε Log(Aexc) + 8.663484 fexc Log(Aexc)  (33) 

λy = 2.204498 - 0.03648678 Re’ + 0.001882916 ε’ + 0.1798423 fexc’ - 0.08735758 

Log(Aexc)’ - 0.02337144 Re’2 + 0.05534188 ε’2 - 0.04343834 fexc’
2 - 0.01997088 Log(Aexc)’

2 

+ 0.03956629 Re’3 + 0.08380133 ε’3 - 0.2283241 fexc’
3 - 0.1196640 Re’ ε’ - 0.03232808 Re’ 

fexc’ - 0.1090948 Re’ Log(Aexc)’ - 0.06374261 ε’ f exc’ + 0.1322960 ε’ Log(Aexc)’ + 0.2608642 

fexc’ Log(Aexc)’          (34) 

R2=0.992; Ra
2=0.983; F=100.8; RMSE=0.015; Mean=2.184 

 

fdNu =2.406620 + 0.1515852 Re’ +0.3421554 ε’ + 0.1901689 fexc’ + 0.1388673 Re’2 - 

0.03912437 ε’2 - 0.1217522 Re’3 - 0.09328305 fexc’
3 - 0.04956879 Re’ ε’ + 0.06048041 Re’ 

fexc’ - 0.08200362 ε’ f exc’         (35) 

R2=0.988; Ra
2=0.983; F=171.8; RMSE=0.026; Mean=2.405 
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Appendix C: Values of the responses for all the DOE simulations 

 

TAB. 3. Values of the measured responses for the 31 simulations of the DOE and for the 

optimal point case #32 (see the flow parameters in Table 1).  

Case # Lg Lθ(f1) 
Āθ(f0) at 
y≈B/2-0.5 

Āθ(f1) at 
y=B/2 

Dθ λy fdNu  

1 88 78.2 0.1264 0.0635 0.90 2.165 2.385 

2 117.2 104.1 0.1109 0.0486 0.75 2.165 2.538 

3 107.7 88.1 0.1050 0.0674 0.807 2.241 2.749 

4 83.7 64.4 0.1293 0.0669 1.10 2.379 2.693 

5 114.6 104.4 0.1145 0.0551 1.00 2.149 2.515 

6 193.4 182.4 0.0961 0.0305 0.598 2.057 1.929 

7 130.8 132.2 0.0932 0.0311 0.556 2.166 2.271 

8 76.8 85.7 0.0839 0.0321 0.469 2.057 2.699 

9 62.4 59.8 0.0706 0.0349 0.566 2.166 2.565 

10 146 145.1 0.0654 0.0165 0.395 2.167 2.281 

11 116.5 121.7 0.1332 0.0581 1.20 2.167 2.190 

12 120 127.3 0.1404 0.0879 1.605 2.113 2.154 

13 120 92.5 0.1106 0.0550 1.45 2.248 2.602 

14 61 60.8 0.0937 0.0408 0.674 2.117 2.604 

15 67 58.4 0.1203 0.0578 0.981 2.279 2.502 

16 113.1 120.1 0.0936 0.0340 0.59 2.111 2.206 

17 87 82.4 0.1263 0.0720 1.40 1.943 2.271 

18 105.9 108.5 0.1230 0.0586 1.049 2.332 2.277 

19 97 90.2 0.1376 0.0777 1.20 2.230 2.203 

20 89 65.7 0.1331 0.0738 1.20 2.279 2.530 

21 77.5 77.7 0.0909 0.0369 0.62 2.190 2.477 

22 69.6 59.6 0.1216 0.0600 0.998 2.276 2.501 

23 120 113.7 0.1051 0.0395 0.655 2.040 2.170 

24 90 94.2 0.1145 0.0740 1.551 1.834 2.330 

25 82 81.4 0.1103 0.0486 0.787 2.223 2.404 

26 78 78.2 0.1063 0.0482 0.787 2.241 2.406 

27 77 71.2 0.1088 0.0491 0.795 2.240 2.404 

28 107 103.2 0.1029 0.0408 0.713 2.298 2.275 

29 99 97.7 0.1039 0.0416 0.719 2.277 2.275 

30 56.5 53.8 0.0780 0.0441 0.737 2.279 2.759 

31 78.5 68.4 0.1327 0.0896 1.60 2.278 2.402 

32 61.7 53.2 0.1389 0.0672 1.50 2.334 2.665 
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