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Abstract

In laminar mixed convection flows, steady thermoaative patterns generate non uniform
heat and/or mass transfers at walls that can bergeital in some industrial processes. For
instance the longitudinal thermoconvective patteohsPoiseuille-Rayleigh-Bénard (PRB)

flows generate non uniform thin films or coatinghiem they are present in cold wall

horizontal Chemical Vapor Deposition (CVD) reactdrke aim of this paper is to show that,
when the basic steady flow is convectively unstaddminst an unsteady flow regime,
introducing small harmonic mechanical excitationsthe basic flow may enable to obtain

more uniform time averaged heat transfers. Morecifipally, three-dimensional direct



numerical simulations are used to characterizetehgerature field and wall heat transfer
associated with unsteady wavy convective instaslitof PRB flows that result from
harmonic excitations of the longitudinal thermocastiwee rolls at channel inlet. A design of
experiments is used to build cubic response swsfadethe different quantities analyzed
(growth length of the wavy rolls, magnitude of thepanwise oscillations, wall Nusselt
number ...) on a wide range of the flow parameters PRB flows (Pr=0.71) in channels of
aspect ratios equal to Width/Height=10 and di5shgth/Heigh«300, for Reynolds numbers
100cRe<300 and Rayleigh numbers 5GHRe<16000 are considered. Comparisons with
experiments are presented and a good agreemebtained. The optimal conditions to have
uniform heat transfers on the horizontal walls BBEPflows correspond to the minimal growth
length of the wavy rolls until saturation and thexamum magnitude of their spanwise
oscillations. They are approximately obtained farderate Reynolds number (R&0), high
Rayleigh numbers (R45000), low excitation frequency and rather highcittion
magnitude. A discussion of these results for th@ieqtions to CVD in horizontal rectangular

reactors at atmospheric pressure is finally progose

Keywords. mixed convection, Poiseuille-Rayleigh-Bénard flowonvective instability,
rectangular channel, harmonic inlet excitation, C\@D numerical simulations, design of

experiments



1. Introduction

A Poiseuille-Rayleigh-Bénard (PRB) flow is a mixednvection flow in a horizontal
rectangular channel heated from below and cooledh fabove. PRB flows are commonly
encountered in industrial applications, for exampléeat exchangers, during the air cooling
of electronic circuit boards or in the rectangutdremical Vapor Deposition (CVD) reactors
used to make thin solid films or coatings on heatelstrates from chemical precursors in
gaseous phase (see [1, 2] for reviews). To optirthese industrial processes, heat and/or
mass transfers at walls must be well controlledvell as the thermoconvective instabilities
and the flow type (laminar, transitional, turbulettiat develop in the system. Indeed the
thermoconvective instabilities can result in nonfanm heat and mass transfers, especially
when they are steady, and give rise to a degradatiche desired process (see [2-5] for
instance in the case of CVD applications). It isrtlof great interest to characterize the flow
patterns in the PRB configuration to enable a geodtrolling of the magnitude and
homogeneity of heat and mass transfers.

In this paper, only laminar PRB flows are studi@étle stable basic state is a purely
conductive Poiseuille flow. Its successive desiadiions generate many different
thermoconvective patterns, depending on the vabfethe characteristic parameters: the
Reynolds, Re, Rayleigh, Ra, and Prandtl, Pr, nusnbad the transverse aspect ratio of the
channel, B = W (width) / H (height). Thus the sli#pidiagrams of PRB flows present many
flow configurations. A few examples, establishedpemxmentally, theoretically and
numerically, for different Prandtl numbers and aspatios, can be found in [6-9] in the case
of pure fluids. In the case of air PRB flows (Pr30& complete stability diagram atB0 is
presented in [10]. It is partially reproduced ig.FL in order to specify the framework of the
present study, in the next paragraphs. Very regeRrletta and Nield [11] have analyzed the
consequences of a uniform internal heat sourcénerthtermal instability of the PRB mixed

convection. Finally the stability of PRB flows imnlary fluids, with and without Soret effect,



Is studied in [12-15] for instance.

The primary instability made of steady parallelwection rolls oriented in the direction
of the mean flow, referred to as longitudinal roitsthe main flow pattern in all the stability
diagrams of PRB flows at different Pr and B val(g=e Fig. 1). This instability is observed
for sufficiently high Reynolds numbers (typicallprf Re>0O(10) in air) and for Rayleigh
numbers above a critical value varying between 1&i@8 2000 when B>2 [9]. Carriere and
Monkewitz (1999) [16] showed that this pattern isc@vective instability of the basic
conductive Poiseuille flow. Mergui et al. (2011)7]land Benderradji et al. (2008) [18]
demonstrated that these rolls are triggered inaleahnels of finite transverse aspect ratio just
downstream the leading edge of the heated platenaad the vertical walls due to the

presence of velocity and temperature boundary $agdjacent to these walls.
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FIG. 1: Primary and secondary marginal stabilityvesrof PRB flows at Pr=0.7 and B=10 or
B—oo determined by time linear stability analyses in18, 19]. Rg* is the transition curve
between the basic Poiseuille flow and the longitatrolls. Ras¢(Re) and Ra*(Re) are the
transition curves between the longitudinal rollsd athe oscillating and wavy rolls
respectively. The simulation points of the wavyl ibdws used in the present design of

experiments are also indicated.

Two secondary unsteady instabilities appear atdnigtayleigh numbers, arising from



the destabilization of the longitudinal rolls. Thase referred to as oscillating instabilities at
low Reynolds number (Re<O(100)) and wavy instabgitat high Reynolds number
(Re>O(100)) (see Fig. 1). These instabilities have bish detected by Clever and Busse
(1991) [8] through a time linear stability analy$ss an infinite fluid layer. In the current
paper, we focus on the wavy instability. The tinmear stability analysis of longitudinal rolls
against wavy rolls has been extended by Kato afichira (2001) [20], Xin et al. (2006) [19]
and Nicolas et al. (2012) [10] to channels of &nitransverse aspect ratio. Previous
experimental [21] and numerical [10, 22] studiesveid that the wavy pattern can develop in
the channel only if a perturbation is imposed araintained into the longitudinal roll flow,
meaning that the wavy rolls result from a convecingtability of the longitudinal rolls.

This feature could be of great interest from a ficatpoint of view. Indeed, the idea is
to take advantage of the convective nature anceadstess of the wavy instability to enhance
or weaken and/or homogenize the heat and/or massférs in the industrial processes by
imposing the most appropriate perturbations/exoitatto the flow. A numerical study by
Nicolas et al. (2008) [2] has already shown that phesence of wavy rolls generated by
harmonic mechanical excitations could homogenizegtbeith rate and the thickness of the
deposited thin solid layers in APCVD (Atmospherie$sure CVD) reactors. Nicolas et al.
(2012) [10] conducted a numerical study to charaethe saturated wavy roll flows by
maintaining a random excitation, a white noise loa transverse velocity components, at the
channel inlet. It has been shown that, dependintherReynolds and Rayleigh numbers and
on the excitation amplitude, the spanwise displasgnmagnitude of the wavy rolls can be
large on a large extent of the domain suggestingtkis configuration could potentially be
interesting to homogenize the heat and mass tr@nsfeCVD reactors. However, in practical
situations, a random excitation is almost impossibd implement and a sinusoidal
perturbation will be preferred. Thus, the aim & fhresent study is to better characterize the

spatial and temporal development of the wavy inktaland of the associated heat transfers,



on a wide range of the control parameters, whearabnic forcing is imposed to the system.
The most effective conditions susceptible to homagethe heat transfer at the channel walls
and the main characteristics of the wavy roll floftyseir growth length, the magnitude of the
spanwise displacement of the oscillations, the Walkselt number at saturation, etc) will be
numerically identified.

However, as the wavy roll flows are controlled lpy garameters (Re, Ra, Pr, B and the
magnitude, Ay, and frequencyf. of the harmonic forcing), the complexity of theiplem
is reduced by setting the values of Pr and B. Moexisely, in all this work, Pr=0.71 (air
flow) and B=10 to allow experimental and numericamparisons with the PRB experiments
carried out at FAST laboratory [17, 21, 23, 24].spige this simplification, the problem
remains expensive to solve because one simulatioanafinsteady fully-developed three-
dimensional (3D) PRB flow requires channels of I@tiggamwise aspect ratios (say A = L
(length) / H~ 200), very large grids of more than’ills or nodes and, as a consequence,
high computational resources. The computationat obsuch simulations is presented for
instance in [25] in the framework of a benchmarlereise on PRB flows, using different
numerical methods on parallel or vectorial supenqmoters. As the present study aims at
analyzing the influence of four parameters (Ra, Rg; fexg On the wavy roll behavior, on a
wide parameter domain, the total computational obstie study could have been prohibitive.
To overcome this difficulty, we decided to applylesign of experiments (DOE) [26]. This
technique allows constructing polynomial interpmlatsurfaces of the studied quantities as a
function of all the parameters, on the whole patamdomain, from a limited number of
experiments (or simulations in the present caseg¢. dccuracy of the interpolation of course
depends on the number and repartition of the simouls on the parameter domain and
statistical tests are needed to determine it. aspect will be discussed in the paper.

The paper is organized as follows. First, the nradteeal model and the numerical

methods are presented in 82. The way the desigxmériments is built is presented in 83.



The methodology used and the definitions of thenttias (responses) analyzed to
characterize the wavy roll flows are described 4n §he results are presented in 85. The
wavy roll growth lengths until saturation and thagnitude of the most amplified modes at
saturation are analyzed and compared with the ewpats in 85.1 and 85.2. The magnitude
of the spanwise oscillations of the wavy rolls d@hdir spanwise wavelength are studied in
85.3. The optimum conditions for uniform time awged heat transfers on the horizontal
plates are determined in 85.4 and the intensitytheke heat transfers at saturation are
determined in 85.5. Finally, in 86, the main reswit this study are summed up and discussed
from the point of view of the possible applicatidoaghe horizontal rectangular CVD reactors.
The statistical tests used to determine the acgwhthe response surfaces are presented in
Appendix A. The equations of the response surfatgspresented in the body of the text, are
given in Appendix B and the values of the main oeses are given in Appendix C for all the

simulations of the DOE.

2. Mathematical model and numerical method

The channel considered to simulate the PRB flovghawvn in Fig. 2. It is a horizontal
rectangular channel of height H, width W and lengtheated from below. A fully developed
Poiseuille flow enters into the channel at the deleshperature I with an average velocity
Umean After an adiabatic entrance zone of lengghthe top wall is maintained at &nd the
bottom wall is heated at a higher temperatuyeThe vertical lateral walls are adiabatic all
along the channel. The origin of the reference &dming placed at the beginning of the
heated plate, the computational domain is define(kby, z) O [-Ae, A-AX[0, B]X[0, 1] in
dimensionless Cartesian coordinates, where A=L/d BrRW/H are the streamwise and
spanwise aspect ratios of the channel agel &H is the streamwise entrance aspect ratio. In
this study, B = 10, A= 1 and A varies between 150 and 300. Note thatdbio Ua/Umeam

of the maximum and average Poiseuille velocities @mannel of B=10 is equal to 1.6009 [9].
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FIG. 2: Dimensionless geometry and thermal boundanglitions. The vertical lateral walls

at y=0 and B are adiabatic all along the channel.

We consider PRB flows of an incompressible Newtorfiaid, governed by the 3D
Navier-Stokes equations under the Boussinesq appabwn. As already discussed in [2],
this assumption is justified on the basis of theksdy Chiu et al. (2000) [27] and Wang et
al. (2003) [28] that show that the flow structuredahe heat and mass transfers are little
modified when the variations of the physical projesrwith temperature are not taken into
account in simulations of CVD reactors with higimpeerature differences. Furthermore, the
present simulations will be compared with FAST ekpents [17, 21, 23, 24] in which the
maximum temperature difference;-Te, in air flows is 40°C at Ra=f0Thus giving the

reference quantities H, AMan PUmear, and H/Uhean for the lengths, velocity, pressure and

time respectively, and defining the reduced tentpee®=(T-T.)/(Th-Tc), the dimensionless

governing equations for continuity, momentum anergy read as follows:

0v=0 (1)
ov N _ 1 2 Ra =

—+(v.O)v=-Op+—0O°V+ 0k 2
5 H (D) P+ =g ~—r (2)
9 voe=—1 0% 3)
ot RePr

where v = (u,v,w) is the dimensionless velocity vectdr,the upward unit vector and p the

deviation of the mixture pressure from the hydristaressure. Raf{Th-To)H%/(va), Re=

UnmeaH/vV and Pre/a where g3, v anda are the gravity acceleration, the thermal expansio



coefficient, the kinematic viscosity and the thekrddfusivity respectively. The boundary

conditions are:

at Xx=-Ae, U=lboi{Y,2), V=002 Or V=~AexcX 2T exxCOS(A xd) at z=0.5, w=00=0  (4)

aty=0 and By = 006/dy=0 (5)
at z=0 and 1, forX[-A.0], v=0, 8/90z=0 (6)
at z=1, for XJ[0, A-A{, v =0, 6=0 (7)
at z=0, for XJ[0, A-A{, v=0, 6=1 (8)
at x=A-A,, of /dt+0f /0x =0 for f=u, v, w and (9)

In equation (4), the analytical expression of tleés@uille profile, wody,z), at the inlet is
given in [9] and details of its numerical implemaidn are given in [25]. In this paper, to
simulate the wavy rolls, a permanent sinusoidaitation is introduced on the transversal
velocity component, v, at mid-height of the inlatiseuille profile to approximately simulate
the transverse oscillations of the horizontal réaced at the entrance of the experimental
channel [17, 23, 24]. This condition on v readsx=atA,, [y[[0, B] and [0z[0, 1] v=0,
except at z=0.5 where Vopx2mfexxCoS(Ahexd) With fexe the excitation dimensionless
frequency and 24 the crest to crest dimensionless magnitude of rthiee spanwise
displacement (the reference frequency and displanemagnitude are hafH and H,
respectively). At the outlet (Eq. (9)), Orlanskip& boundary conditions are used with a

dimensionless average transport velocity u=1.

The problem (1-9) is solved using a finite diffecenmethod optimized for vectorial
computers [22]. The equations are discretized acspmn uniform, Cartesian and staggered
grids using a centered scheme. The second-ordem#&&ashforth scheme is used for the
time discretization. The dimensionless cell sizesnd a time step are
AxxAyxAz=0.1x0.055%0.029 andt=0.01. The time integration and the velocity-puzes

coupling are solved by a projection method basedGada's algorithm. The Helmholtz



equations for the temperature field and the compisnef the predicted velocity field are

solved using an incremental factorization methodDf type which permits to keep a second
order time accuracy. The Poisson equation for tiesgure increment is solved by a direct
factorization method. The linear systems resulfmogn these two factorization methods are
all tridiagonal and are solved by the TDMA algomthA detailed description of this code, its

performances and several validations can be fouftid, 22, 25].

3. Building of the design of experiments

3.1. Choice of the factors and study domain

The quantities analyzed in a design of experiméB©E) are usually called the
“responses”. They are interpolated with polynomfalsctions, called the “response surfaces”,
depending on the parameters of the problem catledfactors”. The portion of the parameter
domain limited by the minimum and maximum valueshef range of each factor is called the
“study domain”. A very important step of a DOE @sddequately choose the factors and the
study domain according to the responses that lalge ainalyzed.

At the beginning of the present study, it was deditb characterize the wavy roll flows
using a four factor Doehlert design. It is a cortimral DOE of 21 experiments (simulations)
that enables to build quadratic response surfaoe® fa hexagonal distribution of the
simulation points in the parameter domain [26]. ldwer, it appeared that this DOE had to be
modified due to a too much extended study domaruh the lack of fit of the computed
response surfaces. At large excitation magnituldeysf with ten or twelve wavy rolls were
observed (a similar behavior is analyzed in [17, f&® longitudinal roll flows) and, at low
excitation frequency, the first harmonic of theigatton frequency was amplified by the flow,
instead of its fundamental mode (a similar behaisoalso observed experimentally in [23,
24]). In other words, different populations of wanolls were present in this study domain,

generating strongly non linear behaviors of thepoeses, impossible to interpolate with

10



quadric or even cubic polynomials.

It was then decided to reduce the study domaint@madalyze the wavy roll flows using
a non conventional DOE of 31 simulations, enabtmgompute cubic response surfaces, on
the following parameter ranges: for Pr=0.7, B=100<Re<300 (= 1.4&Re/Re%x3.9),
0.5ce<3.5 (= 480(Ras16300), 0.125f<0.3 and -0.383L0g(Aexd< 0.301 (=
0.41<A<2). Here Rex70+30 is the critical Reynolds number between tdmgitudinal and
wavy rolls that is the “vertical” part of the curi®a.*(Re) in Fig. 1. The parameter(Ra-
Ra.*(Re))/Ra*(Re) is the relative distance to the critical Ragh number, R&(Re),
between the longitudinal and wavy rolls determifgda linear stability analysis [8, 10].
Ra*(Re) is drawn in Fig. 1 at Pr=0.7 for B=10 and—B. It can be seen that
3100<Ra*(Re)<3900 when 10fRe<300 at B=10. The coordinates of the 31 simulation
points of the DOE are given in Table 1 and thestrdbution in the study domain is presented

in Fig. 3 (see also Fig. 1).
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FIG. 3: Distribution of the DOE simulation points the planesg( Re) and (Log(A«), fexd-
The numbers correspond to the cases given in Tal#®me of the points of Table 1 are not

shown because they are superimposed to others.

In the present DOE, the facteris preferred to Ra because it is well known tinat t
main characteristics of the thermoconvective pasten natural and mixed convection are
related tce (see [1, 8, 16, 29] for instance in mixed conwacfiows). The Reynolds number
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range, 108Re<300, was chosen, on the one hand, to avoid to becltuse to the critical
threshold between the longitudinal and wavy rotl&Ra*~70+30 and, on the other hand, to
avoid too long wavy roll growth lengthglbeyond Re>300, sincg increases a lot when Re
increases [10]. Furthermore, this Reynolds numéege partly covers the one of the APCVD
reactors envisaged as application of the presentystsince in these reactors
O(10xRe<O(10) [2]. The chosen Rayleigh number range, 48®&16300, covers the
whole domain studied in the experiments [17, 21,228 and a part of that covered by the
APCVD applications. Indeed, Ra varies between é(khd O(16) according to the
temperature levels and the carrier gas used INAIREVD reactors [2]. The excitation
frequency range, 0.125,x<0.3, was chosen in accordance with the resultsirdatawvhen
wavy roll flows are generated with a white noisgpased at channel inlet: in this case, the
most amplified wavy roll modes are indeed obserfi@d0.18f..<0.28 [10]. Finally the
excitation magnitude range, 0l«<2, corresponds to a maximum spanwise displacement
of the inlet agitator that varies between 0.82H dhtdand it covers a part of the range of
excitation magnitudes used in the experiments €A14<1). In the DOE, the considered
factor is not Ay but Log(A«x) because it was shown in [10, 29] that the graetigth of the

wavy and transversal rolls in the PRB flows lingalécreases as a function of Log{A

3.2. Form of the response surfaces
In the present DOE, the response surfaces, notel] gfe looked for in the form of
cubic polynomials as a function of the four facter=1 to 4), with x=Re (or Re/Re*), x=¢,
X3=fexc aNd %=L0g(Acx). They are thus written in the form:
Y(Xi)=a+aX1+3pXo+BeXa+auX st auoX1Xo+ 8y X1 Xa+ B aX1 X4t BpaXoXatBpaXoXa+BeaXaXy
8y (X1 2+ B X o+ BgaX g+ ByaX a2+ 1 X1 8o X +Ba3Ka +BadXs (10)
The 19 unknown coefficients,ag; and & (i, j=1 to 4) of this cubic response surface are

computed by a least square method knowing the satithe responses on the 31 simulation

12



points of the DOE (these values are partly proviee@able 3 of Appendix C). Note that, for
the response surface given by Eq. (10) and theo8itof the DOE, it was checked that the

prediction variance function is lower than one iostof the study domain (see Appendix A).

TAB. 1. Parameters of the 31 simulation points usethe present DOE. Case #32 is not
included in the DOE: it is the optimal point regudt from the analysis of § 5.4.

Case # Re Re/Re* Ra € fexc Aexc A=L/H
1 200 2,72 10240 1,95 0,2 1 200
2 300 3,87 11460 1,96 0,2 0,9 200
3 250 2,70 16360 3,42 0,2 0,9 200
4 150 1,73 14400 3,45 0,2 1 200
5 100 1,40 9600 2,04 0,2 1 200
6 150 2,27 4800 0,48 0,2 1 300
7 250 3,93 7270 0,96 0,2 1 200
8 250 3,06 12730 2,44 0,3 0,9 200
9 150 1,96 11200 2,46 0,3 1 200
10 200 3,23 6830 0,97 0,3 1 250
11 250 3,58 9090 1,45 0,125 1 200
12 150 2,28 8000 1,47 0,125 1 200
13 200 2,37 13660 2,93 0,125 1 200
14 250 3,06 12730 2,44 0,2204 1,5 200
15 150 1,96 11200 2,46 0,2204 1,5 200
16 200 3,23 6830 0,97 0,2204 1,5 200
17 200 2,72 10240 1,95 0,1388 15 200
18 250 3,58 9090 1,45 0,1796 0,5 250
19 150 2,28 8000 1,47 0,1796 0,5 200
20 200 3,03 13660 2,93 0,1796 0,5 200
21 200 2,37 10240 1,95 0,2612 0,5 200
22 150 1,96 11200 2,46 0,2204 2 200
23 200 3,23 6830 0,97 0,2204 2 300
24 200 2,72 10240 1,95 0,1388 2 250
25 175 2,25 10000 1,98 0,23 0,41 200
26 175 2,25 10000 1,98 0,23 0,75 200
27 175 2,25 10000 1,98 0,23 1 200
28 175 2,66 8000 1,38 0,23 0,41 200
29 175 2,66 8000 1,38 0,23 0,75 200
30 130 1,51 14200 3,49 0,25 0,5 200
31 150 1,95 11300 2,49 0,16 0,5 150
32 150 1,72 14575 3,50 0,17 2 150

13



To estimate the relative influence of each factortlte studied responses and possibly
simplify Eq. (10), centered and scaled factois(ix1l to 4) are used. They are defined as
Xi'=(Xi-Xim)/AXi, With X m=(Xi maxtXimin)/2 andAXi=(Xi max-Ximin)/2, Where Xmax and Xmin are
the maximum and minimum values of the factpom the study domain. Thus, on the whole
study domain, the values of the four centered aaded factors, & vary between -1 and 1.
As a consequence, it is possible to compare bettvesnselves the values of the coefficients
Ai, Aj and A; of the modified Eq. (10), written as a functionxgfinstead of x to determine
the dominant factors. Furthermore, by comparinguhlele of a coefficient to its standard
deviation, it is possible to simplify Eg. (10) bineinating the negligible factors [26]. As a
consequence, in 85 and Appendix B, only the singolifform of the response surface
equations, written in terms of the normal factorsamd in terms of the centered and scaled
factors X, are presented. The various statistical testsl isecharacterize the quality of the
interpolation by the response surfaces (the cdivel@oefficients, Rand R?, and the Fisher
test, F) and enabling to compute the 95% confidémegval of the responses are defined in
Appendix A. In the result section (85), whenevesgble, the 95% confidence interval of a
response is plotted in the figures and the numlevedaes of the responses are provided in the

form “response value + 95% confidence interval”.

4. Methodology for the characterization of the wavy roll flows

In this section, the methodology used to simulagewavy roll flows and the responses
analyzed to characterize their space and time dpment and the associated heat transfers,

are defined.

4.1. Main steps of the ssmulation procedure and signalsrecor ded
Each simulation of a wavy roll flow is divided intbree steps illustrated in Fig. 4: first,

a longitudinal roll flow is simulated without anyxatation, starting from a cold Poiseuille

14



flow as initial condition and imposingF1 at z=0, XJ[0, A-A¢] for t>0. In the second step, the
permanent sinusoidal excitation of v given by E4). i6 maintained in the inlet Poiseuille
profile to trigger the wavy rolls and make them elep. This second step is a transient step
that ends when fully developed wavy rolls are pnege the whole channel. In the third step,
the sinusoidal excitation is still maintained a¢ fihlet and all the temperature and velocity

time signals necessary to characterize the fuliyetiged wavy roll flows are recorded.

Step 1 end: fully-established longitudinal rolls

1200 140 160 180 X

20 40 60 80 100 120 140 160 180 X

Step 3: fully established wavy rolis

0 80 100 120 140
IR 3

6: .15 25 .35 45 55 .65 .75 .85

FIG. 4. Temperature field in the horizontal med@ane at z=0.5, during the three steps of

the establishment of ten wavy rolls in the DOE cébd¢see Table 1). The flow is from left to
right and the unsteady waves travel in this diggctiin blue is the cold entering and
descending flow and in red is the hot ascending.flo step 3, the wavy roll growth length,

Ly, and the magnitude of their spanwise oscillati@s,are depicted.

0 and v are recorded at each time step, during R&®@0,000 iterations, all along the
streamwise lines at (y, z)=(B/2, 0.5) and (B/2-1/%) and the spanwise line at (X, z)=(&A
30, 0.5). These time signals are analyzed throughrate Fourier transforms (DFT) to
determine the space variation of the Fourier spagtthe wavy roll flows. The DFT are always
performed on signals whose duration is a multifléhe period of the fundamental mode of

the considered signal. Thus, it can be shown tileapeak magnitudes, A\fof the amplified
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modes, f(i=1, 2, 3, ...), in the Fourier spectra presentethis paper are equal to a quarter of
the crest to crest amplitude of each mode in theri€o decomposition of the recorded
signals. Since the time step in the simulation&t=0.01 and the dimensionless recording
duration is %a=260 to 300, the highest frequencyead and the frequency stepf, of the
Fourier spectra areqpf=1/(2At)=50 andAf=1/t,,<3.85%10°. As the excitation frequency and
the fundamental frequencies in the Fourier specrg between 0.125 and 0.3, the recorded
signals contain at least 37 periods and one pe&andprises at minimum 330 time steps. We
have checked that this is enough to provide a Eoanalysis independent &t and the time

signal duration.

4.2. Definition of the analyzed responses

In the present DOE, 31 wavy roll simulations aredu® analyze around ten responses
and build the corresponding response surfaces.eTiesponses are defined now in the DOE
case #1 because it is representative of all ther @OE cases since it is located in the middle
of the studied parameter domain (see 83.1 and3fig.

The first responses concern the space developnfighe avavy rolls that qualitatively
occurs according to the same scenario whatevercése considered in the DOE. Fig. 5
presents an instantaneous signal and the envelofiee spanwise velocity component, v,
along the channel axis, at (y, z) = (B/2, 0.5).sTtelocity component is equal to zero all
along the axis for the longitudinal roll flows besa an even roll number always develop and
the channel axis is located between two longitudiolls. On the other hand, v is non-zero
with wavy roll flows due to the spanwise oscillatsogenerated by the inlet excitation. The
envelope of v is computed by recording the maximuwalues at each point of the channel
axis throughout the entire step 3 of the simulatibme envelope of v at saturation is slightly
modulated in the streamwise direction (see Fig.lt5).average value in x direction is a

constant denoted bysVFor each simulation, the wavy roll growth lendth, is defined as the

16



first x position at which the envelope reaches Vhe fully-developed wavy roll zone is
defined as the zone where XxzlAs illustrated in Fig. 5, the envelope magnitisti®ngly
diminishes from the inlet (wheree.4=1 is imposed; see Table 1) to x = 42 in the DO&eca
#1. As shown in Fig. 4, this zone is the well kndarced convection triangular zone [10, 17]
where the longitudinal rolls develop from the lateboundaries. For 42 x < L4=82, the

wavy roll spanwise oscillations grow to reach sation and \=0.23 at x=lg.

T{TTTTNTTTTNTTTT{YTTT‘TTTY{TTYT{TYTT
F instantaneous signal
0-4f — —- envelope 7
| ---- average saturation amplitudg V
> | ~ -~ 1
. o . = __;,. A - _<;_
s 0.2 , l &
o \
o N ANy
o /
q>_) ~
QC) O 774 - L\ ><
o ’ 9 |
c ’ A i
© ! |
> -0.2 pN
i = SoR AN N AT A s
| "
T fully-developed zone
I
0.4 —
L
lllllllllllllllllllllllllllllllllllllll
0

50 75 1)?0 125 150 175

FIG. 5: Instantaneous signal and envelope of tle@wse velocity component, v, along the
channel axis at (y, z) = (5, 0.5) for the DOE c#&grecorded during step 3 of Fig. 4). The
average saturation magnitude, ®nd growth length, 4, are depicted by double arrows.

In the experiments presented in [23, 24] with whidmparisons are proposed in 85.1
and 5.2, only temperature time sign&g), measured with micro thermocouples in numerous
points of the channel, are used to characterizesplage and time evolutions of PRB flows
(velocities are not available). More precisely, #pace development of the wavy rolls is
analyzed thanks to the axial evolution of tB&) Fourier spectra. In the numerical
simulations, both th&(t) and spanwise velocity (v(t)) Fourier spectra determined along
channel axis at y=B/2 and B/2-0.33 and at z=0.3hédevelopment zone of the wavy rolls
(for O=x<L4=82 for case #1; see Figs. 4 and 5), the magnitafidse fundamental mode and

harmonics globally increase with x. In the fullyvééoped zone, for x>=82, the mode

17



magnitudes are nearly constant and up to fifteembaics appear in each spectrum. However
the magnitudes of the four first modestd f;, are really of importance, the magnitudes of the
remaining modes being at least one order smalar the most amplified one. As illustrated
in Fig. 6, the magnitudesglo), Ag(f1) and A(f,) of the three most amplified modes of the
0(t) signals slightly oscillate in the fully-develeg zone, just as the v envelope displayed in
Fig. 5. The average values over the rangegxefLthe saturated magnitude are denoted by
Ao(fo), Ae(f) and Ag(f2) and are depicted in Fig. 6. The growth lengthsfi)l,. of each
amplified mode (i=0, 1, 2) is defined as the fixgtosition at which the magnitude of mode i
reachesAg(f;). In case #1, §f;) and Ly seems to be approximately equal sing€)(i=0, 1,

2) varies between 83 and 86 (see Fig. 6) whife8P. It should also be mentioned that the

mode magnitudes strongly vary with y as shown @ Fi(and also with z; not shown here).
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FIG. 6: Streamwise variation of the magnitude & three first modes of the temperature
signal, 6(t), near channel axis at (y, z) = (B/2-0.33, (dy) the DOE case #1. The growth

lengths, l(f;), and the average magnitude at saturatiyf;) (i=0, 1, 2), of each mode are

indicated.

The average magnitude of the spanwise displaceaighe fully-developed wavy rolls
at channel center is also analyzed by monitorirgg dbsition of the local minimum of the

spanwise temperature profilégy), in the fully-developed region, at (x, z)=(A530.5), near
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the channel center (for<#<6). This minimum corresponds to the cold downwaltds/
coming from the top plate and thus marks the bognfatween the two rolls at channel
center. For the wavy pattern, the position of thisimum at constant streamwise and vertical
coordinates oscillates in the spanwise direction. d&note by B the average magnitude of
these oscillations in the fully developed regiomtéis on the way Bis computed are given
in [10]. From the view point of CVD applications,is interesting to determine howoaries
with respect to the flow parameters. Indeed, thrgelathe magnitude of the wavy roll
spanwise displacement is the more uniform the anerage of the thin solid coatings on the
heated substrate is [2]. In fact, to allow a gamekling of the depositions in CVD reactors, it
would be necessary that the spanwise displacenfighe avavy rolls is at least equal to their
spanwise wavelength. Thus, in 85.3, the spanwiseslagth,Ay, of the two contra-rotative
wavy rolls at channel center will be computed frma 6 signals. More precisely, it will be

computed from the gfo) signals as it is illustrated in Fig. 7.
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FIG. 7: Peak magnitude,gff) (i=1, 2, 3), of the three first modes of the temgiure
spectra at saturation, as a function of the spanwesrdinate y, at x=169 and z=0.5, obtained
from direct numerical simulations at Re=175, Ra£1)G.,~0.23 and A«=0.75 (case #26 of
Table 1). The determination of the spanwise wawgtter\y, of the wavy rolls at channel

centre is illustrated.
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Finally, to analyze the heat transfers on the Inotamd top plates associated with PRB

mixed convection, the local Nusselt number Nu(xz30, 1), the spanwise averaged Nusselt
numberN_u(x; z=0 or 1) and the averaged Nusselt number enftily-developed region,
Nur (z=01), are defined as:

00

Nu(x;y;z=0,1) :—‘ (11)
0z z=01

_ 18
Nu(x;z=0,1) =— jNu(x; y;z = 0,1)dy (12)

By:0

1 X=A-A,

Nufg (z=0,)=————— | Nu(x;z= 0,1)dx 13
(z=02) AA, T X:jL; ( ) (13)

where L' is a dimensionless length larger than the groetigth, L, of the wavy rolls. As
the wavy roll flows are unsteady, the local Nusseltnbers oscillate in time. A Nusselt
number averaged in time over the whole third stefh® simulations, during which the wavy

roll flow is fully-established, is thus defined as:

At
1 = 00

<Nu>(x;y;z=01) = —
bey g Atsteps t=0 0z

dt (14)
z=0,1

where Atgsieps iS the duration of third step of the simulations #e Nusselt numbers (13)
slightly oscillates in time, it is in addition a@ged as is done in Eq. (14).

To sum up, the main quantities analyzed in theowalhg, for which response surfaces
will be computed and some of them compared withearmental results, are: the wavy roll
growth length until saturation,qland Le(f;) (i=0, 1), the average magnitude at saturation of
the two first modes contained in the temperatugnals, Ag(f) (i=0, 1), the spanwise

displacement magnitude BDthe spanwise wave length of the wavy rolls néa@nael center,

Ay, and the averaged Nusselt number in the fully-igpesl region,Nufq .
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5. Results and comparison with experiments

5.1. Wavy roll growth length
The simplified equation of the response surfacelerwavy roll growth length, J. writes as
a function of the normal factors:

Ly =526.9922 - 167.6567 (Re/Re*) - 151.7345469.8198 4, + 156.2139 Log(A) +

21.41344 (Re/Re®)+ 22.54020% + 1833.512 {2 + 28.22014 (Re/Re*) - 195.5463

foxc € - 34.33355 Log(Ao) (Re/Re*) - 40.84351 Log(AJ) & (15)
The same equation as a function of the centeredealdd factors writes:

Ly = 70.2649 + 5.073633 (Re/Re*)’ - 40.26428 6.943345 {,. - 5.65777 Log(Ax)’

+ 34.38466 (Re/Re*§ + 51.13193¢'2 + 14.03783 d¢? + 53.8599 (Re/Re*)e -

25.77062 & ¢ - 14.97172 Log(A«)’ (Re/Re*) - 21.16919 Log(AJ)’ € (16)
The statistical tests indicate that the interpolatquality is very good since the correlation
coefficients are B0.981 and §=0.970, the Fisher ratio is F=87.9 and the rootmeuare
error is RMSE=4.87 for a mean equal to Mean=90s&2 Appendix A).

The dominant coefficients of Eq. (16) are thoseeof(Re/Re*)? €2 and of the
interaction (Re/Re*}’. All the cubic terms, the quadratic term Log(y'? and two
interactions ((Re/Re*)d¢ and fx L0og(Aex)’) are neglected because it was checked that the
values of their coefficients are smaller than tlstémdard deviation [26]. This indicates that,
in the parameter domain under study,rhainly depends ome and Re/Re* and to a lesser
extent on §c and Aye This is illustrated in Fig. 8 whereglbehavior is presented as a
function of the four factors around the centerhaf $tudy domain at point Re/Re*=2e52.5,
fex=0.2 and Ay=1. Around this point, one can see thgtslightly decreases asif or Aexc
increases. This behavior has been observed in tiodevetudy domain, except when Re/Re*
ande are simultaneously small (typically for Re/Re*<1052 ande<1 to 1.5): in this case,4L

increases as,§ or Aqycincreases.
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FIG. 8: Wavy roll growth length, 4. as a function of four parameters Re/R&*fex and
Log(Aexd. Each graph presentg &s a function of one parameter, the three othargldixed

at the value noted in red below each abscissa. ddsted blue lines indicate the 95%
confidence interval. Theglvalue is given in red, with its confidence intdrivablue, near the

ordinate axis for the four parameter values fixeBRe&/Re*=2.5g=2.5, £x=0.2 and Ax=1.

As described in 84.2, in the experiments at Fastrktory [23], the wavy roll growth
lengths (or saturation length) are measured from gtieamwise variation of the mode
magnitude of the temperature time signals recorded/=B/2-0.33 and z=0.5. For the
fundamental mode and its first harmonic, these tgrongths are denoted by(fy) and
Le(f1), respectively. They are compared now with theieslof lg, Le(fo) and Le(f1) obtained
by the numerical simulations and given by Egs. 16band, in Appendix B, by Egs. (19-22).
Fig. 9 compares the experimental and numericalegabf Lg(f1) with respect todc and Ao
at R&8000 and 10000 and RE75. It clearly appears that experiments and sitiomg are in
good agreement and provide the same variationg(bf lwith respect to the flow parameters:
Lo(f)) decreases when A or Ra increases but varies very little with.fin the range
0.1&fex<0.27. On the other hand, the experimental valuds@f) are quasi systematically
lower than the numerical values: the discrepan@rasind 8 unities on average but it can be
considered negligible considering that the uncetyabars are often larger. The intrinsic
background noise of the experimental apparatusdoexplain this discrepancy. Note that the
experimental point at Ra=790@=(.35), Re=176 (Re/Re*=2.69),.&4=1 and {«=0.26 is
clearly below its numerical counterpart probablgdnese the saturation zone of the wavy rolls
is not fully reached in this experiment.
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FIG. 9: Experimental [23] and numerical comparisdrthe wavy roll growth length until
saturation, k(f;), with respect to ¢k and Ay, at Ra&8000 and 10000 and R¥75. The
numerical results are obtained by DNS, except wthey are unavailable: in this case, the

solution of the k(f,) response surface is used (cf. Table 2).

For more accuracy, Table 2 gives the values gffol. Le(f1) and Ly obtained
experimentally and numerically, including the vaw# Fig. 9. The numerical results comes
either from the response surfaces of the DOE acty from the numerical simulations
(DNS). Note that b(fo) is very difficult to measure, particularly in tleperiments, because
the magnitude of the fundamental mode stronglyllases. The relative discrepancy between
the numerical and experimental results is genesatigller than 13% but can reach 17% for
some cases. It appears tha(fs) is generally slightly smaller thane(f;). Moreover ly is
nearly equal to §(f;) and thus both the fluctuations of the temperasune velocity fields can
be used to determine the growth length of the walg. Finally, it is also noteworthy that
the results of the response surfaces (DOE) areyalwaherent with the results of the direct
numerical simulations (DNS) when the confidencervéls and the error bars are taken into

account.
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Flow parameters Le(fo) Le(f1) L DOE

Ra Re Aoc foc| €xp. DOE  DNS| exp. DOE DN$§ DOE  DNEcase
€ Re/Re* #
10000 175 1 0.27| 607 67+5.5 6315 71.545 72+4

1.98 2.4 11% 13% 14%

1 0.23 NA 64+45 71+2| 67+3 69+4 70+1| 70+35 67+1 | 27
3% 4% 4% 0%
0.75 0.23] NA 68+4 T4x2| 73x7 704 771 | 7135 75%1 | 26
-4% 5% -3% 3%
0.41 0.23] NA 756 80+2| 73x7 73.5%#6 80x1| 73#45 77+l | 25
1% 9% 0% 5%

0.14 0.23] NA 84+2 | 76x5 79+11 84+1| 7618 80+1
4% 10% 0% 5%
0.14 0.18| 807 85+4 | 873 85+1| 8148 891
6% -2% -71% 2%
0.14 0.27| 74+7 87+2 | 803 88+1| 7819 84+1
16% 10% -2% 5%
7900 176 0.75 0.23| NA 98+5 96+2| 87+7 99+4 96+1| 97+3.5 91+1 | 29
1.35 2.69 13% 10% 11% 4%
0.41 0.23|100+7 109+7 101+2] NA 103+7 102+1] 94.5+6 97+1 | 28
9% 1%
0.14 0.23| 1077 105+1| 107+3 106+1 101+1
-2% -1% -6%
1 0.17, 87#3 90.5%5 100£5 102+5 98+4
4% 2% -2%
1 0.26 87+7 97+6.5 87+7 1025 103+4
11% 16% 17%

TAB. 2: Comparison of the wavy roll growth lengths(fo), Le(f1) and Lg, obtained in
experiments [23] and numerically from the respossdaces (DOE) or from simulations
(DNS). In the second series of results, the DNSupaters are (Ra, Re, Re/Re*) = (8000,
1.38, 175, 2.66) instead of (7900, 1.35, 176, 2.89the experiments and DOE. The
percentages below the numerical results indicate thlative discrepancy with the
experimental result except when it is not availaiNé) due to the difficulty of measuring.
For Ly, the discrepancies are computed with the expetahealues of k(f;). Some DOE
results are noted in italics because the respamsaces are solved outside the DOE study

domain (cases at=0.14).

Fig. 10 displays isovalues of land Le(f1), computed from the response surfaces, in the
plane (Re/Re*g) at fx=0.2 and A«=1. This figure confirms that the two growth length
provide nearly the same information. It is notewgrthat wavy roll growth lengths smaller
than 60 are reached at high Rayleigh numberseff®8y and moderate Reynolds numbers (for
Re/Re*2). In fact, in the study domain, the minimum grbwéngth, according to Eq. (15), is
L,=23+18 at Re/Re*=1.8%=3.5, £,=0.3 and A.=2; while the minimum growth length

according to Eq. (21) of Appendix B is(f;)=38+21 at Re/Re*=1.9%=3.26, £,=0.3 and
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Aex=2. From the viewpoint of CVD application, this meathat fully established unsteady
wavy roll flows and, as a consequence, better ¢mmdi to homogenize the heat and mass

transfers can be obtained in the largest partmiesGVD reactors [2].
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FIG. 10: Isovalues of {.(on the left) and §(f1) (on the right) in the plane (Re/Reg) for
fex=0.2 and A=1. The zone corresponding to wavy roll growth kasgsmaller than 60 is

colored in grey.

5.2. Magnitude of the most amplified modes at saturation

Fig. 11 displays the averaged magnitude of the fived modes of the temperature
spectra at saturatiomg(fo) and Ag(f;) (defined in 84.2 and Fig. 6), as a function of th
frequency at Re=175 (Re/Re*=2.4), Ra=100331(98) and A«=0.41, compared to
experimental results presented in [24]. The tentpegdime signals are recorded at z=0.5 and
different spanwise coordinates, y, nearby chaneeter. The results are plotted from the
response surface Egs. (23-30) of Appendix B. Aekmsamination of the coefficients of these
equations, based on centered and scaled factess)ycindicates thadg(f;) (i=0, 1) strongly
depend on Re; and £, on the studied parameter domain. On the other, e could have
been expected, they are very little dependentgn A

Fig. 11 shows that the experimental and numergsults are qualitatively in very good
agreement. Indeed the slopes of the curkg$;) are similar for i=0 and 1 whatever the

spanwise coordinate of the monitoring point (y=B22-0.33 and B/2-0.5). Furthermore, the
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most amplified mode is detected fei0f18 numerically and for f=0.19+£0.01 experimentally
This mode is smaller than the most amplified maddgeoved with random excitations in [10]
(f°=0.23£0.02 for 150<Re<20@~2 and Ax=0.1) and the mode with the maximum spatial
growth rate observed in the experiments in the éaork of the linear theory0.24 in [21]

and f=0.22+0.02 at Re/Re*=2.4 and Ra=10000 in [24])
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FIG. 11: Numerical averaged magnitude of the twst fimodes in the temperature spectra at
saturation Ag(fo) andAe(f1), as a function of frequency, for different spasevcoordinates v,

at z=0.5, Re=175 (Re/Re*=2.4), Ra=1000-1(98) and A«=0.41. Comparison with
experiments presented in [24]. The numerical resuié obtained from the response surfaces
given in Appendix B (Egs. (23-30)); here they alightly extended outside their validity
domain defined by 0.K5,<0.3 and 0.25f1<0.6.

On the other hand, the magnitudes of the experimhamd numerical curves in Fig. 11
are very different: there is nearly a factor foetvieen them. This can probably be explained
as follows. The coordinates of the probes that oreathe temperature time signals and their
relative positions in the convection rolls are ekacontrolled in the numerical simulations

but not in the experiments. Experimentally, theigms of the thermocouples relative to a
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convection roll is not controlled since the conw@ttpattern of real PRB flows is never
perfectly symmetric through the streamwise mediartical plane. As a consequence, the
relative error on the spanwise position of thertimouple is estimated to be around 20%. It
has been shown in Fig. 7 that the spanwise vaniaifothe mode magnitud&e(f;) is very
important depending on the spanwise location ofntle@itoring point. Moreover, the vertical
position of the monitoring point also influences implitude of the signal. Therefore a small
error in the thermocouple location can providergdaerror on the measurement of the mode
magnitude. In the experiment&g(f;) (i=0, 1) is approximately measured atBf2-0.5 and
z=0.5. In the numerical simulation&(f,) is really measured at z=0.5 and y=B/2 or B/2-0.33
while Ag(fo) is measured at z=0.5 but near y=B/2-0.5 or BA30OIndeed, the values a§(fo)
correspond in fact to the maximum A&#(fy), measured near y=B/2-0.5 (cf. Fig. 7) or to the
values measured atB/2-A,/6, whereA, is the dimensionless spanwise wavelength of the
two rolls at channel center which is approximatetual to 2. To a lesser extent, another
explanation of the experimental and numerical éigancies in the mode magnitudes
observed in Fig. 11 could also be ascribed to #et konduction in the Plexiglas top plate
used in the experiments. This is not taken int@actin the simulations but it is well known
that conducting horizontal walls can modify the mspse wavelength of the
thermoconvective rolls [17, 30]. As a consequenbe, magnitudes measured at the same
point in the cases with perfectly and finitely canting horizontal boundaries can be different
for the same Rayleigh number value.

In Fig. 11, the modes denoted Rycbrrespond to the excitation modes. Experimentally
when the excitation frequency is low&0.12), it clearly appears that the most amplified
mode is the first harmonic;=2fy, instead of the fundamental modg, The DOE response
surfaces ofAg(fg) have been obtained foe$>0.125. They cannot reproduce the steep
variation observed experimentally for 0.4<8.2 (even if quintic polynomials as a function of

fexc Were used for these response surfaces: see Bg4(27, 28) in Appendix B).
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5.3. Spanwise oscillation magnitude and spanwise wavelength of wavy rolls
As already explained in 84.2 and demonstrated]ire[farge magnitude of the spanwise
oscillations of the wavy rolls would be interestiingm the view point of CVD applications to
get a more uniform time average of the depositioickhess. In the present study, the
spanwise displacement of wavy rolls is charactdrizg D8 defined in 84.2. The simplified
response surfaces oblare given in Appendix B, Egs. (31-32). As illuséchin Fig. 12 and

already observed fake(f)) (i=0, 1, 2) in §85.2, B depends very little on & but strongly

decrease anglincreases, but it remains constantsfe?.
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FIG. 12: Isovalues of the wavy roll spanwise displaent, @, as a function of and £ at
Re=150 and Ag2 (left), as a function of Re andf at €=2.5 and A.=2 (center), as a
function of Ay and 4. ate=2.5 and Re=150 (right). The shaded area indichgdacements
greater than 1.5.

Fig. 12 shows that spanwise displacement l&rger than 1.8 are possible. The
response surface (Eq. (31)) indicates that the maxi spanwise displacement of the wavy
rolls is DBmax=1.83%£0.15 obtained at Re=12%73.5, £,~0.125 and A=2. This therefore
means that Bhyax is just a little smaller than the dimensionlesarspise wavelength,, of
the wavy rolls at channel center. Indegghas been computed as defined in 84.2 and Fig. 7

for the 31 cases of the DOE (see Table 3 of AppeBiland its response surface is Egs. (33-
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34) in Appendix B. It indicates that, varies between 1.55+0.09 and 2.82+0.10 in theietiud
parameter domain (see Fig. 13) and that its averalye is equal to 2.18. At point Re=125,
€=3.5, £x=0.125 and A=2, where B=D0,,,=1.83+0.15, the response surface provitles

2.33£0.08. As a consequence, more uniform heasfeesand a better leveling of the solid
coatings produced in some APCVD reactors could deeivable by making develop well

amplified wavy roll flows. This suggestion is anatgl with more details in the next section.

Log{Aexc)=-0,387 Log{Aexc)=0,301

4,71033 4,18431

5
$ 234838 1,86169
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m
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fexc
163787 (0,125
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FIG. 13: Cube plots of the spanwise wavelengtiat A—=0.41 on the left and A=2 on the

0,482
0,432

right: the cubes display the values of theresponse surface (Egs. (33-34)), laid out in
rectangles on the cube vertices, for the extrenidheofactor ranges (18Re<300 on the
horizontal axis, 0.48%<3.494 on the vertical axis and 0.X25<0.3 on the depth axis). The

two red boxed\y values are the minimum and maximum values,of the study domain.

5.4. Optimum conditions for uniform heat transferson the horizontal plates

In this section, we are going to determine the bakies of the parameters Re fexc
and A to get uniform heat transfers on the bottom ptdtthe PRB flows under study (for
B=10 and Pr=0.7). These conditions will be satgsfiethe growth length, {. of the fully-
developed wavy rolls is as short as possible arel agnitude of their spanwise
displacement, B, is as large as possible. According to the preyidiscussions in 85.1 and
5.3, we decide that the sought objective is to #emeously check <60 and 3>1.5. In that

aim, the full response surfaces qof &nd DB (not simplified) are analyzed both together in
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Figs. 14 for the largest values ©and Ay (€=3.5 and A«=2). Indeed, Figures 8, 10 and 12
have shown that small values fog &nd large values for @are simultaneously obtained
whene and A, are large. Figure 14 shows that Re apgdhfave antagonist effects og and
thus are more difficult to fix to satisfy the objee. The criteria §<60 and B>1.5 are
satisfied in a very restricted area around Re=1ad fg=0.17. Using the four parameter
values €=3.5, Ax=2, Re=155, &=0.17) the results predicted by the response ssface:
Lg=59.8+22.1 and B=1.51+0.19. As the 95% confidence intervals areeqlarge, it is
necessary to check whether the prediction is cbamenot and whether uniform heat transfers

are really observed for these parameter values.

300

250+

200+

Re

150+

100+

FIG. 14: Superimposition of the isovalues gf(bray lines) and B (black lines) in the plane
(Re, £x9 for e=3.5 and Ax=2. The zone of larger growth lengthg¥60) is colored in light
gray and a double black line mark®9£1.5. As a consequence, the objectivg<@0 and

DO>1.5) is achieved in a restricted zone around Re=at®b,~=0.17.

For this purpose, an additional simulation has bperformed at Re=150=3.5,
fex=0.17 and A=2. This case is numbered #32 in Table 1 and teecesed results are
included in Table 3 of Appendix C. The instantareetemperature field at z=0.5 and a series
of velocity vector and temperature fields in thertical transverse plane at x=139 are
presented in Figures 15 and 16 for the fully-depetbregime. It appears that the growth
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length of the wavy rolls is rather short and tlsgianwise oscillations are well amplified in the
channel core: {=57.5 and B=1.50 which confirms the prediction obtained by thsponse
surface. On the other hand, the oscillation magdeitis very small near the walls due to the

lateral confinement.

g: 005 015 025 035 045 055 065 075

120 140 X

FIG. 15: Instantaneous temperature field in thezootal mid-plane at z=0.5 in the fully-
developed wavy roll flow at Re=15653.5, £x=0.17 and A«=2 (case #32).

0.05 0.15 0.25 0.35 0.45 0.55 0.85 5 0.85 0.95

FIG. 16: Instantaneous velocity vector and tempeeatields in the vertical plane at x=139,
Re=150 anck=3.5. Case (a) without excitation: ten steady lardjnal rolls are observed.
Cases (b) to (h) with the inlet excitation definey fex—=0.17 and A=2 (case #32): one
period of the fully-developed wavy roll flow is aysed withAt=1 between each picture. A
black point on the bottom plate indicates the lmraty, of the impact of the downward cold
jet of channel center. Starting from y=5 when tloafis steady (case (a)), the impact position

moves from y=4.25 to y=5.75 as the flow is wavy andteady (cases (b) to (h)).
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Let's analyze now the consequence of the wavinesh® heat transfer distribution on
the bottom plate of the PRB channel. Fig. 17 shthas, in the case of steady longitudinal
rolls (Fig. 17 (a)), the Nusselt number is veryenegjeneous in the spanwise direction as
longitudinal parallel ridges of high intensity apbserved. In the case of wavy roll flows
(Fig. 17 (b)), the time averaged Nusselt numbey>Ns much more uniform at center and in
the downstream part of the channel, where the walg have the highest oscillation
amplitude. This is clear in Fig. 18 where spanwidai> profiles for the longitudinal and
wavy rolls are compared fo@<5 (the symmetry through the central vertical plahg=5 is
taken into account). For<R9, both <Nu> profiles are similar because the ikmagnal rolls
are just fully developed. Indeed, by using a catreh established in [10], the growth length
of the longitudinal rolls is k/=25.6 at Re=150 and Ra=14575. On the other hard, th
magnitude of the spanwise <Nu> oscillations is adid by two or more for the wavy rolls,
compared with the fully developed longitudinal splivhen %L 4=57.5 and 3<y<7; <Nu> is

even nearly uniform for x>90 and 3¥x6.5.

FIG. 17: Three dimensional surfaces of the timeayed local Nusselt numbers, <Nu>, on
the bottom plate of the PRB channel: (a) steadgitadinal roll flow at Re=150=3.5, £4=0
and A=0; (b) wavy roll flow at Re=15@=3.5, £4x=0.17 and A=2 (case #32).
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FIG. 18: Half spanwise profiles of the time averhdecal Nusselt number, <Nu>, on the
heated bottom plate for different streamwise cowtdis, in the case of a steady longitudinal
roll flow (R;) at Re=150 and=3.5 (Fig. 17(a)) and for the associated wavy ftoli (R-) at
fexc=0.17 and A«=2 (case #32 of Fig. 17(b)).

5.5. Average heat transfer intensity at saturation on the horizontal plates

In this section, we focus on the heat transfemisity on the horizontal walls. Fig. 19

illustrates the streamwise variation of the spaavageraged Nusselt numbey (x; z=0 or

1) (see Eq. (12)) in case #32 of Table 1. The ntagaiof the Nusselt number oscillation is
nearly the same on the top and bottom plates-bg.xAs a consequence, the space and time
averaged Nusselt number in the fully-developedomgNurg , is constant and has nearly
equal values on the top and bottom plates. Thensitie of heat transfer on the horizontal

walls is therefore analyzed now from the responstase of Nutq .

i B e B B B o e

H — Nu(x) at z=0
al -—- @(x) atz=1

‘ ‘25‘ = ‘50‘L ‘ ‘)‘35‘ = ‘160‘ = ‘1‘25‘ = ‘150
FIG. 19: Streamwise profiles of the instantaneowus spanwise averaged Nusselt numbers on
the horizontal WaIIs@(x; z=0 or 1)) and space and time averaged Nusseftber in the

fully-developed regionllus ) at Re=150¢=3.5, £,=0.17 and A=2 (case #32 of Table 1).
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The simplified response surface ®fuw in the case of wavy rolls generated by
harmonic excitations is (see also Eq. (35) of AplveR):
Nurg =3.8941 - 0.019453 Re +20.49352 16.9125 . + 0.000086848 Re 0.017167
g® + 89.0432 7 - 0.000000121545 Re- 139.49268 . - 0.00032852 Re: +
0.0069023 & Re - 0.623136¢f. ¢ a7
R’=0.988; R’=0.982; F=148.4; RMSE=0.027; Mean=2.405
Note thatNutq is independent of &.. Its partial representation in Fig. 20 indicatest tNurq
is minimum for Re values between about 150 andd®Dincreases mainly withand, to a
lesser extent, withef. The cube plot displayed in Fig. 20 (b) also imths thatNusg

approximately varies between 1.9 and 2.9 in thdistlparameter domain.
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FIG. 20: Representations of tidusg response surface (Eq. (17)) as a function ofeRand

fexs (@) Isocontours ofNutq in the (Reg) plane: in blue, for 166Re<300, case of the present
wavy rolls at £,=0.2 ; in red, for 108Re<200, case of wavy rolls excited by a white noise
(Eq. (18) from [10]). (b) Cube plots dflurg (see Fig. 13 for indications); red boxed values

are the minimum and maximum dfuig on the vertices of the cube.

In Fig. 20(a), theNufg values computed from Eq. (17) aif0.2 are compared with

the quadratic response surface established iniflile case of wavy rolls excited by a white
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noise at channel inlet. This response surfacedvali 106<Re<200 and 4508Ra<15,000
(0.5xe<3.5), writes:

Nutg =(2172.2 — 7.145Re + 59%.9 0.0276R2— 39.5° — 1.125Re)x10° (18)
It is independent on & like Eq. (17) and also on,f since the used random excitation
embraces all the frequencies. When similar figuaesFig. 20(a) are plotted for different
values of . in Eq. (17) (not shown here), it is interestingotuserve that the best agreement
of Nurg between the two studies with random and harmorditations is achieved for
harmonic excitations ate,§~0.2. This approximately corresponds to the most lidiegb
modes, f°, observed with a white noise since theyfa0.22+0.04 when 16Re<200 and
0.5<e<3.5 [10].

Finally, to sum up the results around the optimwmip(case #32), Fig. 21 compares

the behaviors of §, Nufg and DB as a function of the flow parameters. These msfire

here computed from the full cubic response surfaufes,, Nufrg and DB, without any
simplification. One can note that the three queditare nearly independent ofeA
Furthermore a short growth length (smaj) land a high heat transfer (largéuq ) and a
uniform heat transfer (largel) can be reached by simply increassmdJnfortunately, these
three objectives cannot be satisfied at the same when Re and,f vary. In particular the
maximum of @ as a function of Re is obtained for ¥Re<150 (see Figs. 12, 14 and 21)
associated with a minimum dflusg obtained for 158Re<175 (see Figs. 20 and 21). Thus,
contrary to what could be thought at first, inciegghe spanwise displacement of the wavy
rolls does not allow an increase of the average tnaasfer but rather a slight decrease of it.
This has already been analyzed in [10] and is cmefil here: when ®increases, the mixing
of the flow in the channel core increases andinte taveraged temperature is more uniform

resulting in slightly smaller mean temperature grats at walls (see [10] for more details).

This decrease oNusg with the magnitude of the spanwise oscillationghef wavy rolls is
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also visible in Fig. 18. Indeed, in tHéusg profiles at x=104, 119 and 134, it clearly appears
that the spanwise averaged Nusselt number in thgitialinal roll flow is higher than the
spanwise averaged Nusselt number in the fully dragliwavy roll flow (for 3.xy<b).
Therefore, when choosing the Reynolds number, gopommise has to be found between more
uniform and more intense heat transfers.

In the same way, when choosing the excitation fegy, a compromise has to be
found between a shorter growth length of the wadisrand more uniform heat transfers.
Indeed, Fig. 21 shows that the minimum (resp. marmnof Ly with respect to & is

associated with the minimum (resp. maximum) 6f D

200:
150:
100:

Lg
59,76157
£22,09882

Nu_fd
2,725003
+0,107602

DS
1,514995
+0,186342

~ -
o =)
0,17 0,30103
fexc Log(Aexc)

FIG. 21: Profiles of L, Nugg and DB as a function of Re, fexc and Log(Axd), around the
point Re=155¢=3.5, £4~0.17 and A«=2 (case #32).

6. Conclusion and discussion from the point of view of CVD applications

In this paper, a control of the non uniform heansfers resulting from the onset of
steady longitudinal thermoconvective rolls in thRBPconfiguration has been proposed. It

consists in exciting the longitudinal roll flows ehannel inlet by introducing a harmonic
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mechanical excitation in the velocity profile. Tlpermanent excitation enables to amplify
and maintain an unsteady convective instabilittheflongitudinal rolls that takes the form of
wavy rolls. This unsteady pattern then providesenoriform time averaged heat transfers.

A numerical Design Of Experiments (DOE) has beeiit to analyze about ten
responses characterizing the global structure hadeat transfers associated with the wavy
thermoconvective flows at Pr=0.71, in channels pdrsvise aspect ratio B=W/H=10, on a
wide range of four parameters: for XB0=<300, 500&Ra<16000, 0.125f.<0.3 and
0.4&<Acx<2. The studied responses are the wavy roll growtigths until saturation ¢
Le(fo), Le(f1)), the magnitude of the most amplified modes mperature spectra at different
positions Ag(fo), Ag(f1)), the magnitude of the spanwise displacemerti@fitavy rolls in the

channel core (B), their spanwise wavelengtiA,§ and the average Nusselt number in the

fully-developed zoneNusg ).

The DOE has been built carefully and the statibtests to determine the quality of the
interpolations have been systematically checkedruoter to provide reliable polynomial
response surfaces. The built response surfaceg Qaadratic or cubic functions of the flow
and excitation parameters, they are very simplsmanipulate and the behavior of the wavy
rolls can be analyzed very easily on the wide patandomain.

The numerical results obtained directly from DNS &0OE have been compared with
the PRB experiments performed at FAST laboratomgd§, France) in which the wavy rolls
are generated by the same type of harmonic mediaxcitation at channel inlet as in the
numerical simulations. A very good agreement iseole=d concerning the growth length of
the wavy rolls until saturation. A good agreementaiso obtained concerning the spectral
distribution of the amplified modes, but with a tgysatic gap between experiments and
simulations, explained by the difficulty of conting experimentally the position of the
thermocouples relative to the wavy rolls.

All the studied responses characterizing the fdidyeloped wavy roll flows more or
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less depend on Reand fx. On the other hand, they are all independent asigundependent
of the excitation magnitude, .4, except the wavy roll growth length that (lineartiecreases
as a function of Log(&o).

The joint analysis of the response surfacesyodiid 8 has enabled to find the values
of the flow and excitation parameters to simultarsdp obtain small growth lengths and large
oscillation magnitudes of the wavy rolls and, asomsequence, more uniform wall heat
transfer in a large part of the channel. These itiond are obtained for moderate Reynolds
number (Rel50), high Rayleigh numbers (RE6000), low excitation frequencye{&0.17)
and rather high excitation magnitude{&2). For these optimal conditions, it has been
verified that more uniform time averaged Nusselmbars are indeed observed on the
horizontal walls for x>k=60 and in the channel core, because the vertidal\galls of the
rather narrow channel used prevent large osciflatioearby them. On the other hand, it has

been shown that a compromise has to be done betvesnuniform and more intense heat

transfer becausefand Nusg have opposite behaviors with respect to Re.

We discuss now the results of the present work fiteerpoint of view of the application
to the horizontal rectangular CVD reactors. Thespne study is a theoretical test case limited
to laminar mixed convection flows in a quite narr@kannel. In fact, there is a great
multiplicity of operating conditions in CVD reactrThe flow regimes can be laminar or
turbulent and can vary from forced convection flavsow Rayleigh numbers (Ra<O€)pin
the low pressure CVD reactors to mixed convectiowd at very high Rayleigh numbers
(until Ra~O(16)) in some APCVD reactors [2, 5]. Furthermore, somactors are rather
narrow and short with small spanwise and streamwsgect ratios &B=W/H<10 and
A=L/H~0(10)) such as those used for silicon depmsitand electronic applications [3, 4].
Others can be very wide and long: for instanceadpect ratios of the online APCVD reactors

used to make depositions of metallic oxides on gjlaiss, in the float glass industry, are
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generally larger than 100 and the spanwise aspBotaan even reach 400 (the glass windows
can measure four meter wide and the reactor hagirtound the centimeter [2, 34, 35]).

As a consequence, the fact that the lateral comime prevent to make uniform heat (or
mass) transfers on a distance equal to 2.5H franvditical walls is not a drawback in some
practical situations where channels or reactolarge spanwise aspect ratio are used. Indeed
some CVD reactors are so wide that the influenabefateral walls is negligible on the heat
and mass transfer in the reactor core.

Another aspect of the discussion concerns the drdsvigth of the thermoconvective
patterns in the CVD processes. In the APCVD reactitie temperature difference between
the hot substrate and the cold ceiling of the astimportant and the Rayleigh number can
reach 18 or more. It is well known that the growth lengfhatl the thermoconvective patterns
in the PRB configuration decreases with increasikayleigh number when the other
parameters are fixed (see 85.1 and [1, 6, 9, 10,217 for instance in the case of the
transverse, longitudinal and wavy thermoconveatlts). But, at Ra>17) it was also shown
in [18, 32, 33] that a second type of initiationahanism of the longitudinal rolls can appear
at channel entrance, inducing very short growtlgtles of the thermoconvective rolls for the
same range of Reynolds numbers as in the presety. aVith this initiation mechanism two
(or four) longitudinal rolls are symmetrically irated along each vertical wall at channel
entry and, at the same time, a Rayleigh-Bénardaliilgly mechanism produces thermal
plumes at the same axial coordinate, in the bottieenmal boundary layer, in the channel
core. This initiation mechanism prevents the fororabf the triangular forced convection
zone that appears at lower Rayleigh numbers, eisibFigs. 4, 17 and 19. The development
of wavy rolls and the characterization of the heead mass transfers have never been studied

in such a situation and it could be an interespiagspective for the present work.
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Appendix A : Statistical testsand prediction variance
To evaluate the quality of the response surfacesemted in this paper, classical
statistical tests of ANOVA (analysis of variancevlh been computed. This appendix gives
their definitions. Let y be the studied responseé @n)i-1, the n measurements of this
response at the n points of the study domain (nm3the present work). Lef \be the

mathematical model of y an(¥;) =1, the n values of this model at the same n point¢he

present work,” yis a polynomial response surface of p terms wiposeefficients are obtained
by the least square method, with p=19 for the dubic response surface given by Eq. (10).
Finally let (r;)iz1n =(Yi = Vi) i=z1n b€ the errors or residuals at all points of thelgtdomain.

Then one can define:

n
the global mean of the measured responses: MEAyI\tiZyi ;
n

i=1

. 1 Q Y
- the variance of the measured respon$fy) :—Z(yi —y) ;
n-liz1

n 2
- the variance of the model or of the computed resesrV (V) :p—ll (9i —7) ;
—li=a

n 2
- the variance of the residuals or mean square evt@).= -1 (rI )
n-pia

- the root mean square err@®MSE=/V(r) = nip r2
i=1
n . 2
> ) V()
- the correlation coefficients:zﬁ'zl—ﬂ and R*=1- V) <1:
y

i
<
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- the Fisher test: F\=/Q
r

A response surface is a good interpolation of teasurements if Rand R? are nearby 1 and

F is much greater than 1. The 95% confidence iateo¥ a response is the interval where
there is a 95% chance to find the true response ddnfidence interval depends on the
variance of the coefficients of the postulated reathtical model which itself depends on the
variance of the measured responses and RMSE. Isirtifde case of a full factorial design,
the variance of the coefficients is proportionathe RMSE and to a coefficient that depends
on the number n of measurements [26]. But, in acgomventional DOE as is the present one,
a specialty software is necessary to make the lagicn of the variance of the coefficients
and of the 95% confidence intervals. In the presaidy, the response surface equations and
all the statistical tests were computed using tERoftware JMP [31].

When doing a DOE, it is possible to compute a pribefore all experiment, the
prediction variance. This function is the ratiotloé variance of the response predicted by the
model (by the response surface) to the variandbeomeasured response. The values of this
function lower than one indicate the part of thedgtdomain on which the prediction of the
model is valid. Prediction variance profiles aretf@d on Fig. 22 around the center of the
study domain (case #1 of Table 1) and on Fig. 28rad the optimal point (case #32 of Table
1). It appears that the prediction variance is lothan one in most of the study domain. It
strongly increases and can be larger than onerwdy the limits of the parameter domain but

the prediction variance remains valid near thenogkipoint.
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FIG. 23: Profiles of the prediction variance fuoctiwith respect to the flow parameters

0.17 and A«=2 (case #32 of Table 1).
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Appendix B: Response surface equations

This appendix provides the simplified equationslbthe response surfaces analyzed in
this paper (except Eqgs. (15-17)), in terms of theral factors, x and the centered and scaled
factors, X, (see 83.2). It also provides the values of dédfe statistical tests defined in
Appendix A. All these tests certify the quality thfe interpolations since, for most of the
response surfaces?0.98, R>>0.96 and F>40. The 31 first simulations of Tablar& used

to compute all the response surfaces, unless thedwise.

Le(fo) = 696.0247 - 403.8727 (Re/Re*) - 215.3k78206.5564 4. - 21.86075 Log(Ad

+ 120.5856 (Re/Re*)+ 65.04936> + 1098.7845£7 - 12.06144 (Re/Re*)- 7.029342%> +

18.77915 (Re/Re*) - 140.925% feye + 22.49143 Log(Aexd - 220.9749 & Log(Aexd  (19)
Le(fo) = 68.33351 + 24.23996 (Re/Re*) - 31.49747- 0.895262 £ - 8.293909

Log(Aexd’ + 38.86516 (Re/Re*}’ + 52.4544%'2 + 8.412569 4.2 - 24.54239 (Re/Re*y -

24.016883 + 35.84118 (Re/Re*}’ - 18.57227¢ feys + 11.65731¢’ Log(Aex)’ - 6.653723

fexc LOG(Aexd’ (20)
R?=0.982; R*=0.968; F=70.5; RMSE=5.34; Mean=88.57

Le(f1) = 629.7239 - 180.7396 (Re/Re*) - 169.68551108.742 & + 187.8898 Log(A«)
+ 21.94402 (Re/Re*)+ 23.95543¢ + 2353.467 §Z + 24.81971 (Re/Re*} + 84.97554
(Re/Re*) i - 33.19252 (Re/Re*) Log(d) - 100.8250¢ fey - 15.02282¢ Log(Aexd -
394.3169 & Log(Acxd (21)
Le(f1) = 69.53698 + 6.329706 (Re/Re*) - 43.82743- 5.743301 § - 4.880657
Log(Aexd’ + 35.23664 (Re/Re*f + 54.3423%' + 18.01873 4 2 + 47.36998 (Re/Re*y’ +
9.421958 (Re/Re*)' d¢ - 14.47415 (Re/Re*)’ Log(Ao)’ - 13.28751¢’ feyl - 7.786325¢’
Log(Aexd’ - 11.87319 §¢ LOg(Aexd’ (22)
R?=0.980; R?=0.965; F=65.4; RMSE=5.44; Mean=92.63

Ag(fo) at y=B/2-0.5 computed without case #11 = 3.897247 + ZBBB855 Re +
0.0990001¢ - 103.9990 & + 0.1019505 Log(AJ - 1.78921410° R& - 0.04554606:> +
1049.295 £ + 0.02921743 Log(Ad® + 2.73225410° R’ + 0.006099978° - 5142.170
foxe + 12174.71 & - 11193.94 £ + 0.003435454 Re.f. - 0.0005269348 Re Log(A) +
0.03642383: fexc (23)
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Ag(fo) at y=B/2-0.5 computed without case #11 = 0.1178183 2416546 Re’ -
0.003057056’ - 0.06300225 & - 0.002049106 Log(Ao)’ - 0.01498615 Ré - 0.02078617
¢'? - 0.03360801 ¢ % + 0.003459949 Log(AJd'? + 0.02732254 R&'+ 0.02084156'% +
0.1015424 03 + 0.01648062;* - 0.057414784¢° + 0.03006022 Re'sf. - 0.01813304
Re’ Log(Aex)’ + 0.004800218 fexc (24)

R?=0.982; R?=0.959; F=43.9; RMSE=0.0039; Mean=0.1093 (with@se#11)

Ag(f1) at y=B/2 = -1.143385 + 0.001879925 Re + 0.100724% 21.33103 4 -
1.18423%10° R€ - 0.063818% - 152.2703 & + 1.8349%10°% Re® + 0.0093640¢° +
452.0639 §,7 - 488.6181 4. + 9.7096%10° Ree + 0.001184152 Re.f. - 0.0002568074 Re
Log(Aexd + 0.0947781% fexc- 0.01190452 Log(Aexd + 0.3636938 4 Log(Aexd (25)

Ag(f1) at y=B/2 = 0.05475080 - 0.0196806 Re’ - 0.00248B6 - 0.04287955 & -
0.00854033 Ré’- 0.0179535%'2 + 0.02473988. 2 + 0.0180447 R&'+ 0.03114458 "> +
0.02457169 4¢° - 0.02627256 ;% + 0.01422482 Res’ + 0.01044974 Re’ ¢ -
0.008866129 Re’ Log(Ad’ + 0.0125674% feyxe - 0.006048305’ Log(Aex)’ + 0.01086985
fexc LOG(Aexd’ (26)

R?=0.977; R*=0.952; F=37.9; RMSE=0.00392; Mean=0.05273

Ag(fo) at y=B/2-0.33 computed without case #11 = 5.895955 1189948 Re +
0.02965187 - 157.7524 §,. + 0.01002236 Log(Ad - 9.39003%10° R - 0.024260¢? +
1633.919 £ + 0.0352445 Log(AJd® + 1.42320%10° Re’ + 0.003031883° - 8206.292
foe + 19985.991 £ - 18949.155 4 + 6.1738%10° Re ¢ + 0.001515424 Reof +
0.0771677% fexe  (27)

Ag(fo) at y=B/2-0.33 computed without case #11 = 0.0887712601%B4488 Re’ -
0.003184832¢’ - 0.05713407 . + 0.002403622 Log(AJd' - 0.008508074 Ré’ -
0.01401116¢'% - 0.007217776 &fc? + 0.004173679 Log(dd'? + 0.01423205 R&’ +
0.01035892% + 0.1507814 &> - 0.008645341f¢* - 0.097191978f.°> + 0.009298649
Re’ ¢’ + 0.01325996 Re'd¢ + 0.0101697%' fexc (28)

R?=0.959; R*=0.909; F=19.0; RMSE=0.00347; Mean=0.08254

Ag(f1) at y=B/2-0.33 = -0.5674319 + 0.002841371 Re 6029390 + 10.36498 4, -
0.1022064 Log(Ad - 1.60872%10° R€ - 0.03419296¢ - 89.97388 £ - 0.04056966
Log(Aexd® + 2.6136610°% Re’ + 0.00478945%> + 315.7115 4 - 0.2916017 Log(Ad)°® -
398.2689 £ + 0.001319137 Re.f - 0.0003543790 Re Logd) + 0.07738846 fexc -
0.00850358% Log(Aexd + 0.9657349 LOg(Aexd (29)
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Aq(fy) at y=B/2-0.33 = 0.03588318 - 0.01615449 Re’ -00FD9074¢’ - 0.001355596
fexe + 0.005885233 Log(&d)’ - 0.004052689 R& - 0.01276364 2 + 0.02592563 .2 -
0.0003400595 Log(&d’> + 0.02613663 R& + 0.01636394¢’> - 0.01528566 ¢.° -
0.01188315 Log(&d)'> - 0.023345794. " + 0.01154245 Re’f; - 0.01219499 Re’ Log(A)’
+0.01019886 fex¢ - 0.004407405’ Log(Aexd’ + 0.02907902 . LOg(Aexd’ (30)

R?=0.965; R?=0.912; F=18.2; RMSE=0.0036; Mean=0.0348

DO = -1.756986 + 0.01947727 Re + 0.958784935.75977 & - 0.2274313 Log(Ad

- 1.22578310" Re - 0.3528563 - 245.9273 £ + 1.091683 Log(Ad? + 1.92710%10"

Re® + 0.04271694° + 421.0985 £ + 3.377437 Log(Ad® + 0.01602055 Reuf. (31)
D6 = 0.8510430 - 0.3024399 Re’ + 0.093712400.7445842 £ - 0.1041672 Log(AQ’

- 0.06951943 Ré&'- 0.2224772'% + 0.1724416 4% + 0.07757151 Log(&)'? + 0.1927105

Re® + 0.1459493'% + 0.28210314° + 0.1376349 Log(Ao’> + 0.1401798 Re'df  (32)
R?=0.989; R?*=0.980; F=112.6; RMSE=0.049; Mean=0.918

Ay = 3.583701 + 0.007546033 Re + 0.46777539.63022 4, - 1.982811 Log(AJ) -
2.6076%10° R€ - 0.12189557 + 211.6004 4 - 0.1686435 Log(AJd* + 3.95662810° Re’
+0.02452726 - 340.8219 & - 0.000794504 Re - 0.003694637 Ref. - 0.003170226 Re
LOg(Aexd - 0.483675% foyc + 0.255250@ Log(Aexd) + 8.663484 & LOg(Aexd (33)
Ay = 2.204498 - 0.03648678 Re’ + 0.001882916+ 0.1798423 §. - 0.08735758
Log(Aexd’ - 0.02337144 Ré + 0.05534188'2 - 0.04343834 .2 - 0.01997088 Log(Ad’'>
+ 0.03956629 Ré'+ 0.08380133'2 - 0.2283241 4. - 0.1196640 Ret’ - 0.03232808 Re’
fexc - 0.1090948 Re’ Log(Ao)’ - 0.06374261¢’ feyl + 0.132296C’ Log(Aex)’ + 0.2608642
fexc LOG(Aexd’ (34)
R?=0.992; R?=0.983; F=100.8; RMSE=0.015; Mean=2.184

Nusg =2.406620 + 0.1515852 Re’ +0.3421554 0.1901689 & + 0.1388673 Ré'-
0.03912437%'2 - 0.1217522 Ré&'- 0.09328305;° - 0.04956879 Ret’ + 0.06048041 Re’
fexc - 0.08200362 feyg (35)

R?=0.988; R°=0.983; F=171.8; RMSE=0.026; Mean=2.405
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Appendix C: Values of theresponsesfor all the DOE simulations

TAB. 3. Values of the measured responses for thei@ilations of the DOE and for the

optimal point case #32 (see the flow parametei@bie 1).

Ae(fo) at  Ae(fy) at

Case# Lo(f1) V<BJ2-05 y=B/2 D6 Ay Nud

1 88 78.2 0.1264 0.0635  0.90 2.165 2.385
2 117.2 104.1  0.1109 0.0486  0.75 2.165 2.538
3 107.7 88.1 0.1050 0.0674  0.807 2.241 2.749
4 83.7 64.4 0.1293 0.0669  1.10 2.379 2.693
5 114.6 104.4  0.1145 0.0551  1.00 2.149 2.515
6 193.4 182.4  0.0961 0.0305  0.598 2.057 1.929
7 130.8 132.2  0.0932 0.0311  0.556 2.166 2.271
8 76.8 85.7 0.0839 0.0321  0.469 2.057 2.699
9 62.4 59.8 0.0706 0.0349  0.566 2.166 2.565
10 146 145.1  0.0654 0.0165  0.395 2.167 2.281
11 116.5 121.7  0.1332 0.0581  1.20 2.167 2.190
12 120 127.3  0.1404 0.0879  1.605 2.113 2.154
13 120 92.5 0.1106 0.0550  1.45 2.248 2.602
14 61 60.8 0.0937 0.0408  0.674 2.117 2.604
15 67 58.4 0.1203 0.0578  0.981 2.279 2.502
16 113.1 120.1  0.0936 0.0340  0.59 2.111 2.206
17 87 82.4 0.1263 0.0720  1.40 1.943 2.271
18 105.9 108.5  0.1230 0.0586  1.049 2.332 2.277
19 97 90.2 0.1376 0.0777 1.20 2.230 2.203
20 89 65.7 0.1331 0.0738  1.20 2.279 2.530
21 775 77.7 0.0909 0.0369  0.62 2.190 2.477
22 69.6 59.6 0.1216 0.0600  0.998 2.276 2.501
23 120 113.7  0.1051 0.0395  0.655 2.040 2.170
24 90 94.2 0.1145 0.0740  1.551 1.834 2.330
25 82 81.4 0.1103 0.0486  0.787 2.223 2.404
26 78 78.2 0.1063 0.0482  0.787 2.241 2.406
27 77 71.2 0.1088 0.0491  0.795 2.240 2.404
28 107 103.2  0.1029 0.0408  0.713 2.298 2.275
29 99 97.7 0.1039 0.0416  0.719 2.277 2.275
30 56.5 53.8 0.0780 0.0441  0.737 2.279 2.759
31 78.5 68.4 0.1327 0.0896  1.60 2.278 2.402
32 61.7 53.2 0.1389 0.0672  1.50 2.334 2.665
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