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C∞ LOCAL SOLUTIONS

OF ELLIPTICAL 2−HESSIAN EQUATION IN R3

G. TIAN, Q. WANG AND C.-J. XU

In remembrance of the late professor Rou-Huai Wang

on the occasion of his 90th Birthday

Abstract. In this work, we study the existence of C∞ local solutions to 2-Hessian equation

in R3 . We consider the case that the right hand side function f possibly vanishes, changes

the sign, is positively or negatively defined. We also give the convexities of solutions which

are related with the annulation or the sign of right-hand side function f . The associated

linearized operator are uniformly elliptic.

1. Introduction

We are interested by the following k-Hessian equation

(1.1) S k[u] = f (y, u,Du)

on an open domain Ω ⊂ Rn, 1 ≤ k ≤ n, f ∈ C∞(Ω × R × Rn). Denote Du = (∂1u, . . . , ∂nu)

and D2u is the Hessian matrix (∂i∂ ju)1≤i, j≤n. the Hessian operators S k[u] is defined as

follows:

(1.2) S k[u] = σk(λ(D2u)), k = 1, . . . , n,

where λ(D2u) = (λ1, λ2, . . . , λn), λ j is the eigenvalue of the Hessian matrix (D2u), and

σk(λ) =
∑

1≤i1<···<ik≤n

λi1 · · ·λik

is the k-th elementary symmetric polynomial. Denoting, for k, j ∈ {1, · · · , n},

σk, j =
∂σk+1(λ)

∂λ j

= σk |λ j=0.

We also introduce the Gårding cone Γk which is the open symmetric convex cone in Rn,

with vertex at the origin, given by

Γk = {(λ1, . . . , λn) ∈ Rn : σ j(λ) > 0,∀ j = 1, . . . , k}.

When k = 1, (1.1) is a semi-linear Poisson equation, and it is Monge-Ampère equation for

k = n.

We say that a function u ∈ C2 is k-convex, if

λ(D2u) ∈ Γ̄k,

the n-convex function is simply called convex function.
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We say that a function u is a local solution of (1.1) near y0 ∈ Ω, if there exists a

neighborhood of y0, Vy0
⊂ Ω such that u ∈ C2(Vy0

) satisfies the equation (1.1) on Vy0
.

In this work, we study the existence of C∞-local solution of the following 2-Hessian

equation in R3,

(1.3) S 2[u] = f (y, u,Du), on Ω ⊂ R3,

where we also have

S 2[u] = u11u22 − u2
12 + u22u33 − u2

23 + u11u33 − u2
13.

We have proved the following results.

Theorem 1.1. Assume that f ∈ C∞(Ω×R×R3), then for any Z0 = (y0, z0, p0) ∈ Ω×R×R3,

we have that

(1) if f (Z0) = 0, then (1.3) admits a 1-convex C∞ local solution which is not convex;

(2) if f ≥ 0 near Z0, then (1.3) admits a 2-convex C∞ local solution which is not

convex. If f (Z0) > 0, (1.3) admits a convex C∞ local solution.

(3) if f (Z0) < 0, (1.3) admits a 1-convex C∞ local solution which is not 2-convex.

Moreover, the equation (1.3) is uniformly elliptic with respect to the above local solutions.

For the local solution, Hong and Zuily [5] obtained the existence of C∞ local solutions

to arbitrary dimensional Monge-Ampére equation, in which f is not only nonnegative but

also satisfies a variant of Hörmander rank condition. Lin [8] proved the existence of a local

H s solution in R2 with f ≥ 0. We will follow the ideas of [5] and [8, 9], the existence

of the local solution can be obtained by a perturbation of polynomial-typed solution for

S 2[u] = a where a is a constant, so that our solution is in the form

u(y) =
1

2

3∑

j=1

τ jy
2
j + ε

5w(ε−2y), τ = (τ1, τ2, τ3) ∈ R3.

The significance of theorem 1.1 is our results break away from the framework of Gård-

ing cone. The sign of f is permitted to change in case (1). For the case (2), we say that

it is a degenerate 2-Hessian equation if f (Z0) = 0(see [10]). The non-convex solution in

(1) and (2) never occurs for Monge-Ampére equation. There is also many works about the

convexity of solution to Hessian equation, see [11] and reference therein. Besides, these

results seems to be strange. However, that is because the relationship between the sign of

f and the ellipticity of the nonlinear k-Hessian equation may not be close.

The rest of this paper is arranged as follow: in Section 2, we will give definitions and

some known results. Section 3 is devoted to the proof of Theorem 1.1.

2. Preliminaries

In this section, we collect some definitions and known results of k-Hessian equations.

Firstly some algebraic properties of Gårding cone.

Proposition 2.1 (See [12]). Using the notations introduced in Section 1,

(1) σk(λ) = 0 for λ ∈ ∂Γk and

Γn ⊂ . . . ⊂ Γk ⊂ . . . ⊂ Γ1 .
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(2) Maclaurin’s inequalities, for any λ ∈ Γk, 1 ≤ l ≤ k,

[
σk(λ)

(n
k
)

]1/k

≤

[
σl(λ)

(n
l
)

]1/l

.

(3) we also have
{
σk(λ) = λiσk−1;i(λ) + σk;i(λ), ∀λ ∈ Rn,∑n

i=1 σk,i(λ) = (n − k)σk(λ), ∀λ ∈ Rn.

(4) Assume that λ ∈ Γk is in descending order,

λ1 ≥ · · · λp−1 ≥ λp > 0 ≥ λp+1 ≥ · · · λn,

then p ≥ k and

(2.1) σk−1;n(λ) ≥ · · · ≥ σk−1;1(λ) > 0.

When n = 3, we see that σ3(λ) > 0 cannot occur for λ ∈ ∂Γ2(λ), therefore we can

express ∂Γ2 as two parts

∂Γ2(λ) = P1 ∪ P2,

P1 = {λ ∈ R
3;σ1(λ) ≥ 0, σ2(λ) = σ3(λ) = 0},

P2 = {λ ∈ R
3;σ1(λ) > 0, σ2(λ) = 0, σ3(λ) < 0}.

Next, we will recall that what condition can lead to the ellipticity.

As for the framework of ellipticity, we follow the ideas of [6] and [7]. Denote Sym(n)

as the set of symmetric real n×n matrix. Through the matrix language, we recall the direct

condition which leads to the elliptic k-Hessian operator. The ellipticity set of the k-Hessian

operator, k = 1, 2, . . . , n, is

Ek =
{
S ∈ Sym(n) : S k(S + tξ × ξ) > S k(S ) > 0, |ξ| = 1, t ∈ R+

}

and the Gårding cones

Γk =
{
S ∈ Sym(n) : S k(S + tId) > S k(S ) > 0, t ∈ R+

}
,

where the definition of S k(S ) is given in (1.2). It is easy to show that Ek = Γk only for

k = 1, n and the example in [7] assures that Γk ⊂ Ek and mess(Ek \Γk) > 0 when 1 < k < n.

Ivochkina, Prokofeva and Yakunina [7] point out that the ellipticity of (1.1) is independent

of the sign of f .

We now present an algebraic property of

∂

∂τi

σ2(τ) = σ1,i(τ), i = 1, 2, 3,

for τ = (τ1, τ2, τ3) ∈ P2.

Lemma 2.2. Assume that τ ∈ P2, τ1 ≥ τ2 ≥ τ3. Then we have

0 < σ1,1(τ) ≤ σ1,2(τ) ≤ σ1,3(τ),

and

(2.2) τ3 < 0 < τ2 ≤ τ1.
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The above result means that for any

ψ =
1

2

3∑

i=1

τiy
2
i , τ ∈ P2

it is a solution of 2-Hessian equation S 2(ψ) = 0, and the linearized operators of S 2[u] at ψ

L =

3∑

i=1

σ1,i(τ)∂2
i

is uniformly elliptic,

Proof. Recall that, for any τ ∈ R3,

σ2(τ) = τ1τ2 + τ2τ3 + τ1τ3,

and

σ1;1(τ) = τ2 + τ3, σ1;2(τ) = τ1 + τ3, σ1;3(τ) = τ1 + τ2.

Denote λ + ε = (λ1 + ε, λ2 + ε, λ3 + ε) with λ ∈ R3 and ε ∈ R, then we have the formula

σ2(λ + ε) =

2∑

j=0

C( j)ε jσ2− j(λ), C( j) =
(3
2
)(2

j)

(3
2− j

)
.

For τ ∈ P2, we have

σ1(τ) > 0, σ2(τ) = 0,

then

τ + ε ∈ Γ2, ∀ε > 0.

Applying (2.1) to τ + ε and letting ε→ 0+, we get

0 ≤ σ1,1(τ) ≤ σ1,2(τ) ≤ σ1,3(τ).

Since τ ∈ P2, we have

σ2(τ) = τ1σ1,1(τ) + σ2,1(τ) = 0.

if σ1,1(τ) = τ2 + τ3 = 0, then,

σ2,1(τ) = τ2τ3 = 0,

thus σ3(τ) = τ1τ1τ3 = 0, which contradicts with the assumption σ3(τ) < 0. Then, We have

proven that, for any τ ∈ P2,

0 < σ1,1(τ) ≤ σ1,2(τ) ≤ σ1,2(τ).

We prove now (2.2). Since σ1(τ) > 0, by (4) we have τ1 > 0. We now claim that τ1 =

τ2 = τ3 is impossible. Indeed, if that holds, then σ1(τ) = 3τ1 > 0 and σ2(τ) = 3τ2
1
> 0,

which contradicts with the assumption σ2(τ) = 0.

Besides, σ3(τ) < 0 imply that τi , 0 and τi can not be positive at the same time. Then

property (4) of Proposition 2.1 implies

τ3 < 0 < τ2 ≤ τ1.

�

We also have the following elliptic results for τ ∈ Γ1 \ Γ̄2.

Lemma 2.3. For the Gårding cone, we have
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(1) For any given a < 0, there exists τ ∈ Γ1 \ Γ̄2, such that

σ1(τ) > 0, σ2(τ) = a.

(2) For any given b > 0, there exists τ ∈ Γ2 \ Γ̄3, such that

σ1(τ) > 0, σ2(τ) = b, σ3(τ) < 0.

(3) For any given c > 0, there exists τ ∈ Γ3, such that

σ1(τ) > 0, σ2(τ) = c, σ3(τ) > 0.

Moreover, for all above case, we have

σ1,3(τ) > σ1,2(τ) > σ1,1(τ) > 0.

Proof. We only need to prove the case (1), and to find a τ ∈ R3. We can choose α > 0 and

β > 0 such that

(1 + β)α − 1 < 0.

Then take Θ > 0 satisfying

Θ
2(1 + α)[(1 + α)β − 1] = a.

We claim that τ can be in the following form

τ = (τ1, τ2, τ3) = ((1 + α)(1 + β)Θ, (1 + α)Θ,−Θ).

Indeed, from 1 + β > 1 and (1 + α)Θ > 0, we have

τ1 > τ2 > τ3,

σ1(τ) > 0 and σ2(τ) = a. Moreover,

σ1,3(τ) = (1 + α)(2 + β)Θ > σ1,2 = (αβ + α + β)Θ > σ1,1(τ) = αΘ > 0.

Proof is done. �

For the linearized operators of k-Hessian equation, we have the following results, the

general version of which can be found in section 2, [2].

Lemma 2.4. The matrix S
i j

2
(r(w)) and (ri j(w)) can be diagonalized simultaneously, that

is, for any smooth function w, we can find an orthogonal matrix T (x, ε) satisfying


T (x, ε)(S
i j

2
) tT (x, ε) = diag

[
∂σ2(λ)
∂λ1

,
∂σ2(λ)
∂λ2

,
∂σ2(λ)
∂λ3

]

T (x, ε)(ri j)
tT (x, ε) = diag [λ1(x, ε), λ2(x, ε), λ3(x, ε)] ,

where tT (x, ε) is the transpose of T (x, ε) and S
i j

2
(r(w)) = ∂S 2/∂ri j(r(w)). Furthermore,

T (x, ε) |ε=0= Id,

where Id is the identity matrix.

Proof. For T = (Ti j), we have

(2.3)

3∑

i=1

T siTti = δ
t
s.
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Now we set (ri j) can be diagonalized by T ,

(Ti j)(ri j)
t(Ti j) =



λ1

λ2

λ3

 =


3∑

i, j=1

T siTt jri j


st

.

Thus, we have, when s , t

3∑

i, j=1

T siTt jri j

=T s1Tt1r11 + T s2Tt2r22 + T s3Tt3r33 + 2T s3Tt1r31 + 2T s1Tt2r12 + 2T s3Tt2r32 = 0

(2.4)

Now for

(
S

i j

2
(ri j)

)
=



r22 + r33 −r21 −r31

−r12 r11 + r33 −r31

−r13 −r23 r11 + r22

 ,

we have

(Ti j)(ri j)
t(Ti j) =


3∑

i, j=1

T siTt jS
i j

2


st

.

If we could prove that
∑3

i, j=1

(
T siTt jS

i j

2

)
st

is a diagonal matrix, our proof was done.

Indeed, when s , t, we have

3∑

i, j=1

T siTt jS
i j

2

=T s1Tt1(r22 + r33) + T s2Tt2(r11 + r33) + T s3Tt3(r11 + r22)

− 2T s1Tt2r12 − 2T s3Tt1r31 − 2T s3Tt2r32.

(2.5)

By (2.4) and (2.3), (2.5) can be

3∑

i, j=1

T siTt jS
i j

2
=

3∑

i, j=1

T siTt j(r11 + r22 + r33) = 0.

When ε = 0, S
i j

2
[r(w)] and (ri j(w)) are diagonal, thus, T can be the identity matrix Id. �

From the view above, when k = 2 and f < 0, the corresponding Hessian operator

is possible to be uniformly elliptic. In this paper, we will study some uniformly elliptic

2-Hessian equations which have non-positive right-hand functions f .

3. Existence of C∞ local Solutions for uniformly elliptic case

From now on, we fixed n = 3, k = 2, by a translation y −→ y − y0 and replacing u by

u − u(0) − y · Du(0), we can assume Z0 = (0, 0, 0) in Theorem 1.1. We prove now the

following results,

Theorem 3.1. Let f ∈ C∞ and f (Z0) = 0 for Z0 = (0, 0, 0) ∈ Ω×R×R3 . Then (1.3) admits

a 1-convex local solution u ∈ C∞ which is not 3-convex and is of the following form

(3.1) u(y) =
1

2

3∑

i=1

τiy
2
i + ε

5w(ε−2y), ∀(τ1, τ2, τ3) ∈ P2

in the neighborhood of y0 = 0, ‖w‖C4,α ≤ 1 and ε > 0 very small.
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If f is nonnegative near Z0, then (1.3) admits a 2-convex local solution u ∈ C∞ which is

not 3-convex. If f (Z0) > 0, then (1.3) admits a 3-convex local solution u ∈ C∞.

Moreover, the equation (1.3) is uniformly elliptic with respect to the solution (3.1).

Remark that, in Theorem 3.1 the function f is permitted to change sign. It is well

known that, for Monge-Ampere operator, the type of equation is determined by the sign of

f (y, u,Du), it is elliptic if f > 0, hyperbolic if f < 0 and degenerate elliptic or hyperbolic

if f vanishes; it is of mixed type if f changes sign [4]. So that Theorem 3.1 never occurs

in Monge-Ampére case.

Theorem 3.1 is exactly the part (1) and (2) of Theorem 1.1.

Let τ = (τ1, τ2, τ3) ∈ P2, then ψ(y) = 1
2

∑3
i=1 τiy

2
i

is a polynomial-type solution of

S 2[ψ] = 0,

we follow Lin [8] to introduce the following function

u(y) =
1

2

3∑

i=1

τiy
2
i + ε

5w(ε−2y) = ψ(y) + ε5w(ε−2y), τ ∈ P2, ε > 0,

as a candidate of solution for equation (1.1). Noting y = ε2x, we have

(Dy j
u)(x) = τ jε

2x j + ε
3w j(x), j = 1, · · · , 3,

and

(Dy jyk
u)(x) = δ

j

k
τ j + εw jk(x), j, k = 1, · · · , 3,

where δ
j

k
is the Kronecker symbol, w j(x) = (Dy j

w)(x) and w jk(x) = (D2
y jk

w)(x). Then (1.3)

transfers to

S̃ 2(w) = f̃ε(x,w(x),Dw(x)), x ∈ B1(0) = {x ∈ R3; |x| < 1}

where

S̃ 2(w) = S 2(δ
j

i
τi + εwi j(x)) = S 2(r(w)),

with symmetric matrix r(w) = (δ
j

i
τi + εwi j(x)), and

f̃ε(x,w(x),Dw(x)) = f (ε2 x, ε4ψ(x) + ε5w(x), τ1ε
2 x1 + ε

3w1(x), · · · , τ3ε
2x3 + ε

3w3(x)).

Similar to [8] we consider the nonlinear operators

(3.2) G(w) =
1

ε
[S 2(r(w)) − f̃ε(x,w,Dw)], on B1(0).

The linearized operator of G at w is

(3.3) LG(w) =

3∑

i, j=1

∂S 2(r(w))

∂ri j

∂2
i j +

3∑

i=1

ai∂i + a,

where

ai = −
1

ε

∂ f̃ε(x, z, pi)

∂pi

(x,w,Dw) = −ε2 ∂ f

∂pi

a = −
1

ε

∂ f̃ε(x, z, pi)

∂z
(x,w,Dw) = −ε4 ∂ f

∂z
.

Hereafter, we denote S
i j

2
(r(w)) =

∂S 2(r(w))
∂ri j

. Since S 2(r(w)) = σ2(λ(r(w))) is invariant under

orthogonal transformation, by using Lemma 2.4, the matrix
(
S

i j

2
(r(w))

)
and (r(w)) can be
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diagonalized simultaneously, that is, for any smooth function w, we can find an orthogonal

matrix T (x, ε) satisfying


T (x, ε)
(
S

i j

2
(r(w))

)
tT (x, ε) = diag

[
∂σ2(λ(r(w)))

∂λ1
,
∂σ2(λ(r(w))

∂λ2
,
∂σ2(λ(r(w)))

∂λ3

]

T (x, ε)
(
ri j(r(w))

)
tT (x, ε) = diag [λ1(r(w)), λ2(r(w)), λ3(r(w))] ,

where tT (x, ε) is the transpose of T (x, ε). Since T is not unique, we set T (x, ε) |ε=0= Id.

After this transformation, in order to prove the uniform ellipticity of LG(w)

n∑

i, j=1

S
i j

2
(r(w)ξiξ j ≥ c|ξ|2, ∀(x, ξ) ∈ B1(0) × R3

instead we can prove that , by setting ξ = tT (x, ε)ξ̃,

3∑

j=1

∂σ2(λ(r(w)))

∂λ j

|ξ̃ j|
2 ≥ c|ξ̃|2,

for some c > 0, where

∂σ2(λ(r(w)))

∂λ1
= σ1,1(λ(r(w))) = λ2(r(w)) + λ3(r(w)),

∂σ2(λ(r(w)))

∂λ2

= σ1,2(λ(r(w))) = λ1(r(w)) + λ3(r(w)),

∂σ2(λ(r(w)))

∂λ3

= σ1,3(λ(r(w))) = λ1(r(w)) + λ2(r(w)).

Lemma 3.2. Assume that τ ∈ P2 and ‖w‖C2 (B1(0)) ≤ 1, then the operator LG(w) is a uni-

formly elliptic operator if ε is small enough.

Proof. To prove the operator LG(w) is a uniformly elliptic operator, it suffices to prove

(3.4) λi(r(w)) + λ j(r(w)) = τi + τ j + O(ε), i, j = 1, 2, 3, i , j.

Indeed, for τ ∈ P2 and Lemma 2.2 give τi + τ j > 0. Thus, for ε small enough, (3.4) imply,

λi + λ j ≥
τi + τ j

2
> 0, i , j

LG(w) is then a uniformly elliptic operator.

Next, we prove (3.4). By our choice of ri j(w),

r(w) = (ri j(w)) =



τ1 + εw11 εw12 εw13

εw21 τ2 + εw22 εw23

εw31 εw32 τ3 + εw33

 ,

we write its characteristic polynomial as

g(λ) = det(r(w) − λ I) =

3∏

i=1

(τi − λi) + R(w, ε)

where

R(w, ε) =

3∑

j=1

εR j(w, ε) +
∑

j,k

ε2R jk(w, ε).

For any ‖w‖C2 (B1(0)) ≤ 1 and 0 < ε ≤ 1

|R j(w, ε)| ≤ C, |R jk(w, ε)| ≤ C
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with C being independent of x and ε. We have also

(3.5) S 1(r(w)) = σ1(τ) + εS 1(w), S 2(r(w)) = σ2(τ) + εR̃1(w, ε),

and

det(r(w)) = σ3(τ) + εR̃2(w, ε),

where for any ‖w‖C2 (B1(0)) ≤ 1 and 0 < ε ≤ 1

|R̃ j(w, ε)| ≤ C, |S 1(w)| ≤ C.

By using Lemma 2.2, we have τ3 < 0 < τ2 ≤ τ1, then for 0 < ε ≪ |τ3|, we have

g(
3

4
τ3) = (τ1 −

3

4
τ3)(τ2 −

3

4
τ3)(

τ3

4
) + R(w, ε) < 0,

g(
5

4
τ3) = (τ1 −

5τ3

4
)(τ2 −

5τ3

4
)(−

τ3

4
) + R(w, ε) > 0,

and we see that, by the virtue of Intermediate Value Theorem, there exists an eigenvalue,

denoted by λ3, such that

3

4
τ3 > λ3 >

5

4
τ3, g(λ3) = 0.

From 0 = g(λ3) = (τ1 − λ3)(τ2 − λ3)(τ3 − λ3) + R(w, ε) and

(τ1 −
5τ3

4
)(τ2 −

5τ3

4
) > (τ1 − λ3)(τ2 − λ3) > (τ1 −

3τ3

4
)(τ2 −

3τ3

4
),

it follows that

λ3 = τ3 + O1(w, ε).

Since the trace of a matrix is invariant under the orthogonal transformation, then

λ1(w) + λ2(w) + λ3(w) = σ1(τ) + ε(w11 + w22 + w33),

from which we see that

λ1(w) + λ2(w) = τ1 + τ2 + O2(w, ε).

Using

σ2(τ) + εR̃1(w, ε) = S 2(r(w)) = σ2(λ(r(w))) = λ3(w)(λ1(w) + λ2(w)) + λ1(w)λ2(w),

we obtain

λ1λ2 = τ1τ2 + O3(w, ε),

which yields either

λ1 = τ1 + O4(w, ε), λ2 = τ2 + O5(w, ε)

or

λ1 = τ2 + O5(w, ε), λ2 = τ1 + O4(w, ε)

and then (3.4) is proven. Proof is done. �
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We follows now the idea of Hong and Zuily [5] to prove the existence and a priori

estimates of solution for linearized operator. In our case, although LG(w) is uniformly

elliptic, the existence and a priori Schauder estimates of classical solutions are not directly

obtainable, because we do not know whether the coefficient a of au in (3.3) is non-positive.

If we can prove the existence (Lemma 3.3), we can employ Nash-Moser procedure to prove

the existence of local solution for (1.3) in Hölder space rather than Sobolev space. One

goal is to see how the procedure depends on the condition ‖wk‖C4,α ≤ A. We shall use the

following schema:

(3.6)



w0 = 0, wm = wm−1 + ρm−1, m ≥ 1,

LG(wm)ρm = gm, in B1(0),

ρm = 0 on ∂B1(0),

gm = −G(wm) ,

where

g0(x) =
1

ε

(
σ2(τ) − f

(
ε2x, ε4ψ(x), ε2(τ1x1, τ2x2, τ3x3)

))
.

It is pointed out on page 107, [3] that, if the operator LG does not satisfy the condition

a ≤ 0, as is well known from simple examples, the Dirichlet problem for LG(w)ρ = g no

longer has a solution in general. Notice a in (3.9) has the factor ε4, we will take advantage

of smallness of a to obtain the uniqueness and existence of solution for Dirichlet problem

(3.9) and then uniformly Schauder estimates of its solution follows.

Lemma 3.3. Assume that ‖w‖C4,α(B1(0)) ≤ A. Then there exists a unique solution ρ ∈

C2,α(B1(0)) to the following Dirichlet problem

(3.7)

{
LG(w)ρ = g, in B1(0),

ρ = 0 on ∂B1(0)

for all g ∈ Cα(B1(0)). Moreover,

(3.8) ‖ρ‖C4,α(B1(0)) ≤ C‖g‖C2,α(B1(0)), ∀g ∈ C2,α(B1(0)),

where the constant C depends on A, τ and ‖ f ‖C4,α . Moreover, C is unform for 0 < ε ≤ ε0

for some ε0 > 0.

By virtue of (3.3), we write (3.7) as

(3.9)


LG(w)ρ =

∑3
i, j=1

∂S 2(r(w))
∂ri j

∂i∂ jρ +
∑3

i=1 ai∂iρ + aρ = g, in B1(0),

ρ = 0 on ∂B1(0)

where

ai = −ε
2 ∂ f

∂pi

, a = −ε4 ∂ f

∂z
.

Notice that for
∂S 2(r(w))

∂ri j
, ai = ai(x,w(x),Dw(x)), a = a(x,w(x),Dw(x)) and gm = −G(wm) =

gm(x,w(x),Dw(x),D2w(x)) by (3.6), we regard them as the functions with variable x. In a

word, we regard that all of the coefficients and non-homogeneous term in (3.9) are func-

tions of variable x. For example,

f̃ε(x,w(x),Dw(x)) = f (ε2 x, ε4ψ(x) + ε5w(x), τ1ε
2 x1 + ε

3w1(x), · · · , τ3ε
2x3 + ε

3w3(x)),
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and

‖ f̃ε‖C3 = sup
{
|D

β
x[ f̃ε]|, |0 ≤ β ≤ 3, x ∈ B1(0)

}

‖ f̃ε‖C3,α = ‖ f̃ε‖C3 + sup


|D

β
x[ f̃ε](x) − D

β
x[ f̃ε](z)|

|x − z|α
, |β| = 3, x , z ∈ B1(0)



When we regard f̃ε as a function of variable x, usually ‖ f ‖C3,α is denoted as ‖ f ‖C3,α (B1(0)),

but it maybe cause confusion because it must be involved in Dαw, 0 ≤ |α| ≤ 3 as above.

Therefore, here and after, we denote the norm as ‖ f̃ε‖C3 , ‖ f̃ε‖C3,α as above, by dropping

B1(0).

Proof. Let the constant µ(τ) = inf
{
∂σ2(λ(r(w)))

∂λi
: ‖w‖C4,α (B1(0)) ≤ A, i = 1, 2, 3,

}
. By Lemma

3.2, µ(τ) > 0. Applying Theorem 3.7 [3] to the solution u ∈ C0(B1(0)) ∩ C2(B1(0)) of


LG(w)u =
∑3

i, j=1
∂S 2(r(w))

∂ri j
∂i∂ ju +

∑3
i=1 ai∂iu = g, in B1(0),

u = 0 on ∂B1(0)

we have

(3.10) sup |u| ≤
C

µ(τ)
‖g‖C0(B1(0)),

where C = exp2(β+1) −1 and β = sup
{
|ai |

µ(τ)
: i = 1, 2, 3.

}

Let C1 = 1 − C sup |a|
µ(τ)

with C being the constant in (3.10). If we choose ε0 > 0 small

(the smallness of a), then C1 >
1
2

uniformly for 0 < ε < ε0. Applying Corollary 3.8 [3] to

the solution ρ to Dirichlet problem (3.9), we have

(3.11) sup |ρ| ≤
1

C1

 sup
∂B1(0)

|ρ| +
C

µ(τ)
‖g‖C0(B1(0))

 =
C

C1µ(τ)
‖g‖C0(B1(0)),

from which we see that the homogeneous problem


LG(w)ρ =
∑3

i, j=1
∂S 2(r(w))

∂ri j
∂i∂ jρ +

∑3
i=1 ai∂iρ + aρ = 0, in B1(0),

ρ = 0 on ∂B1(0)

has only the trivial solution. Then we can apply a Fredholm alternative, Theorem 6.15 [3],

to the inhomogeneous problem (3.9) for which we can assert that it has a unique C2,α(B1(0))

solution for all g ∈ Cα(B1(0)).

With the existence and uniqueness at hand, we can apply Theorem 6.19 [3] to obtain

higher regularity up to boundary for solution to (3.9). Besides this, we have the Schauder

estimates (see Problem 6.2 , [3])

(3.12) ‖ρ‖C4,α ≤ C(A, τ, ‖ f ‖C3+α )
[
‖ρk‖C0 (B1(0)) + ‖gk‖C2,α(B1(0))

]
,

where C depends on C2,α−norm of all of the coefficients; the uniform ellipticity; boundary

value and boundary itself . we explain the dependence of C(A, τ, ‖ f ‖C3+α ). Firstly, Since

the first two derivatives of w have come into the principal coefficients
∂S 2(r(w))

∂ri j
, then their

C2+α-norms must be involved in ‖w‖C4,α , and at last ‖w‖C4,α ≤ A arise into C. Similarly, by

virtue of the coefficients ai and a, ‖ f ‖C3,α and ‖w‖C3,α ≤ A must arise into C. Secondly, it

depends on uniform ellipticity, that is, on

inf

{
∂σ2(λ(r(w)))

∂λi

: ‖w‖C4,α (B1(0)) ≤ A, i = 1, 2, 3,

}
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and

sup

{
∂σ2(λ(r(w)))

∂λi

: ‖w‖C4,α (B1(0)) ≤ A, i = 1, 2, 3,

}
,

so (τ = (τ1, τ2, τ3)) and A arise into C.

Thirdly, Since boundary value is =0 and boundary ∂B1(0) is C∞, so the two ingredients

do not occur into C. Substituting (3.11) into (3.12), we obtain (3.8). �

It follows from standard elliptic theory (see Theorem 6.17, [3] and Remark 2, [1]) and

an iteration argument that we obtain.

Corollary 3.4. Assume that u ∈ C2,α(Ω) is a solution of (1.3), and the linearized operators

with respect to u,

Lu =

3∑

i, j=1

∂S 2(ui j)

∂ri j

∂2
i j −

3∑

i=1

∂ f

∂pi

(y, u(y),Du(y))∂i −
∂ f

∂z
(y, u(y),Du(y))

is uniformly elliptic, then u ∈ C∞(Ω).

Proof. Let v be a function on Ω and denote by el, l = 1, 2, 3 the unit coordinate vector in

the yl direction. We define the difference quotient of v at y in the direction el by

△hv(y) = △h
l v(y) =

v(y + hel) − v(y)

h
.

Since

S 2(ui j(y + hel)) − S 2(ui j(y))

=

∫ 1

0

d

dt
[S 2(tui j(y + hel) + (1 − t)ui j(y))]dt

=

3∑

i, j=1

∫ 1

0

∂

∂ri j

[S 2(tui j(y + hel) + (1 − t)ui j(y))]dt[ui j(y + hel) − ui j(y)]

≡

3∑

i, j=1

ai j(y)[ui j(y + hel) − ui j(y)]

and Taylor expansion give

f (y + hel, u(y + hel),Du(y + hel)) − f (y, u(y),Du(y))

=

3∑

i=1

bi(y)[ui(y + hel) − ui(y)] + c(y)[u(y + hel) − u(y)] + g(y)h

with

bi(y) =

∫ 1

0

∂ f

∂pi

(t(y + hel) + (1 − t)y, tu(y + hel) + (1 − t)u(y), tDu(y + hel) + (1 − t)D(y))dt

c(y) =

∫ 1

0

∂ f

∂z
(t(y + hel) + (1 − t)y, tu(y + hel) + (1 − t)u(y), tDu(y + hel) + (1 − t)D(y))dt

g(y) =

∫ 1

0

∂ f

∂yl

(t(y + hel) + (1 − t)y, tu(y + hel) + (1 − t)u(y), tDu(y + hel) + (1 − t)D(y))dt.

Taking the difference quotients of both sides of the equation

S 2(ui j(y)) = f (y, u,Du),
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we have
3∑

i, j=1

ai j(y)∂i∂ j△
hu(y) −

3∑

i=1

bi(y)∂i△
hu(y) − c(y)△hu(y) = g(y).

Since u ∈ C2,α(Ω), then all the coefficients ai j, bi, c and inhomogeneous term g are in

Cα(Ω), from the interior estimates of Corollary 6.3 in [3], we can infer

△hu ∈ C2,α(Ω).

Letting h→ 0, we see ∂lu ∈ C2,α(Ω), l = 1, 2, 3 and

3∑

i, j=1

∂S 2(D2u)

∂ri j

∂i∂ j(∂lu) −

3∑

i=1

∂ f

∂pi

∂i(∂lu) −
∂ f

∂z
(∂lu) =

∂ f

∂yl

.

Repeating the above proof, we obtain u ∈ C∞(Ω). �

Using above Lemma 3.3, we can use the procedure (3.6) to construct the sequence

{wm}m∈N. Now we study the convergence of {wm}m∈N and that of {gm}m∈N.

Proposition 3.5. Let {wm}m∈N and {gm}m∈N the sequence in (3.6). Suppose that ‖w j‖C4,α ≤ A

for j = 1, 2, . . . , k. Then we have

(3.13) ‖gk+1‖C2,α ≤ C[‖gk‖
2
C2,α + ‖gk‖

3
C2,α ],

where C is some positive constant depends only on τ ,A and ‖ f ‖C4,α . In particular, C is

independent of k.

Proof. Applying Taylor’s expansion with integral-typed remainder to (3.2), we have

−gk+1 = G(wk + ρk) = G(wk) + LG(wk)ρk + Q(wk, ρk)

= −gk + LG(wk)ρk + Q(wk, ρk) = Q(wk, ρk),

where Qk is the quadratic error of G which consists of S 2 and f .

Q(wk, ρk) =
∑

i j,st

1

ε

∫
(1 − µ)

∂2S 2(wk + µρk)

∂wi j∂wst

dµ(ρk)i j(ρk)st

+

∑

i, j

1

ε

∫
(1 − µ)

∂2 f̃ε(wk + µρk)

∂wi∂w j

dµ(ρk)i(ρk) j

+
1

ε

∑

i

∫
(1 − µ)

∂2 f̃ε(wk + µρk)

∂w∂wi

dµ(ρk)i(ρk)

+
1

ε

∫
(1 − µ)

∂2 f̃ε(wk + µρk)

∂w2
dµ · ρ2

k

= I1 + I2 + I3 + I4

Since S 2((r(w))) is a second-order homogeneous polynomial with variable ri j(r(w)) and

f̃ε(x,w,Dw) is independent of ri j, we see that
∣∣∣∣∣∣
∂2S 2(wk + µρk)

∂wi jwst

∣∣∣∣∣∣ =
∂2S 2

∂wi j∂wst

(δ
j

i
τi + ε(wk + µρk)i j) = ε

2 or 0,

∣∣∣∣∣∣
∂2 f̃ε(wk + µρk)

∂wi∂w j

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∂2[ f (εx, ε4ψ + ε5(wk + µρk), ε3Dψ + ε3D(wk + µρk))]

∂wi∂w j

∣∣∣∣∣∣ ≤ ε
6 · ‖ f ‖C2 ,
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∣∣∣∣∣∣
∂2 f̃ε(wk + µρk)

∂w∂wi

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∂2[ f (εx, ε4ψ + ε5(wk + µρk), ε3Dψ + ε3D(wk + µρk))]

∂w∂wi

∣∣∣∣∣∣ ≤ ε
8‖ f ‖C2 ,

∣∣∣∣∣∣
∂2 f̃ε(wk + µρk)

∂w2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∂2[ f (εx, ε4ψ + ε5(wk + µρk), ε3Dψ + ε3D(wk + µρk))]

∂w2

∣∣∣∣∣∣ = ε
10‖ f ‖C2 .

Thus, Ii(1 ≤ i ≤ 4) in Qk are under control by O(ε), O(ε5), O(ε7) and O(ε9), repectively.

Therefore

‖I1‖C2,α ≤ C‖ρk‖C2‖ρk‖C4,α

and

‖I2‖C2,α ≤C‖ f ‖C4,α (‖wk‖C3,α + ‖ρk‖C3,α )‖ρk‖
2
C1 +C‖ f ‖C2 ‖ρk‖C3,α‖ρk‖C1

≤C‖ρk‖C3,α ‖ρk‖
2
C1 +C‖ρk‖

2
C1 +C‖ρk‖C3,α‖ρk‖C1

where C depends on A and ‖ f ‖C4,α . And ‖I3‖C2,α and ‖I4‖C2,α can be estimated similarly.

Accordingly,

‖gk+1‖C2,α = ‖Q(wk, ρk)‖C2,α ≤

4∑

i=1

‖Ii‖C2,α

≤C‖ρk‖C2‖ρk‖C4,α + C‖ρk‖C3,α‖ρk‖
2
C1 + ‖ρk‖

2
C1 +C‖ρk‖C3,α‖ρk‖C1

where C is independent of k but dependent of A and ‖ f ‖C4,α . Thus, by the interpolation

inequalities, we have

‖gk+1‖C2,α ≤ C‖ρk‖
2
C4,α +C‖ρk‖

3
C4,α ,

where C is independent of k. By Schauder estimates of Lemma 3.3, we have

‖ρk‖C4,α ≤ C‖gk‖C2,α .

Combining the estimates above, we obtain (3.13). Proof is done. �

Since C is independent of k, more exactly, A, τ and ‖ f ‖C4,α are independent of k. So here

and after, we can assume A = 1.

Proof of Theorem 3.1. Set

(3.14) dk+1 = C‖gk+1‖C2,α .

By (3.13) with letting C ≥ 1 we have

dk+1 ≤ d2
k + d3

k .

Take τ ∈ R3 as in Lemmas 2.2 and 2.3 such that σ2(τ) = f (0, 0, 0), we have

g0(x) =
1

ε

(
σ2(τ) − f

(
ε2x, ε4ψ(x), ε2(τ1 x1, τ2x2, τ3x3)

))

=
1

ε
[σ2(τ) − f (0, 0, 0)]

+ ε

∫ 1

0

x · (∂y f )
(
tε2 x, tε4ψ(x), tε2(τ1 x1, τ2x2, τ3x3)

)
dt

+ ε3

∫ 1

0

ψ(x)(∂z f )
(
tε2x, tε4ψ(x), tε2(τ1x1, τ2x2, τ3x3)

)
dt

+ ε

∫ 1

0

(τ1x1, τ2 x2, τ3x3) · (∂p f )
(
tε2x, tε4ψ(x), tε2(τ1x1, τ2 x2, τ3x3)

)
dt,
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then

‖g0‖C2,α(B1(0)) ≤ εC1‖ f ‖C3,α .

We can choose 0 < ε ≤ ε0 so small such that

C‖g0‖C2,α(B1(0)) ≤ 1/4, 0 < ε ≤ ε0.

Notice ε0 is independent of k. Since d0 = C‖g0‖C2,α , we have d1 ≤ 2d2
0

and, by induction,

dk+1 ≤ 22k+1

d2k+1

0 ≤ (2C)2k+1

‖g0‖
2k+1

C2,α ,

Thus, by (3.14)

‖gk+1‖C2,α ≤ (2C)2k+1−1‖g0‖
2k+1

C2,α .

Firstly, we claim that there exists ε > 0, depending on τ and ‖ f ‖C3,α such that

‖wk‖C4,α(B1(0)) ≤ 1, ∀k ≥ 1.

Indeed, set w0 = 0, we have by (3.13)

‖wk+1‖C4,α(B1(0)) = ‖

k∑

i=0

ρi‖C4,α(B1(0)) ≤

k∑

i=0

‖ρi‖C4,α(B1(0))

≤

k∑

i=0

C‖gi‖C2,α(B1(0)) ≤

k∑

i=0

(
2C‖g0‖C2,α(B1(0))

)2i

where C is defined in Lemma 3.5. Thus, for any k,

‖wk+1‖C4,α(B1(0)) ≤

∞∑

i=0

(
C‖g0‖C2,α(B1(0))

)2i

≤

∞∑

i=0

2−2i

≤ 1.

Then, by Azelà-Ascoli Theorem, we have

wk → w in C4((B1(0))).

From (3.13), we see that

‖gk+1‖C2,α(B1(0)) ≤

(
1

2

)2k

→ 0,

and then gm = −G(wm) yields

G(w) =
1

ε
[S 2(r(w)) − f̃ (x,w,Dw)] = 0, on B1(0)

which yields that the function

u(y) =
1

2

3∑

i=1

τiy
2
i + ε

5w(ε−2y) ∈ C4(Bε2(0)),

is a solution of

S 2[u] = f (y, u,Du), on Bε2(0) .

Now if f (0, 0, 0) = 0, we take τ ∈ P2, then σ1(τ) > 0, σ2(τ) = 0, σ3(τ) < 0, and (3.5)

imply,

S j[u] = σ j(λ) = σ j(τ) + O(ε), j = 1, 2, 3
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it follows that S 1[u] > 0, S 3[u] < 0 on Bε2(0) for small ε > 0, that is, u is 1−convex but

not convex. Moreover if S 2[u] = f ≥ 0 near Z0 and f (Z0) = 0, we see that u is 2-convex

by definition, but not 3-convex.

If S 2[u] = f > 0 near Z0, we take τ ∈ R3 given in (2) and (3) of Lemmas 2.3, then we

can get the 3-convex or non convex local solutions.

The C∞ regularity of solution is given by Corollary 3.4. We have then proved Theorem

3.1. �

We also have the following elliptic results for negative f

Theorem 3.6. Let f ∈ C∞, f (0, 0, 0) < 0. Then (1.3) admits a 1−convex local solution

u ∈ C∞ in a neighborhood of y0 = 0 which is not 2−convex, it is of the following form

u(y) =
1

2

3∑

i=1

τiy
2
i + ε

5w(ε−2y) ,

and the equation (1.3) is uniformly elliptic with respect to this solution.

Proof. For a = f (0, 0, 0) < 0, take τ ∈ R3 as in (1) of Lemma 2.3 such that

σ1(τ) > 0, σ2(τ) = f (0, 0, 0) < 0,

and

σ1,3(τ) > σ1,2(τ) > σ1,1(τ) > 0.

Now the proof is exactly same as that of Theorem 3.1 except the estimate of term g0, we

use Taylor expansion,

g0(x) = −G(0) =
1

ε
[S 2(r(0)) − f̃ (x, 0, 0)]

=
1

ε

[
σ2(τ) − f

(
ε2x, ε4ψ(x), ε2(τ1x1, τ2x2, τ3x3)

)]

=
1

ε
[σ2(τ) − f (0, 0, 0)]

+ ε

∫ 1

0

x · (∂y f )
(
tε2 x, tε4ψ(x), tε2(τ1x1, τ2x2, τ3x3)

)
dt

+ ε3

∫ 1

0

ψ(x)(∂z f )
(
tε2x, tε4ψ(x), tε2(τ1x1, τ2 x2, τ3x3)

)
dt

+ ε

∫ 1

0

(τ1x1, τ2 x2, τ3x3) · (∂p f )
(
tε2x, tε4ψ(x), tε2(τ1x1, τ2x2, τ3x3)

)
dt,

then we can end the proof of Theorem 3.6 exactly as that of Theorem 3.1. �
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